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CellNavi predicts genes directing 
cellular transitions by learning a gene 
graph-enhanced cell state manifold
 

Tianze Wang1,2,6, Yan Pan1,3,6, Fusong Ju1,6, Shuxin Zheng1,5,6, Chang Liu1,6, 
Yaosen Min1,5, Qun Jiang1,3, Xinwei Liu1,4, Huanhuan Xia1,5, Guoqing Liu1, 
Haiguang Liu1 & Pan Deng    1 

A select few genes act as pivotal drivers in the process of cell state 
transitions. However, finding key genes involved in different transitions 
is challenging. Here, to address this problem, we present CellNavi, a 
deep learning-based framework designed to predict genes that drive cell 
state transitions. CellNavi builds a driver gene predictor upon a cell state 
manifold, which captures the intrinsic features of cells by learning from 
large-scale, high-dimensional transcriptomics data and integrating gene 
graphs with directional connections. Our analysis shows that CellNavi can 
accurately predict driver genes for transitions induced by genetic, chemical 
and cytokine perturbations across diverse cell types, conditions and studies. 
By leveraging a biologically meaningful cell state manifold, it is proficient 
in tasks involving critical transitions such as cellular differentiation, 
disease progression and drug response. CellNavi represents a substantial 
advancement in driver gene prediction and cell state manipulation, opening 
new avenues in disease biology and therapeutic discovery.

Understanding the genetic drivers of cellular transitions is crucial for 
elucidating complex biological processes and disease mechanisms1–3. 
However, identifying these drivers remains inherently challenging due 
to the vast number of genes involved in transitions and their complex 
interdependencies, contrasted with limited experimental capacity and 
incomplete biological knowledge. Therefore, in silico methods capable 
of predicting driver genes across diverse contexts are highly desirable.

Traditionally, efforts to pinpoint critical driver genes have primar-
ily relied on network-based methodologies, with a particular focus on 
gene regulatory networks (GRNs)4–8. Although GRN-centric approaches 
have made notable progress, they also encounter limitations that 
hinder their broader use. For example, deducing accurate GRNs within 
heterogeneous cell populations, which is more relevant to transla-
tional research, remains a challenge9,10. Moreover, GRN models tend to 

prioritize transcription factors and may overlook non-transcriptional 
drivers of cellular transitions. This limits our understanding of complex 
cellular processes such as disease progression, immune modulation 
and pharmacological responses.

To this end, we developed CellNavi, a deep learning framework 
designed to predict driver genes and navigate cellular transitions. 
CellNavi constructs a driver gene predictor (DGP) on top of a learned 
manifold that parameterizes valid cell states. This manifold is modelled 
by mapping raw cell state representations onto a lower-dimensional 
coordinate space, where the dimensions correspond to intrinsic fea-
tures of cell states, and the distance reflects the biological similarity 
between cells. To build this manifold, CellNavi is trained on large-scale, 
high-dimensional single-cell transcriptomic data, along with prior 
directional gene graphs that reveal the underlying structure of cell 
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mechanisms, holding profound promise for advancing cell biology 
and disease research.

Overview of CellNavi
CellNavi is designed to predict driver genes for given cellular transi-
tions, where the transcriptomic data of the source and target cells 
represent the initial and final states of these transitions (Fig. 1a–c).

CellNavi comprises two main components: the cell manifold model 
(CMM), which captures and represents cell states, and the DGP, which 
identifies key genes driving these transitions based on learned cell 
representations (Fig. 1b).

The CMM is built to capture valid cell states across diverse biological 
contexts. While transcriptomes are often used to represent cell states, 
valid cell states do not span the entire high-dimensional transcriptomic 

states. By projecting cellular data onto this biologically meaningful 
space with reduced dimensionality and enhanced biological relevance, 
CellNavi provides a universal framework that generalizes across diverse 
cellular contexts, allowing robust driver gene predictions even in previ-
ously unexplored cell types or conditions.

Our results show that CellNavi excels at predicting driver genes 
across a wide range of biological transitions, demonstrating strong 
performance in quantitative tasks curated in both immortalized cell 
lines and primary cells. It identifies crucial regulators in T cell dif-
ferentiation and uncovers key genes associated with neurodegenera-
tive diseases. Notably, CellNavi infers mechanisms of action for drug 
compounds without the need for drug-specific training, underscoring 
its potential in drug discovery. In summary, CellNavi offers a powerful 
framework for deciphering cell state transitions and their underlying 
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Fig. 1 | Overview of CellNavi. a, A conceptual illustration of CellNavi’s task. Given 
a pair of source and target cells undergoing a transition induced by stimuli, 
CellNavi predicts the driver gene responsible for this transition. b, The workflow 
of CellNavi. The CMM maps the source and target cells onto a coordinate space 
of the cell manifold. The DGP then uses the cell coordinates produced by the 
CMM to rank the candidate genes by likelihood scores. c, An illustration of the 
cell manifold and its coordinate space. d, Data used for the CMM training. exps, 

experiments. e, Training of the CMM. The CMM consists of six GeneGraph 
Attention (attn.) layers designed to incorporate graph-based information. During 
training, single-cell transcriptomic profiles are randomly sampled from the 
curated HCA dataset and used as input. Cell embeddings generated by the model 
are then used by a transformer decoder to reconstruct gene expression profiles.  
f, Data used for the DGP training. g, Application scenarios and test cases of CellNavi. 
MoA, mechanism of action. Schematic elements created with BioRender.com.
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space but instead form a lower-dimensional manifold (Fig. 1c). To model 
this, the CMM maps transcriptomic vectors to a lower-dimensional 
coordinate space that represents the intrinsic features of cell states, 
while preserving the relative similarities between cells (dimensionality 
considerations are discussed in Supplementary Note 1).

We first curated a dataset of approximately 20 million single-cell 
transcriptomic profiles sourced from the Human Cell Atlas (HCA)11 
(Fig. 1d) and adapted a transformer architecture based on atten-
tion mechanisms, known for its ability to discern complex pat-
terns in large-scale data12–17, to train the CMM (Fig. 1e). The training 
involved a self-supervised downsampling reconstruction task 
(Methods and Supplementary Note 2). To prioritize cell rather 
than gene-level representations, we developed a decoder module 
to reconstruct gene expression profiles from the cell coordinates—
representations of cells within the coordinate space of the cell state 
manifold—generated by the CMM (Fig. 1e and Extended Data Fig. 1; 
Methods). This approach aligns cells across varying sequencing depths 
(Extended Data Fig. 2a) and recapitulates developmental trajectories 
from single cells (Extended Data Fig. 2b–d), indicating that it captures 
both intra- and intercellular features.

However, relying solely on transcriptomic data may overlook the 
intricate gene–gene interactions that are crucial for describing and 
distinguishing cell states. To address this, we incorporated 20 million 
cell-specific gene graphs into the CMM training process (Fig. 1d,e). 
These graphs encode directional connections derived from a prior 
network that spans over 30,000 human genes and their associated sig-
nalling pathways18 (Methods). More specifically, in these gene graphs, 
each edge represents a causal relationship between two genes, with the 
direction indicating the regulatory influence from one gene to the other 
(Methods). These graphs provide richer information about the complex 
dependencies among genes, which extend beyond simple transcrip-
tomic data, hence better implying intrinsic variables spanning the valid 
cell space. To leverage these gene graphs, we replaced the standard 
transformer encoder layer in the CMM using a GeneGraph attention 
layer (Extended Data Fig. 1b). These layers, inspired by attention vari-
ants tailored for graph data19, can process gene networks, thus enabling 
the model to integrate critical gene–gene relationships. With these 
designs, the model is driven to cultivate a manifold that systematically 
represents cell states and effectively reflects the relationships between 
cells, forming an informative foundation for driver gene prediction.

Building upon this manifold, we developed the DGP to pre-
dict genes driving specified cellular transitions (Methods and 
Extended Data Fig. 3a). The DGP is trained on clustered regularly 
interspaced short palindromic repeats (CRISPR) screen data, which 
link genetic perturbations to consequent changes in cell states20–25. 
We designated unperturbed controls and CRISPR-perturbed cells as 
source and target pairs, respectively, and utilized validated perturbed 
genes as labels for joint training (fine-tuning) of the CMM and DGP 
(Fig. 1f). Specifically, for each cell pair, their transcriptomic profiles 
are transformed into cell coordinates by the CMM, which are then 
processed by the DGP to generate a likelihood score vector indicating 
the probability that various candidate genes are orchestrating the 
transitions (Extended Data Fig. 3a).

We demonstrate that CellNavi, fine-tuned on CRISPR screen data—
typically conducted on cultured cells or homogeneous populations 
and focusing on immediate genetic perturbations—can be extended to 
more complex transitions in heterogeneous tissues and primary cells 
(Fig. 1g and Extended Data Fig. 3b). By leveraging a biologically mean-
ingful manifold, CellNavi generalizes knowledge gained from CRISPR 
screens beyond their original scope, to cellular transitions that are 
challenging to investigate using regular CRISPR methodologies. How-
ever, we acknowledge that CellNavi’s performance in specific contexts 
may benefit from additional fine-tuning on relevant CRISPR datasets. 
Incorporating expanded experimental data may further enhance its 
applicability across diverse biological settings with minimal adaptation.

Quantitative evaluation of CellNavi
To assess the capabilities of CellNavi, we first evaluated its performance 
on CRISPR perturbation datasets, where driver gene information is 
well established for transitions from source (unperturbed) to target 
(perturbed) cells.

We initially applied CellNavi to the Schmidt dataset, a CRISPR 
activation screen profiling 69 genetic perturbations26. This dataset 
captures distinct expression profiles and molecular phenotypes across 
both resting and restimulated T cells, within and between different 
cell types, before and after perturbations (Extended Data Fig. 4a). We 
fine-tuned our model on restimulated T cells and tested it on resting 
T cells (Fig. 2a). This set-up allowed us to evaluate CellNavi’s ability 
to generalize across heterogeneous primary cells and predict driver 
genes in new cell states.

For each source–target cell pair, CellNavi prioritizes candidate 
genes based on their predicted likelihood scores. Across 23,047 source–
target cell pairs, CellNavi achieves a top-1 accuracy of 0.621 and a top-5 
accuracy of 0.733 (Fig. 2b), while maintaining strong performance 
across additional metrics (Fig. 2b,c and Extended Data Fig. 4b). Inter-
estingly, substantial variation in top-1 accuracy was observed across 
perturbed genes, independent of sample size (Fig. 2d). Correlation 
analysis between gene-wise performance and the Local Inverse Simp-
son’s Index (LISI)27 suggests that CellNavi’s accuracy is influenced by the 
degree of perturbation heterogeneity: perturbations with low average 
LISI values, indicative of a more distinct and homogeneous response, 
were associated with higher accuracy (top-1 accuracy >0.8, Fig. 2e).

To demonstrate CellNavi’s effectiveness, we compared it with two 
alternative methods: SCENIC/SCENIC+4,5, a training-free approach that 
infers GRNs from transcriptomic data with a focus on master regula-
tors, and GEARS28, an in silico perturbation approach, which targets a 
partially inverse problem of cellular transition prediction (Methods). 
Both SCENIC and GEARS exhibited markedly lower performance com-
pared to CellNavi (Fig. 2b–d and Extended Data Fig. 4b). In addition, 
SCENIC, the network-based approaches, faced challenges in identifying 
regulons at the single-cell level (Extended Data Fig. 4c) and therefore 
struggled to make predictions in many cases. To investigate whether 
this is a broad challenge for GRN inference methods, we evaluated 
three alternative GRN inference approaches: GENIE329, GRNBoost230 
and RENGE31 (Methods). These methods similarly exhibited poor per-
formance in single-cell contexts (Supplementary Table 1).

Fig. 2 | Quantitative assessment of CellNavi. a, A schematic of the quantitative 
evaluation framework. CRISPR-perturbed cells and their unperturbed controls 
are used for model training and evaluation, with data split by cell states to enable 
more rigorous testing. b, Top-1 accuracy, top-5 accuracy and F1 score for driver 
gene prediction in the Schmidt dataset, comparing CellNavi with alternative 
methods. The dashed line indicates the performance of a random guess. c, Area 
under the receiver operating characteristic curve (AUROC) scores for driver gene 
prediction in the Schmidt dataset, comparing CellNavi with alternative methods. 
d, Average top-1 accuracy for each gene. Left y axis: top-1 accuracy of different 
methods for each gene. Right y axis: the number of training (light blue) and test 
(steel blue) samples. e, Negative correlation between CellNavi’s top-1 accuracy 

and the average LISI score across genes (Pearson correlation coefficient −0.451). 
A LISI score of 1 indicates indistinguishable perturbation effects, while a score 
of 0 suggests a distinct perturbation pattern. Dot colours represent the top-1 
accuracy for individual genes. f, Top-1 accuracy, top-5 accuracy and F1 score for 
driver gene prediction in the Norman dataset (single perturbation), comparing 
CellNavi with alternative methods. The dashed line indicates the performance 
of a random guess. g, AUROC scores for driver gene prediction in the Norman 
dataset (single perturbation), comparing CellNavi with alternative methods.  
h, The distribution of predicted rankings for perturbed gene pairs. ‘Perturbation 
1’ represents genes ranked higher, and ‘Perturbation 2’ represents genes ranked 
lower. n = 4,916. Source data for (b,c,f,g) are available in Supplementary Table 1.
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CellNavi does not simply predict driver genes from expression 
changes. We conducted an ablation study by systematically removing 
the expression of perturbed genes from the input. Although this led 
to a decrease in performance, CellNavi still maintained substantial 
predictive accuracy, far surpassing expectations of random prediction 

(Extended Data Fig. 4d,e). In addition, DGE analysis revealed that the 
rankings of differentially expressed genes were poorly correlated with 
the actual perturbed genes (Fig. 2b–d and Extended Data Fig. 4b). These 
results suggest that CellNavi identifies driver genes beyond those 
detectable by expression shifts alone.
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We further tested CellNavi on the Norman dataset32, which features 
a CRISPR interference screen on the K562 cell line. This dataset encom-
passes 105 single-gene and 131 gene pair perturbations, allowing us to 
assess CellNavi’s performance on transitions driven by both single and 
multiple genes. Using the unsupervised Leiden algorithm33, we stratified 
the cells by cluster, holding out one cluster for testing and training on 
the remaining ones (Fig. 2a and Extended Data Fig. 4f). To ensure rigor-
ous evaluation, we excluded all multigene perturbations from training.

CellNavi maintained strong performance on single driver gene 
prediction in the Norman dataset (Fig. 2f,g, Extended Data Fig. 4g and 
Supplementary Table 1). To evaluate multigene scenarios, we focused on 
the predicted rankings of perturbed genes. CellNavi ranked the first and 
second perturbed genes at averages of 7.9 and 31.2 out of 105 candidates, 
respectively, greatly outperforming all other tested methods (Fig. 2h).

Several recent studies have indicated that linear models can 
outperform deep learning methods in cell modelling tasks34–37.  
To investigate this, we evaluated multiple linear models for driver gene 
prediction under various conditions. Our results showed that CellNavi 
consistently outperformed these linear models by a substantial mar-
gin across settings (Supplementary Note 3). Furthermore, we applied 
cross-validation to ensure robust and unbiased evaluation and found 
that CellNavi demonstrated consistently superior performance across 
these conditions (Supplementary Tables 2 and 3). Altogether, these 
results, spanning diverse datasets and metrics, highlight CellNavi’s 
strong capability to identify genes driving cellular changes, even in 
previously uncharacterized cell states.

Evaluating model components and graph 
configurations
To assess the contributions of the CMM and DGP components, and to 
evaluate whether pretraining with the CMM improves generalization 
across biological contexts, we designed two ablated methods. The first 
combined the DGP with raw gene expression vectors instead of outputs 
from the CMM (no-CMM). The second replaced the DGP with a simpler 
multinomial logistic regression model (no-DGP). In addition to the Nor-
man single perturbation split, which utilizes a cluster-based holdout 
strategy (out-of-domain split), we curated an alternative evaluation 
approach using random holdout to simulate a scenario without generali-
zation (in-domain split). Removing either CMM pretraining (no-CMM) 
or DGP fine-tuning (no-DGP) led to reduced performance; however, for 
out-of-domain split, the absence of CMM pretraining (no-CMM) caused 
a greater drop in performance compared to the in-domain split scenario 
(Extended Data Fig. 5). These results highlight that CMM pretraining is 
essential for generalization across biologically diverse contexts, while 
DGP fine-tuning further optimizes task-specific predictions.

We also evaluated the impact of the NicheNet gene graph on 
CellNavi’s predictions. Replacing NicheNet with GRNs inferred using 
GENIE3, GRNBoost2 or RENGE resulted in reduced performance 
(Extended Data Table 1), underscoring the advantage of integrating 
pathway-level information beyond GRNs, particularly in modelling 
perturbation-induced transitions. Furthermore, we tested graph 
configurations with varying levels of connectivity, including fully 
connected graphs, sparsified graphs with edges reduced to 1/10 or 
1/20 of the original graph, and random graphs with the same sparsity 
as NicheNet (Methods). All alternative configurations led to further 
performance declines relative to biologically meaningful graphs con-
structed using diverse GRN inference methods (Extended Data Table 1). 
Collectively, these results emphasize the importance of leveraging 
biologically meaningful and comprehensive gene graphs, such as 
NicheNet, to ensure predictive robustness and accuracy.

CellNavi identifies key genes in T cell 
differentiation
We next applied CellNavi to the Cano-Gomez dataset38, which profiled 
T cell differentiation by stimulating naive and memory CD4+ T cells 

in vitro with anti-CD3/anti-CD28 and cytokines. During this process, 
external signals, such as antigens and cytokines, activate key genes 
modulating genetic circuits and gene expression programs, allowing 
T cells to adopt specialized functions. We assessed whether CellNavi 
could identify such key genes underlying transitions.

For this dataset, we constructed source–target cell pairs using Th0 
cells as the source and cytokine-induced cells as targets. As cells dif-
ferentiated into various effector T cell subtypes after stimulation26,38–43, 
we first compiled a comprehensive marker gene set and computed 
a ‘transition score’ to quantify differentiation into these subtypes 
for each cell. Notably, marker genes associated with IL-2hi, IFNγhi and  
T helper 2 (TH2) cells were strongly enriched (Extended Data Fig. 6), 
and transition scores towards these cell types demonstrated clear pat-
terns (Fig. 3a–c and Methods). We then examined CellNavi’s ability to 
identify driver genes across these effector T cell groups. Correspond-
ing cell pairs were input into a CellNavi model trained on the Schmidt 
dataset, which encompasses extensive immune-related gene programs. 
Finally, we curated a literature-based list of established driver genes 
for phenotypic transitions towards specific effector cell types26,42–49 
(Supplementary Table 4) and evaluated CellNavi’s performance in 
prioritizing these genes.

CellNavi accurately ranked CD28 and VAV1, key drivers of IL-2hi cells, 
as the top candidates in the IL-2hi group defined by the transition score 
(Fig. 3d). Similarly, high rankings were observed for CD27 and IL9R in 
IFNγ-high cells, and GATA3 in TH2 cells (Fig. 3d). We further analysed the 
average rankings of these established driver genes across the different 
effector cell groups. As expected, the relevant driver genes consistently 
ranked higher in their corresponding cell groups where they are known 
to drive differentiation. Notably, CD28, VAV1, CD27 and IL9R achieved 
average rankings of 2.6, 2.9, 5.3 and 8.5, respectively, in their associ-
ated cell groups, greatly outperforming their rankings in unrelated 
groups (Fig. 3e). These results demonstrate CellNavi’s effectiveness 
in identifying key genes that govern distinct differentiation pathways 
while distinguishing between cell fates. However, CD28’s dual role in 
IL-2 and IFNγ regulation was not fully captured by the model. In addi-
tion, although GATA3 ranked highly in Th2 cells, its average ranking was 
not as strong as expected. Upon further inspection of the TH2 cluster, 
we observed that GATA3 was ranked first in an aggregated subset of 
cells, while its ranking was more dispersed across the entire TH2 group 
(Fig. 3f), suggesting heterogeneity within the cluster.

Next, we examined the likelihood scores assigned by CellNavi 
to driver genes across different cell groups. For known driver genes, 
CellNavi consistently assigned higher likelihood scores within their 
corresponding cell groups compared to other groups (Fig. 3g), suggest-
ing that these scores accurately prioritize key driver genes. In addition, 
the scores could be used to distinguish cell states undergoing specific 
transitions (Fig. 3h,i and Methods), offering an alternative approach 
for cell state characterization.

CellNavi predicts key genes during pathogenesis
We then investigated whether CellNavi could predict key genes involved 
in disease progression, using an in vitro model system of neurode-
generative diseases, specifically the Fernandes dataset50. This system 
comprises induced pluripotent stem (iPS) cell-derived dopaminergic 
neurons subjected to tunicamycin treatment. Tunicamycin induces 
endoplasmic reticulum (ER) stress and Parkinson’s disease (PD)-like 
symptoms by inhibiting N-linked glycosylation51, a process that affects 
a broad spectrum of proteins post-translationally, without perturbing 
any single gene directly.

Before this analysis, CellNavi was trained on single-cell CRISPR 
screen data on iPS cell-derived neurons from a different study, the Tian 
dataset52. While both studies investigate neurodegenerative diseases 
using human iPS cell-derived neurons, they differ in the source of iPS 
cells and the differentiation protocols, resulting in the generation of 
distinct neuron types50,52,53 (Fig. 4a).
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After training, we input approximately 47,000 source–target 
cell pairs from the Fernandes dataset into CellNavi, using untreated 
cells as sources and cells exposed to tunicamycin as targets. We asked 
CellNavi to prioritize 184 candidate genes, including 5 known ER 
stress response genes. CellNavi successfully pinpointed EIF2S1, BAX 
and HSPA5, which achieved median rankings of 3, 7 and 16, respec-
tively, among the candidate genes (Fig. 4b). However, HYOU1 and VCP 
ranked lower. One possible explanation is that these genes play more 
nuanced roles in the ER stress response or are involved in pathways 
not prominently activated under the specific experimental condi-
tions of this study.

We next examined the top 20 predicted genes for each cell pair. 
While a total of 31 genes were significantly enriched (Fig. 4c), FAM57B, 

EIF2S1, NDUFS8, BAX and CYCS consistently ranked highest across 
the majority of cells. Notably, EIF2S1 and BAX are well-established ER 
stress regulators, while NDUFS8 and CYCS are linked to mitochondrial 
stress, which is often closely associated with ER stress54. In parallel, 
Fernandes et al. previously identified six subtypes of iPS cell-derived 
neurons from transcriptomic data and our top 20 predictions revealed 
subtype-specific gene preferences. For instance, our model suggests 
that FARP1, CELF1, HYOU1 and APEX1 may play more critical roles in 
progenitor cells (Fig. 4c). Lastly, except for HSPA5 and HYOU1, most 
predicted genes showed modest expression changes (Fig. 4d and 
Extended Data Fig. 7), consistent with previous observations that 
CellNavi identifies key regulators beyond those detectable by expres-
sion shifts alone.
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Fig. 3 | CellNavi identifies key genes involved in T cell differentiation.  
a, Changes in expression levels of canonical marker genes corresponding to 
specific T cell groups. b, Uniform Manifold Approximation and Projection 
(UMAP) visualization of source–target T cell pairs, coloured by effector T cell 
groups classified on the basis of transition scores. Each data point represents 
a source–target cell pair representation generated by CellNavi. c, Transition 
scores calculated using IL-2hi, IFNγhi and TH2-related marker genes referenced 
in (a). d, Distributions of established driver genes predicted by CellNavi for 
IL2-high cells (CD28 and VAV1), IFNγ-high cells (CD27 and IL9R) and Th2 cells 
(GATA3). e, Predicted rankings of established driver genes across different cell 
groups. Centre line, median; box limits, upper and lower quartiles; whiskers, 1.5× 

interquartile range; points, outliers. n = 23,342. P values were calculated with 
two-sided Mann–Whitney U test. *P < 1 × 10−6. Exact P values are provided in the 
source data file. f, The distribution of predicted rankings for GATA3 in Th2 cells.  
g, Predicted likelihood scores for established driver genes in different cell 
groups. Centre line, median; box limits, upper and lower quartiles; whiskers,  
1.5× interquartile range; points, outliers. n = 23,342. P values were calculated with 
two-sided Mann–Whitney U test. *P < 1 × 10−6. Exact P values are provided in the 
source data file. h, F1 scores for predicting effector T cell types using likelihood 
scores. Centre: mean. Error bar: standard error, calculated from tenfold cross-
validation (Methods). n = 10. i, AUROC scores for predicting effector T cell types 
using likelihood scores (Methods).
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CellNavi reveals mechanisms of action for drug 
compounds
Understanding the mechanisms of action of novel drug candidates 
may enhance drug safety and efficacy, reduce development costs and 
accelerate drug discovery process. However, conventional drug screen-
ing paradigms often fall short in elucidating the cellular-level effects 
that drive biological functions and therapeutic outcomes.

Here, we applied CellNavi to predict key genes modulated by 
histone deacetylase (HDAC) inhibitors, a class of antitumour drugs 
with promising therapeutic potential in cancer treatment55. HDACs 
are enzymes integral to post-translational protein modifications 
and interact with various oncogenic pathways to promote tumour 
progression56,57. The intricate downstream pathways influenced by 
HDAC presents a considerable challenge in fully understanding mecha-
nisms through which HDAC inhibitors exert their effects within cells.

For this purpose, we applied CellNavi to a chemical screen that 
quantified the transcriptomic response of K562 cells to 17 distinct 
HDAC inhibitors (referred to as the Srivastan dataset)58. In this set-up, 

vehicle-treated cells were designated as sources, while cells exposed to 
the HDAC inhibitors served as targets. The predicted likelihood score 
indicated whether a gene was modulated during drug treatment, with 
higher scores suggesting a more prominent role during treatment with 
specific HDAC inhibitors. Notably, CellNavi was trained exclusively on 
genetic perturbations25.

While the transcriptomic data depicted a mixed response across 
the inhibitors (Extended Data Fig. 8a), the likelihood score vectors 
effectively clustered the inhibitors into distinct clusters (Fig. 5a,b 
and Extended Data Fig. 8b). Further analysis revealed diversity in the 
top-ranked driver genes (Fig. 5c). Specifically, cells treated with moceti-
nostat, tucidinostat, entinostat and tacedinaline (grouped in cluster 3) 
exhibited high scores for mitochondrial-related genes such as MRPS31 
and NDUFB7. By contrast, most other compounds prioritized genes 
related to RNA splicing and transcription regulation, such as PRPF3 
and POLR2A.

Gene Ontology (GO) enrichment analysis of the top 50 genes 
predicted for each inhibitor revealed a consistent pattern (Fig. 5d and 
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Fig. 5 | CellNavi reveals diverse downstream gene programs affected by 
HDAC inhibitors. a,b, UMAP visualization of cells treated with HDAC inhibitors. 
Each cell is represented as a 2,057-dimensional vector consisting of likelihood 
scores predicted by CellNavi for each candidate driver gene. Cells are coloured 
by clusters identified using the Leiden algorithm (a) and by HDAC inhibitor 
type (b). c, Average likelihood scores for top-ranked genes in each treatment 
group, with hierarchical clustering performed using Ward’s method. d, GO 
enrichment analysis for each treatment group. The size and darkness of the dots 
correlate negatively with the adjusted P value (one-sided Fisher’s exact test with 
Benjamini–Hochberg correction for multiple comparisons). See Supplementary 
Fig. 1 for a complete list of GO enrichment results. e, A schematic representation 
of HDAC inhibitor mechanisms. Proteins encoded by top-ranked driver genes 

are shown in grey, and red dots on chromatin indicate histone acetylation. ETC, 
electron transport chain; Ac-CoA, acetyl-CoA. Diagram created with BioRender.
com. f, A scatter plot showing the correlation between IC50 values and the 
functional selectivity predicted by CellNavi. Each dot represents a compound, 
coloured according to the clusters in (b). Mito score, averaged likelihood scores 
for genes involved in mitochondrial functions. RNA score, averaged likelihood 
scores for genes involved in RNA regulation. g, Binding modes of tucidinostat and 
panobinostat at the active site of the zinc-dependent HDAC2 enzyme, with the 
enzyme represented as a surface representation and the drug compounds in stick 
representation. Shared warhead (or structural) motifs of different compound 
classes are highlighted in the bottom right corner. See Supplementary Fig. 2 for a 
complete list of molecular structures.
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Supplementary Fig. 1): compounds in cluster 3 were enriched for genes 
involved in biosynthetic processes, mitochondrial function and protein 
metabolism, whereas compounds in other clusters were enriched in 
gene programs related to RNA splicing, processing and metabolism. 
These findings align with the known effect of deacetylation inhibition, 
which lowers cytoplasmic acetate levels and alters acetyl-CoA concen-
trations, a key metabolite involved in cellular metabolism58. Moreover, 
the results suggest that certain HDAC inhibitors may preferentially 
target chromatin regions regulating RNA processing genes, which are 
crucial for tumour cell proliferation59–61 (Fig. 5e).

Intriguingly, we observed a correlation between the selectivity 
of downstream gene programs and the half-maximal inhibitory con-
centration (IC50) values reported in the literature58 (Fig. 5f). Specifi-
cally, compounds with lower IC50 values tend to influence RNA-related 
pathways, whereas those with higher IC50 values were associated with 
mitochondrial functions. To further explore the molecular basis of this 
divergence, we examined the interactions between human HDAC2 and 
either panobinostat (enriched for RNA-related genes) or tucidinostat 
(enriched for mitochondrial-related genes). Although molecular dock-
ing revealed no major differences in their potential interactions with 
the zinc-dependent HDAC protein, the aniline group in tucidinostat 
allowed it to embed more deeply into the HDAC2 pocket (Fig. 5g). 
Interestingly, all four compounds in cluster 3 shared similar warheads, a 
feature absent in other compounds (Fig. 5g and Supplementary Fig. 2). 
This structural feature introduces a steric effect that may influence the 
efficacy of compounds62 and lead to divergent downstream response, 
a phenomenon known as functional selectivity63–66. However, the mito-
chondrial preference and lower potency of compounds like tucidi-
nostat may also result from higher lipophilicity, which can promote 
off-target or non-specific effects. Nonetheless, these findings highlight 
CellNavi’s potential to elucidate the intricate mechanisms of action 
underlying drug interventions, highlighting an approach to optimize 
drug efficacy and specificity for targets involving complex downstream 
signalling pathways.

CellNavi generalizes to novel cell types
Lastly, we evaluated the generalization capability of CellNavi. We 
focused on a CRISPR interference screen across HEK293FT and K562 
cell lines67. The cell types are markedly different in origin and charac-
teristics—HEK293FT cells are derived from human embryonic kidney 
cells, while K562 cells are derived from human chronic myelogenous 
leukaemia (Fig. 6a). In this experiment, CellNavi was trained on 
HEK293FT cells, with all K562 cells held out as the test set (Methods).

For the 16 perturbations targeting the cleavage and polyadenyla-
tion regulatory machinery (Fig. 6a), CellNavi achieved a macro F1 score 
of 0.432 on top-1 predictions (Fig. 6b). The model misclassified some 
genes encoding components of the CPSF and CSTF complexes, prob-
ably due to their similar post-perturbation transcriptomic profiles 
(Fig. 6c). However, the model performed well in predicting CPSF6 and 
NUDT21, which exhibit highly similar transcriptomic profiles after 
perturbation. Interestingly, despite distinct post-perturbation tran-
scriptomic profiles for RPRD1A and RPRD1B perturbations, the model 
confused these genes in many cases. As the protein products of these 
genes form heterodimers to dephosphorylate the RNA polymerase II 
C-terminal domain68, the model may be prioritizing functional interac-
tions and shared pathways over expression differences, leading to the 
misinterpretation of these genes.

By comparing the similarities between cell groups stratified by 
true versus predicted perturbations, we found that both intra- and 
interperturbation correlations for predicted labels closely mirrored 
those of the true labels (Fig. 6c,d and Extended Data Fig. 9). This sug-
gests that cells grouped by predicted perturbations exhibit gene 
expression signatures highly similar to those grouped by true per-
turbations. Although prediction accuracy may partly benefit from 
conserved perturbation effects across cell types, CellNavi remains 

effective even when applied to cell types markedly different from those 
used in training, demonstrating robust generalization across diverse 
cellular contexts.

Discussion
Understanding the regulatory mechanisms that govern cell identity and 
transitions stand a central challenge in cell biology6,69–72. In this study, 
we introduce CellNavi, a deep learning framework designed to identify 
driver genes—key factors that orchestrate complex cellular transi-
tions—across diverse biological contexts. By modelling cell states on a 
biologically informed manifold constructed from large-scale single-cell 
transcriptomic data and gene graph priors, CellNavi achieves accurate 
and generalizable predictions across multiple tasks and datasets.

Describing cell states on a manifold that captures their biologi-
cal dimensions has been a long-lasting endeavour32,73–76. Here, we 
utilized a structured gene graph derived from NicheNet to facilitate 
cell state manifold learning via deep neural networks. NicheNet is a 
comprehensive gene–gene graph integrating both GRNs and intercel-
lular signalling pathways. This prior improved the accuracy for driver 
gene prediction compared with alternative or randomized graphs 
(Extended Data Table 1). Also, integrating prior gene graphs allowed 
CellNavi to place greater emphasis on transcription factors, which 
are crucial for defining cell states and orchestrating transitions3,10,69 
(Supplementary Figs. 3 and 4). This explicit focus on regulatory ele-
ments provides CellNavi with a distinct advantage to model complex 
biological processes and highlights the value of graph-based learning 
in improving model interpretability and biological relevance. However, 
we caution that attention mechanisms do not equate to mechanistic 
interpretability. The explainability remains a critical challenge for deep 
learning models, including CellNavi. Future work should develop tools 
to visualize and interpret how graph structures and attention dynamics 
shape predictions of driver genes.

Our construction of cell-type-specific graphs involves removing 
edges for genes with zero expression, based on a simplified assumption 
that such genes are unlikely to participate in active regulation. Consist-
ent with the previous practices in single-cell foundation models12,13,17 
and cell-type-specific protein representation77 learning, we expect 
this filtering to help reduce noise and highlight biologically relevant 
interactions. Yet, we recognize that zero expression values may also 
stem from technical artifacts such as dropout or low sequencing depth, 
rather than true biological absence. Future studies should assess 
alternative strategies, such as imputation or single-cell-level network 
construction78, to balance denoising and information retention.

Inherent noise in biological data presents a substantial chal-
lenge for modelling. To mitigate technical variability, such as dropout 
events and differences in sequencing depth, we used a downsampling 
recovery pretraining strategy with a mixed downsampling rate. This 
strategy aligns input data of varying depths and improves robust-
ness in handling real-world datasets. Additional noise arises from 
variability in CRISPR perturbation efficiency, including fluctuating 
perturbation success rates and off-target effects caused by intrinsic 
cellular stochasticity. Although CRISPR screens provide a rich and 
diverse dataset for CellNavi training, this noise may lead to inconsist-
ent labels and biased learning. To mitigate this, future efforts could 
pool data from multiple batches, sources and single guide RNAs to 
reduce biases associated with specific experimental conditions. In 
addition, integrating orthogonal perturbation data, such as chemi-
cal treatments, could complement CRISPR-based data and further 
enhance model robustness.

CellNavi represents a pioneering effort to benchmark the per-
formance and generalization capacity of deep learning methods on 
driver gene identification task. While the results are promising, several 
limitations remain. First, the current pipeline requires fine-tuning 
on single-cell CRISPR screen data relevant to the system of interest. 
While our proof-of-concept test involving HEK293FT and K562 cells 
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demonstrated promising results (Fig. 6), the extent to which Cell-
Navi can generalize to entirely new cell types or experimental sys-
tems remains unclear. Addressing this will require testing across more 
diverse contexts and quantifying the ‘distance’ between systems to 
determine when fine-tuning is necessary. A long-term goal is to reduce 
the dependence on such datasets by developing models that generalize 
with minimal experimental effort.

Second, CellNavi cannot yet generalize to novel genes, which 
limits its broader applicability. Expanding this capacity would require 
capturing gene networks and representations that enable extrapola-
tion beyond the training dataset. While single-cell CRISPR experiments 
encompassing a broader range of target genes and cell types are desir-
able, integrating generative models to infer missing relationships could 
further improve the model’s capacity to handle novel genes.

Third, CellNavi lacks the ability to accurately model long-range 
transitions owing to its reliance on CRISPR perturbations and static 
snapshots of transcriptomic data. Many biological processes, such 
as differentiation and disease progression, unfold gradually through 
transient states not captured in steady-state data. Incorporating 
time-resolved single-cell data measurements could help construct 
dynamic manifolds that better reflect these processes.

Despite these challenges, CellNavi marks a major advance in mod-
elling cell state transitions and identifying their genetic drivers. By 
combining biologically informed priors with advanced deep learning 
techniques, CellNavi achieves high accuracy and generalizability in 
diverse biological contexts. As we continue to refine and expand mod-
els like CellNavi, we are paving the way for novel treatments targeting 
the root causes of diseases with unprecedented specificity.
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transcriptomic profiles between predicted perturbations and true perturbations 
in K562 cells. Row, predicted perturbations. Column, true perturbations.
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Methods
Input embeddings
In CellNavi, we use single-cell raw count matrices as the only input. 
Specifically, the single-cell sequencing data are processed into a 
cell-by-gene count matrix, X ∈ ℝN×G, where each element Xn𝒢g  repre-
sents the expression of the nth cell and the gth gene (or read count of 
the gth RNA).

To better describe a gene’s state in a cell, we involve both gene 
name and gene expression information in its input embeddings. For-
mally, the input embedding of a token is the concatenation of gene 
name embedding and gene expression embedding.

Gene name embedding. We use a learnable gene name embedding 
in CellNavi. The vocabulary of genes is obtained by taking the union 
set of gene names among all datasets. Then, the integer identifier of 
each gene in the vocabulary is fed into an embedding layer to obtain 
its gene name embedding. In addition, we incorporate a special token 
CLS in the vocabulary for aggregating all genes into a cell representa-
tion. The gene name embedding of cell n can be represented as 
h(name)n ∈ ℝ(G+1)×H:

h(name)n = [h(name)n𝒢CLS , h
(name)
n𝒢 1 , h(name)n𝒢 2 ,… , h(name)n𝒢G ] ,

where H  is the dimension of embeddings, which is set to 256.

Gene expression embedding. One major challenge in modelling gene 
expression is the variability in absolute magnitudes across different 
sequencing protocols13. We tackled this challenge by normalizing the 
raw count expression for each cell using the shifted logarithm, which 
is defined as

X̃n𝒢g = log (L
Xn𝒢g

∑g′ Xn𝒢g′
+ 1) ,

where Xn𝒢g  is the raw count of gene g  in cell n, L is a scaling factor and 
we used a fixed value L = 1 × 104  in this study, and X̃n𝒢g  denotes the 
normalized count. Finally, a linear layer was applied on the normalized 
expression X̃n𝒢g  to obtain the gene expression embedding. For the CLS 
token, we set it as a unique value for gene expression embedding. The 
gene expression embedding of cell n can be represented as 
h(expr)n ∈ ℝ(G+1)×H:

h(expr)n = [h(expr)n𝒢CLS , h
(expr)
n𝒢1 , h(expr)n𝒢2 ,… , h(expr)n𝒢G ] .

The final embedding of cell n is defined as the concatenation of 
h(name)n  and h(expr)n :

hn = SUM (h(name)n , h(expr)n ) ∈ ℝ(G+1)×H.

Cell manifold model
Model architecture. The CMM, is composed of six layers of a trans-
former variant that is designed specifically for processing 
graph-structured data (GeneGraph attention layers)19. The encoder 
takes the input embeddings to generate cell representations and uses 
only genes with non-zero expressions. To further speed up training, 
also as an approach of data augmentation, we performed a gene sam-
pling strategy by randomly selecting at most 2,048 genes as input. It 
should be noted that the strategy is applied only during training; all 
non-zero genes are included at inference stage to avoid information 
loss. We use h(l)n  to represent the embedding of cell n at the lth layer, 
where h(l)n  is defined as

h(l)n = {
hn, l = 0,

GeneGraphAttnLayer (h(l−1)n ) , l ∈ [1,6] .

The multihead attention module in each GeneGraph attention 
layer consists of three components. In addition to a self-attention 
module, a centrality encoding module and a spatial encoding module 
are also incorporated to modify the standard self-attention module 
for graph data integration.

We start by introducing the standard self-attention module. Let 
Nheads be the number of heads in the self-attention module. In the lth 
layer, ith head, self-attention is calculated as

Q(l𝒢i)
n = h(l)n W(qry𝒢i),K(l𝒢i)

n = h(l)n W(key𝒢i),V(l𝒢i)n = h(l)n W(val𝒢i),

A(l𝒢i)n =
Q(l,i)
n (K(l,i)

n )
⊤

√D
,Attn (l𝒢i)

n
= softmax (A(l𝒢i)n )V(l𝒢i)n ,

h(l)′n = CONCAT (Attn(l𝒢1)n ,⋯ ,Attn(l𝒢Nheads)n )W(out) ∈ ℝ(G+1)×2H,

where W(qry𝒢i), W(key𝒢i)  and W(val𝒢i) ∈ ℝ2H×D  are learnable matrices that 
project input embedding h(l)n  of cell n in to Q(l𝒢i)

n ,K(l𝒢i)
n  and V(l𝒢i)n , the symbol 

W(out) ∈ ℝ(DNheads)×2H is a learnable linear projection that refines the out-
put of multihead attention, and D is the feature dimension for each 
attention head that satisfies DNheads = 2H. The output of multihead 
attention h(l)n

′
 is then passed through a layer normalization layer and a 

multilayer perceptron (MLP) model, producing the final output h(l+1)n  
as the input to the next layer.

The standard attention mechanism processes features of each 
individual gene independently, whereas the gene graph incorporates 
relational information between genes. To incorporate the gene graph 
information into the model, the centrality encoding module projects 
the relational information into the regulatory activity feature of each 
single gene, and the spatial encoding module directly incorporates the 
relational information with the attention mechanism. More specifically, 
we define z−deg−(𝒢𝒢𝒢g)  and z+

deg+(𝒢𝒢𝒢g)
, learnable embeddings describing 

in-degree deg− and out-degree deg+ of gene g on the gene graph 𝒢𝒢. We 
add these embeddings to the gene embeddings to update cell 
encoding:

h(l)n𝒢g = h
(l)′
n𝒢g + z−deg−(𝒢𝒢𝒢g) + z

+
deg+(𝒢𝒢𝒢g)

.

This cell encoding update by the centrality encoding module is 
applied before the self-attention module.

The spatial encoding module aims to capture regulation relations 
between genes from the gene graph. For this purpose, we generate the 
distance matrix S ∈ ℕG×G , which contains the shortest distances 
between gene pairs on the gene graph 𝒢𝒢. We assign each element in S 
as a learnable bias added to attention weights:

A′g1 𝒢g2 = Ag1 𝒢g2 + b (Sg1 𝒢g2 ) ,

where b is a learnable scalar-valued function of the distance Sg1 𝒢g2. It 
assigns a special value to genes that are not connected to the graph. 
We use A′ in place of the original attention weights A in the standard 
self-attention module when computing self-attention in our model. In 
our implementation, we apply layer normalization and an MLP before 
computing multihead self-attention. The cell representation output 
from the CMM, h(6)n𝒢CLS, is subsequently passed through a fully connected 
layer, where the dimensionality is increased from 256 to 2,048. This 
resulting value serves as the cell coordinate for cell n, denoted as CRDn.

CMM pretraining task. The CMM is expected to generate cell coordi-
nates that parameterize the intrinsic features and variables (that are 
much less than the dimensions in the raw gene expression profile 
representation) of a cell state and maintain cell similarity in the vector 
space, to provide a concise and biologically relevant representation 
for the DGP to consume. To achieve this, we design a downsampling 
reconstruction pretraining task, which asks the CMM to produce a cell 
coordinates of a downsampled gene expression X(ds)n  of a cell n, that 
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allows a separate decoder model to reconstruct the original gene 
expression Xn of that cell as accurate as possible. To achieve this, the 
CMM is enforced to capture the co-varying patterns among the raw 
gene expression dimensions, hence helping the CMM to extract the 
underlying intrinsic variables.

Specifically, for the downsampling process, we downsample the 
raw count expression of each gene via a binomial distribution. The down-
sampled expression X(ds)n𝒢g  of the nth cell and the gth gene is produced by

X(ds)n𝒢g ∼ B (Xn𝒢g,
1

r (ds)
) ,

where the ∼ denotes ‘is distributed as’, Xn𝒢g  is the raw count of gene g  
in cell n, r (ds) is the downsample rate that is uniformly sampled from 
[1, 20), and B denotes the binomial distribution. The decoder is an MLP 
consisting of two linear layers. For each downsampled gene expression, 
the decoder concatenates the cell coordinates CRDn of X(ds)n  produced 
by the CMM and the embedding of that gene as the direct input to the 
MLP. The MLP output comes in the same shape as Xn.

The learning objective for reconstructing the original gene expres-
sion profile Xn from the downsampled version X(ds)n  is

ℒrecons =
1
N

N
∑
n=1

‖DEC (CRD (X(ds)n )) − Xn‖
2
,

where ‖ ⋅ ‖2 represents the squared 2-norm of a vector. Both the CMM 
and the decoder are optimized. After pretraining, the CMM is to be 
used for driver gene prediction, while the decoder is discarded.

Driver gene predictor
The driver gene classifier is an MLP consisting of two linear layers. It is 
optimized to predict the perturbed genes from a pair of cell coordinates 
output by the CMM. To be more specific, transcriptomes of source cell 
Xsrc and target cell Xtgt are mapped to cell coordinates CRDsrc and CRDtgt 
with the CMM. For the direct input features, the DGP concatenates the 
two cell coordinates and then proceeds with an MLP, which outputs 
the logits of genes. We use the cross-entropy loss for training the DGP:

ℒdriver_gene = CE (DGP (CONCAT (CRD (Xsrc) ,CRD (Xtgt))) , gdrv) ,

where CE (l, g) = lg
log∑g′ exp(lg′ )

 is the cross-entropy loss, and gdrv denotes 

the driver gene corresponding to Xsrc and Xtgt. The loss is finally aver-
aged over all (Xsrc,Xtgt, gdrv) tuples in the dataset. The pretrained CMM 
used to produce CRDsrc and CRDtgt is also fine-tuned together with the 
DGP by this loss.

Additional training details for CellNavi are available in Supple-
mentary Note 4.

Baselines
SCENIC and SCENIC+. For each test dataset, SCENIC+ inferred a GRN, 
identified regulons Wr ∈ ℝNr×Ng , and computed regulon activity 
Wa ∈ ℝNc×Nr  in the cells, where Nr, Ng andNc  represent the number of 
identified regulons, genes and cells in the test dataset, respectively. 
Wr is a learnt matrix containing the weights of genes for different regu-
lons, and Wa indicates the regulon activities for each cell. Then, we used 
Wg =WaWr  to represent the regulatory importance of each gene in 
cells. Based on these values (elements in Wg), genes in each cell were 
ranked, with higher values indicating a greater potential role in control-
ling cellular identity. We applied SCENIC+ to Norman et al. and Schmidt 
et al. datasets. Only genes present in the perturbation pools of these 
datasets were included in the ranking based on Wg. Hyperparameters 
of GRN inference, regulon identification and regulon activation were 
set to default. Cells with no regulon activated were removed from our 
analysis. SCENIC+ analysis was realized by pyscenic 0.12.1.

Other GRNs. We constructed GRNs using three alternative methods: 
GRNBoost2, GENIE3 and RENGE, following default parameters from 
prior studies where applicable. Due to computational memory con-
straints, we limited the analysis for GENIE3 and RENGE to the top 5,000 
highly variable genes. For GENIE3 and GRNBoost2, we utilized the 
SCENIC implementation to infer GRNs. For RENGE, which is designed 
to infer GRNs using time-series single-cell RNA sequencing (RNA-seq) 
data, we adapted the method to work with static single-cell RNA-seq 
data. After constructing GRNs with these methods, we applied the same 
downstream analysis protocol as described for the SCENIC pipeline.

In silico perturbation. In silico perturbation methods, such as GEARS, 
are capable of predicting transcriptomic outcomes of genetic per-
turbations. We trained GEARS model on the datasets mentioned in 
the corresponding tasks. For evaluation, we computed the cosine 
similarity between the predicted transcriptomic profiles under vari-
ous perturbations and the corresponding profiles of cells from the test 
datasets. Driver genes were predicted on the basis of the similarities, 
and high values in similarity indicate the potential to be driver genes. 
GEARS analysis was realized by cell-gears 0.1.1. Data processing and 
training followed the data processing tutorial (https://github.com/
snap-stanford/GEARS/blob/master/demo/data_tutorial.ipynb) and 
training tutorials (https://github.com/snap-stanford/GEARS/blob/
master/demo/model_tutorial.ipynb).

DGE analysis. DGE analysis is the most frequently used method to 
reveal cell-type-specific transcriptomic signature. Initially, cells from 
the test datasets were normalized and subjected to logarithmic trans-
formation. Subsequently, we applied the Leiden algorithm, an unsu-
pervised clustering method, to categorize the target cells into distinct 
groups. The number of clusters for each test dataset was set to range 
from 20 to 40, ensuring that cellular heterogeneity was maintained 
while providing a sufficient number of cells in each group for robust 
statistical analysis. We selected source cells to serve as a reference for 
comparison and performed DGE analysis on each target cell group 
against this reference. The Wilcoxon signed-rank test was used to 
determine statistical significance. Then, significant genes were ranked 
according to their log-fold changes in expression as potential driver 
genes. Both unsupervised clustering and DGE analysis were conducted 
using the package scanpy 1.9.6.

The prior gene graph
The prior gene graph was constructed from NicheNet, where GRN and 
cellular signalling network were integrated. The gene graph is a direc-
tional graph. More specifically, for each gene node on the graph, the 
number of incoming edges corresponds to the genes that regulate it, 
while the number of outgoing edges represents the genes it regulates. 
In our approach, a connection was established between two genes if 
they were linked in either of the individual networks. The resulting 
integrated graph features 33,354 genes, each represented by a unique 
human gene symbol, and includes 8,452,360 edges that signify the 
potential interactions. The unweighted versions of NicheNet networks 
were used in our approach. For each cell, we remove the gene nodes with 
values of 0 in the raw count matrix of the single-cell transcriptomic pro-
file, to construct the cell-type-specific gene graph. During pretraining, 
when downsampling is performed on single-cell transcriptomes, only 
the non-zero genes included as model input are retained to generate 
sample-specific graphs that guide the model’s task.

To evaluate the impact of graph connectivity and structure, we 
generated alternative graph configurations as follows:

	(1)	 Fully connected graph: A maximally connected graph where 
every pair of genes is connected by an edge of equal weight.

	(2)	 Sparsified graphs: Graphs were created by downsampling the 
total number of edges from the original graph to 1/10 and 1/20 
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of its total edges, enabling an evaluation of how reduced con-
nectivity affects performance.

	(3)	 Random graphs: Randomized graphs were generated while pre-
serving the number of nodes and certain structural properties 
of the original graph, such as self-loops. Edges were introduced 
probabilistically to maintain overall consistency with the origi-
nal graph’s sparsity and connectivity.

Datasets
Human Cell Atlas. We downloaded all single-cell and single-nucleus 
datasets sourced from contributors or DCP/2 analysis in Homo sapiens 
up to March 2023, accumulating approximately 1.5 TB of raw data. We 
retained all experiments that included raw count matrices and stand-
ardized the variables to gene names using a mapping list obtained from 
Ensembl (https://www.ensembl.org/biomart/martview/574df5074dc
07f2ee092b52c276ca4fc).

Norman et al. This dataset (GSE133344) measures transcriptomic con-
sequences of CRISPR-mediated gene activation perturbations in K562 
cell line. We filtered this dataset by removing cells with a total count 
below 3,500. After filtering, this dataset contained 105 perturbations 
targeting different genes, and 131 double perturbations targeting two 
genes simultaneously. We used unperturbed cells (with non-targeting 
guide RNA) as source cells and perturbed cells as target cells.

Schmidt et al. This dataset (GSE190604) measures the effects of 
CRISPR-mediated activation perturbations in human primary T cells 
under both stimulated and resting conditions. For our analysis, 
we excluded cells not mentioned in metadata and removed genes 
appeared in less than 50 cells. Gene expression levels of single guide 
RNA were deleted to avoid data leakage. We used unperturbed cells as 
source cells and perturbed cells as target cells. We also excluded cells 
without significant changes after perturbation following the procedure 
proposed by Mixscape tutorial via package pertpy. Default parameters 
were used for Mixscape analysis.

Cano-Gamez et al. This dataset (EGAS00001003215) comprises 
naive and memory T cells induced by several sets of cytokines. With 
cytokine stimulation, T cells are expected to differentiate into differ-
ent subtypes. We took cells not treated by cytokines as source cells 
and cytokine-stimulated cells as target cells. This experimental set 
reflects the differential process of human T cells. For our analysis, 
clusters 14–17 were excluded because their source cells could not be 
reliably determined.

Fernandes et al. This dataset comprises heterogeneous dopamine 
neurons derived from human iPS cells. These neurons were exposed 
to oxidative stress and ER stress, representing PD-like phenotypes. 
We followed preprocessing procedures as mentioned in the original 
GitHub repo (https://github.com/metzakopian-lab/DNscRNAseq/
blob/master/preprocessing.ipynb).

Tian et al. This dataset comprises iPS cell-derived neurons perturbed 
by more than 180 genes related to neurodegenerative diseases. CRISPR 
interference experiments with single-cell transcriptomic readouts were 
conducted by CRISPR droplet sequencing (CROP-seq). For our analy-
sis, we removed genes that appeared in fewer than 50 cells. We used 
unperturbed cells as source cells and perturbed cells as target cells.

Srivatsan et al. This dataset (GSE139944) contains transcriptomic 
profiles of human cell lines perturbed by compounds. For our study, 
we utilized K562 cell line cells perturbed by HDAC inhibitors. We used 
unperturbed cells as source cells, and chemically perturbed cells as 
target cells. This set represents the process of cellular transition caused 
by drugs.

Kowalski et al. This dataset (GEO: GSE269600) measures the transcrip-
tional consequences of CRISPR-mediated perturbations in HEK293FT 
and K562 cells. For our analysis, we excluded perturbations that con-
sisted of fewer than 200 cells. Cells with minimal perturbation effects 
were removed from downstream analysis. We used cells from control 
groups as source cells, and perturbed cells as target cells.

T cell differentiation analysis
Identification of cellular phenotypic shift. We computed the transi-
tion score to identify cellular phenotypic shifts on the transcriptomic 
level. We selected canonical marker genes associated with IFNG and 
IL2 secretion and Th2 differentiation. Then, we computed the transition 
score based on the mean expression level of these marker genes, that 
is, CTSij =

1
Ki
∑Ki
ki=1(gj1ki − gj0ki ), where CTSij is the transition score of phe-

notypic shift type i in source–target cell pair j, gj1ki and gj0ki are normal-
ized gene expression levels of marker gene k for cell-state transition 
type i in target cell j1 and its source cell j0. The total number of marker 
genes for phenotypic shift type i is represented with Ki. Then, classes 
of phenotypic changes were annotated on the basis of transition score. 
Transition scores are calculated via function tl.score_genes from scanpy 
package with default parameters.

Cell type classification with predicted driver genes. We selected a 
series of genes related to transition mentioned above from previous 
studies (Supplementary Table 4). We used the term ‘likelihood scores’ 
to describe the probability of a gene to be a driver factor predicted by 
the model, that is,

LSmodjk = pmodjk ,

where LSmodjk  means the likelihood score for gene k  in source–target cell 
pair j  from model mod, and pmodjk  represents the probability predicted 
by model mod. For our analysis, the mod could be CellNavi, or baseline 
models.

Then, we aggregate likelihood scores into ‘prediction scores’ to 
evaluate the performance of different models:

PSmodij = 1
mi

mi

∑
ki=1

LSmodjk ,

where PSmodij  is the prediction score of cell-state transition type i in 
source–target cell pair j predicted by model mod. The number of can-
didate driver genes for each phenotypic changing type i is mi. Ideal 
prediction should reflect similar patterns as shown by the cellular 
transition score mentioned above. To evaluate it quantitatively, we 
trained decision tree classifiers with prediction scores as input to test 
whether predictions scores would faithfully demonstrate cell-state 
transition types. Classifiers were trained for each method indepen-
dently, and tenfold cross-validation was conducted. Classifiers were 
implemented via shallow decision trees using the sklearn package.

GO enrichment analysis
We used GO enrichment analysis to explore drugs’ mechanisms of 
action. For each drug compound, the top 50 genes with highest scores 
predicted by CellNavi were used for GO enrichment analysis. The sig-
nificant level was chosen to be 0.05, and the Benjamini–Hochberg 
procedure was used to control the false discovery rate. For implementa-
tion, we used package goatools for GO enrichment analysis.

Molecular docking
We performed molecular docking for panobinostat and tucidinostat, 
with a reference protein structure obtained from the PDB entry 3MAX. 
The ligand structures from PDB entries 3MAX and 5G3W were used to 
guide the initial placement of panobinostat and tucidinostat, ensuring 
the pose correctness of the warheads and major scaffolds. Based on 
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such initial poses, local optimizations were performed with AutoDock 
Vina. PyMol was used for structure visualization.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
HCA data for CMM training were downloaded from the HCA data 
explorer (https://explore.data.humancellatlas.org/projects). The Nor-
man et al.32, Tian et al.52 and Srivatsan et al.58 datasets were downloaded 
from the scPerturb project79 via Zenodo at https://doi.org/10.5281/
zenodo.7041848 (ref. 80). The raw count data of Schmidt et al.30 data-
set were downloaded from the National Institutes of Health GEO with 
accession number GSE190604, and its metadata were downloaded 
via Zenodo at https://doi.org/10.5281/zenodo.5784650 (ref. 81). The 
Cano-Gamez et al.38 dataset was downloaded from the Open Target 
Platform of this project (https://www.opentargets.org/projects/effec-
torness). The Fernandes et al.50 dataset was downloaded from ArrayEx-
press with accession number E-MTAB-9154. The preprocessed Kowalski 
et al.67 dataset was downloaded via Zenodo at https://doi.org/10.5281/
zenodo.7619592 (ref. 82). For trajectory reconstruction, we used the 
dataset from GSE132188. For single-cell RNA-seq alignment across 
varying sequencing depths, we used data from GSE84133, specifically 
the Human3 sample. PDB 3MAX, 5G3W. Source data are provided with 
this paper.

Code availability
Custom code developed in this study is available via GitHub at https://
github.com/DLS5-Omics/CellNavi. Additional software packages for 
modelling and data analysis include the following: python = =3.8.19, 
torch = =2.4.0, pandas=2.2.2, numpy = =1.23.5, scikit-learn = =1.5.1, 
scipy = =1.14.1, networkx = =3.3, scanpy = =1.10.3. cell-gears = =0.1.2, 
pyscenic = =0.12.1, renge = =0.0.3, cell-gears=0.1.1, goatools = =1.4.12, 
pertpy (2024.04).
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Extended Data Fig. 1 | Details of the Cell Manifold Model (CMM) 
implementation. a) The CMM is designed to reconstruct gene expression 
profiles by leveraging a Transformer variant composed of GeneGraph Attention 

Layers. b) GeneGraph Attention Layer integrates prior gene graph via its multi-
head attention layer. To be noted, only sub gene graphs with nodes in the input 
sample (all non-zero genes) are used for attention calculation.
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Extended Data Fig. 2 | CellNavi can align the same cell types across varying 
sequencing depths and reconstruct developmental trajectories. (a) Upper 
panel: After 20-fold down-sampling on the expression profile83, major cell types 
remained distinguishable, but a severe batch effect was observed even after 
using standard integration methods. Lower panel: the Cell Manifold Model 
(CMM) in CellNavi can integrate embeddings from the down-sampled and 
original profiles, while preserving the biological structure. Integration quality 
was quantitatively assessed using iLISI (1: worst, 2: best) and cLISI (1: best, 2: 
worst), which evaluate batch mixing and cell type separation, respectively. See 
details of experimental rationales in Supplementary Note 2. (b) UMAPs colored 
by cell type (left) and diffusion pseudotime (DPT) (right, indicated by the 

colorbars), inferred from the original data (upper panel) and CellNavi-predicted 
data (lower panel). Cell type labels were assigned based on known markers, and 
pseudotime was computed using Scanpy’s DPT implementation. (c) Spearman 
correlation between pseudotime inferred from the original data (x-axis) and 
from the CellNavi-predicted data (y-axis) with a quantification in d. (d) Summary 
of quantitative evaluation using Spearman correlation, along with clustering 
evaluation metrics including Adjusted Rand Index (ARI), Normalized Mutual 
Information (NMI), Average Silhouette Score (ASS), and Fowlkes-Mallows Score 
(FMS). Scores computed from random embeddings are included for comparison. 
We used a mouse pancreatic endocrinogenesis dataset from Bastidas-Ponce et 
al.84. Therefore, we enhanced our model with mouse scRNA-seq for this task.
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Extended Data Fig. 3 | Details of the Driver Gene Predictor (DGP) 
implementation. (a) The DGP processes concatenated cell coordinates pairs 
output by the CMM to predict driver genes by generating a likelihood score 
vector. An optional discriminator is included to align training and test data, 
ensuring consistency and accuracy in predictions (Supplementary Note 4). 
(b) The fine-tuning data (left) consists of CRISPR perturbation datasets with 
low heterogeneity, typically derived from controlled experiments with limited 

variability. The application data (right) encompasses diverse biological 
conditions with high heterogeneity, including different cell types, perturbation 
types, and sequencing platforms. The bidirectional arrow indicates the 
challenges posed by differences in data sources, sequencing techniques, and 
biological variability when generalizing the model from fine-tuning to real-world 
applications. Schematic elements created with BioRender.com.
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Extended Data Fig. 4 | Quantitative assessment of CellNavi (extended). 
(a) UMAP visualization of perturbed resting T cells and restimulated T cells 
sequenced by Schmidt et al, colored by cell clusters identified in the original 
study. (b) AUPRC (Area Under Precision-Recall Curve) and MCC (Matthews 
Correlation Coefficient) for driver gene prediction in the Schmidt dataset, 
comparing CellNavi with alternative methods. Source data are available in 
Supplementary Table 1. (c) Compatibility of the test dataset to SCENIC/SCENIC+. 
Upper panel: 61.6% of samples cannot be predicted by SCENIC/SCENIC+ due to 
missing regulons. Bottom panel: 58.3% of candidate driver genes are excluded 
because they are neither transcription factor (TF) nor TF-target genes. (d) Micro-
AUROC of CellNavi applied to the original single-cell transcriptomic profile 
and the filtered transcriptomic profile in which perturbed genes are excluded, 
showing that CellNavi identifies driver genes excluded from gene expression 
profiles. (e) Top K (K = 1 or 5) accuracy of CellNavi applied to transcriptomic  
data with perturbed gene excluded. Error bar, standard error. n = 69. (f) Cells  
were stratified into distinct states using the unsupervised Leiden algorithm,  

with each state represented by a different color. A specific cell cluster was 
selected as the test set, while the remaining clusters were used for training.  
To ensure rigorous evaluation, all multi-gene perturbations were excluded  
from training. Consequently, the training set (light gray) consisted only of  
single-gene perturbations within certain clusters, while the test set was divided 
into: 1) single-gene perturbations from the held-out cluster (light blue), 2) 
double-gene perturbations from the held-out cluster (dark blue), and 3) double-
gene perturbations from the training clusters (dark gray). Results reported in  
the main text are derived from the held-out cluster (blue cluster in the UMAP).  
To further ensure fairness, the test cluster was shuffled (similar to cross-
validation) to obtain robust and unbiased results (Supplementary Table 3).  
(g) AUPRC (Area Under Precision-Recall Curve) and MCC (Matthews Correlation 
Coefficient) for driver gene prediction in the Norman dataset (single 
perturbation), comparing CellNavi with alternative methods. Source data are 
available in Supplementary Table 1.
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Extended Data Fig. 5 | Ablation study on CellNavi components. The figure 
compares the performance of CellNavi under three configurations: (1) CellNavi 
with both CMM pretraining and DGP fine-tuning, (2) coupling the DGP with raw 
gene expression vectors instead of gene embeddings produced by the CMM, 
and (3) replacing the DGP with a simpler multinomial logistic regression model 
on top of the CMM. Performance is assessed under two evaluation settings: 

out-of-domain (the previously used Norman single perturbation split that holds 
one cluster out from training, red) and in-domain (a random split on the Norman 
dataset with the same train/test size, gray). Metrics include Top-1 accuracy, Top-5 
accuracy, AUROC, AUPRC, F1 score, and MCC (Matthews Correlation Coefficient). 
Dashed lines indicate performance change between evaluation settings.
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Extended Data Fig. 6 | Transcriptional changes of canonical marker genes in IL2-high, IFNG-high, and Th2 cell types. IL2-high marker genes: G0S2, IL2, IL21, and 
TAGAP. IFNG-high marker genes: IFNG, CCL3, CCL4, and CCL3L3. Th2 marker genes: GATA3, MRPS26, LIMA1 and SPINT2.
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Extended Data Fig. 7 | Expression changes for the top-20 predicted genes across cell pairs. Center line, median; box limits, upper and lower quartiles; whiskers,  
1.5x interquartile range; points, outliers. n = 47,437. Numerical data are available in the SI source data file.
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Extended Data Fig. 8 | Stratification of HDAC inhibitor-treated K62 cells. (a) UMAP visualization of single-cell transcriptomic profiles from K562 cells treated with 17 
distinct HDAC inhibitors. (b) The percentage of cells treated with different drug compounds within each cluster identified in Fig. 5a.
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Extended Data Fig. 9 | Heatmap showing gene expression across different perturbation groups for K562 cells. Rows represent genes, and columns represent true 
perturbations (a) or predicted perturbations by CellNavi (b).
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Extended Data Table 1 | Comparison of the predictive performance of CellNavi using NicheNet and alternative graph 
configurations

The table summarizes the predictive performance of CellNavi across different gene graph configurations, including NicheNet and alternative designs, evaluated on the Schmidt dataset. 
Performance metrics include Top-1 accuracy, Top-5 accuracy, area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), F1 score, and 
Matthews Correlation Coefficient (MCC). For sparsified and random graph configurations, three independent graphs were generated and evaluated for each setup.
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