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Aselect few genes act as pivotal driversin the process of cell state

transitions. However, finding key genes involved in different transitions
ischallenging. Here, to address this problem, we present CellNavi, a
deeplearning-based framework designed to predict genes that drive cell
state transitions. CellNavi builds a driver gene predictor upon a cell state
manifold, which captures the intrinsic features of cells by learning from
large-scale, high-dimensional transcriptomics data and integrating gene
graphs with directional connections. Our analysis shows that CellNavi can
accurately predict driver genes for transitions induced by genetic, chemical
and cytokine perturbations across diverse cell types, conditions and studies.
By leveraging a biologically meaningful cell state manifold, it is proficient
intasks involving critical transitions such as cellular differentiation,

disease progression and drug response. CellNavi represents a substantial
advancementindriver gene prediction and cell state manipulation, opening
new avenues in disease biology and therapeutic discovery.

Understanding the genetic drivers of cellular transitions is crucial for
elucidating complex biological processes and disease mechanisms' .
However, identifying these drivers remains inherently challenging due
to the vast number of genes involved in transitions and their complex
interdependencies, contrasted with limited experimental capacity and
incomplete biological knowledge. Therefore, insilico methods capable
of predicting driver genes across diverse contexts are highly desirable.

Traditionally, efforts to pinpoint critical driver genes have primar-
ily relied on network-based methodologies, with a particular focus on
generegulatory networks (GRNs)*®. Although GRN-centric approaches
have made notable progress, they also encounter limitations that
hinder their broader use. For example, deducing accurate GRNs within
heterogeneous cell populations, which is more relevant to transla-
tional research, remains a challenge®. Moreover, GRN models tend to

prioritize transcription factors and may overlook non-transcriptional
drivers of cellular transitions. This limits our understanding of complex
cellular processes such as disease progression, immune modulation
and pharmacological responses.

To this end, we developed CellNavi, a deep learning framework
designed to predict driver genes and navigate cellular transitions.
CellNavi constructs a driver gene predictor (DGP) on top of alearned
manifold that parameterizes valid cell states. This manifold is modelled
by mapping raw cell state representations onto a lower-dimensional
coordinate space, where the dimensions correspond to intrinsic fea-
tures of cell states, and the distance reflects the biological similarity
between cells. To build this manifold, CellNaviis trained on large-scale,
high-dimensional single-cell transcriptomic data, along with prior
directional gene graphs that reveal the underlying structure of cell
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Fig.1|Overview of CellNavi. a, A conceptualillustration of CellNavi’s task. Given
apair of source and target cells undergoing a transition induced by stimuli,
CellNavi predicts the driver gene responsible for this transition. b, The workflow
of CellNavi. The CMM maps the source and target cells onto a coordinate space
of the cell manifold. The DGP then uses the cell coordinates produced by the
CMM torank the candidate genes by likelihood scores. ¢, Anillustration of the
cell manifold and its coordinate space. d, Data used for the CMM training. exps,

experiments. e, Training of the CMM. The CMM consists of six GeneGraph
Attention (attn.) layers designed to incorporate graph-based information. During
training, single-cell transcriptomic profiles are randomly sampled from the
curated HCA dataset and used as input. Cell embeddings generated by the model
are then used by a transformer decoder to reconstruct gene expression profiles.

f, Data used for the DGP training. g, Application scenarios and test cases of CellNavi.
MoA, mechanism of action. Schematic elements created with BioRender.com.

states. By projecting cellular data onto this biologically meaningful
spacewith reduced dimensionality and enhanced biological relevance,
CellNavi provides auniversal framework that generalizes across diverse
cellular contexts, allowing robust driver gene predictions evenin previ-
ously unexplored cell types or conditions.

Our results show that CellNavi excels at predicting driver genes
across a wide range of biological transitions, demonstrating strong
performance in quantitative tasks curated in both immortalized cell
lines and primary cells. It identifies crucial regulators in T cell dif-
ferentiation and uncovers key genes associated with neurodegenera-
tive diseases. Notably, CellNavi infers mechanisms of action for drug
compounds without the need for drug-specific training, underscoring
its potentialin drug discovery. In summary, CellNavi offers a powerful
framework for deciphering cell state transitions and their underlying

mechanisms, holding profound promise for advancing cell biology
and disease research.

Overview of CellNavi
CellNavi is designed to predict driver genes for given cellular transi-
tions, where the transcriptomic data of the source and target cells
represent the initial and final states of these transitions (Fig. 1a-c).
CellNavi comprises two main components: the cell manifold model
(CMM), which captures and represents cell states, and the DGP, which
identifies key genes driving these transitions based on learned cell
representations (Fig. 1b).
The CMMisbuilt to capture valid cell states across diverse biological
contexts. While transcriptomes are often used to represent cell states,
valid cell states do not span the entire high-dimensional transcriptomic
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spacebutinstead form alower-dimensional manifold (Fig.1c). Tomodel
this, the CMM maps transcriptomic vectors to a lower-dimensional
coordinate space that represents the intrinsic features of cell states,
while preserving the relative similarities between cells (dimensionality
considerations are discussed in Supplementary Note 1).

We first curated a dataset of approximately 20 million single-cell
transcriptomic profiles sourced from the Human Cell Atlas (HCA)"
(Fig. 1d) and adapted a transformer architecture based on atten-
tion mechanisms, known for its ability to discern complex pat-
terns in large-scale data'””", to train the CMM (Fig. 1e). The training
involved a self-supervised downsampling reconstruction task
(Methods and Supplementary Note 2). To prioritize cell rather
than gene-level representations, we developed a decoder module
to reconstruct gene expression profiles from the cell coordinates—
representations of cells within the coordinate space of the cell state
manifold—generated by the CMM (Fig. 1e and Extended Data Fig. 1;
Methods). This approach aligns cells across varying sequencing depths
(Extended DataFig. 2a) and recapitulates developmental trajectories
fromsingle cells (Extended Data Fig. 2b-d), indicating that it captures
bothintra-andintercellular features.

However, relying solely on transcriptomic data may overlook the
intricate gene-gene interactions that are crucial for describing and
distinguishing cell states. To address this, we incorporated 20 million
cell-specific gene graphs into the CMM training process (Fig. 1d,e).
These graphs encode directional connections derived from a prior
network that spans over 30,000 human genes and their associated sig-
nalling pathways'® (Methods). More specifically, in these gene graphs,
each edge represents a causal relationship between two genes, with the
directionindicating theregulatoryinfluence fromonegeneto the other
(Methods). These graphs provide richer information about the complex
dependencies among genes, which extend beyond simple transcrip-
tomicdata, hencebetterimplyingintrinsic variables spanning the valid
cell space. To leverage these gene graphs, we replaced the standard
transformer encoder layer in the CMM using a GeneGraph attention
layer (Extended Data Fig. 1b). These layers, inspired by attention vari-
antstailored for graph data'®, can process gene networks, thus enabling
the model to integrate critical gene-gene relationships. With these
designs, the modelis driven to cultivate amanifold that systematically
represents cell states and effectively reflects the relationships between
cells, forming an informative foundation for driver gene prediction.

Building upon this manifold, we developed the DGP to pre-
dict genes driving specified cellular transitions (Methods and
Extended Data Fig. 3a). The DGP is trained on clustered regularly
interspaced short palindromic repeats (CRISPR) screen data, which
link genetic perturbations to consequent changes in cell states? >,
We designated unperturbed controls and CRISPR-perturbed cells as
source and target pairs, respectively, and utilized validated perturbed
genes as labels for joint training (fine-tuning) of the CMM and DGP
(Fig. 1f). Specifically, for each cell pair, their transcriptomic profiles
are transformed into cell coordinates by the CMM, which are then
processed by the DGP to generate alikelihood score vector indicating
the probability that various candidate genes are orchestrating the
transitions (Extended Data Fig. 3a).

We demonstrate that CellNavi, fine-tuned on CRISPR screen data—
typically conducted on cultured cells or homogeneous populations
andfocusing onimmediate genetic perturbations—canbe extended to
more complex transitions in heterogeneous tissues and primary cells
(Fig.1g and Extended Data Fig. 3b). By leveraging a biologically mean-
ingful manifold, CellNavi generalizes knowledge gained from CRISPR
screens beyond their original scope, to cellular transitions that are
challenging toinvestigate using regular CRISPR methodologies. How-
ever, we acknowledge that CellNavi’s performance in specific contexts
may benefit from additional fine-tuning on relevant CRISPR datasets.
Incorporating expanded experimental data may further enhance its
applicability across diverse biological settings with minimal adaptation.

Quantitative evaluation of CellNavi

Toassess the capabilities of CellNavi, we first evaluated its performance
on CRISPR perturbation datasets, where driver gene information is
well established for transitions from source (unperturbed) to target
(perturbed) cells.

We initially applied CellNavi to the Schmidt dataset, a CRISPR
activation screen profiling 69 genetic perturbations®. This dataset
captures distinct expression profiles and molecular phenotypes across
both resting and restimulated T cells, within and between different
celltypes, before and after perturbations (Extended Data Fig. 4a). We
fine-tuned our model on restimulated T cells and tested it on resting
T cells (Fig. 2a). This set-up allowed us to evaluate CellNavi’s ability
to generalize across heterogeneous primary cells and predict driver
genesinnew cell states.

For each source-target cell pair, CellNavi prioritizes candidate
genesbased ontheir predicted likelihood scores. Across 23,047 source-
target cell pairs, CellNavi achieves atop-1accuracy of 0.621 and atop-5
accuracy of 0.733 (Fig. 2b), while maintaining strong performance
across additional metrics (Fig. 2b,c and Extended Data Fig. 4b). Inter-
estingly, substantial variation in top-1 accuracy was observed across
perturbed genes, independent of sample size (Fig. 2d). Correlation
analysis between gene-wise performance and the Local Inverse Simp-
son’sIndex (LISI)* suggests that CellNavi’s accuracy isinfluenced by the
degree of perturbation heterogeneity: perturbations with low average
LISIvalues, indicative of amore distinct and homogeneous response,
were associated with higher accuracy (top-1accuracy >0.8, Fig. 2e).

To demonstrate CellNavi’s effectiveness, we compared it with two
alternative methods: SCENIC/SCENIC+*®, atraining-free approach that
infers GRNs from transcriptomic data with a focus on master regula-
tors, and GEARS?, aninsilico perturbation approach, which targets a
partially inverse problem of cellular transition prediction (Methods).
Both SCENIC and GEARS exhibited markedly lower performance com-
pared to CellNavi (Fig. 2b-d and Extended Data Fig. 4b). In addition,
SCENIC, the network-based approaches, faced challengesinidentifying
regulons at the single-cell level (Extended Data Fig. 4c) and therefore
struggled to make predictions in many cases. To investigate whether
this is a broad challenge for GRN inference methods, we evaluated
three alternative GRN inference approaches: GENIE3*, GRNBoost2*°
and RENGE* (Methods). These methods similarly exhibited poor per-
formance in single-cell contexts (Supplementary Table1).

Fig. 2| Quantitative assessment of CelINavi. a, A schematic of the quantitative
evaluation framework. CRISPR-perturbed cells and their unperturbed controls
are used for model training and evaluation, with data split by cell states to enable
more rigorous testing. b, Top-1accuracy, top-5accuracy and F1score for driver
gene prediction in the Schmidt dataset, comparing CellNavi with alternative
methods. The dashed line indicates the performance of arandom guess. ¢, Area
under the receiver operating characteristic curve (AUROC) scores for driver gene
predictioninthe Schmidt dataset, comparing CellNavi with alternative methods.
d, Average top-laccuracy for each gene. Left y axis: top-1accuracy of different
methods for each gene. Right y axis: the number of training (light blue) and test
(steel blue) samples. e, Negative correlation between CellNavi’s top-1accuracy

and the average LISI score across genes (Pearson correlation coefficient —0.451).
ALISIscore of lindicates indistinguishable perturbation effects, while ascore
of 0 suggests adistinct perturbation pattern. Dot colours represent the top-1
accuracy for individual genes. f, Top-1accuracy, top-5accuracy and F1score for
driver gene prediction in the Norman dataset (single perturbation), comparing
CellNavi with alternative methods. The dashed line indicates the performance
ofarandomguess. g, AUROC scores for driver gene prediction in the Norman
dataset (single perturbation), comparing CellNavi with alternative methods.

h, The distribution of predicted rankings for perturbed gene pairs. ‘Perturbation
1’ represents genes ranked higher, and ‘Perturbation 2’ represents genes ranked
lower.n =4,916.Source data for (b,c,f,g) are available in Supplementary Table 1.
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CellNavi does not simply predict driver genes from expression
changes. We conducted an ablation study by systematically removing
the expression of perturbed genes from the input. Although this led
to a decrease in performance, CellNavi still maintained substantial
predictiveaccuracy, far surpassing expectations of random prediction

(Extended Data Fig. 4d,e). In addition, DGE analysis revealed that the
rankings of differentially expressed genes were poorly correlated with
theactual perturbed genes (Fig. 2b-d and Extended DataFig.4b). These
results suggest that CellNavi identifies driver genes beyond those
detectable by expression shifts alone.
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We further tested CellNavi on the Norman dataset™, which features
aCRISPRinterference screen on the K562 cell line. This datasetencom-
passes 105 single-gene and 131 gene pair perturbations, allowing us to
assess CellNavi’s performance on transitions driven by both single and
multiple genes. Using the unsupervised Leiden algorithm®, we stratified
the cells by cluster, holding out one cluster for testing and training on
the remaining ones (Fig. 2a and Extended Data Fig. 4f). To ensure rigor-
ousevaluation, we excluded all multigene perturbations fromtraining.

CellNavi maintained strong performance on single driver gene
predictioninthe Norman dataset (Fig. 2f,g, Extended Data Fig. 4g and
Supplementary Table1). To evaluate multigene scenarios, we focused on
the predicted rankings of perturbed genes. CellNaviranked the firstand
second perturbed genes at averages of 7.9 and 31.2 out of 105 candidates,
respectively, greatly outperforming all other tested methods (Fig. 2h).

Several recent studies have indicated that linear models can
outperform deep learning methods in cell modelling tasks**.
Toinvestigate this, we evaluated multiple linear models for driver gene
prediction under various conditions. Our results showed that CellNavi
consistently outperformed these linear models by a substantial mar-
ginacross settings (Supplementary Note 3). Furthermore, we applied
cross-validation to ensure robust and unbiased evaluation and found
that CellNavi demonstrated consistently superior performance across
these conditions (Supplementary Tables 2 and 3). Altogether, these
results, spanning diverse datasets and metrics, highlight CellNavi’s
strong capability to identify genes driving cellular changes, even in
previously uncharacterized cell states.

Evaluating model components and graph
configurations

To assess the contributions of the CMM and DGP components, and to
evaluate whether pretraining with the CMM improves generalization
across biological contexts, we designed two ablated methods. The first
combined the DGP with raw gene expression vectors instead of outputs
from the CMM (no-CMM). The second replaced the DGP with asimpler
multinomial logistic regression model (no-DGP).Inaddition to the Nor-
man single perturbation split, which utilizes a cluster-based holdout
strategy (out-of-domain split), we curated an alternative evaluation
approachusingrandomholdout to simulate ascenario without generali-
zation (in-domain split). Removing either CMM pretraining (no-CMM)
or DGP fine-tuning (no-DGP) led to reduced performance; however, for
out-of-domain split, the absence of CMM pretraining (no-CMM) caused
agreater drop in performance comparedto the in-domain split scenario
(Extended DataFig. 5). Theseresults highlight that CMM pretraining is
essential for generalization across biologically diverse contexts, while
DGP fine-tuning further optimizes task-specific predictions.

We also evaluated the impact of the NicheNet gene graph on
CellNavi’s predictions. Replacing NicheNet with GRNs inferred using
GENIE3, GRNBoost2 or RENGE resulted in reduced performance
(Extended Data Table 1), underscoring the advantage of integrating
pathway-level information beyond GRNs, particularly in modelling
perturbation-induced transitions. Furthermore, we tested graph
configurations with varying levels of connectivity, including fully
connected graphs, sparsified graphs with edges reduced to 1/10 or
1/20 of the original graph, and random graphs with the same sparsity
as NicheNet (Methods). All alternative configurations led to further
performance declines relative to biologically meaningful graphs con-
structed using diverse GRN inference methods (Extended Data Table1).
Collectively, these results emphasize the importance of leveraging
biologically meaningful and comprehensive gene graphs, such as
NicheNet, to ensure predictive robustness and accuracy.

CellNaviidentifies key genesin T cell
differentiation

We nextapplied CellNavi to the Cano-Gomez dataset*®, which profiled
T cell differentiation by stimulating naive and memory CD4" T cells

in vitro with anti-CD3/anti-CD28 and cytokines. During this process,
external signals, such as antigens and cytokines, activate key genes
modulating genetic circuits and gene expression programs, allowing
T cells to adopt specialized functions. We assessed whether CellNavi
could identify such key genes underlying transitions.

For this dataset, we constructed source-target cell pairs using ThO
cells as the source and cytokine-induced cells as targets. As cells dif-
ferentiated into various effector T cell subtypes after stimulation***%*,
we first compiled a comprehensive marker gene set and computed
a ‘transition score’ to quantify differentiation into these subtypes
for each cell. Notably, marker genes associated with IL-2", IFNy" and
T helper 2 (T,;2) cells were strongly enriched (Extended Data Fig. 6),
and transition scores towards these cell types demonstrated clear pat-
terns (Fig. 3a-c and Methods). We then examined CellNavi’s ability to
identify driver genes across these effector T cell groups. Correspond-
ing cell pairs were input into a CelINavi model trained on the Schmidt
dataset, which encompasses extensiveimmune-related gene programs.
Finally, we curated a literature-based list of established driver genes
for phenotypic transitions towards specific effector cell types****
(Supplementary Table 4) and evaluated CellNavi’s performance in
prioritizing these genes.

CellNaviaccurately ranked CD28and VAV, key drivers of IL-2" cells,
asthe top candidates in the IL-2" group defined by the transition score
(Fig. 3d). Similarly, high rankings were observed for CD27 and IL9R in
IFNy-high cells,and GATA3in T,;2 cells (Fig. 3d). We further analysed the
averagerankings of these established driver genes across the different
effector cellgroups. As expected, the relevant driver genes consistently
ranked higher intheir corresponding cell groups where they are known
to drive differentiation. Notably, CD28, VAVI, CD27 and IL9R achieved
average rankings of 2.6, 2.9, 5.3 and 8.5, respectively, in their associ-
ated cell groups, greatly outperforming their rankings in unrelated
groups (Fig. 3e). These results demonstrate CellNavi’s effectiveness
inidentifying key genes that govern distinct differentiation pathways
while distinguishing between cell fates. However, CD28’s dual role in
IL-2 and IFNy regulation was not fully captured by the model. In addi-
tion, although GATA3 ranked highly in Th2 cells, its average ranking was
not as strong as expected. Upon further inspection of the T,;2 cluster,
we observed that GATA3 was ranked first in an aggregated subset of
cells, whileits ranking was more dispersed across the entire T,;2 group
(Fig. 3f), suggesting heterogeneity within the cluster.

Next, we examined the likelihood scores assigned by CellNavi
to driver genes across different cell groups. For known driver genes,
CellNavi consistently assigned higher likelihood scores within their
corresponding cell groups compared to other groups (Fig. 3g), suggest-
ing that these scoresaccurately prioritize key driver genes. In addition,
thescores could be used to distinguish cell states undergoing specific
transitions (Fig. 3h,i and Methods), offering an alternative approach
for cell state characterization.

CellNavi predicts key genes during pathogenesis
Wetheninvestigated whether CellNavi could predict key genes involved
in disease progression, using an in vitro model system of neurode-
generative diseases, specifically the Fernandes dataset®. This system
comprisesinduced pluripotent stem (iPS) cell-derived dopaminergic
neurons subjected to tunicamycin treatment. Tunicamycin induces
endoplasmic reticulum (ER) stress and Parkinson’s disease (PD)-like
symptoms by inhibiting N-linked glycosylation®, a process that affects
abroad spectrum of proteins post-translationally, without perturbing
any single gene directly.

Before this analysis, CelINavi was trained on single-cell CRISPR
screendataoniPS cell-derived neurons fromadifferent study, the Tian
dataset®’. While both studies investigate neurodegenerative diseases
using human iPS cell-derived neurons, they differ in the source of iPS
cells and the differentiation protocols, resulting in the generation of
distinct neuron types***>* (Fig. 4a).
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Fig. 3| CellNavi identifies key genes involved in T cell differentiation.

a, Changes in expression levels of canonical marker genes corresponding to
specific T cell groups. b, Uniform Manifold Approximation and Projection
(UMAP) visualization of source-target T cell pairs, coloured by effector T cell
groups classified on the basis of transition scores. Each data point represents
asource-target cell pair representation generated by CellNavi. ¢, Transition
scores calculated using IL-2", IFNy" and T,;2-related marker genes referenced
in (a).d, Distributions of established driver genes predicted by CellNavi for
1L2-high cells (CD28and VAVI), IFNy-high cells (CD27 and IL9R) and Th2 cells
(GATA3). e, Predicted rankings of established driver genes across different cell
groups. Centre line, median; box limits, upper and lower quartiles; whiskers, 1.5x

interquartile range; points, outliers. n =23,342. Pvalues were calculated with
two-sided Mann-Whitney Utest.*P<1x 10 Exact Pvalues are provided in the
source datafile. f, The distribution of predicted rankings for GATA3in Th2 cells.
g, Predicted likelihood scores for established driver genes in different cell
groups. Centre line, median; box limits, upper and lower quartiles; whiskers,
1.5xinterquartile range; points, outliers. n =23,342. Pvalues were calculated with
two-sided Mann-Whitney Utest. *P<1x107°. Exact Pvalues are provided in the
source datafile. h, F1scores for predicting effector T cell types using likelihood
scores. Centre: mean. Error bar: standard error, calculated from tenfold cross-
validation (Methods). n=10. i, AUROC scores for predicting effector T cell types
using likelihood scores (Methods).

After training, we input approximately 47,000 source-target
cell pairs from the Fernandes dataset into CellNavi, using untreated
cellsassources and cells exposed to tunicamycin as targets. We asked
CellNavi to prioritize 184 candidate genes, including 5 known ER
stress response genes. CellNavi successfully pinpointed E/F251, BAX
and HSPAS, which achieved median rankings of 3, 7 and 16, respec-
tively,amongthe candidate genes (Fig. 4b). However, HYOUI and VCP
ranked lower. One possible explanationis that these genes play more
nuanced roles in the ER stress response or are involved in pathways
not prominently activated under the specific experimental condi-
tions of this study.

We next examined the top 20 predicted genes for each cell pair.
While atotal of 31 genes were significantly enriched (Fig. 4c¢), FAMS7B,

EIF2S1, NDUFS8, BAX and CYCS consistently ranked highest across
the majority of cells. Notably, E/F2S51 and BAX are well-established ER
stress regulators, while NDUFS8 and CYCS are linked to mitochondrial
stress, which is often closely associated with ER stress®. In parallel,
Fernandes et al. previously identified six subtypes of iPS cell-derived
neurons from transcriptomic dataand our top 20 predictions revealed
subtype-specific gene preferences. For instance, our model suggests
that FARPI, CELF1, HYOUI and APEXI may play more critical roles in
progenitor cells (Fig. 4c). Lastly, except for HSPAS and HYOU1, most
predicted genes showed modest expression changes (Fig. 4d and
Extended Data Fig. 7), consistent with previous observations that
CellNaviidentifies key regulators beyond those detectable by expres-
sion shifts alone.

Nature Cell Biology | Volume 27 | October 2025 | 1863-1874

1868


http://www.nature.com/naturecellbiology

Article

https://doi.org/10.1038/s41556-025-01755-1

b
EIF2S1
BAX

a Training dataset

(ref. 52)
(glutamatergic neurons)

HSPAS
HYOU1
VCP

Q.

HSPAS

EIF2S1

log(fold change)

20 40

UMAP2

Test dataset
(ref. 50)
(dopaminergic neurons)

UMAP1

Dopaminergic neuron population

Predicted ranking (%)

60 80

HNRNPA2B1

Average predicted ranking

Neuron progenitor population Ranking

DAN1
Foxci |
EEF2 \ L
HNRNPA2B1 ||.\||H ||‘|
FAMS578 \
EIF2S1

BAX |

NDUFS8

GTF2H3
FOXRED1
ARID1B
ATP5C1
EIF4G1
FARP

MM“'HV |

ill\l

APEX1 -
HYou1 - |
FERMT2
BostL - [
COX15 -
DCTNT -
CEP63 -
CREBBP -
AKAP9 -
MRPL10
CYP46AT -
ATP6AP2 - |
EWSRT -

I IWII_-”\ I

I W
- \HIJ'I|\ \

| IIiHIHI\II‘ I \Il

Hm

Fig. 4| CellNavi predicts key genes involved in neurodegenerative
pathogenesis. a, UMAP visualization of transcriptomic profiles from
neurodegenerative disease-related datasets. Grey, iPS cell-derived glutamatergic
neurons (Tian dataset®®) used for model training. Blue, iPS cell-derived
dopaminergic neurons (Fernandes dataset™). b, Predicted rankings for ER stress
response-associated genes, based on likelihood score vectors generated by
CellNavi. Centre line, median; box limits, upper and lower quartiles; whiskers,

n

i | ]WIHWIIIIWI |

Ilmww

1

Prog2

DAn2 Prog1
11|

‘ H
!
I 11

| 20+
1]
1| |||\|\|H|”|II l n
i ‘HIIIIHE |
I{ ‘I i uﬂ
IIJIII|||I\ |
I III)
\
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20 predicted genes across all cell pairs. Rows represent cell types as defined by
the original publication®’. Darker colours indicate higher rankings, and lighter
coloursindicate lower rankings. Hierarchical clustering was performed using
Ward’s method. d, Expression changes for the top 20 predicted genes. The x axis
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CellNavi reveals mechanisms of action for drug
compounds

Understanding the mechanisms of action of novel drug candidates
may enhance drug safety and efficacy, reduce development costs and
accelerate drug discovery process. However, conventional drug screen-
ing paradigms often fall short in elucidating the cellular-level effects
that drive biological functions and therapeutic outcomes.

Here, we applied CellNavi to predict key genes modulated by
histone deacetylase (HDAC) inhibitors, a class of antitumour drugs
with promising therapeutic potential in cancer treatment®. HDACs
are enzymes integral to post-translational protein modifications
and interact with various oncogenic pathways to promote tumour
progression®*”’, The intricate downstream pathways influenced by
HDAC presents aconsiderable challenge in fully understanding mecha-
nisms through which HDAC inhibitors exert their effects within cells.

For this purpose, we applied CellNavi to a chemical screen that
quantified the transcriptomic response of K562 cells to 17 distinct
HDAC inhibitors (referred to as the Srivastan dataset)*®. In this set-up,

vehicle-treated cells were designated as sources, while cells exposed to
the HDAC inhibitors served as targets. The predicted likelihood score
indicated whether agene was modulated during drug treatment, with
higher scores suggesting amore prominent role during treatment with
specificHDAC inhibitors. Notably, CellNaviwas trained exclusively on
genetic perturbations®.

While the transcriptomic data depicted a mixed response across
the inhibitors (Extended Data Fig. 8a), the likelihood score vectors
effectively clustered the inhibitors into distinct clusters (Fig. 5a,b
and Extended Data Fig. 8b). Further analysis revealed diversity in the
top-ranked driver genes (Fig. 5¢). Specifically, cells treated with moceti-
nostat, tucidinostat, entinostat and tacedinaline (grouped in cluster 3)
exhibited high scores for mitochondrial-related genes such as MRPS31
and NDUFB?. By contrast, most other compounds prioritized genes
related to RNA splicing and transcription regulation, such as PRPF3
and POLR2A.

Gene Ontology (GO) enrichment analysis of the top 50 genes
predicted for eachinhibitor revealed a consistent pattern (Fig. 5d and
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Supplementary Fig.1): compounds in cluster 3 were enriched for genes
involvedinbiosynthetic processes, mitochondrial functionand protein
metabolism, whereas compounds in other clusters were enriched in
gene programs related to RNA splicing, processing and metabolism.
These findings align with the known effect of deacetylationinhibition,
which lowers cytoplasmicacetate levels and alters acetyl-CoA concen-
trations, akey metabolite involved in cellular metabolism*. Moreover,
the results suggest that certain HDAC inhibitors may preferentially
target chromatin regions regulating RNA processing genes, whichare
crucial for tumour cell proliferation® ' (Fig. Se).

Intriguingly, we observed a correlation between the selectivity
of downstream gene programs and the half-maximal inhibitory con-
centration (ICy) values reported in the literature®® (Fig. 5f). Specifi-
cally, compounds with lower IC,, values tend to influence RNA-related
pathways, whereas those with higher IC,, values were associated with
mitochondrial functions. To further explore the molecular basis of this
divergence, we examined the interactions between human HDAC2 and
either panobinostat (enriched for RNA-related genes) or tucidinostat
(enriched for mitochondrial-related genes). Although molecular dock-
ing revealed no major differences in their potential interactions with
the zinc-dependent HDAC protein, the aniline group in tucidinostat
allowed it to embed more deeply into the HDAC2 pocket (Fig. 5g).
Interestingly, all four compounds in cluster 3 shared similar warheads, a
feature absentin other compounds (Fig. 5g and Supplementary Fig. 2).
This structural feature introduces a steric effect that may influence the
efficacy of compounds® and lead to divergent downstream response,
aphenomenonknown as functional selectivity®> *°. However, the mito-
chondrial preference and lower potency of compounds like tucidi-
nostat may also result from higher lipophilicity, which can promote
off-target or non-specific effects. Nonetheless, these findings highlight
CellNavi’s potential to elucidate the intricate mechanisms of action
underlying druginterventions, highlighting an approach to optimize
drug efficacy and specificity for targetsinvolving complex downstream
signalling pathways.

CellNavi generalizes to novel cell types

Lastly, we evaluated the generalization capability of CellNavi. We
focused on a CRISPR interference screen across HEK293FT and K562
cell lines®. The cell types are markedly different in origin and charac-
teristics—HEK293FT cells are derived from human embryonic kidney
cells, while K562 cells are derived from human chronic myelogenous
leukaemia (Fig. 6a). In this experiment, CellNavi was trained on
HEK293FT cells, with all K562 cells held out as the test set (Methods).

Forthe 16 perturbations targeting the cleavage and polyadenyla-
tionregulatory machinery (Fig. 6a), CelINavi achieved amacroFlscore
of 0.432 on top-1 predictions (Fig. 6b). The model misclassified some
genes encoding components of the CPSF and CSTF complexes, prob-
ably due to their similar post-perturbation transcriptomic profiles
(Fig. 6¢). However, the model performed well in predicting CPSF6 and
NUDT21, which exhibit highly similar transcriptomic profiles after
perturbation. Interestingly, despite distinct post-perturbation tran-
scriptomic profiles for RPRDIA and RPRD1B perturbations, the model
confused these genes in many cases. As the protein products of these
genes form heterodimers to dephosphorylate the RNA polymerase Il
C-terminal domain®®, the model may be prioritizing functional interac-
tions and shared pathways over expression differences, leading to the
misinterpretation of these genes.

By comparing the similarities between cell groups stratified by
true versus predicted perturbations, we found that both intra- and
interperturbation correlations for predicted labels closely mirrored
those of the true labels (Fig. 6¢,d and Extended Data Fig. 9). This sug-
gests that cells grouped by predicted perturbations exhibit gene
expression signatures highly similar to those grouped by true per-
turbations. Although prediction accuracy may partly benefit from
conserved perturbation effects across cell types, CellNavi remains

effective even when applied to cell types markedly different from those
used in training, demonstrating robust generalization across diverse
cellular contexts.

Discussion

Understanding the regulatory mechanisms that govern cellidentity and
transitions stand a central challenge in cell biology®**~7%. In this study,
weintroduce CellNavi, adeep learning framework designed to identify
driver genes—key factors that orchestrate complex cellular transi-
tions—across diverse biological contexts. By modelling cell statesona
biologically informed manifold constructed from large-scale single-cell
transcriptomic dataand gene graph priors, CellNavi achieves accurate
and generalizable predictions across multiple tasks and datasets.

Describing cell states on a manifold that captures their biologi-
cal dimensions has been a long-lasting endeavour®>”>, Here, we
utilized a structured gene graph derived from NicheNet to facilitate
cell state manifold learning via deep neural networks. NicheNet is a
comprehensive gene-gene graphintegrating both GRNs and intercel-
lular signalling pathways. This priorimproved the accuracy for driver
gene prediction compared with alternative or randomized graphs
(Extended Data Table 1). Also, integrating prior gene graphs allowed
CellNavi to place greater emphasis on transcription factors, which
are crucial for defining cell states and orchestrating transitions>'%%
(Supplementary Figs. 3 and 4). This explicit focus on regulatory ele-
ments provides CellNavi with a distinct advantage to model complex
biological processes and highlights the value of graph-based learning
inimproving modelinterpretability and biological relevance. However,
we caution that attention mechanisms do not equate to mechanistic
interpretability. The explainability remains a critical challenge for deep
learning models, including CellNavi. Future work should develop tools
tovisualize andinterpret how graph structures and attention dynamics
shape predictions of driver genes.

Our construction of cell-type-specific graphs involves removing
edges for genes withzero expression, based on asimplified assumption
that such genes are unlikely to participatein active regulation. Consist-
ent with the previous practices in single-cell foundation models>""
and cell-type-specific protein representation’’ learning, we expect
this filtering to help reduce noise and highlight biologically relevant
interactions. Yet, we recognize that zero expression values may also
stem from technical artifacts suchas dropout or low sequencing depth,
rather than true biological absence. Future studies should assess
alternative strategies, such asimputation or single-cell-level network
construction’®, to balance denoising and information retention.

Inherent noise in biological data presents a substantial chal-
lenge for modelling. To mitigate technical variability, such as dropout
events and differencesinsequencing depth, we used adownsampling
recovery pretraining strategy with a mixed downsampling rate. This
strategy aligns input data of varying depths and improves robust-
ness in handling real-world datasets. Additional noise arises from
variability in CRISPR perturbation efficiency, including fluctuating
perturbation success rates and off-target effects caused by intrinsic
cellular stochasticity. Although CRISPR screens provide a rich and
diverse dataset for CellNavi training, this noise may lead to inconsist-
ent labels and biased learning. To mitigate this, future efforts could
pool data from multiple batches, sources and single guide RNAs to
reduce biases associated with specific experimental conditions. In
addition, integrating orthogonal perturbation data, such as chemi-
cal treatments, could complement CRISPR-based data and further
enhance model robustness.

CellNavi represents a pioneering effort to benchmark the per-
formance and generalization capacity of deep learning methods on
driver geneidentification task. While the results are promising, several
limitations remain. First, the current pipeline requires fine-tuning
on single-cell CRISPR screen data relevant to the system of interest.
While our proof-of-concept test involving HEK293FT and K562 cells
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Fig. 6| CellNavi predicts driver genesin novel cell types. a, UMAP visualization
of transcriptomic profiles from ref. 67. Grey, HEK293FT cells used for model fine-
tuning. Blue, K562 cells for model test. b, Predicted perturbations versus true
perturbationsin K562 cells. Each row represents a predicted perturbation, and
each columnrepresents a cell, whose true perturbation is labelled on top. Prob,

probabilities of predicted perturbation. ¢, A heatmap showing average Pearson
correlations over transcriptomic profiles between each pair of perturbations
inK562 cells.d, A heatmap showing average Pearson correlations over
transcriptomic profiles between predicted perturbations and true perturbations
inK562 cells. Row, predicted perturbations. Column, true perturbations.

demonstrated promising results (Fig. 6), the extent to which Cell-
Navi can generalize to entirely new cell types or experimental sys-
tems remains unclear. Addressing this will require testing across more
diverse contexts and quantifying the ‘distance’ between systems to
determine when fine-tuningis necessary. Along-termgoalistoreduce
the dependence onsuch datasets by developing models that generalize
with minimal experimental effort.

Second, CellNavi cannot yet generalize to novel genes, which
limits its broader applicability. Expanding this capacity would require
capturing gene networks and representations that enable extrapola-
tionbeyond the training dataset. While single-cell CRISPR experiments
encompassing abroader range of target genes and cell types are desir-
able, integrating generative models toinfer missing relationships could
furtherimprove the model’s capacity to handle novel genes.

Third, CellNavi lacks the ability to accurately model long-range
transitions owing to its reliance on CRISPR perturbations and static
snapshots of transcriptomic data. Many biological processes, such
as differentiation and disease progression, unfold gradually through
transient states not captured in steady-state data. Incorporating
time-resolved single-cell data measurements could help construct
dynamic manifolds that better reflect these processes.

Despite these challenges, CellNavi marks a major advance inmod-
elling cell state transitions and identifying their genetic drivers. By
combiningbiologically informed priors withadvanced deep learning
techniques, CellNavi achieves high accuracy and generalizability in
diverse biological contexts. As we continue to refine and expand mod-
elslike CellNavi, we are paving the way for novel treatments targeting
the root causes of diseases with unprecedented specificity.
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Methods

Input embeddings

In CellNavi, we use single-cell raw count matrices as the only input.
Specifically, the single-cell sequencing data are processed into a
cell-by-gene count matrix, X € R¥¢, where each element X, , repre-
sents the expression of the nth cell and the gth gene (or read count of
the gthRNA).

To better describe a gene’s state in a cell, we involve both gene
name and gene expression information in its input embeddings. For-
mally, the input embedding of a token is the concatenation of gene
name embedding and gene expression embedding.

Gene name embedding. We use a learnable gene name embedding
in CellNavi. The vocabulary of genes is obtained by taking the union
set of gene names among all datasets. Then, the integer identifier of
eachgenein the vocabulary is fed into an embedding layer to obtain
its gene name embedding. Inaddition, we incorporate a special token
CLSinthevocabulary for aggregating all genes into a cell representa-

tion. The gene name embedding of cell n can be represented as
h(ame) & R (GHDXH:
M :

(name) __ (name) (name) (name) (name)
h;, - [hnCLS g h h hn,c ’

where H is the dimension of embeddings, which s set to 256.

Gene expression embedding. One major challenge inmodelling gene
expression is the variability in absolute magnitudes across different
sequencing protocols. We tackled this challenge by normalizing the
raw count expression for each cell using the shifted logarithm, which
isdefined as

. X,
X, =log|l=—"% +1),
n.g ( ng xn,g’

where X, is the raw count ofgene gincelln, Lisa scahng factor and
we used a fixed value L =1x 10* in this study, and X, ¢ denotes the
normalized count.Finally, alinear layer was applied on the normalized
expression X, , to obtain the gene expression embedding. For the CLS
token, we setitasaunique value for gene expression embedding. The

gene expression embedding of cell n can be represented as
h(expr) e R(GHDXH:
N :

(expr) _ (eXpr) (exm) (eXPr) (expr)
(P = [P0, W0, P, pen].
The final embedding of cell nis defined as the concatenation of
h(name) and h(expr).
n n M

h, = SUM (hﬁ,name), h&eXPf)) € R(G+DXH

Cell manifold model

Model architecture. The CMM, is composed of six layers of a trans-
former variant that is designed specifically for processing
graph-structured data (GeneGraph attention layers)". The encoder
takes theinputembeddings to generate cell representations and uses
only genes with non-zero expressions. To further speed up training,
also as an approach of data augmentation, we performed a gene sam-
pling strategy by randomly selecting at most 2,048 genes as input. It
should be noted that the strategy is applied only during training; all
non-zero genes are included at inference stage to avoid information
loss. We use h{” to represent the embedding of cell n at the [th layer,
where h{’is defined as

h, [=0
ho —
: GeneGraphAttnLayer (hg_l)),l € [1,6].

The multihead attention module in each GeneGraph attention
layer consists of three components. In addition to a self-attention
modaule, acentrality encoding module and aspatial encoding module
are also incorporated to modify the standard self-attention module
for graph dataintegration.

We start by introducing the standard self-attention module. Let
Nheags b€ the number of heads in the self-attention module. In the /th
layer, ith head, self-attention s calculated as

szl-i) - hf}’)w(qry,i), K(Li) — hfl/)w(key,i)’vgyi) — hs[’)w(val,i),

(K u:))

A([ D~ Attn = softmax (A(' ')) V(’ D)

hle)/ — CONCAT (Attnﬁ,”l), ,AttnEZl’thaGS)) wout R(G+1)><2H’

where wa:d, wikey.)) and wlvah) g p2HxD gre Iearnable matrices that
projectinputembedding h( of cell ninto Q,, “), and V ) the symbol
WU e R(PMeas)x2H js 3 learnable linear prOJectlon that refmes theout-
put of multihead attention, and D is the feature dimension for each
attention head that satisfies DN,,,qs = 2H. The output of multihead
attention h( ) isthen passed through alayer normalization layerand a
multilayer perceptron (MLP) model, producing the final output h*
astheinputto the nextlayer.

The standard attention mechanism processes features of each
individual gene independently, whereas the gene graphincorporates
relationalinformation between genes. Toincorporate the gene graph
information into the model, the centrality encoding module projects
the relational information into the regulatory activity feature of each
single gene, and the spatial encoding module directly incorporates the
relationalinformation with the attention mechanism. More specifically,
we define z;__ . . and z+ learnable embeddings describing
in-degree deg an(i out- degree Aeg of genegonthegenegraph g. We
add these embeddings to the gene embeddings to update cell
encoding:

h’, =h® +z;

deg” (9@ deg*(gg)'

This cell encoding update by the centrality encoding module is
applied before the self-attention module.

The spatial encoding module aims to capture regulation relations
between genes fromthe gene graph. For this purpose, we generate the
distance matrix S € N°%¢, which contains the shortest distances
between gene pairs on the gene graph €. We assign each elementin S
asalearnable bias added to attention weights:

Aélﬂz = Agl,gz +b (Sgl’gz) ’

where b is a learnable scalar-valued function of the distance S, .. It

assigns a special value to genes that are not connected to the graph.

We use A’in place of the original attention weights A in the standard
self-attention module when computing self-attentionin our model. In
ourimplementation, we apply layer normalization and an MLP before
computing multihead self-attention. The cell representation output
fromthe CMM, h{%), . is subsequently passed through a fully connected
layer, where the dimensionality is increased from 256 to 2,048. This

resulting value serves asthe cell coordinate for cell n, denoted as CRD,,..

CMM pretraining task. The CMM s expected to generate cell coordi-
nates that parameterize the intrinsic features and variables (that are
much less than the dimensions in the raw gene expression profile
representation) of a cell state and maintain cell similarity in the vector
space, to provide a concise and biologically relevant representation
for the DGP to consume. To achieve this, we design a downsampling
reconstruction pretraining task, which asks the CMM to produce acell
coordinates of a downsampled gene expression Xflds) of acell n, that
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allows a separate decoder model to reconstruct the original gene
expression X,, of that cell as accurate as possible. To achieve this, the
CMM is enforced to capture the co-varying patterns among the raw
gene expression dimensions, hence helping the CMM to extract the
underlying intrinsic variables.

Specifically, for the downsampling process, we downsample the
raw count expression of each gene viaabinomial distribution. The down-
sampled expression X’ of the nth celland the gth gene is produced by

(ds) 1
Xng ~B<X,Lg, m),

where the ~ denotes ‘is distributed as’, X, is the raw count of gene g
in cell n, r(@)is the downsample rate that is uniformly sampled from
[1, 20), and Bdenotes the binomial distribution. The decoder isan MLP
consisting of two linear layers. For each downsampled gene expression,
the decoder concatenatesthe cell coordinates CRD,, of xE,ds) produced
by the CMM and the embedding of that gene as the direct input to the
MLP. The MLP output comes in the same shape as X,,.

Thelearning objective for reconstructing the original gene expres-
sion profile X, from the downsampled version xE,dS) is

N
Lrecons = % 21 [DEC (CRD (X,SdS))) - Xn”2,
n=

where | - |* represents the squared 2-norm of a vector. Both the CMM
and the decoder are optimized. After pretraining, the CMM is to be
used for driver gene prediction, while the decoder is discarded.

Driver gene predictor

Thedriver gene classifierisan MLP consisting of two linear layers. It is
optimizedto predictthe perturbed genes froma pair of cell coordinates
output by the CMM. To be more specific, transcriptomes of source cell
X.candtarget cell X, are mapped to cell coordinates CRD,.and CRD
with the CMM. For the directinput features, the DGP concatenates the
two cell coordinates and then proceeds with an MLP, which outputs
thelogits of genes. We use the cross-entropy loss for training the DGP:

ZLariver gene = CE (DGP (CONCAT (CRD (X,rc), CRD (Xig())) , Zarv) »

— lg i -
= orx, i) isthe cross-entropy loss, and g4, denotes
the driver gene corresponding to X, and X The loss is finally aver-
aged over all (X, Xgr, 8arv) tuples in the dataset. The pretrained CMM
used to produce CRD,,.and CRD, is also fine-tuned together with the

DGP by this loss.

where CE(1,g)

Additional training details for CellNavi are available in Supple-
mentary Note 4.

Baselines

SCENIC and SCENIC+.For each test dataset, SCENIC+inferred a GRN,
identified regulons W, € R"*:, and computed regulon activity
W, € RV*Nrin the cells, where N,, Ngand N, represent the number of
identified regulons, genes and cells in the test dataset, respectively.
W, isalearnt matrix containing the weights of genes for different regu-
lons, and W, indicates the regulon activities for each cell. Then, we used
W, = W,W, to represent the regulatory importance of each gene in
cells. Based on these values (elements in W,), genes in each cell were
ranked, with higher valuesindicating a greater potential role in control-
ling cellularidentity. We applied SCENIC+to Normanetal. and Schmidt
et al. datasets. Only genes present in the perturbation pools of these
datasets were included in the ranking based on W,. Hyperparameters
of GRN inference, regulon identification and regulon activation were
set to default. Cells with no regulon activated were removed from our
analysis. SCENIC+ analysis was realized by pyscenic 0.12.1.

Other GRNs. We constructed GRNs using three alternative methods:
GRNBoost2, GENIE3 and RENGE, following default parameters from
prior studies where applicable. Due to computational memory con-
straints, we limited the analysis for GENIE3 and RENGE to the top 5,000
highly variable genes. For GENIE3 and GRNBoost2, we utilized the
SCENIC implementation to infer GRNs. For RENGE, which is designed
toinfer GRNs using time-series single-cell RNA sequencing (RNA-seq)
data, we adapted the method to work with static single-cell RNA-seq
data. After constructing GRNs with these methods, we applied the same
downstream analysis protocol as described for the SCENIC pipeline.

In silico perturbation. Insilico perturbation methods, such as GEARS,
are capable of predicting transcriptomic outcomes of genetic per-
turbations. We trained GEARS model on the datasets mentioned in
the corresponding tasks. For evaluation, we computed the cosine
similarity between the predicted transcriptomic profiles under vari-
ous perturbationsand the corresponding profiles of cells from the test
datasets. Driver genes were predicted on the basis of the similarities,
and high valuesin similarity indicate the potential to be driver genes.
GEARS analysis was realized by cell-gears 0.1.1. Data processing and
training followed the data processing tutorial (https://github.com/
snap-stanford/GEARS/blob/master/demo/data_tutorial.ipynb) and
training tutorials (https://github.com/snap-stanford/GEARS/blob/
master/demo/model_tutorial.ipynb).

DGE analysis. DGE analysis is the most frequently used method to
reveal cell-type-specific transcriptomic signature. Initially, cells from
thetest datasets were normalized and subjected to logarithmic trans-
formation. Subsequently, we applied the Leiden algorithm, an unsu-
pervised clustering method, to categorize the target cellsinto distinct
groups. The number of clusters for each test dataset was set to range
from 20 to 40, ensuring that cellular heterogeneity was maintained
while providing a sufficient number of cells in each group for robust
statistical analysis. We selected source cells to serve as areference for
comparison and performed DGE analysis on each target cell group
against this reference. The Wilcoxon signed-rank test was used to
determine statistical significance. Then, significant genes were ranked
according to their log-fold changes in expression as potential driver
genes. Both unsupervised clustering and DGE analysis were conducted
using the package scanpy 1.9.6.

The prior gene graph
The prior gene graph was constructed from NicheNet, where GRN and
cellular signalling network were integrated. The gene graphisadirec-
tional graph. More specifically, for each gene node on the graph, the
number of incoming edges corresponds to the genes that regulate it,
while the number of outgoing edges represents the genes it regulates.
In our approach, a connection was established between two genes if
they were linked in either of the individual networks. The resulting
integrated graph features 33,354 genes, each represented by aunique
human gene symbol, and includes 8,452,360 edges that signify the
potentialinteractions. The unweighted versions of NicheNet networks
were usedinourapproach. Foreach cell, weremove the gene nodes with
values of 0 inthe raw count matrix of the single-cell transcriptomic pro-
file, to construct the cell-type-specific gene graph. During pretraining,
when downsamplingis performed on single-cell transcriptomes, only
the non-zero genes included as model input are retained to generate
sample-specific graphs that guide the model’s task.

To evaluate the impact of graph connectivity and structure, we
generated alternative graph configurations as follows:

(1) Fully connected graph: A maximally connected graph where
every pair of genes is connected by an edge of equal weight.

(2) Sparsified graphs: Graphs were created by downsampling the
total number of edges from the original graph to 1/10 and 1/20
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of its total edges, enabling an evaluation of how reduced con-
nectivity affects performance.

(3) Random graphs: Randomized graphs were generated while pre-
serving the number of nodes and certain structural properties
of the original graph, such as self-loops. Edges were introduced
probabilistically to maintain overall consistency with the origi-
nal graph’s sparsity and connectivity.

Datasets

Human Cell Atlas. We downloaded all single-cell and single-nucleus
datasets sourced from contributors or DCP/2 analysis in Homo sapiens
up to March 2023, accumulating approximately 1.5 TB of raw data. We
retained all experiments that included raw count matrices and stand-
ardized the variables to gene names using amapping list obtained from
Ensembl (https://www.ensembl.org/biomart/martview/574df5074dc
07f2ee092b52c276ca4fc).

Norman etal. This dataset (GSE133344) measures transcriptomic con-
sequences of CRISPR-mediated gene activation perturbationsin K562
cell line. We filtered this dataset by removing cells with a total count
below 3,500. After filtering, this dataset contained 105 perturbations
targeting different genes, and 131 double perturbations targeting two
genes simultaneously. We used unperturbed cells (with non-targeting
guide RNA) as source cells and perturbed cells as target cells.

Schmidt et al. This dataset (GSE190604) measures the effects of
CRISPR-mediated activation perturbations in human primary T cells
under both stimulated and resting conditions. For our analysis,
we excluded cells not mentioned in metadata and removed genes
appeared in less than 50 cells. Gene expression levels of single guide
RNAwere deleted to avoid data leakage. We used unperturbed cells as
source cells and perturbed cells as target cells. We also excluded cells
without significant changes after perturbation following the procedure
proposed by Mixscape tutorial via package pertpy. Default parameters
were used for Mixscape analysis.

Cano-Gamez et al. This dataset (EGASO0001003215) comprises
naive and memory T cells induced by several sets of cytokines. With
cytokine stimulation, T cells are expected to differentiate into differ-
ent subtypes. We took cells not treated by cytokines as source cells
and cytokine-stimulated cells as target cells. This experimental set
reflects the differential process of human T cells. For our analysis,
clusters 14-17 were excluded because their source cells could not be
reliably determined.

Fernandes et al. This dataset comprises heterogeneous dopamine
neurons derived from human iPS cells. These neurons were exposed
to oxidative stress and ER stress, representing PD-like phenotypes.
We followed preprocessing procedures as mentioned in the original
GitHub repo (https://github.com/metzakopian-lab/DNscRNAseq/
blob/master/preprocessing.ipynb).

Tian et al. This dataset comprisesiPS cell-derived neurons perturbed
by more than180 genes related to neurodegenerative diseases. CRISPR
interference experiments with single-cell transcriptomic readouts were
conducted by CRISPR droplet sequencing (CROP-seq). For our analy-
sis, we removed genes that appeared in fewer than 50 cells. We used
unperturbed cells as source cells and perturbed cells as target cells.

Srivatsan et al. This dataset (GSE139944) contains transcriptomic
profiles of human cell lines perturbed by compounds. For our study,
we utilized K562 cell line cells perturbed by HDAC inhibitors. We used
unperturbed cells as source cells, and chemically perturbed cells as
target cells. This set represents the process of cellular transition caused
by drugs.

Kowalski et al. This dataset (GEO: GSE269600) measures the transcrip-
tional consequences of CRISPR-mediated perturbations in HEK293FT
and K562 cells. For our analysis, we excluded perturbations that con-
sisted of fewer than 200 cells. Cells with minimal perturbation effects
were removed from downstream analysis. We used cells from control
groups as source cells, and perturbed cells as target cells.

T cell differentiation analysis

Identification of cellular phenotypic shift. We computed the transi-
tionscoretoidentify cellular phenotypic shifts on the transcriptomic
level. We selected canonical marker genes associated with IFNG and
IL2 secretion and Th2 differentiation. Then, we computed the transition
score based on the mean expression level of these marker genes, that
is, CTS; = Kl Zﬁzl(glki - 8j,x,), Where CTS;is the transition score of phe-

notypicshifttypeiinsource-target cell pair j, g and g (, arenormal-
ized gene expression levels of marker gene k for cell-state transition
typeiin target cellj, and its source cell j,. The total number of marker
genes for phenotypic shift type i is represented with K. Then, classes
of phenotypic changes were annotated on the basis of transition score.
Transitionscores are calculated viafunctiontl.score_genes fromscanpy
package with default parameters.

Cell type classification with predicted driver genes. We selected a
series of genes related to transition mentioned above from previous
studies (Supplementary Table 4). We used the term ‘likelihood scores’
to describe the probability of agene to be adriver factor predicted by
the model, that s,

mod _ _mod
LSi™ = P,

where LS}L‘"" means the likelihood score for gene k insource-target cell
pair jfrommodel mod, and p?“d represents the probability predicted
by model mod. For our analysis, the mod could be CellNavi, or baseline
models.

Then, we aggregate likelihood scores into ‘prediction scores’ to
evaluate the performance of different models:

PSmod _ 1 & LSmOd
0=y
L k=1

where PS,’}‘Od is the prediction score of cell-state transition type i in
source-target cell pairjpredicted by model mod. The number of can-
didate driver genes for each phenotypic changing type i is m;. Ideal
prediction should reflect similar patterns as shown by the cellular
transition score mentioned above. To evaluate it quantitatively, we
trained decision tree classifiers with prediction scoresasinput to test
whether predictions scores would faithfully demonstrate cell-state
transition types. Classifiers were trained for each method indepen-
dently, and tenfold cross-validation was conducted. Classifiers were
implemented via shallow decision trees using the sklearn package.

GO enrichment analysis

We used GO enrichment analysis to explore drugs’ mechanisms of
action. For each drug compound, the top 50 genes with highest scores
predicted by CellNavi were used for GO enrichment analysis. The sig-
nificant level was chosen to be 0.05, and the Benjamini-Hochberg
procedure was used to control the false discovery rate. Forimplementa-
tion, we used package goatools for GO enrichment analysis.

Molecular docking

We performed molecular docking for panobinostat and tucidinostat,
with areference proteinstructure obtained from the PDB entry 3MAX.
Theligand structures from PDB entries 3MAX and 5G3W were used to
guide the initial placement of panobinostat and tucidinostat, ensuring
the pose correctness of the warheads and major scaffolds. Based on
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suchinitial poses, local optimizations were performed with AutoDock
Vina. PyMol was used for structure visualization.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

HCA data for CMM training were downloaded from the HCA data
explorer (https://explore.data.humancellatlas.org/projects). The Nor-
manetal.”, Tian etal.”> and Srivatsan et al.” datasets were downloaded
from the scPerturb project’’ via Zenodo at https://doi.org/10.5281/
zenodo.7041848 (ref. 80). The raw count data of Schmidt et al.*° data-
set were downloaded from the National Institutes of Health GEO with
accession number GSE190604, and its metadata were downloaded
via Zenodo at https://doi.org/10.5281/zenod0.5784650 (ref. 81). The
Cano-Gamez et al.*® dataset was downloaded from the Open Target
Platform of'this project (https://www.opentargets.org/projects/effec-
torness). The Fernandes et al.’® dataset was downloaded from ArrayEx-
presswith accessionnumber E-MTAB-9154. The preprocessed Kowalski
etal.”” dataset was downloaded via Zenodo at https://doi.org/10.5281/
zenodo.7619592 (ref. 82). For trajectory reconstruction, we used the
dataset from GSE132188. For single-cell RNA-seq alignment across
varying sequencing depths, we used data from GSE84133, specifically
the Human3 sample. PDB3MAX, 5G3W. Source data are provided with
this paper.

Code availability

Custom code developedin thisstudy isavailable via GitHub at https://
github.com/DLS5-Omics/CellNavi. Additional software packages for
modelling and data analysis include the following: python ==3.8.19,
torch ==2.4.0, pandas=2.2.2, numpy ==1.23.5, scikit-learn==1.5.1,
scipy ==1.14.1, networkx = =3.3, scanpy = =1.10.3. cell-gears ==0.1.2,
pyscenic ==0.12.1, renge = =0.0.3, cell-gears=0.1.1, goatools = =1.4.12,
pertpy (2024.04).
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Extended Data Fig. 2 | CelINavi can align the same cell types across varying
sequencing depths and reconstruct developmental trajectories. (a) Upper
panel: After 20-fold down-sampling on the expression profile®’, major cell types
remained distinguishable, but a severe batch effect was observed even after
using standard integration methods. Lower panel: the Cell Manifold Model
(CMM) in CellNavi can integrate embeddings from the down-sampled and
original profiles, while preserving the biological structure. Integration quality
was quantitatively assessed using iLISI (1: worst, 2: best) and cLISI (1: best, 2:
worst), which evaluate batch mixing and cell type separation, respectively. See
details of experimental rationales in Supplementary Note 2. (b) UMAPs colored
by cell type (left) and diffusion pseudotime (DPT) (right, indicated by the

colorbars), inferred from the original data (upper panel) and CellNavi-predicted
data (lower panel). Cell type labels were assigned based on known markers, and
pseudotime was computed using Scanpy’s DPT implementation. (c) Spearman
correlation between pseudotime inferred from the original data (x-axis) and
from the CellNavi-predicted data (y-axis) with a quantificationin d. (d) Summary
of quantitative evaluation using Spearman correlation, along with clustering
evaluation metricsincluding Adjusted Rand Index (ARI), Normalized Mutual
Information (NMI), Average Silhouette Score (ASS), and Fowlkes-Mallows Score
(FMS). Scores computed from random embeddings are included for comparison.
We used amouse pancreatic endocrinogenesis dataset from Bastidas-Ponce et
al.®*. Therefore, we enhanced our model with mouse scRNA-seq for this task.
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implementation. (a) The DGP processes concatenated cell coordinates pairs
output by the CMM to predict driver genes by generating a likelihood score
vector. An optional discriminator is included to align training and test data,
ensuring consistency and accuracy in predictions (Supplementary Note 4).
(b) The fine-tuning data (left) consists of CRISPR perturbation datasets with
low heterogeneity, typically derived from controlled experiments with limited

variability. The application data (right) encompasses diverse biological
conditions with high heterogeneity, including different cell types, perturbation
types, and sequencing platforms. The bidirectional arrow indicates the
challenges posed by differences in data sources, sequencing techniques, and
biological variability when generalizing the model from fine-tuning to real-world
applications. Schematic elements created with BioRender.com.
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Extended Data Fig. 4| Quantitative assessment of CellNavi (extended).

(a) UMAP visualization of perturbed resting T cells and restimulated T cells
sequenced by Schmidtet al, colored by cell clusters identified in the original
study. (b) AUPRC (Area Under Precision-Recall Curve) and MCC (Matthews
Correlation Coefficient) for driver gene prediction in the Schmidt dataset,
comparing CellNavi with alternative methods. Source dataare availablein
Supplementary Table 1. (c) Compatibility of the test dataset to SCENIC/SCENIC+.
Upper panel: 61.6% of samples cannot be predicted by SCENIC/SCENIC+ due to
missing regulons. Bottom panel: 58.3% of candidate driver genes are excluded
because they are neither transcription factor (TF) nor TF-target genes. (d) Micro-
AUROC of CellNavi applied to the original single-cell transcriptomic profile

and the filtered transcriptomic profile in which perturbed genes are excluded,
showing that CellNavi identifies driver genes excluded from gene expression
profiles. (e) Top K (K=1or 5) accuracy of CellNavi applied to transcriptomic
datawith perturbed gene excluded. Error bar, standard error. n = 69. (f) Cells
were stratified into distinct states using the unsupervised Leiden algorithm,

with each state represented by a different color. A specific cell cluster was
selected as the test set, while the remaining clusters were used for training.

To ensurerigorous evaluation, all multi-gene perturbations were excluded

from training. Consequently, the training set (light gray) consisted only of
single-gene perturbations within certain clusters, while the test set was divided
into: 1) single-gene perturbations from the held-out cluster (light blue), 2)
double-gene perturbations from the held-out cluster (dark blue), and 3) double-
gene perturbations from the training clusters (dark gray). Results reported in
the main text are derived from the held-out cluster (blue cluster in the UMAP).
To further ensure fairness, the test cluster was shuffled (similar to cross-
validation) to obtain robust and unbiased results (Supplementary Table 3).

(g) AUPRC (Area Under Precision-Recall Curve) and MCC (Matthews Correlation
Coefficient) for driver gene predictionin the Norman dataset (single
perturbation), comparing CellNavi with alternative methods. Source data are
available in Supplementary Table 1.
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compares the performance of CellNavi under three configurations: (1) CellNavi
withboth CMM pretraining and DGP fine-tuning, (2) coupling the DGP with raw

gene expression vectors instead of gene embeddings produced by the CMM,
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out-of-domain (the previously used Norman single perturbation split that holds
one cluster out from training, red) and in-domain (a random split on the Norman
dataset with the same train/test size, gray). Metrics include Top-1accuracy, Top-5
accuracy, AUROC, AUPRC, F1score,and MCC (Matthews Correlation Coefficient).
Dashed lines indicate performance change between evaluation settings.
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perturbations (a) or predicted perturbations by CellNavi (b).

Nature Cell Biology


http://www.nature.com/naturecellbiology

Article https://doi.org/10.1038/s41556-025-01755-1

Extended Data Table 1| Comparison of the predictive performance of CellNavi using NicheNet and alternative graph
configurations

Top-1 Top-5
accuracy accuracy AUROC AUPRC  Flscore MCC
NichetNet 0.6206 0.7326 0.8745 04991  0.6154  0.6155
GENIE3 0.4916 0.6149 0.8216 03642  0.5105  0.4917
GRNBoost2 0.4091 0.5201 0.8063 0.2850  0.3982  0.4111
RENGE 0.5600 0.6835 0.8443 0.4487  0.5800  0.5551
lg:f;glconne"ted 0.3467 0.4555 0.7484 02103  0.3034  0.3468
0.3184 0.4435 0.7525 0.1827  0.3049  0.3147
1/20 sparsity 0.3806 0.5101 0.7794 02696  0.3667  0.3853
0.3291 0.4664 0.7746 0.1736  0.3366  0.3358
0.3338 0.4542 0.7721 02153 03193  0.3347
1/10 sparsity 0.3857 0.5045 0.7821 02394 03776  0.3857
0.3248 0.4526 0.7690 02069  0.3010  0.3236
0.3916 0.5010 0.7835 0.2483 03716  0.3893
Random graph 0.3546 0.4839 0.7633 02465 03511  0.3591
0.3911 0.5287 0.7965 02619 03711  0.3893

The table summarizes the predictive performance of CellNavi across different gene graph configurations, including NicheNet and alternative designs, evaluated on the Schmidt dataset.
Performance metrics include Top-1 accuracy, Top-5 accuracy, area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), F1score, and
Matthews Correlation Coefficient (MCC). For sparsified and random graph configurations, three independent graphs were generated and evaluated for each setup.
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|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  All data analyzed within this manuscript are publicly available. No additional software was used for the data collection process.

Data analysis python==3.8.19, torch==2.4.0, pandas=2.2.2, numpy==1.23.5, scikit-learn==1.5.1, scipy==1.14.1, networkx==3.3, scanpy==1.10.3. cell-
gears==0.1.2, pyscenic==0.12.1, renge==0.0.3, cell-gears=0.1.1, goatools==1.4.12, pertpy (2024.04), AutoDock Vina, PyMol. Custom code
developed in this study: https://github.com/DLS5-Omics/CellNavi

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

HCA data for Cell Manifold Model training is downloaded from the HCA data explorer (https://explore.data.humancellatlas.org/projects). The Norman et al., Tian et
al. and Srivatsan et al. datasets were downloaded from the scPerturb project on Zenodo (https://zenodo.org/records/10044268). The raw count data of Schmidt et




al. dataset was downloaded from the National Institutes of Health GEO with accession number GSE190604, and its metadata was downloadedd from Zenodo
(https://zenodo.org/records/5784651). The Cano-Gamez et al. dataset was downloaded from the Open Target Platform of this project (https://
www.opentargets.org/projects/effectorness). The Fernandes et al. dataset was downloaded from ArrayExpress with accession number E-MTAB-9154. The
preprocessed Kowalski et al dataset was downloaded was downloaded from Zenodo (https://zenodo.org/records/7619593#.Y-P7Zi1h2X0). The preprocessed
Kowalski et al67 dataset was downloaded was downloaded from Zenodo (https://zenodo.org/records/7619593#.Y-P7Zi1h2XO0). For trajectory reconstruction, we
used the dataset from GSE132188. For scRNA-seq alignment across varying sequencing depths, we used data from GSE84133, specifically the Human3 sample. PDB
entry: 3MAX, 5G3W.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or  N/A
other socially relevant

groupings

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size All data used in this study were obtained from publicly available sources, and sample sizes are consistent with those reported in the original
publications. No additional selection was performed, except for the data exclusion criteria described below.

References for test datasets:

1. Schmidt, R. et al. CRISPR activation and interference screens decode stimulation responses in primary human T cells. Science 375, eabj4008
(2022).

2. Norman, T. M. et al. Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science 365, 786—793 (2019).

3. Cano-Gameyz, E. et al. Single-cell transcriptomics identifies an effectorness gradient shaping the response of CD4+ T cells to cytokines. Nat
Commun 11, 1801 (2020).

4. Fernandes, H. J. R. et al. Single-Cell Transcriptomics of Parkinson’s Disease Human In Vitro Models Reveals Dopamine Neuron-Specific Stress
Responses. Cell Reports 33, 108263 (2020).

5. Srivatsan, S. R. et al. Massively multiplex chemical transcriptomics at single-cell resolution. Science 367, 45-51 (2020).

6. Kowalski, M. H. et al. Multiplexed single-cell characterization of alternative polyadenylation regulators. Cell 0, (2024).

7. Baron, M. et al. A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. cels
3, 346-360.e4 (2016).

8. Bastidas-Ponce, A. et al. Comprehensive single cell mMRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis.
Development 146, dev173849 (2019).

Data exclusions  For Schmidt dataset, we excluded cells not mentioned in metadata and removed genes appeared in less than 50 cells. For Cano-Gamez et al.,
clusters 14-17 were excluded as their source cell could hardly be decided. For Kowalski et al., we excluded perturbations which consist of less
than 200 cells.

Replication This is not relevant for our study since we did not perform any wet-lab experiment. The replication of computational experiments were done
with cross-validation, by partitioning data into training and testing subsets across multiple folds and evaluate the overall performance of
models, when possible (Supplementary Table 4, Supplementary Table 5, Figure 3h), to confirm that model predictions are robust across
different data subsets.

Randomization  Thisis not relevant for our study since we did not perform any wet-lab experiment

Blinding This is not relevant for our study since we did not perform any wet-lab experiment
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern

Plants
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Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Authentication Describe-any-atithentication-procedures for-each-seed-stock-tised-ornovel-genotype-generated—Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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