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A framework for evaluating the chemical 
knowledge and reasoning abilities of large 
language models against the expertise  
of chemists
 

Large language models (LLMs) have gained widespread interest owing 
to their ability to process human language and perform tasks on which 
they have not been explicitly trained. However, we possess only a limited 
systematic understanding of the chemical capabilities of LLMs, which 
would be required to improve models and mitigate potential harm. Here 
we introduce ChemBench, an automated framework for evaluating the 
chemical knowledge and reasoning abilities of state-of-the-art LLMs against 
the expertise of chemists. We curated more than 2,700 question–answer 
pairs, evaluated leading open- and closed-source LLMs and found that the 
best models, on average, outperformed the best human chemists in our 
study. However, the models struggle with some basic tasks and provide 
overconfident predictions. These findings reveal LLMs’ impressive chemical 
capabilities while emphasizing the need for further research to improve 
their safety and usefulness. They also suggest adapting chemistry education 
and show the value of benchmarking frameworks for evaluating LLMs in 
specific domains.

Large language models (LLMs) are machine learning (ML) models 
trained on massive amounts of text to complete sentences. Aggressive 
scaling of these models has led to a rapid increase in their capabilities1,2, 
with the leading models now being able to pass the US Medical Licens-
ing Examination3 or other professional licensing exams. They also have 
been shown to design and autonomously perform chemical reactions 
when augmented with external tools such as web search and synthesis 
planners4–7. While some see ‘sparks of artificial general intelligence 
(AGI)’ in them8, others see them as ‘stochastic parrots’—that is, systems 
that only regurgitate what they have been trained on9 and that show 
inherent limitations owing to the way they are trained10. Nevertheless, 
the promise of these models is that they have shown the ability to solve 
a wide variety of tasks they have not been explicitly trained on11–13.

Chemists and materials scientists have quickly caught on to the 
mounting attention given to LLMs, with some voices even suggesting 

that ‘the future of chemistry is language’14. This statement is moti-
vated by a growing number of reports that use LLMs to predict prop-
erties of molecules or materials2,15–19, optimize reactions20,21, generate 
materials22–25, extract information26–33 or even to prototype systems 
that can autonomously perform experiments in the physical world 
based on commands provided in natural language5–7.

In addition, since a lot—if not most—of the information about 
chemistry is currently stored and communicated in text, there is a 
strong reason to believe that there is still a lot of untapped potential in 
LLMs for chemistry and materials science34. For instance, most insights 
in chemical research do not directly originate from data stored in 
databases but rather from the scientists interpreting the data. Many 
of these insights are in the form of text in scientific publications. Thus, 
operating on such texts might be our best way of unlocking these 
insights and learning from them. This might ultimately lead to general 
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While some benchmarks based on university entrance exams54,55 
or automatic text mining56–58 have been proposed, none of them have 
been widely accepted. This is probably because they cannot auto-
matically be used with black box (or tool-augmented) systems, do not 
cover a wide range of topics and skills or are not carefully validated by 
experts. On top of that, the existing benchmarks are not designed to 
be used with models that support special treatment of molecules or 
equations and do not provide insights on how the models compare 
relative to experts49.

In this work, we report a benchmarking framework (Fig. 1), which 
we call ChemBench, and use it to reveal the limitations of current fron-
tier models for use in the chemical sciences. Our benchmark con-
sists of 2,788 question–answer pairs compiled from diverse sources  
(1,039 manually generated and 1,749 semi-automatically generated). 
Our corpus measures reasoning, knowledge and intuition across a  
large fraction of the topics taught in undergraduate and graduate 
chemistry curricula. It can be used to evaluate any system that can 
return text (that is, including tool-augmented systems).

To contextualize the scores, we also surveyed 19 experts in chem-
istry on a subset of the benchmark corpus to be able to compare the 
performance of current frontier models with (human) chemists of dif-
ferent specializations. In parts of the survey, the volunteers were also 
allowed to use tools, such as web search, to create a realistic setting.

Results and discussion
Benchmark corpus
To compile our benchmark corpus, we utilized a broad list of sources 
(Methods), ranging from completely novel, manually crafted questions 
over university exams to semi-automatically generated questions based 
on curated subsets of data in chemical databases. For quality assurance, 
all questions have been reviewed by at least two scientists in addition to 
the original curator and automated checks. Importantly, our large pool 
of questions encompasses a wide range of topics and question types 
(Fig. 2). The topics range from general chemistry to more specialized 
fields such as inorganic, analytical or technical chemistry. We also 
classify the questions on the basis of what skills are required to answer 
them. Here, we distinguish between questions that require knowledge, 
reasoning, calculation, intuition or a combination of these. Moreover, 
the annotator also classifies the questions by difficulty to allow for a 
more nuanced evaluation of the models’ capabilities.

While many existing benchmarks are designed around multiple- 
choice questions (MCQ), this does not reflect the reality of chemistry 
education and research. For this reason, ChemBench samples both 

copilot systems for chemists that can provide answers to questions or 
even suggest new experiments on the basis of vastly more information 
than a human could ever read.

However, the rapid increase in capabilities of chemical ML models 
led (even before the recent interest in LLMs) to concerns about the 
potential for the dual use of these technologies, for example, for the 
design of chemical weapons35–40. To some extent, this is not surprising 
as any technology that, for instance, is used to design non-toxic mol-
ecules can also be used inversely to predict toxic ones (even though the 
synthesis would still require access to controlled physical resources 
and facilities). Still, it is essential to realize that the user base of LLMs 
is broader than that of chemistry and materials science experts who 
can critically reflect on every output these models produce. For exam-
ple, many students frequently consult these tools—perhaps even 
to prepare chemical experiments41. This also applies to users from 
the general public, who might consider using LLMs to answer ques-
tions about the safety of chemicals. Thus, for some users, misleading 
information—especially about safety-related aspects—might lead to 
harmful outcomes. However, even for experts, chemical knowledge 
and reasoning capabilities are essential as they will determine the 
capabilities and limitations of their models in their work, for example, 
in copilot systems for chemists. Unfortunately, apart from exploratory 
reports, such as by prompting leading models with various scientific 
questions13, there is little systematic evidence on how LLMs perform 
compared with expert (human) chemists.

Thus, to better understand what LLMs can do for the chemical 
sciences and where they might be improved with further develop-
ments, evaluation frameworks are needed to allow us to measure 
progress and mitigate potential harms systematically. For the devel-
opment of LLMs, evaluation is currently primarily performed via 
standardized benchmark suites such as BigBench42 or the LM Eval 
Harness43. Among 204 tasks (such as linguistic puzzles), the former 
contains only 2 tasks classified as ‘chemistry related’, whereas the lat-
ter contains no specific chemistry tasks. Owing to the lack of widely 
accepted standard benchmarks, the developers of chemical lan-
guage models16,44–47 frequently utilize language-interfaced48 tabular 
datasets such as the ones reported in MoleculeNet49,50, Therapeutic 
Data Commons51, safety databases52 or MatBench53. In these cases, 
the models are evaluated on predicting very specific properties of 
molecules (for example, solubility, toxicity, melting temperature or 
reactivity) or on predicting the outcome of specific chemical reac-
tions. This, however, only gives a very limited view of the general 
chemical capabilities of the models.

Automatically updated 19 respondents

251 diverse questions

chembench.org

Question: What is the number 
of signals in the 1H NMR 
spectrum of the molecule 
on the right?  

Answer:

Closed-source models

Open-weight models

Diverse settings

...
Question: What is the number 
of signals in the 1H NMR 
spectrum of a molecule 
with the SMILES [START_SMILES]
OCC1C2CC1(O)C2=O[END_SMILES]?...
Answer:

(>2,800 total questions)

Topic leaders Overall leaders

0.57

0.61

0.51

OHHO

OKnowledge Reasoning Intuition

Semantic annotation
curation 

Data preparation Humans Leaderboard

Models

Corpus in BIG-bench format

Peer-reviewed

Fig. 1 | Overview of the ChemBench framework. The different components 
of the ChemBench framework. The framework’s foundation is the benchmark 
corpus comprising thousands of questions and answers that we manually or 
semi-automatically compiled from various sources in a format based in the 
one introduced in the BIG-bench benchmark (Extended Data Fig. 1). Questions 
are classified on the basis of topics, required skills (reasoning, calculation, 

knowledge and intuition) and difficulty levels. We then used this corpus to 
evaluate the performance of various models and tool-augmented systems using a 
custom framework. To provide a baseline, we built a web application that we used 
to survey experts in chemistry. The results of the evaluations are then compiled 
in publicly accessible leaderboards (Supplementary Note 15), which we propose 
as a foundation for evaluating future models.
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MCQ and open-ended questions (2,544 MCQ and 244 open-ended 
questions). In addition, ChemBench samples different skills on vari-
ous difficulty levels: from basic knowledge questions (as knowledge 
underpins reasoning processes59,60) to complex reasoning tasks (such 
as finding out which ions are in a sample given a description of observa-
tions). We also include questions about chemical intuition, as demon-
strating human-aligned preferences is relevant for applications, such 
as hypothesis generation or optimization tasks61.

ChemBench-Mini. It is important to note that a smaller subset of the 
corpus might be more practical for routine evaluations62. For instance, 
Liang et al.63 report costs of more than US$10,000 for application 
programming interface (API) calls for a single evaluation on the widely 
used Holistic Evaluation of Language Models benchmark. To address 
this, we also provide a subset (ChemBench-Mini, 236 questions) of the 
corpus that was curated to be a diverse and representative subset of 
the full corpus. While it is impossible to comprehensively represent 
the full corpus in a subset, we aimed to include a maximally diverse 
set of questions and a more balanced distribution of topics and skills  
(see Methods for details on the curation process). Our human volun-
teers answered all the questions in this subset.

Model evaluation
Benchmark suite design. Because the text used in scientific set-
tings differs from typical natural language, many models have been 
developed that deal with such text in a particular way. For instance, 
the Galactica model64 uses special encoding procedures for mol-
ecules and equations. Current benchmarking suites, however, do 
not account for such special treatment of scientific information. To 
address this, ChemBench encodes the semantic meaning of various 
parts (for example, chemicals, units or equations) of the question or 
answer. For instance, molecules represented in simplified molecular 
input line-entry system (SMILES) are enclosed in [START_SMILES][\
END_SMILES] tags. This allows the model to treat the SMILES string 
differently from other text. ChemBench can seamlessly handle such 
special treatment in an easily extensible way because the questions 
are stored in an annotated format.

Since many widely utilized LLM systems only provide access to text 
completions (and not the raw model outputs), ChemBench is designed 
to operate on text completions. This is also important given the grow-
ing number of tool-augmented systems that are deemed essential for 
building chemical copilot systems. Such systems can augment the 
capabilities of LLMs through the use of external tools such as search 
APIs or code executors65–67. In those cases, the LLM which returns the 
probabilities for various tokens (that is, text fragments) represents only 
one component and it is not clear how to interpret those probabilities 
in the context of the entire system. The text completions, however, 
are the system’s final outputs, which would also be used in a real-world 
application. Hence, we use them for our evaluations68.

Overall system performance. To understand the current capabili-
ties of LLMs in the chemical sciences, we evaluated a wide range of 
leading models69 on the ChemBench corpus, including systems aug-
mented with external tools. An overview of the results of this evalua-
tion is presented in Fig. 3 (all results can be found in Supplementary 
Fig. 4 and Supplementary Table 5). In Fig. 3, we show the percentage 
of questions that the models answered correctly. Moreover, we show 
the worst, best and average performance of the experts in our study, 
which we obtained via a custom web application (chembench.org) that 
we used to survey the experts. Remarkably, the figure shows that the 
leading LLM, o1-preview, outperforms the best human in our study in 
this overall metric by almost a factor of two. Many other models also 
outperform the average human performance. Interestingly, Llama-
3.1-405B-Instruct shows performance that is close to the leading pro-
prietary models, indicating that new open-source models can also be 
competitive with the best proprietary models in chemical settings.

Notably, we find that models are still limited in their ability to 
answer knowledge-intensive questions (Supplementary Table 5); that 
is, they did not memorize the relevant facts. Our results indicate that 
this is not a limitation that could be overcome by simple application 
of retrieval augmented generation systems such as PaperQA2. This is 
probably because the required knowledge cannot easily be accessed 
via papers (which is the only type of external knowledge PaperQA2 
has access to) but rather by lookup in specialized databases (for 
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Fig. 2 | Distribution of topics and required skills. The distribution of questions 
across various chemistry topics, along with the primary skills required to address 
them. The topics were manually classified, showing a varied representation 
across different aspects of chemistry. Each topic is associated with a combination 
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coloured bars. ChemBench samples encompass diverse topics and diverse skills, 
setting a high bar for LLMs to demonstrate human-competitive performance 
across a wide range of chemistry tasks.
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example, PubChem and Gestis), which the humans in our study 
also used to answer such questions (Supplementary Fig. 17). This 
indicates that there is still room for improving chemical LLMs by 
training them on more specialized data sources or integrating them 
with specialized databases.

In addition, our analysis shows that the performance of models is 
correlated with their size (Supplementary Fig. 11). This is in line with 
observations in other domains, but also indicates that chemical LLMs 
could, to some extent, be further improved by scaling them up.

Performance per topic. To obtain a more detailed understanding of 
the performance of the models, we also analysed the performance 
of the models in different subfields of the chemical sciences. For 
this analysis, we defined a set of topics (Methods) and classified 
all questions in the ChemBench corpus into these topics. We then 
computed the percentage of questions that the models or experts 
answered correctly for each topic and present them in Fig. 4. In this 
spider chart, the worst score for every dimension is zero (no ques-
tion answered correctly) and the best score is one (all questions 
answered correctly). Thus, a larger coloured area indicates a better 
performance.

One can observe that this performance varies across models and 
topics. While general and technical chemistry receive relatively high 
scores for many models, this is not the case for topics such as toxicity 
and safety or analytical chemistry.

In the subfield of analytical chemistry, the prediction of the num-
ber of signals observable in a nuclear magnetic resonance spectrum 
proved difficult even for the best models (for example, 22% correct 
answers for o1-preview). Importantly, while the human experts are 
given a drawing of the compounds, the models are only shown the 
SMILES string of a compound and have to use this to reason about 
the symmetry of the compound (that is, to identify the number of 
diasterotopically distinct protons, which requires reasoning about 
the topology and structure of a molecule).

These findings also shine an interesting light on the value of 
textbook-inspired questions. A subset of the questions in ChemBench 
are based on textbooks targeted at undergraduate students. On those 
questions, the models tend to perform better than on some of our 
semi-automatically constructed tasks (Supplementary Fig. 5). For 
instance, while the overall performance in the chemical safety topic 
is low, the models would pass the certification exam according to the 
German Chemical Prohibition Ordinance on the basis of a subset of 
questions we sampled from the corresponding question bank (for 
example, 71% correct answers for GPT-4, 61% for Claude-3.5 (Sonnet) 
and 3% for the human experts). While those findings are impacted by 
the subset of questions we sampled, the results still highlight that good 
performance on such question bank or textbook questions does not 
necessarily translate to good performance on other questions that 
require more reasoning or are further away from the training corpus10. 
The findings also underline that such exams might have been a good 
surrogate for the general performance of skills for humans, but their 
applicability in the face of systems that can consume vast amounts of 
data is up for debate.

We also gain insight into the models’ struggles with chemical rea-
soning tasks by examining their performance as a function of molecular 
descriptors. If the model would answer questions after reasoning about 
the structures, one would expect the performance to depend on the 
complexity of the molecules. However, we find that the models’ perfor-
mance does not correlate with complexity indicators (Supplementary 
Note 5). This indicates that the models may not be able to reason about 
the structures of the molecules (in the way one might expect) but 
instead rely on the proximity of the molecules to the training data10.

It is important to note that the model performance for some top-
ics, however, is slightly underestimated in the current evaluation. This 
is because models provided via APIs typically have safety mechanisms 
that prevent them from providing answers that the provider deems 
unsafe. For instance, models might refuse to provide answers about 
cyanides. Statistics on the frequency of such refusals are presented in 
Supplementary Table 8. To overcome this, direct access to the model 
weights would be required, and we strive to collaborate with the devel-
opers of frontier models to overcome this limitation in the future. This 
is facilitated by the tooling ChemBench provides, thanks to which con-
tributors can automatically add new models in an open science fashion.

Judging chemical preference. One interesting finding of recent 
research is that foundation models can judge interestingness or human 
preferences in some domains61,70. If models could do so for chemical 
compounds, this would open opportunities for novel optimization 
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approaches. Such open-ended tasks, however, depend on an external 
observer defining what interestingness is71. Here, we posed models the 
same question that Choung et al.72 asked chemists at a drug company: 
‘which of the two compounds do you prefer?’ (in the context of an 
early virtual screening campaign setting; see Supplementary Table 2 
for an example). Despite chemists demonstrating a reasonable level 
of inter-rater agreement, our models largely fail to align with expert 
chemists’ preferences. Their performance is often indistinguishable 
from random guessing, even though these same models excel in other 
tasks in ChemBench (Supplementary Table 5). This indicates that using 
preference tuning for chemical settings could be a promising approach 
to explore in future research.

Confidence estimates. One might wonder whether the models can 
estimate if they can answer a question correctly. If they could do so, 
incorrect answers would be less problematic.

To investigate this, we prompted68 some of the top-performing 
models to estimate, on an ordinal scale, their confidence in their abil-
ity to answer the question correctly (see Methods for details on the 
methodology and comparison to logit-based approaches).

In Fig. 5, we show that for some models, there is no meaningful 
correlation between the estimated difficulty and whether the models 
answered the question correctly or not. For applications in which 
humans might rely on the models to provide answers with trustworthy 
uncertainty estimates, this is a concerning observation highlighting 
the need for critical reasoning in the interpretation of the model’s 
outputs34,73. For example, for the questions about the safety profile of 
compounds, GPT-4 reported a confidence of 1.0 (on a scale of 1–5) for 
the one question it answered correctly and 4.0 for the six questions it 
answered incorrectly. While, on average, the verbalized confidence 
estimates from Claude-3.5 (Sonnet) seem better calibrated (Fig. 5), 
they are still misleading in some cases. For example, for the questions 
about the labelling of chemicals (GHS) pictograms Claude-3.5 (Sonnet) 

returns an average score of 2.0 for correct answers and 1.83 for incor-
rect answers.

Conclusions
On the one hand, our findings underline the impressive capabilities 
of LLMs in the chemical sciences: leading models outperform domain 
experts in specific chemistry questions on many topics. On the other 
hand, there are still striking limitations. For very relevant topics, the 
answers that models provide are wrong. On top of that, many models 
are not able to reliably estimate their own limitations. Yet, the success 
of the models in our evaluations perhaps also reveals more about the 
limitations of the questions we use to evaluate models—and chem-
ists—than about the models themselves. For instance, while models 
perform well on many textbook questions, they struggle with questions 
requiring more reasoning about chemical structures (for example, 
number of isomers or nuclear magnetic resonance peaks). Given that 
the models outperformed the average human in our study, we need 
to rethink how we teach and examine chemistry. Critical reasoning is 
increasingly essential, and rote solving of problems or memorization 
of facts is a domain in which LLMs will continue to outperform humans 
(when trained on the right training corpus).

Our findings also highlight the nuanced trade-off between breadth 
and depth of evaluation frameworks. The analysis of model perfor-
mance on different topics shows that models’ performance varies 
widely across the subfields they are tested on. However, even within a 
topic, the performance of models can vary widely depending on the 
type of question and the reasoning required to answer it.

The current evaluation frameworks for chemical LLMs are primar-
ily designed to measure the performance of the models on specific 
property prediction tasks. They cannot be used to evaluate reasoning 
or systems built for scientific applications. Thus, we had little under-
standing of the capabilities of LLMs in the chemical sciences. Our work 
shows that carefully curated benchmarks can provide a more nuanced 
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understanding of the capabilities of LLMs in the chemical sciences. 
Importantly, our findings also illustrate that more focus is required in 
developing better human–model interaction frameworks, given that 
models cannot estimate their limitations.

Although our findings indicate many areas for further improve-
ment of LLM-based systems, such as agents (more discussion in Sup-
plementary Note 11), it is also important to realize that clearly defined 
metrics have been the key to the progress of many fields of ML, such as 
computer vision. Although current systems might be far from reason-
ing like a chemist, our ChemBench framework will be a stepping stone 
for developing systems that come closer to this goal.
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Methods
Curation workflow
For our dataset, we curated questions from existing exams or exercise 
sheets but also programmatically created new questions (see Sup-
plementary Table 3 for more details). Questions were added via Pull 
Requests on our GitHub repository and only merged into the corpus 
after passing manual review (Extended Data Fig. 1) as well as automated 
checks (for example, for compliance with a standardized schema).

To ensure that the questions do not enter a training dataset, we 
use the same canary string as the BigBench project. This requires that 
LLM developers filter their training dataset for this canary string4,42.

Manually curated questions. Manually curated questions were 
sourced from various sources, including university exams, exercises 
and question banks. Extended Data Table 1 presents an overview of the 
sources of the manually curated questions.

Semi-programmatically generated questions. In addition to the 
manually curated questions, we also generated questions program-
matically. An overview of the sources of the semi-programmatically 
generated questions is provided in Supplementary Table 3.

Chemical preference data. These questions assess the ability to 
establish a ‘preference’, such as favouring a specific molecule. Chemical 
preference is of major importance in drug discovery projects, where 
the optimization process to reach the desired molecular properties is 
a process that takes several years within a chemist’s career. Our data 
corpus is adapted from the published dataset by Choung et al.72, which 
consists of more than 5,000 question–answer pairs about chemical 
intuition. To build the dataset, they presented 35 medicinal chemists 
with two different molecules, asking them what molecule they would 
like to continue with when imaging an early virtual screening campaign 
setting. The question was designed so the scientists do not spend much 
time answering it, relying only on their feelings or ‘chemical preference’.

To understand whether the capabilities of the leading models align 
with the preferences of professional chemists, we randomly selected 
1,000 data points from the original dataset to create a meaningful 
evaluation set, where molecules are represented as SMILES. To ablate 
the effect of different molecular representations, we only considered 
questions for which we could obtain International Union of Pure and 
Applied Chemistry names for both the molecules present.

Model evaluation workflow
A graphical overview of the pipeline is presented in Supplementary 
Fig. 12.

Prompting. We employ distinct prompt templates tailored for com-
pletion and instruction-tuned models to maintain consistency with 
the training. As explained later, we impose constraints on the models 
within these templates to receive responses in a specific format so 
that robust, fair and consistent parsing can be performed. Certain 
models are trained with special annotations and LaTeX syntax for 
scientific notations, chemical reactions or symbols embedded within 
the text. For example, all the SMILES representations are encapsulated 
within [START_SMILES][\END_SMILES] in Galactica64. Our prompt-
ing strategy consistently adheres to these details in a model-specific 
manner by post-processing LaTeX syntax, chemical symbols, chemical 
equations and physical units (by either adding or removing wrappers). 
This step can be easily customized in our codebase, and we provide 
presets for the models we evaluated.

Parsing. Our parsing workflow is multistep and primarily based on 
regular expressions. In the case of instruction-tuned models, we first 
identify the [ANSWER][\ANSWER] environment that we prompt the 
model to report the answer in. In the case of completion models, this 

step is skipped. From there, we attempt to extract the relevant enu-
meration letters (for MCQ) or numbers. In the case of numbers, our 
regular expression was engineered to deal with various forms of scien-
tific notation. As initial tests indicated that models sometimes return 
integers in the form of words, for example, ‘one’ instead of ‘1’, we also 
implemented a word-to-number conversion using regular expres-
sions. If these hard-coded parsing steps fail, we use a LLM, for example, 
Claude-3.5 (Sonnet), to parse the completion (Supplementary Note 8 
provides more details on this step).

Models. For all models, we performed inference using greedy decoding 
(that is, temperature 0). We used the API endpoints provided by the 
model developers and those provided by Groq. PaperQA2 was used 
(in August 2024) via an API provided by FutureHouse.

Confidence estimate
To estimate the models’ confidence, we prompted them with the ques-
tion (and answer options for MCQ) and the task to rate their confidence 
to produce the correct answer on a scale from 1 to 5. We decided to use 
verbalized confidence estimates68 since we found those to be closer 
to current practical use cases than other prompting strategies, which 
might be more suitable when implemented in systems. In addition, 
this approach captures semantic uncertainty, which is not the same as 
the probability of a token being given a sequence of tokens (that is, the 
uncertainty one obtains from logit-based approaches). On top of that, 
many proprietary models do not provide access to the logits, making 
this approach more general. In Supplementary Note 12, we provide 
more details and comparisons with a logit-based approach.

Human baseline
Question selection. Several design choices were made when selecting 
ChemBench-Mini. Firstly, from the full dataset, we kept all the ques-
tions labelled as advanced. In this way, we can obtain a deeper insight 
into the capabilities of LLMs on advanced tasks when compared with 
actual chemists. Secondly, we sample a maximum of three questions 
across all possible combinations of categories (that is, knowledge or 
reasoning) and topics (for example, organic chemistry and physical 
chemistry). Thirdly, we do not include any intuition questions in this 
subset because the intended use of ChemBench-Mini is to provide a 
fast and fair evaluation of LLMs independent of any human baseline. 
In total, 236 questions have been sampled for ChemBench-Mini. Then, 
this set is divided into two subsets on the basis of the aforementioned 
combinations. One of the question subsets allows tool use, and the 
other does not.

Study design. Human volunteers were asked the questions in a 
custom-built web interface (Supplementary Note 10), which rendered 
chemicals and equations. Questions were shown in random order, 
and volunteers were not allowed to skip questions. For a subset of the 
questions, the volunteers were allowed to use external tools (exclud-
ing other LLM or asking other people) to answer the questions. Before 
answering questions, volunteers were asked to provide information 
about their education and experience in chemistry. The study was 
conducted in English.

Human volunteers. Users were open to reporting about their experi-
ence in chemistry. Overall, 16 did so. Out of those, 2 are beyond a first 
postdoc, 13 have a master’s degree (and are currently enroled in Ph.D. 
studies) and 1 has a bachelor’s degree. For the analysis, we excluded 
volunteers with less than 2 years of experience in chemistry after their 
first university-level course in chemistry.

Comparison with models. For the analysis, we treated each human 
as a model. We computed the topic aggregated averages per human 
for analyses grouped by topic and then averaged over all humans. 

http://www.nature.com/naturechemistry
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The performance metrics reported for models in the main text are 
computed on the same questions that the humans answered. Metrics 
for the entire corpus are reported in Supplementary Note 4.

Data annotation
In the curation of our dataset, we manually assigned difficulty levels 
and required skills to each question. We used the following guidelines 
for these annotations: calculation is required if answering a question 
would require the use of a calculator, knowledge is required if answer-
ing a question requires non-trivial knowledge of facts (for example, 
the H/P statements of chemicals). Reasoning is required if answering 
a question requires multiple reasoning steps. Basic questions only 
require those skills up to the high school level. Advanced questions 
would require an expert multiple minutes or hours to answer.

Inclusion and ethics statement
The authors confirm that they have complied with all relevant ethi-
cal regulations, according to the Ethics Commission of the Friedrich 
Schiller University Jena (which decided that the study is ethically safe). 
Informed consent was obtained from all volunteers.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data for ChemBench is available via GitHub at https://github. 
com/lamalab-org/chembench and via Zenodo at https://zenodo.org/ 
records/14010212 (ref. 74).

Code availability
The code for ChemBench is available via GitHub at https://github. 
com/lamalab-org/chembench and via Zenodo at https://zenodo.org/ 
records/14010212 (ref. 74) The code for the app for our human base-
line study is available via GiHub at https://github.com/lamalab-org/ 
chem-bench-app.
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Extended Data Table 1 | Overview of sources of the curated questions

Source Count

Semi-automatically generated 1749

URL 375

Textbook 206

Exam 149

IChO 149

No source 139

Lectures 21

The table provides an overview of the types of sources the questions have been curated from. Detailed sources are available in the source data on GitHub. Questions without a source have 
been curated completely from scratch. Questions based on lecture notes or URLs have been curated based on content presented in those resources. All questions have been rephrased, 
annotated, and reviewed before being added to the corpus.
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Extended Data Fig. 1 | Overview of the workflow for the assembly of the 
ChemBench Corpus. To assemble the ChemBench corpus, we first collected 
questions from various sources. Some tasks were manually curated, others semi-
programmatically. We added semantic annotations for all questions to make 

them compatible with systems that use special processing for modalities that 
are not conventional natural text. We reviewed the questions using manual and 
automatic methods before adding them to the corpus.

http://www.nature.com/naturechemistry


1

nature portfolio  |  reporting sum
m

ary
April 2023

Corresponding author(s): Jablonka

Last updated by author(s): Jan 27, 2025

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Provide a description of all commercial, open source and custom code used to collect the data in this study, specifying the version used OR 
state that no software was used.

Data analysis For data analysis we used custom code that can be found at https://github.com/lamalab-org/chembench-paper and https://github.com/
lamalab-org/chem-bench. We used version v0.2.0 to generate the results in the paper. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data for ChemBench is available at https://github.com/lamalab-org/chem-bench and archived on Zenodo under https://zenodo.org/records/14010212.74 A 
reproducible version of this manuscript, archived at was generated using the showyourwork framework.
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Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex and gender have not been considered in the study design. 

Reporting on race, ethnicity, or 
other socially relevant 
groupings

We did not collected fine-grained personal information to avoid dealing with personal information.  
 

Population characteristics Users were open to reporting about their experience in chemistry. Overall, 16 did so. Out of those, 2 are beyond a first 
postdoc, 13 have a master’s degree (and are currently enrolled in Ph.D. studies), and 1 has a bachelor’s degree. For the 
analysis, we excluded volunteers with less than two years of experience in chemistry after their first university-level course in 
chemistry.

Recruitment The study was conducted as an only survey that was advertised via email to student and faculty bodies of the EPFL and the 
Friedrich-Schiller University Jena. The email made clear that participation is voluntarily and used for a benchmarking study. 
There is a potential self-selection bias for participants interested in LLMs and chemical questions.

Ethics oversight The authors confirm to have complied with all relevant ethics regulations (no personal data was recorded). The institutional 
review board of the Friedrich-Schiller University of Jena was consulted. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Study type: Observational study evaluating human expert performance in chemistry-related questions  
Setting: Web-based survey using chembench.org platform  
Purpose: To benchmark human expert performance against LLM capabilities in chemistry 

Research sample Sample size: 19 expert chemists participated in the study  
 
Demographics (out of 16 who reported their experience): 
2 were beyond first postdoc 
13 had master's degrees and were enrolled in PhD studies 
1 had a bachelor's degree  

Sampling strategy No sample size calculation was performed. We recruited as many participants as we could. 

Data collection Method: Custom web application (chembench.org) was used to survey the experts  
 
Format: 
Questions presented through web interface 
Molecules shown as rendered drawings and SMILES strings 
LaTeX equations and chemical equations rendered using MathJax 
Time taken to answer questions was recorded 
Tool usage was tracked

Timing 02.09.2024-13.09.2024

Data exclusions Pre-established criteria: Volunteers with less than two years of experience in chemistry after their first university-level chemistry 
course were excluded from analysis  
 
Rationale: To ensure participants had sufficient expertise in chemistry

Non-participation No participant dropped out

Randomization Questions were presented to participants in random order  
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Randomization  
Tool-use questions were separated from non-tool-use questions

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or 
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable, 
export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where 
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are 
provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.



4

nature portfolio  |  reporting sum
m

ary
April 2023

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were 
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, 
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex. 
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall 
numbers in this Reporting Summary. Please state if this information has not been collected.  Report sex-based analyses where 
performed, justify reasons for lack of sex-based analysis.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes

Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area
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Experiments of concern

Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.

Plants

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and 
lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.
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Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition
Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).
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Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference

(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, 
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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