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Large language models (LLMs) have gained widespread interest owing
to their ability to process human language and perform tasks on which
they have not been explicitly trained. However, we possess only a limited

systematic understanding of the chemical capabilities of LLMs, which
would be required to improve models and mitigate potential harm. Here

we introduce ChemBench, an automated framework for evaluating the
chemical knowledge and reasoning abilities of state-of-the-art LLMs against
the expertise of chemists. We curated more than 2,700 question-answer
pairs, evaluated leading open- and closed-source LLMs and found that the
best models, on average, outperformed the best human chemists in our
study. However, the models struggle with some basic tasks and provide
overconfident predictions. These findings reveal LLMs’ impressive chemical
capabilities while emphasizing the need for further research toimprove
their safety and usefulness. They also suggest adapting chemistry education
and show the value of benchmarking frameworks for evaluating LLMs in

specific domains.

Large language models (LLMs) are machine learning (ML) models
trained on massive amounts of text to complete sentences. Aggressive
scaling of these models has led to arapid increase in their capabilities’?,
with the leading models now being able to pass the US Medical Licens-
ing Examination®or other professional licensing exams. They also have
beenshown to design and autonomously perform chemical reactions
whenaugmented with external tools such as web search and synthesis
planners*”. While some see ‘sparks of artificial general intelligence
(AGI) inthem?®, others see them as ‘stochastic parrots’—that is, systems
that only regurgitate what they have been trained on’ and that show
inherent limitations owing to the way they are trained™. Nevertheless,
the promise of these modelsis that they have shown the ability to solve
awide variety of tasks they have not been explicitly trained on" ™",
Chemists and materials scientists have quickly caught on to the
mounting attention given to LLMs, with some voices even suggesting

that ‘the future of chemistry is language™. This statement is moti-
vated by a growing number of reports that use LLMs to predict prop-
erties of molecules or materials>”°, optimize reactions®>”, generate
materials?* >, extract information®~** or even to prototype systems
that can autonomously perform experiments in the physical world
based on commands provided in natural language®”".

In addition, since a lot—if not most—of the information about
chemistry is currently stored and communicated in text, there is a
strong reasonto believe that thereis stillalot of untapped potentialin
LLMs for chemistry and materials science®*. For instance, most insights
in chemical research do not directly originate from data stored in
databases but rather from the scientists interpreting the data. Many
oftheseinsights arein the formof textin scientific publications. Thus,
operating on such texts might be our best way of unlocking these
insights and learning from them. This might ultimately lead to general
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Fig.1| Overview of the ChemBench framework. The different components
of the ChemBench framework. The framework’s foundation is the benchmark
corpus comprising thousands of questions and answers that we manually or
semi-automatically compiled from various sources inaformat based in the
oneintroduced in the BIG-bench benchmark (Extended Data Fig.1). Questions
are classified on the basis of topics, required skills (reasoning, calculation,

knowledge and intuition) and difficulty levels. We then used this corpus to
evaluate the performance of various models and tool-augmented systems using a
custom framework. To provide a baseline, we built a web application that we used
tosurvey experts in chemistry. The results of the evaluations are then compiled
inpublicly accessible leaderboards (Supplementary Note 15), which we propose
as afoundation for evaluating future models.

copilot systems for chemists that can provide answers to questions or
evensuggest new experiments on the basis of vastly more information
thanahuman could ever read.

However, the rapid increase in capabilities of chemical ML models
led (even before the recent interest in LLMs) to concerns about the
potential for the dual use of these technologies, for example, for the
design of chemical weapons®*°, To some extent, this is not surprising
as any technology that, for instance, is used to design non-toxic mol-
ecules canalsobeusedinversely to predict toxic ones (eventhough the
synthesis would still require access to controlled physical resources
and facilities). Still, it is essential to realize that the user base of LLMs
is broader than that of chemistry and materials science experts who
cancritically reflect on every output these models produce. For exam-
ple, many students frequently consult these tools—perhaps even
to prepare chemical experiments*. This also applies to users from
the general public, who might consider using LLMs to answer ques-
tions about the safety of chemicals. Thus, for some users, misleading
information—especially about safety-related aspects—might lead to
harmful outcomes. However, even for experts, chemical knowledge
and reasoning capabilities are essential as they will determine the
capabilities and limitations of their models in their work, for example,
incopilot systems for chemists. Unfortunately, apart from exploratory
reports, such as by prompting leading models with various scientific
questions®, there s little systematic evidence on how LLMs perform
compared with expert (human) chemists.

Thus, to better understand what LLMs can do for the chemical
sciences and where they might be improved with further develop-
ments, evaluation frameworks are needed to allow us to measure
progress and mitigate potential harms systematically. For the devel-
opment of LLMs, evaluation is currently primarily performed via
standardized benchmark suites such as BigBench*? or the LM Eval
Harness*. Among 204 tasks (such as linguistic puzzles), the former
contains only 2 tasks classified as ‘chemistry related’, whereas the lat-
ter contains no specific chemistry tasks. Owingto the lack of widely
accepted standard benchmarks, the developers of chemical lan-
guage models'*** frequently utilize language-interfaced*® tabular
datasets such as the onesreported in MoleculeNet*>*°, Therapeutic
Data Commons®, safety databases® or MatBench®’. In these cases,
the models are evaluated on predicting very specific properties of
molecules (for example, solubility, toxicity, melting temperature or
reactivity) or on predicting the outcome of specific chemical reac-
tions. This, however, only gives a very limited view of the general
chemical capabilities of the models.

While some benchmarks based on university entrance exams®**

orautomatic text mining**** have been proposed, none of them have
been widely accepted. This is probably because they cannot auto-
matically be used with black box (or tool-augmented) systems, do not
cover awide range of topics and skills or are not carefully validated by
experts. On top of that, the existing benchmarks are not designed to
be used with models that support special treatment of molecules or
equations and do not provide insights on how the models compare
relative to experts®.

Inthis work, we report abenchmarking framework (Fig.1), which
we call ChemBench, and useit toreveal the limitations of current fron-
tier models for use in the chemical sciences. Our benchmark con-
sists of 2,788 question—-answer pairs compiled from diverse sources
(1,039 manually generated and 1,749 semi-automatically generated).
Our corpus measures reasoning, knowledge and intuition across a
large fraction of the topics taught in undergraduate and graduate
chemistry curricula. It can be used to evaluate any system that can
return text (that s, including tool-augmented systems).

To contextualize the scores, we also surveyed 19 experts inchem-
istry on a subset of the benchmark corpus to be able to compare the
performance of current frontier models with (human) chemists of dif-
ferent specializations. In parts of the survey, the volunteers were also
allowed to use tools, such as web search, to create arealistic setting.

Results and discussion
Benchmark corpus
To compile our benchmark corpus, we utilized a broad list of sources
(Methods), ranging from completely novel, manually crafted questions
over university exams to semi-automatically generated questions based
oncurated subsets of datain chemical databases. For quality assurance,
allquestions have been reviewed by at least two scientists inaddition to
the original curator and automated checks. Importantly, our large pool
of questions encompasses a wide range of topics and question types
(Fig. 2). The topics range from general chemistry to more specialized
fields such as inorganic, analytical or technical chemistry. We also
classify the questions on the basis of what skills are required to answer
them. Here, we distinguish between questions that require knowledge,
reasoning, calculation, intuition or acombination of these. Moreover,
the annotator also classifies the questions by difficulty to allow for a
more nuanced evaluation of the models’ capabilities.

While many existing benchmarks are designed around multiple-
choice questions (MCQ), this does not reflect the reality of chemistry
education and research. For this reason, ChemBench samples both
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of three key skills: calculation, reasoning and knowledge, as indicated by the
coloured bars. ChemBench samples encompass diverse topics and diverse skills,
setting a high bar for LLMs to demonstrate human-competitive performance
across awide range of chemistry tasks.

MCQ and open-ended questions (2,544 MCQ and 244 open-ended
questions). In addition, ChemBench samples different skills on vari-
ous difficulty levels: from basic knowledge questions (as knowledge
underpins reasoning processes*”*°) to complex reasoning tasks (such
asfinding out whichionsareinasample given adescription of observa-
tions). We also include questions about chemical intuition, as demon-
strating human-aligned preferences s relevant for applications, such
as hypothesis generation or optimization tasks®..

ChemBench-Mini. Itisimportant to note that a smaller subset of the
corpus might be more practical for routine evaluations®. For instance,
Liang et al.*® report costs of more than US$10,000 for application
programming interface (API) calls for asingle evaluation on the widely
used Holistic Evaluation of Language Models benchmark. To address
this, we also provide asubset (ChemBench-Mini, 236 questions) of the
corpus that was curated to be a diverse and representative subset of
the full corpus. While it is impossible to comprehensively represent
the full corpus in a subset, we aimed to include a maximally diverse
set of questions and a more balanced distribution of topics and skills
(see Methods for details on the curation process). Our human volun-
teers answered all the questions in this subset.

Model evaluation

Benchmark suite design. Because the text used in scientific set-
tings differs from typical natural language, many models have been
developed that deal with such text in a particular way. For instance,
the Galactica model®* uses special encoding procedures for mol-
ecules and equations. Current benchmarking suites, however, do
not account for such special treatment of scientific information. To
address this, ChemBench encodes the semantic meaning of various
parts (for example, chemicals, units or equations) of the question or
answer. For instance, molecules represented in simplified molecular
input line-entry system (SMILES) are enclosed in [START_SMILES][\
END_SMILES] tags. This allows the model to treat the SMILES string
differently from other text. ChemBench can seamlessly handle such
special treatment in an easily extensible way because the questions
arestored inan annotated format.

Since many widely utilized LLM systems only provide access to text
completions (and not the raw model outputs), ChemBench is designed
to operate on text completions. Thisis alsoimportant given the grow-
ing number of tool-augmented systems that are deemed essential for
building chemical copilot systems. Such systems can augment the
capabilities of LLMs through the use of external tools such as search
APIs or code executors® ?. In those cases, the LLM which returns the
probabilities for various tokens (that s, text fragments) represents only
one componentanditis notclear howtointerpret those probabilities
in the context of the entire system. The text completions, however,
arethesystem’s final outputs, whichwould also be used in areal-world
application. Hence, we use them for our evaluations®®.

Overall system performance. To understand the current capabili-
ties of LLMs in the chemical sciences, we evaluated a wide range of
leading models® on the ChemBench corpus, including systems aug-
mented with external tools. An overview of the results of this evalua-
tion is presented in Fig. 3 (all results can be found in Supplementary
Fig. 4 and Supplementary Table 5). In Fig. 3, we show the percentage
of questions that the models answered correctly. Moreover, we show
the worst, best and average performance of the experts in our study,
whichwe obtained viaa custom web application (chembench.org) that
we used to survey the experts. Remarkably, the figure shows that the
leading LLM, ol-preview, outperforms the best humaninour study in
this overall metric by almost a factor of two. Many other models also
outperform the average human performance. Interestingly, Llama-
3.1-405B-Instruct shows performance that is close to the leading pro-
prietary models, indicating that new open-source models can also be
competitive with the best proprietary models in chemical settings.
Notably, we find that models are still limited in their ability to
answer knowledge-intensive questions (Supplementary Table 5); that
is, they did not memorize the relevant facts. Our results indicate that
thisisnotalimitationthat could be overcome by simple application
of retrieval augmented generation systems such as PaperQA2. This is
probably because the required knowledge cannot easily be accessed
via papers (which is the only type of external knowledge PaperQA2
has access to) but rather by lookup in specialized databases (for
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Fig. 3 | Performance of models and humans on ChemBench-Mini.

The percentage of questions that the models answered correctly. Horizontal
barsindicate the performance of various models and highlight statistics of
human performance. The evaluation we use here s very strict as it only considers
aquestion answered correctly orincorrectly, partially correct answers are
also considered incorrect. Supplementary Fig. 3 provides an overview of the
performance of various models on the entire corpus. PaperQA2 (ref. 33) isan
agentic system that can also search the literature to obtain an answer. We find
that the best models outperform all humans in our study when averaged over
all questions (even though humans had access to tools, such as web search and
ChembDraw, for asubset of the questions).

example, PubChem and Gestis), which the humans in our study
also used to answer such questions (Supplementary Fig. 17). This
indicates that there is still room for improving chemical LLMs by
training them on more specialized data sources or integrating them
with specialized databases.

Inaddition, our analysis shows that the performance of models is
correlated with their size (Supplementary Fig. 11). This is in line with
observationsin other domains, butalsoindicates that chemical LLMs
could, to some extent, be further improved by scaling them up.

Performance per topic. To obtain amore detailed understanding of
the performance of the models, we also analysed the performance
of the models in different subfields of the chemical sciences. For
this analysis, we defined a set of topics (Methods) and classified
all questions in the ChemBench corpus into these topics. We then
computed the percentage of questions that the models or experts
answered correctly for each topic and present them in Fig. 4. In this
spider chart, the worst score for every dimension is zero (no ques-
tion answered correctly) and the best score is one (all questions
answered correctly). Thus, alarger coloured areaindicates a better
performance.

One can observe that this performance varies across models and
topics. While general and technical chemistry receive relatively high
scores for many models, this is not the case for topics such as toxicity
and safety or analytical chemistry.

Inthe subfield of analytical chemistry, the prediction of the num-
ber of signals observable in a nuclear magnetic resonance spectrum
proved difficult even for the best models (for example, 22% correct
answers for ol-preview). Importantly, while the human experts are
given a drawing of the compounds, the models are only shown the
SMILES string of a compound and have to use this to reason about
the symmetry of the compound (that is, to identify the number of
diasterotopically distinct protons, which requires reasoning about
the topology and structure of amolecule).

These findings also shine an interesting light on the value of
textbook-inspired questions. A subset of the questionsin ChemBench
arebased ontextbooks targeted at undergraduate students. Onthose
questions, the models tend to perform better than on some of our
semi-automatically constructed tasks (Supplementary Fig. 5). For
instance, while the overall performance in the chemical safety topic
is low, the models would pass the certification exam according to the
German Chemical Prohibition Ordinance on the basis of a subset of
questions we sampled from the corresponding question bank (for
example, 71% correct answers for GPT-4, 61% for Claude-3.5 (Sonnet)
and 3% for the human experts). While those findings are impacted by
the subset of questions we sampled, the results still highlight that good
performance on such question bank or textbook questions does not
necessarily translate to good performance on other questions that
require more reasoning or are further away from the training corpus'.
The findings also underline that such exams might have been a good
surrogate for the general performance of skills for humans, but their
applicability in the face of systems that can consume vast amounts of
datais up for debate.

Wealso gaininsightinto the models’struggles with chemical rea-
soning tasks by examining their performance as afunction of molecular
descriptors. Ifthe model would answer questions after reasoning about
the structures, one would expect the performance to depend on the
complexity of the molecules. However, we find that the models’ perfor-
mance does not correlate with complexity indicators (Supplementary
Note 5). Thisindicates that the models may not be able to reason about
the structures of the molecules (in the way one might expect) but
instead rely on the proximity of the molecules to the training data'™.

Itisimportant to note that the model performance for some top-
ics, however, is slightly underestimated in the current evaluation. This
is because models provided via APIs typically have safety mechanisms
that prevent them from providing answers that the provider deems
unsafe. For instance, models might refuse to provide answers about
cyanides. Statistics on the frequency of such refusals are presented in
Supplementary Table 8. To overcome this, direct access to the model
weights would be required, and we strive to collaborate with the devel-
opers of frontier models to overcome this limitationin the future. This
isfacilitated by the tooling ChemBench provides, thanks to which con-
tributors can automatically add new modelsin an openscience fashion.

Judging chemical preference. One interesting finding of recent
researchis that foundation models canjudge interestingness or human
preferences in some domains®’°. If models could do so for chemical
compounds, this would open opportunities for novel optimization

Analvtical ol-preview
nalytica
chemistry Claude-3.5 (Sonnet)
Gengral Toxicity/ GPT-40
chemistry safety Llama-3.1-405B-Instruct
PaperQA2

Mistral-Large-2

Inorganic Technical
chemistry chemistry Llama-3.1-70B-Instruct
Llama-3.1-8B-Instruct
GPT-3.5 Turbo
Materials Physical I Human (average)
science R chemistry
Organic
chemistry

Fig. 4| Performance of the models and humans on the different topics on
ChemBench-Mini. The radar plot shows the performance of the models and
humans on the different topics of ChemBench-Mini. Performance is measured as
the fraction of questions that were answered correctly by the models. The best
score for every dimension is 1 (all questions answered correctly) and the worst

is 0 (no question answered correctly). Alarger coloured areaindicates a better
performance. This figure shows the performance on ChemBench-Mini. The
performance of models on the entire corpus is presented in Supplementary Fig. 3.
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Fig. 5| Reliability and distribution of confidence estimates. For this analysis,
we used verbalized confidence estimates from the model. The models were
prompted to return a confidence score on an ordinal scale to obtain those
estimates. The line plot shows the average fraction of correctly answered
questions for each confidence level. The bar plot shows the distribution of
confidence estimates. The error barsindicate the standard deviation for each
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bar). A confidence estimate would be well calibrated if the average fraction

of correctly answered questions increases with the confidence level. The
dashed black line indicates this ideal behaviour, which would be monotonically
increasing correctness with higher levels of confidence. We use colours to
distinguish the different models, as indicated in the titles of the subplots.

We find that most models are not well calibrated and provide misleading
confidence estimates.

approaches. Such open-ended tasks, however, depend on an external
observer defining whatinterestingness is”. Here, we posed models the
same question that Choung et al.”” asked chemists at adrug company:
‘which of the two compounds do you prefer?’ (in the context of an
early virtual screening campaign setting; see Supplementary Table 2
for an example). Despite chemists demonstrating a reasonable level
of inter-rater agreement, our models largely fail to align with expert
chemists’ preferences. Their performance is often indistinguishable
fromrandom guessing, even though these same models excelin other
tasksin ChemBench (Supplementary Table 5). Thisindicates that using
preference tuning for chemical settings could be apromising approach
toexplorein future research.

Confidence estimates. One might wonder whether the models can
estimate if they can answer a question correctly. If they could do so,
incorrect answers would be less problematic.

To investigate this, we prompted®® some of the top-performing
models to estimate, onan ordinal scale, their confidence in their abil-
ity to answer the question correctly (see Methods for details on the
methodology and comparison to logit-based approaches).

In Fig. 5, we show that for some models, there is no meaningful
correlation between the estimated difficulty and whether the models
answered the question correctly or not. For applications in which
humans might rely onthe models to provide answers with trustworthy
uncertainty estimates, this is a concerning observation highlighting
the need for critical reasoning in the interpretation of the model’s
outputs**”>. For example, for the questions about the safety profile of
compounds, GPT-4 reported a confidence of 1.0 (on a scale of 1-5) for
the one questionit answered correctly and 4.0 for the six questions it
answered incorrectly. While, on average, the verbalized confidence
estimates from Claude-3.5 (Sonnet) seem better calibrated (Fig. 5),
they are still misleading in some cases. For example, for the questions
about thelabelling of chemicals (GHS) pictograms Claude-3.5 (Sonnet)

returns an average score of 2.0 for correct answers and 1.83 for incor-
rectanswers.

Conclusions

On the one hand, our findings underline the impressive capabilities
of LLMsinthe chemical sciences: leading models outperform domain
experts in specific chemistry questions on many topics. On the other
hand, there are still striking limitations. For very relevant topics, the
answers that models provide are wrong. On top of that, many models
arenotabletoreliably estimate their own limitations. Yet, the success
of the models in our evaluations perhaps also reveals more about the
limitations of the questions we use to evaluate models—and chem-
ists—than about the models themselves. For instance, while models
performwell on many textbook questions, they struggle with questions
requiring more reasoning about chemical structures (for example,
number of isomers or nuclear magnetic resonance peaks). Given that
the models outperformed the average human in our study, we need
to rethink how we teach and examine chemistry. Critical reasoning is
increasingly essential, and rote solving of problems or memorization
offactsisadomaininwhich LLMs will continue to outperform humans
(when trained on the right training corpus).

Our findings also highlight the nuanced trade-offbetween breadth
and depth of evaluation frameworks. The analysis of model perfor-
mance on different topics shows that models’ performance varies
widely across the subfields they are tested on. However, even withina
topic, the performance of models can vary widely depending on the
type of question and the reasoning required to answer it.

The current evaluation frameworks for chemical LLMs are primar-
ily designed to measure the performance of the models on specific
property prediction tasks. They cannot be used to evaluate reasoning
or systems built for scientific applications. Thus, we had little under-
standing of the capabilities of LLMs in the chemical sciences. Our work
shows that carefully curated benchmarks can provide amore nuanced
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understanding of the capabilities of LLMs in the chemical sciences.
Importantly, our findings also illustrate that more focusisrequired in
developing better human-model interaction frameworks, given that
models cannot estimate their limitations.

Although our findings indicate many areas for further improve-
ment of LLM-based systems, such as agents (more discussion in Sup-
plementary Note 11), itisalsoimportant to realize that clearly defined
metrics have beenthe key to the progress of many fields of ML, such as
computer vision. Although current systems might be far fromreason-
ing like a chemist, our ChemBench framework will be astepping stone
for developing systems that come closer to this goal.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
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Methods
Curation workflow
For our dataset, we curated questions from existing exams or exercise
sheets but also programmatically created new questions (see Sup-
plementary Table 3 for more details). Questions were added via Pull
Requests on our GitHub repository and only merged into the corpus
after passing manual review (Extended Data Fig. 1) as well asautomated
checks (for example, for compliance with a standardized schema).
To ensure that the questions do not enter a training dataset, we
use the same canary string as the BigBench project. This requires that
LLM developers filter their training dataset for this canary string***.

Manually curated questions. Manually curated questions were
sourced from various sources, including university exams, exercises
and questionbanks. Extended Data Table 1 presents an overview of the
sources of the manually curated questions.

Semi-programmatically generated questions. In addition to the
manually curated questions, we also generated questions program-
matically. An overview of the sources of the semi-programmatically
generated questions is provided in Supplementary Table 3.

Chemical preference data. These questions assess the ability to
establisha‘preference’, such as favouring a specific molecule. Chemical
preference is of major importance in drug discovery projects, where
the optimization process to reach the desired molecular properties is
a process that takes several years within a chemist’s career. Our data
corpusisadapted from the published dataset by Choung et al.”>, which
consists of more than 5,000 question—-answer pairs about chemical
intuition. To build the dataset, they presented 35 medicinal chemists
with two different molecules, asking them what molecule they would
like to continue withwhenimaging an early virtual screening campaign
setting. The question was designed so the scientists do not spend much
time answeringit, relying only on their feelings or ‘chemical preference’.

Tounderstand whether the capabilities of theleading models align
with the preferences of professional chemists, we randomly selected
1,000 data points from the original dataset to create a meaningful
evaluation set, where molecules are represented as SMILES. To ablate
the effect of different molecular representations, we only considered
questions for which we could obtain International Union of Pure and
Applied Chemistry names for both the molecules present.

Model evaluation workflow
A graphical overview of the pipeline is presented in Supplementary
Fig.12.

Prompting. We employ distinct prompt templates tailored for com-
pletion and instruction-tuned models to maintain consistency with
the training. As explained later, we impose constraints on the models
within these templates to receive responses in a specific format so
that robust, fair and consistent parsing can be performed. Certain
models are trained with special annotations and LaTeX syntax for
scientific notations, chemical reactions or symbols embedded within
thetext. For example, all the SMILES representations are encapsulated
within [START_SMILES][\END_SMILES] in Galactica®*. Our prompt-
ing strategy consistently adheres to these details in a model-specific
manner by post-processing LaTeX syntax, chemical symbols, chemical
equations and physical units (by either adding or removing wrappers).
This step can be easily customized in our codebase, and we provide
presets for the models we evaluated.

Parsing. Our parsing workflow is multistep and primarily based on
regular expressions. In the case of instruction-tuned models, we first
identify the [ANSWER][\ANSWER] environment that we prompt the
model to report the answer in. In the case of completion models, this

step is skipped. From there, we attempt to extract the relevant enu-
meration letters (for MCQ) or numbers. In the case of numbers, our
regular expression was engineered to deal with various forms of scien-
tific notation. Asinitial tests indicated that models sometimes return
integers in the form of words, for example, ‘one’ instead of ‘'1’, we also
implemented a word-to-number conversion using regular expres-
sions. Ifthese hard-coded parsing steps fail, we use aLLM, for example,
Claude-3.5 (Sonnet), to parse the completion (Supplementary Note 8
provides more details on this step).

Models. For allmodels, we performed inference using greedy decoding
(that is, temperature 0). We used the APl endpoints provided by the
model developers and those provided by Groq. PaperQA2 was used
(in August 2024) via an APl provided by FutureHouse.

Confidence estimate

Toestimate the models’ confidence, we prompted them with the ques-
tion (and answer options for MCQ) and the task to rate their confidence
toproducethe correctansweronascale from1to 5. We decided to use
verbalized confidence estimates®® since we found those to be closer
to current practical use cases than other prompting strategies, which
might be more suitable when implemented in systems. In addition,
thisapproach captures semantic uncertainty, whichis not the same as
the probability of atokenbeing given a sequence of tokens (that is, the
uncertainty one obtains from logit-based approaches). Ontop of that,
many proprietary models do not provide access to the logits, making
this approach more general. In Supplementary Note 12, we provide
more details and comparisons with a logit-based approach.

Humanbaseline

Question selection. Several design choices were made when selecting
ChemBench-Mini. Firstly, from the full dataset, we kept all the ques-
tions labelled as advanced. In this way, we can obtain a deeper insight
into the capabilities of LLMs on advanced tasks when compared with
actual chemists. Secondly, we sample a maximum of three questions
across all possible combinations of categories (that is, knowledge or
reasoning) and topics (for example, organic chemistry and physical
chemistry). Thirdly, we do not include any intuition questions in this
subset because the intended use of ChemBench-Mini is to provide a
fast and fair evaluation of LLMs independent of any human baseline.
Intotal, 236 questions have been sampled for ChemBench-Mini. Then,
thissetis divided into two subsets on the basis of the aforementioned
combinations. One of the question subsets allows tool use, and the
other does not.

Study design. Human volunteers were asked the questions in a
custom-built webinterface (Supplementary Note 10), whichrendered
chemicals and equations. Questions were shown in random order,
and volunteers were not allowed to skip questions. For a subset of the
questions, the volunteers were allowed to use external tools (exclud-
ing other LLM or asking other people) to answer the questions. Before
answering questions, volunteers were asked to provide information
about their education and experience in chemistry. The study was
conducted in English.

Human volunteers. Users were open to reporting about their experi-
encein chemistry. Overall, 16 did so. Out of those, 2 are beyond afirst
postdoc, 13 have amaster’s degree (and are currently enroled in Ph.D.
studies) and 1 has a bachelor’s degree. For the analysis, we excluded
volunteers with less than 2 years of experience in chemistry after their
first university-level course in chemistry.

Comparison with models. For the analysis, we treated each human
as amodel. We computed the topic aggregated averages per human
for analyses grouped by topic and then averaged over all humans.
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The performance metrics reported for models in the main text are
computed on the same questions that the humans answered. Metrics
for the entire corpus are reported in Supplementary Note 4.

Dataannotation

In the curation of our dataset, we manually assigned difficulty levels
and required skills to each question. We used the following guidelines
for these annotations: calculation is required if answering a question
wouldrequire the use of a calculator, knowledge isrequired if answer-
ing a question requires non-trivial knowledge of facts (for example,
the H/P statements of chemicals). Reasoning is required if answering
a question requires multiple reasoning steps. Basic questions only
require those skills up to the high school level. Advanced questions
would require an expert multiple minutes or hours to answer.

Inclusion and ethics statement

The authors confirm that they have complied with all relevant ethi-
cal regulations, according to the Ethics Commission of the Friedrich
Schiller UniversityJena (which decided that the study is ethically safe).
Informed consent was obtained from all volunteers.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data for ChemBench is available via GitHub at https://github.
com/lamalab-org/chembenchandviaZenodo at https://zenodo.org/
records/14010212 (ref. 74).

Code availability

The code for ChemBench is available via GitHub at https://github.
com/lamalab-org/chembenchandviaZenodo at https://zenodo.org/
records/14010212 (ref. 74) The code for the app for our human base-
line study is available via GiHub at https://github.com/lamalab-org/
chem-bench-app.
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Extended Data Table 1| Overview of sources of the curated questions

Source Count
Semi-automatically generated 1749
URL 375
Textbook 206
Exam 149
IChO 149
No source 139
Lectures 21

The table provides an overview of the types of sources the questions have been curated from. Detailed sources are available in the source data on GitHub. Questions without a source have
been curated completely from scratch. Questions based on lecture notes or URLs have been curated based on content presented in those resources. All questions have been rephrased,

annotated, and reviewed before being added to the corpus.
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1. Data curation

Manually curated
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Hazard statements
Number of NMR peaks
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IUPAC-SMILES questions
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Extended Data Fig. 1| Overview of the workflow for the assembly of the
ChemBench Corpus. To assemble the ChemBench corpus, we first collected
questions from various sources. Some tasks were manually curated, others semi-

2. Semantic annotation 3. Review
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programmatically. We added semantic annotations for all questions to make

them compatible with systems that use special processing for modalities that
are not conventional natural text. We reviewed the questions using manual and
automatic methods before adding them to the corpus.
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Population characteristics Users were open to reporting about their experience in chemistry. Overall, 16 did so. Out of those, 2 are beyond a first
postdoc, 13 have a master’s degree (and are currently enrolled in Ph.D. studies), and 1 has a bachelor’s degree. For the
analysis, we excluded volunteers with less than two years of experience in chemistry after their first university-level course in
chemistry.

Recruitment The study was conducted as an only survey that was advertised via email to student and faculty bodies of the EPFL and the
Friedrich-Schiller University Jena. The email made clear that participation is voluntarily and used for a benchmarking study.
There is a potential self-selection bias for participants interested in LLMs and chemical questions.

Ethics oversight The authors confirm to have complied with all relevant ethics regulations (no personal data was recorded). The institutional

review board of the Friedrich-Schiller University of Jena was consulted.
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Study description Study type: Observational study evaluating human expert performance in chemistry-related questions
Setting: Web-based survey using chembench.org platform
Purpose: To benchmark human expert performance against LLM capabilities in chemistry

Research sample Sample size: 19 expert chemists participated in the study

Demographics (out of 16 who reported their experience):
2 were beyond first postdoc

13 had master's degrees and were enrolled in PhD studies
1 had a bachelor's degree

Sampling strategy No sample size calculation was performed. We recruited as many participants as we could.
Data collection Method: Custom web application (chembench.org) was used to survey the experts
Format:

Questions presented through web interface

Molecules shown as rendered drawings and SMILES strings
LaTeX equations and chemical equations rendered using MathJax
Time taken to answer questions was recorded

Tool usage was tracked

Timing 02.09.2024-13.09.2024

Data exclusions Pre-established criteria: Volunteers with less than two years of experience in chemistry after their first university-level chemistry
course were excluded from analysis

Rationale: To ensure participants had sufficient expertise in chemistry
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Non-participation No participant dropped out

Randomization Questions were presented to participants in random order




Randomization
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Seed stocks

Novel plant genotypes

Authentication

ChlIP-seq

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied: o . .
Describe-any-authentication-procedures for-each-seed-stock-used-or-novel-genotype-generated.-Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Data deposition
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Methodology
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Peak calling parameters

Data quality

Software

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
enable peer review. Write "no longer applicable" for "Final submission" documents.

Describe the experimental replicates, specifying number, type and replicate agreement.

Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.

Describe the antibodies used for the ChlP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and
lot number.

Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
used.

Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
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Flow Cytometry

Plots
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Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state, event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI D Used D Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).




Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain [ | ROI-based || Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a | Involved in the study
D D Functional and/or effective connectivity

D D Graph analysis

D D Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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