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Triplet state reactivity of iminium ions 
in organocatalytic asymmetric [2 + 2] 
photocycloadditions
 

Vasco Corti    1, Gianluca Simionato    1, Lorenzo Rizzo1, Stefano A. Serapian    2, 
Giorgio Pelosi    3, Mirco Natali4 & Luca Dell’Amico    1 

Organic transformations mediated by the transient formation of iminium 
ions have shown remarkable synthetic potential for the construction of 
enantioenriched molecules. The possibility to access their first singlet 
excited state (S1) under light irradiation has led to the development of 
previously inaccessible transformations. However, the triplet state (T1) 
reactivity remains limited and typically requires external photosensitizers. 
Here we show that structurally modified chiral iminium ions, integrated 
into extended π-systems, directly engage in T1 reactivity. This modified 
conjugated architecture was designed to overcome the intrinsic 
photophysical limitations of conventional iminium ion chemistry, enabling 
access to previously inaccessible excited-state reaction manifolds. 
The resulting system allows organocatalytic enantioselective [2 + 2] 
photocycloadditions without the need for external sensitizers. Mechanistic 
studies, involving spectroscopic techniques and computational methods, 
elucidate the role of the T1 intermediate as the key reactive intermediate.

The rationalization and understanding of reaction mechanisms in 
asymmetric organocatalysis have enabled its development and broad 
application in organic synthesis1,2. In the field of covalent organocataly-
sis, the traditional use of iminium-ion intermediates has established a 
powerful catalytic platform for the stereocontrolled construction of 
new chemical bonds, facilitating the nucleophilic conjugate addition 
at the β-carbon of unsaturated carbonyl compounds3. This activation 
mode led to the development of a plethora of catalytic asymmetric 
methods and to the synthesis of structurally diversified products. On 
the other hand, the pioneering studies of Mariano on the photochem-
istry of iminium ions revealed that the light-excited state reactivity of 
these species is sharply different from the one in the ground state. In 
fact, upon light excitation, iminium ions can behave as photo-oxidants, 
triggering the formation of radical species from suitable radical precur-
sors or taking part in stereospecific photocycloadditions4–7. Recently, 
the combination of visible light with asymmetric organocatalysis 

allowed the discovery of previously uncharted chemical reactivities. 
These findings contributed to dissipate the general perception that 
highly energetic excited states are not suitable intermediates for ste-
reoselective transformations8. In 2017, Melchiorre and co-workers 
showed that the excited state of catalytic chiral iminium ions can be 
efficiently used for the generation of radical species, which can be 
subsequently trapped in a stereoselective manner8–11 (I; Fig. 1a). More 
recently, Alemán and co-workers developed an organocatalytic asym-
metric [2 + 2] photocycloaddition in which the singlet excited state of 
iminium ions, transiently generated from acyclic conjugated ketones, 
is intercepted by various dienes to obtain optically active cyclobutane 
derivatives12 (II; Fig. 1a). These advances have enabled access to previ-
ously untapped chemical space with well-defined three-dimensional 
architectures, which is central to the field of asymmetric synthesis. 
While the singlet excited state (S1) reactivity of iminium ion has proved 
its generality for a variety of diverse transformations, the use of the 
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[2 + 2] dearomative photocycloadditions23–26, mostly via energy transfer 
catalysis27–34. We thus identified indole-3-carboxaldehyde as a promising 
candidate for our investigations. Embedding the conjugated iminium 
ion within a π-extended aromatic framework could mitigate the inher-
ent photophysical limitations that typically hinder their T1 reactivity. 
This approach, in turn, could enable catalytic enantioselective [2 + 2] 
dearomative photocycloadditions—a reaction class that remains mark-
edly underexplored35,36. In fact, while the cyclobutane core is present in 
a variety of bioactive drugs and natural products, including paesslerin 
A37, rumphellaone A38 or the Food and Drug Administration-approved 
drug apaludamide39, its enantioselective construction still represents 
an open challenge for the scientific community.

Herein, we describe the successful realization of an organocata-
lytic asymmetric [2 + 2] photocycloaddition involving the key reactivity 
of the T1 state of photoactive iminium ions (Fig. 1b). This methodology 
relies on the formation of intermediate IV and its ability to access, upon 
light absorption and ISC, a reactive T1 state V that undergoes a stere-
oselective dearomative [2 + 2] photocycloaddition, providing a wide 
variety of enantioenriched polycyclic products VI. We demonstrated 
that specific primary-amine organocatalysts, classically used under 
polar reactivity, can efficiently catalyse stereoselective transforma-
tions involving highly energetic excited intermediates. Photophysical 
studies and transient spectroscopy revealed the nature of the reactive 
excited state. Time-dependent density functional theory (TD-DFT) and 
density functional theory (DFT) study calculations were conducted to 
shed light on the formation and nature of this fleeting intermediate.

triplet excited state (T1) is far less developed. In a seminal work, Bach and 
co-workers reported that the T1 state of iminium ions can be accessed by 
means of energy transfer catalysis, thanks to their lower triplet energy 
compared with the corresponding carbonyl compounds. The selec-
tion of an appropriate photosensitizer allowed the development of an 
asymmetric [2 + 2] photocycloaddition of the chiral iminium ions and 
various alkenes via energy transfer catalysis13,14 (III; Fig. 1a).

Leveraging the T1 reactivity of chiral iminium ions under direct 
excitation remains an unmet goal for the synthetic chemical com-
munity. In fact, the direct excitation of transiently generated chiral 
iminium ions to reach their T1 state via intersystem crossing (ISC) 
would provide an attractive synthetic strategy for the development of 
innovative asymmetric photocycloadditions15–20 to obtain enantioen-
riched cyclic derivatives21 without the use of an external photocatalyst. 
However, this approach is hampered by the intrinsic photophysical 
properties of iminium ions. While conjugated carbonyl compounds 
can efficiently undergo ISC from their S1 state to the corresponding 
T1 state (1n–π* to 3π–π*) engaging in [2 + 2] photocycloadditions, the 
photochemistry of the analogous iminium ions is governed by their 
singlet reactivity, as the ISC involves the forbidden transition 1π–π* to 
3π–π* (refs. 6,7,13,14,22).

Despite these conceptual rules on the reactivity of classical con-
jugated iminium ions, we questioned whether altering the chemical 
nature of the conjugated system, such as its incorporation into heter-
oaromatics, could be the key strategy to access their elusive T1 reactiv-
ity. For example, the indole moiety has been already used to develop 
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Results
Optimization studies
At the outset of our studies, we decided to test the enantioselec-
tive intramolecular [2 + 2] photocycloaddition of 1-(pent-4-enoyl)-
1H-indole-3-carbaldehyde (1) in the presence of trifluoroacetic acid (TFA) 
and the Jørgensen–Hayashi organocatalyst 2a (20 mol%) under light irra-
diation using a Kessil lamp (427 nm). No product formation was observed 
after 24 h (Table 1, entry 1). We assumed that the high degree of steric 
hindrance of the organocatalyst, combined with the poor electrophilic 
character of aldehyde 1, renders the condensation process inefficient. 
On the other hand, the use of primary amine-based organocatalysts 
immediately delivered more satisfactory results (Table 1, entries 2–4). 
Chiral diamine 2d provided the desired product 3 in 62% yield and 91% 
enantiomeric excess (e.e.). A solvent screening identified CHCl3 as the 
optimal for this transformation (Supplementary Table 2). Carrying out 
the reaction in the presence of an excess of acid additive improved the 
reaction yield up to 97% while shortening the reaction time from 24 h 
to 6 h (Table 1, entry 5; Supplementary Table 3). Finally, we performed 
a series of control experiments to verify the photochemical and radical 
nature of the transformation (Table 1, entries 6–8). The reaction does not 
occur in the absence of light nor of the organocatalyst, and the product 
formation is partially suppressed when performing the reaction under air.

Mechanistic investigations
We next turned our attention to the investigation of the reaction mecha-
nism. Initially, we verified the capability of iminium ion 4 to absorb vis-
ible light. Indeed, upon mixing an equimolar amount of aldehyde 1 and 
organocatalyst 2d in the presence of TFA, a new absorption band appears 
in the visible region of the spectrum, thus suggesting the formation of 
the photoactive intermediate 4 (ref. 10; Fig. 2a). We then investigated 
one of the most intriguing aspects of this transformation, namely, the 
nature of the excited state of the iminium ion 4 that is involved in the 
enantioselective [2 + 2] cycloaddition. To this end, we prepared iminium 
ion 5 that lacks the terminal olefin functional group. While this species 
cannot react in the photocycloaddition process, it was used as a model 
compound to compare its photophysical behaviour with the reactive 
intermediate 4. We first performed steady-state luminescence measure-
ments upon excitation at 360 nm to follow the fate of the singlet excited 
state in 4 and 5. Both compounds display an intense emission centred 
at 445 nm, which can be assigned to fluorescence from the S1 state of 
the iminium ion. Importantly, the fluorescence quantum yield (Φ) is 
comparable for both 4 and 5, as is the fluorescence lifetime measured 
by time-correlated single-photon counting (TCSPC; Fig. 2a; for further 
details, see Supplementary Figs. 4–7 and the related discussion). These 
results strongly suggest that the S1 state cannot be responsible for the 
observed reactivity. We then performed laser flash photolysis (LFP) 
studies on both 4 and 5 to monitor their T1 state. For both compounds, 
a similar transient absorption spectrum is detected upon laser excita-
tion at 355 nm, which is characterized by ground state bleaching below 
400 nm, a sharp absorption centred at 410 nm and a broad absorption in 
the red portion of the visible spectrum (Fig. 2b,c). Accordingly, the tran-
sient species can be mainly assigned to the T1 state of the iminium ion. 
In the case of the unreactive iminium 5, the transient absorption signal 
at 700 nm decays towards the baseline within a hundred microseconds 
(Fig. 2d). The decay kinetics of compound 5 is sensitive to the presence 
of dioxygen, and a lifetime of τ = 12 μs can be estimated under N2-purged 
conditions. Both of these observations support that the transient spe-
cies detected by LFP is the triplet excited state of the iminium ion. More 
importantly, in the case of the iminium 4, the transient signal at 700 nm 
decays more rapidly (Fig. 2d), indicating quenching of the triplet state 
in the presence of the olefin functional group. Thus, this experimental 
evidence strongly corroborates the participation of the T1 state in the 
[2 + 2] reaction leading to the formation of the desired cycloadduct.

To further prove the triplet reactivity in the present reaction, 
a control experiment under the optimized reaction conditions was 

performed in the presence of 1 equivalent of the triplet quencher 
2,5-dimethylhexa-2,4-diene. As shown in Fig. 2e, no product forma-
tion was observed, with almost quantitative recovery of the starting  
material 1. On the other hand, carrying out the reaction in the  
presence of an iridium-based triplet sensitizer greatly accelerated  
the reaction rate, albeit in lower enanantioselectivity due to the 
poor discrimination between the activation of substrate 1 and  
intermediate 4 (for additional results and discussion, see Supple-
mentary Scheme 1).

Finally, substrates 7-(E) and 7-(Z) were employed as structural 
probes to further confirm our mechanistic proposal6 (Fig. 2f). Indeed, 
[2 + 2] photocycloadditions that occur at the S1 state are typically stere-
ospecific processes due to the concerted character of their mechanism, 
and for this reason, the geometry of the double bond is retained into the 
corresponding product. On the other hand, stereoconvergent [2 + 2] 
photocycloadditions are indicative of a step-wise mechanism, which 
typically involves T1 reactivity. For this reason, a series of experiments 
using either 7-(E) or 7-(Z) were performed under the optimized reaction 
conditions. While substrate 7-(E) furnished the corresponding cycload-
duct in 6.5:1 diastereoisomeric ratio (d.r.) and 50% yield after 2 h, a 
lower d.r. (1.5:1 in the same major diastereoisomer) was obtained when 
employing 7-(Z). The formation of both diastereoisomers, regardless 
of the double bond geometry, suggests that the present photocycload-
dition occurs through a step-wise mechanism that involves the T1 state 
of the iminium ion intermediate. Furthermore, the diastereoisomeric 
ratio is constant even at lower conversion values, ruling out a scenario 
in which one isomer of the product interconverts into the other during 
the reaction course6.

Table 1 | Selected results from the reaction optimisation
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Catalyst 2 (20 mol%),
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Entrya Catalyst 2 TFA (equiv.) Yield (%)b e.e. (%)c

1d 2a 1 <5 n.d.

2d 2b 1 64 63

3d 2c 1 67 89

4d 2d 1 62 91

5 2d 2.5 97 92

6 No catalyst 2.5 <5 n.d.

7 2d, no light 2.5 <5 n.d.

8 2d, air 2.5 44 n.d.

n.d., not determined aSubstrate 1 (0.1 mmol), organocatalyst (20 mol%, 0.02 mmol), TFA (equiv.), 
CHCl3 (0.4 ml) and inert atmosphere. bReaction yields were measured by 1H NMR analysis of 
the crude reaction mixture using dibromomethane as the internal standard. cThe e.e. values 
were determined by chiral stationary phase ultra-performance convergence chromatography 
(UPC2) after derivatization of the [2 + 2] cycloadduct with (carbethoxymethylene)
triphenylphosphorane. d1,2-Dichloroethane was used in place of CHCl3.

http://www.nature.com/naturechemistry


Nature Chemistry | Volume 18 | January 2026 | 189–197 192

Article https://doi.org/10.1038/s41557-025-01960-3

Computational investigations
To support the proposed reaction manifold and gain information on the 
nature of the involved intermediates and transitions, we carried out a 

series of DFT and TD-DFT studies40 (Fig. 3). All calculations are provided 
electronically in the ioChem-BD repository41.The calculations show that 
photoexcitation of 4 (S0) leads to the relaxed S1 state intermediate 4 (S1) 
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Fig. 2 | Mechanistic investigations. a, Steady-state luminescence studies. UV–vis 
absorption spectroscopy to verify the formation of iminium ion 4 by formation of 
a new band in the visible region. Comparison of the fluorescence quantum yields 
ΦF and fluorescence lifetimes τ(S1) of compounds 4 and 5. λ is the wavelength 
of electromagnetic radiation. b, Transient absorption spectra of 4. c, Transient 
absorption spectra of 5. d, Kinetic decay measured at 700 nm of the triplet 
excited state of 4 compared with 5. OD, optical density. e, Control experiment 

using a triplet quencher. r.t., room temperature. f, Stereochemical outcome of 
the organocatalytic enantioselective [2 + 2] photocycloaddition starting from 
the two diastereoisomers 7-(E) and 7-(Z). Depending on the stereochemical 
outcome (stereodivergent versus stereoconvergent process), the involvement 
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reaction course.
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in which the iminium moiety is no longer planar owing to a distortion 
out of the plane of the indole core towards the Re face of its reactive 
C=C (+75.2°, for further details see ‘Computational studies’ section of 
Supplementary Information and Supplementary Fig. 16). The relaxed 
4 (S1) intermediate is not productive for the observed reactivity (see 
the discussion related to Supplementary Fig. 17), confirming that the 
reaction must proceed through a triplet state. Monitoring the potential 
energy surfaces of the other excited states of iminium ion 4 (S1) as the 
iminium distorts towards the Re face of the indole C = C, we observed 

that the S1 surface comes to within 1.66 kcal mol−1 of the T1 surface but 
never crosses it (Fig. 3a and Supplementary Fig. 18).

Interestingly, it was possible to locate a minimum energy crossing 
point (MECP1) between the S1 and the T2 excited states (for example, 
at +37.4° in the case under examination in Fig. 3b). We concluded from 
these findings that the observed triplet reactivity should prevalently 
transit through the T2 state, with direct S1 → T1 ISC remaining unlikely. 
While a fraction of the photoexcited 4 (S1) could directly cross to T2 
through MECP1, since the S1–T2 transition is spin-prohibited, it is likely 
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that the majority of photoexcited molecules reach the relaxed pho-
toexcited intermediate 4 (S1) before climbing back up to the MECP1 
(Fig. 3b). Here, a precise quantification of spin–orbit coupling effects 
governing the S1–T2 transition is not performed as it requires higher 
level calculations.

Subsequent relaxation from MECP1 on the T2 surface shows that, as 
the iminium moiety is further on its way back to planarity from +37.4°, 
the T1 state is readily encountered at a second MECP2. This new T1 state 
further relaxes to a first order transition state TS1 that preludes the 
formation of the first C–C bond. The resulting intermediate (Int-A) 
can then cross from the T1 state to the open shell singlet (Int-B) with 
a virtually barrierless transition. Finally, the transition state TS2 leads 
to radical–radical recombination of Int-B, providing the final cycload-
duct 9. A complete mechanistic description of the reaction, including 
investigation of possible sources of enantioselectivity, is provided in 
the ‘Computational studies’ section of Supplementary Information, 
along with orbital representations of salient stationary points along 
the favoured pathway.

Scope of the reaction
While 4CzIPN (2,4,5,6-tetrakis(9H-carbazol-9-yl) isophthalonitrile) 
was used for the preparation of racemic samples, the generality of the 
reaction was evaluated using the optimized reaction conditions. A wide 
variety of functional groups could be substituted at the indole core 
without substantially affecting the reaction yield or stereoselectivity 
(Table 2; products 10–25, 44–84% yield and 72–92% e.e.).

X-ray analysis on a single crystal of product 14 was used to infer 
both the absolute and relative configuration of the [2 + 2] cycloadduct, 
and the configuration of all the other products was assigned by analogy. 
It was also possible to introduce variations at the tethered olefin, fur-
nishing products 26 and 27 with comparable values of yield and enan-
tioselectivity (40% and 80% yield and 84% and 94% e.e., respectively).

Finally, the cyclobutane derivative 28 featuring four contiguous 
stereogenic centres was obtained in 84% yield, 75% e.e. and 9:1 d.r. 
We next focussed our efforts on expanding the generality of our 
approach to an intermolecular version of the reaction. Remarkably, 
indole 29 reacted smoothly with a series of different alkenes delivering 

Table 2 | Generality of the organocatalytic enantioselective [2 + 2] cycloaddition for the dearomatization of the indole core
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the desired enantioenriched cyclobutanes with satisfactory levels of 
yield under the very same reaction conditions (Fig. 4a). For example, 
products 30 and 30′ were isolated using 1-hexene as a reaction partner, 
providing 51% combined yield, 2.5:1 d.r. and good levels of enantioselec-
tivity (74–77%). Methylene cyclohexane gave excellent results, furnish-
ing the [2 + 2] cycloaddition product 31 in 70% yield and 94% e.e. as a 
single diastereoisomer. On the other hand, carrying out the reaction in 
presence of electron-poor olefins such as methyl acrylate provided the 

corresponding cycloadduct in a lower yield of 30%, with very high ste-
reocontrol (88% e.e.) as a single diastereoisomer (32; Fig. 4a). We next 
performed the reaction with the natural compound (R)-(–)-carvone. 
Interestingly, the corresponding product formed in 45% yield as a 1.5:1 
mixture of diastereoisomers. Both cycloadducts could be isolated, 
providing access to complex structures featuring four contiguous 
stereogenic centres along with two contiguous all-carbon quaternary 
stereogenic centres (33 and 33′; Fig. 4a). Finally, we carried out a series 
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2d
Ph

Ph N

H2N

N

O

N

O

N

O

OH

LiAlH4, 18 h
THF, 0 °C to r.t.
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30 / 30′
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51% yield

77% / 74% e.e.
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1.5:1 d.r.
45% yield
> 99% e.e.

1
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TFA (2.5 equiv.), 18 h
CHCl3 (0.25 M), Ar, r.t.
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Fig. 4 | Expanding the generality of the developed catalytic approach.  
a, Intermolecular enantioselective [2 + 2] cycloadditions with external olefins. 
b, Synthetic elaborations of the optically active cycloadduct. From top to 
bottom: Pinnick oxidation, Corey–Fuchs homologation and concomitant 
reduction of amide and aldehyde functionalities. Upon acid wash to remove 

the organocatalyst, the crude product of the photochemical reaction was used 
directly in the subsequent transformation without any further purification. The 
yield of the synthetic elaborations was measured on the basis of 1H NMR analysis 
to determine the amount of cycloadduct 6 used as the starting material.
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of synthetic manipulations on the optically active cycloadduct 6 to 
demonstrate that the polycyclic scaffold can be further manipulated 
(Fig. 4b). It was possible to transform the aldehyde moiety either into 
a carboxylic acid (product 34 in 68% yield and 92% e.e.) or a terminal 
alkyne (35 in 55% yield and 92% e.e.): two privileged functionalities for 
bioconjugation processes. Alternatively, the concomitant reduction 
of the amide and the aldehyde group rendered product 36 in 64% yield 
and 91% e.e.

Conclusions
We have shown that structural modifications of iminium ions can 
lead to previously inaccessible reactivities. Their T1 state enabled an 
organocatalytic enantioselective [2 + 2] photocycloaddition, which 
proceeds in the absence of any external photocatalyst. Using UV–vis 
and transient spectroscopy, we established that the triplet state of 
the iminium ion is the key reactive intermediate in this transforma-
tion. The proposed reaction pathway was further supported by DFT 
calculations, which revealed a singlet–triplet intersystem crossing 
(S1 → T2) facilitating access to the reactive T1 state. The generality of 
the process was demonstrated across a range of substrates bearing 
diverse functional groups, affording the desired products in consist-
ently high yields and with excellent enantioselectivities. Moreover, 
the catalytic system was successfully extended to the intermolecular 
variant of the reaction, including complex alkene partners such as 
(R)-(–)-carvone. These findings establish an alternative platform in the 
field of catalytic asymmetric dearomatization reactions harnessing 
excited-state reactivity.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41557-025-01960-3.
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Methods
General procedure for the intramolecular preparation  
of enantioenriched cycloadducts
A 4-ml screw-cap vial equipped with a magnetic stirring bar was 
charged with the indole substrate (1 equiv.) and organocatalyst 2d 
(20 mol%) and filled with argon. Then, CHCl3 (0.25 M) was added 
after being dried with 4-Å molecular sieves and degassed by sparging 
argon for 10 min. TFA was added (2.5 equiv.), and the vial was sealed. 
The mixture was irradiated until full consumption of the starting 
material with a Kessil lamp set at 50% of its maximum output power, 
unless otherwise stated. Then, the solvent was evaporated and the 
crude product was subjected to 1H NMR analysis to determine the 
NMR yield and the d.r. value. Afterwards, the crude product of the 
reaction was dissolved in CH2Cl2 (0.25 M), and ethyl(triphenylphosp
horanylidene)acetate (2.5 equiv.) was added. After stirring for 16 h, 
the crude mixture was directly purified by column chromatography 
on silica gel. The products were obtained as an inseparable mixture 
of E and Z isomers deriving from the Wittig derivatization. The enan-
tiomeric excess was determined by ultra-performance convergence 
chromatography (UPC2) analysis on the chiral stationary phase. For 
the preparation of the racemic products, see ‘General procedure D’ 
in Supplementary Information.

General procedure for the intermolecular preparation  
of enantioenriched cycloadducts
A 4-ml screw-cap vial equipped with a magnetic stirring bar was charged 
with the indole substrate (1 equiv.), the organocatalyst 2d (20 mol%) 
and the appropriate olefin (3 equiv.) and filled with argon. Then, CHCl3 
(0.25 M) was added after being dried with 4-Å molecular sieves and 
degassed by sparging argon for 10 min. TFA was added (2.5 equiv.), 
and the vial was sealed. The mixture was irradiated for 18 h with a Kessil 
lamp set at 50% of its maximum output power, unless otherwise stated. 
Then, the solvent was evaporated and the crude product was subjected 
to 1H NMR analysis to determine the NMR yield and the d.r. value. The 
crude mixture was directly purified by column chromatography on 
silica gel, affording the desired products. The enantiomeric excess 
was determined by UPC2 analysis on chiral stationary phase. For the 
preparation of the racemic products, see ‘General procedure F’ in Sup-
plementary Information.

Data availability
Details about materials, methods, experimental procedures, mechanis-
tic studies, characterization data and NMR spectra are available in Sup-
plementary Information. All calculations are provided electronically in 
the ioChem-BD Computational Chemistry repository at https://doi.org/ 
10.19061/iochem-bd-6-426 (ref. 41). Crystallographic data for the 
structure reported in this article have been deposited at the Cambridge 
Crystallographic Data Centre under deposition no. CCDC 2392077 (14). 

Copies of the data are available via the Cambridge Crystallographic 
Data Centre at https://www.ccdc.cam.ac.uk/structures.
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