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Widespread influence of artificial light at 
night on ecosystem metabolism
 

Alice S. A. Johnston      , Jiyoung Kim     & Jim A. Harris    

Artificial light pollution is increasing worldwide with pervasive effects 
on ecosystem structure and function, yet its influence on ecosystem 
metabolism remains largely unknown. Here we combine artificial light at 
night (ALAN) intensity metrics with eddy covariance observations across  
86 sites in North America and Europe to show that ALAN indirectly decreases 
annual net ecosystem exchange by enhancing ecosystem respiration (Re). 
At half-hourly and daily scales, we detect consistent nonlinear interactions 
between ALAN and night duration, with Re increasing under higher ALAN  
and partially decoupling from gross primary production. At the annual 
scale, gross primary production shows no direct ALAN response and is 
instead influenced by the growing season length and urban proximity, 
whereas Re responds more strongly and consistently across timescales.  
Our findings show that ALAN disrupts the fundamental energetic 
constraints on ecosystem metabolism, warranting the inclusion of light 
pollution in global change and carbon–climate feedback assessments.

Artificial light pollution is accelerating across the globe1,2 and has wide-
spread consequences for people3,4 and the planet5–7. Shifts in the lumi-
nance and spectral composition of the nocturnal environment modify 
the physiology, behaviour and ecological interactions of organisms7–11, 
which together play a fundamental role in ecosystem metabolism12,13. 
Ecosystem metabolism, comprising gross primary production (GPP) 
and ecosystem respiration (Re), directs the magnitude and direction of 
carbon–climate feedbacks via net ecosystem exchange (NEE)14. Around 
one quarter of global terrestrial ecosystems are exposed to artificial 
light at night (ALAN)15, but the effects on ecosystem metabolism are 
currently unknown.

Changing daily and seasonal cycles of light and dark10 could 
decouple the timing of biological processes across trophic networks16. 
Trophic groups are also exposed to ALAN at different intensities and 
have varying sensitivities to luminance and spectral composition17. 
Plant responses to photoperiod are influenced even at low ALAN 
intensities18,19, and longer-term exposure influences seasonal phe-
nology, growth form, resource allocation and, thus, potentially car-
bon fixation20. High ALAN intensity exposure in urban areas disrupts 
the behavioural patterns of nocturnally migrating birds21 and plant 
diversity22 and restructures soil microbial communities, reducing the 
functional genes involved in nutrient regulation and plant health23. 

Together, the observed effects of ALAN across levels of biological 
organization and diverse taxa suggest a potential cascading impact on 
ecosystem structure and function. Previous studies of ALAN effects, 
however, have focused on local or experimental manipulations, leav-
ing uncertainty about whether ALAN effects persist at the ecosystem 
level and longer timescales.

GPP and Re are fundamentally constrained by shortwave (solar) 
radiation (SW) and temperature (T), respectively24–26. That is, SW 
determines the direction and duration of energy flow between the 
atmosphere and ecosystems, and T determines the rate of reactions12. 
Although ALAN is not expected to influence SW or T directly, artificial 
light could disrupt the processing of energy according to these fun-
damental constraints via acclimation, compensation and adaptation 
strategies27,28. A better understanding of the magnitude and direction of 
ALAN effects on ecosystem metabolism could help constrain carbon–
climate processes in Earth system models (ESMs)29. Specifically, largely 
uncertain ESM processes and their response to climatic factors could 
be compounded by the chronic effects of pervasive anthropogenic 
stressors, such as ALAN.

Global efforts to measure carbon exchange across diverse ecosys-
tems30 combined with satellite observations of ALAN distribution and 
intensity across the land surface2,31 enable the exploration of artificial 
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where Fc is ecosystem C flux (NEE, GPP, Re) (in µmol CO2 m−2 s−1), T is tem-
perature in Kelvin, σ is the Stefan–Boltzmann constant (in J m−2 s−1 K−4) 
(5.67 × 10−8), SW is incoming SW (in J m−2 s−1,) kFc is the slope of the 
linear relationship and b is the intercept. The function establishes a 
biophysically grounded baseline for different Fc by capturing their 
shared fundamental constraints (T and SW). The use of the modified 
Arrhenius function in this study primarily serves as a comparative 
baseline rather than a mechanistic model, enabling deviations attrib-
utable to chronic ALAN effects to be identified relative to fundamental 
energetic constraints.

The null models for NEE, GPP and Re were linear mixed effect mod-
els (LMMs) or generalized additive mixed models (GAMMs) fitted to 
equation (1) (Methods) with FLUXNET2015 site and latitude as random 
effects and fundamental constraint (T4σ e

−SW
σT4 , J m−2 s−1) as a fixed effect 

(Fig. 2). The null models were tested against models with additional 
explanatory variables, including continent, climate, International 
Geosphere–Biosphere Programme land use classifications, growing 
season (GS), night duration (ND, hours), vapour pressure deficit (VPD, 
hectopascals), precipitation (P, millimetres), ALAN intensity (DN), 
distance to nearest urban polygon (DtNUP, kilometres) and proportion 
of urban land cover in 3- and 10-km buffers around each site (pULC_3km, 
pULC_10km). The LMM selection criteria for explanatory variables 
followed a trade-off between explanatory power and parsimony, with 
the condition that additional degrees of freedom (df) were accompa-
nied by lower Akaike information criteria (AIC) and higher marginal R2 
(R2

m) goodness-of-fit measures (ΔAICdf <−5 and ΔR2
mdf >0.01 compared 

with the null model (Methods; Fig. 2a,c,e). All Fc LMMs selected GS; GPP 
and Re LMMs selected ND; the GPP LMM selected DtNUP; and the Re 
LMM selected VPD and ALAN (Supplementary Tables 2 and 3).

Backward selection and variance-weighting were applied to 
GAMMs fitted to half-hourly NEE, GPP and Re observations (Methods; 
Supplementary Table 4) with the explanatory variable identified in 

light’s influence on terrestrial ecosystem metabolism. Here, we leverage 
the harmonized nighttime light dataset of Li et al.32 and eddy covariance 
observations from FLUXNET201530 to investigate the instantaneous 
and aggregated influence of ALAN on ecosystem-scale NEE, GPP and 
Re fluxes. Although both datasets have global coverage, the location 
of eddy covariance flux towers are biased towards dark sky regions 
(Extended Data Fig. 1). Following definitions by Li et al.32 and others33, 
we use three digital number (DN, higher values represent greater 
luminance of light at night; Methods) groups representative of low 
(DN <10), medium (DN ≥ 10 < 30) and high (≥30, representative of urban 
boundaries) ALAN intensity to identify regions with FLUXNET2015 sites 
across a range of ALAN intensities. North America and Europe were 
the only regions, globally, with more than one high ALAN intensity 
FLUXNET2015 site (Methods; Fig. 1a,d). Within both North America 
and Europe, sites were selected on the basis of latitudinal ranges at 
which medium or high ALAN intensity sites were present (Fig. 1b,e) 
to minimize climatic factors in higher or lower latitude sites being 
ascribed to low ALAN intensities. In total, 86 FLUXNET2015 sites were 
selected, 34 sites in North America (4, 5 and 25 sites at high, medium 
and low ALAN intensities, respectively) and 52 sites in Europe (13, 17  
and 22 sites at high, medium and low ALAN intensities, respectively) 
(Methods; Fig. 1 and Supplementary Table 1). Despite regional imbal-
ances in FLUXNET2015 site distribution across ALAN intensity levels, 
the dataset captures a diverse range of ALAN intensities across temper-
ate regions experiencing similar seasonal fluctuations in T and SW.

To detect the potential influence of ALAN on ecosystem metabo-
lism, we investigate half-hourly and mean daily ecosystem carbon 
fluxes (Fc; Fc: NEE, GPP and Re) measurements against their funda-
mental constraints, T and SW, according to the modified Arrhenius 
equation of Weyhenmeyer12:

Fc = T4σe
−SW
σT4 kFc − b, (1)
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Fig. 1 | Distribution of flux tower sites across artificial light intensity in North 
America and Europe. a,d, The location of 86 eddy covariance flux tower sites 
from FLUXNET2015 (symbols, colours indicate ALAN intensity according to DN 
(higher values represent greater luminance of light at night) (as in d) displayed 
over a harmonized global nighttime light map for 2012 (for visualization 
only) in North America (n = 34) (a) and Europe (n = 52) (d). b,e, The latitudinal 
distribution of sites with different ALAN intensities for North America (b) and for 

Europe (e), in 2° N intervals. c,f, The ALAN intensities of selected FLUXNET2015 
sites, averaged across site years (the number of years with observational data 
per site), for North America (c) and Europe (f) according to DN with symbol size 
indicating number of site years (range: 1–20 years per site between 1992 and 
2014, total site years in c is 211 and in f is 412). Basemaps in a and d were generated 
with QGIS using the harmonized global nighttime light dataset32 under a Creative 
Commons license CC BY 4.0.
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the LMMs. In the final GAMMs, all Fc retained a significant interaction 
between ALAN and ND (Fig. 3 and Supplementary Table 5). Notably, 
the NEE GAMM did not retain GS as a significant predictor, suggesting 
that the seasonality in instantaneous NEE responses was captured by 
GPP and Re, which both retained GS effects (Supplementary Table 5). 
During GAMM selection, VPD (selected in the Re LMM) exhibited con-
sistently high concurvity (>0.8) with other smooth terms, includ-
ing models in which ALAN was removed, indicating substantial 
collinearity with the modified Arrhenius function. DtNUP, selected 
in the GPP LMM, contributed no additional explanatory power in  
all GAMMs.

The variance weighting substantially reduced residual hetero-
scedasticity across all Fc, with the scale estimate reduced by ~95% 
and adjusted R² (R2

adj) reduced by 0.06–0.11 in weighted compared 
with unweighted final GAMMs, indicating improved model stabil-
ity through decreased overfitting to high-variance observations 
(Supplementary Table 4 and Extended Data Fig. 2). Figure 3, right 
panels, shows weighted GAMM estimates of relative changes in each 

Fc across gradients of ALAN intensity and ND. Partial effect surfaces 
illustrating nonlinear ALAN × ND interactions at half-hourly timescales 
are presented in Extended Data Fig. 3, along with residual diagnostics 
indicating no substantial autocorrelation after model fitting.

LMMs and GAMMs fitted to mean daily NEE, GPP and Re yielded 
more consistent trends compared with models fitted to half-hourly 
observations. All daily LMMs and GAMMs identified GS and ND as  
significant predictors, with the GPP LMM selecting DtNUP and the Re 
LMM selecting ALAN as explanatory variables (Supplementary Tables 6 
and 7). All of the daily GAMMs selected the smooth tensor product 
between ALAN and ND (Supplementary Tables 8 and 9). Compared 
with the half-hourly models, the daily GAMMs exhibited smoother 
and more monotonic relationships between ALAN and Fc, reflecting 
the reduction in diel and short-term variability through temporal 
aggregation (Extended Data Fig. 4). Temporal aggregation led to 
clearer trends in predicted relative changes in Fc across gradients of 
ALAN intensity (Fig. 4), in contrast to more variable patterns in the 
half-hourly GAMM predictions (Fig. 3c,f,i). Notably, whereas ALAN 
consistently increased Re in half-hourly GAMMs and particularly dur-
ing short nights (Fig. 3h,i), the daily GAMMs showed a contrasting 
pattern, with Re increasing most with ALAN intensity during longer 
nights (Fig. 4c,f). This divergence demonstrates how the aggregation 
of diel variability can modify the apparent direction and magnitude 
of ALAN effects on Fc. The partial effect surfaces from daily models 
showed more regular gradients and reduced nonlinear complexity, 
whereas residual autocorrelation was minimal, supporting the suit-
ability of daily models for capturing net ALAN effects on ecosystem 
metabolism (Extended Data Fig. 5).

The role of ALAN along with longer-term drivers of ecosystem 
metabolism was evaluated by constructing a piecewise structural 
equation model (SEM) integrating multiple exogenous predictors and 
hypothesized mediation pathways. The final SEM incorporated GS 
length, ALAN intensity and climatic variables including SW, VPD and T, 
along with the urban metric DtNUP (Fig. 5a). The modified Arrhenius 
function was not selected, reflecting how annual temporal aggregation 
reduces positive and negative deviations in fundamental constraints 
compared with short-term flux variability. The aggregated measures 
of ND were also not selected, with phenological drivers such as GS 
length more important at annual timescales (Supplementary Table 10). 
The mediation analysis, using nonparametric bootstrap resampling 
to quantify both direct and indirect effects of GS length and indirect 
effects of ALAN on NEE, supports the inference that the influence 
of ALAN on ecosystem metabolism is primarily mediated through 
increased Re (Fig. 5b). The influence of GS length on NEE was signifi-
cantly mediated through increased GPP (Fig. 5b). The leave-one-out 
sensitivity analysis of the SEM indicated that no alternative model 
performed better than the full model (Supplementary Table 11). Nota-
bly, the exclusion of ALAN, DtNUP, VPD or GS length led to significant 
declines in model performance, reflecting the importance of these 
predictors in explaining the interannual variation in ecosystem meta
bolism (Fig. 5c).

To ensure our data analysis was robust to site bias across ALAN 
intensities (17, 22 and 47 sites at high, medium and low ALAN intensi-
ties, respectively, and 34 sites in North America and 52 sites in Europe), 
we repeated all GAMM and SEM analyses using a balanced dataset with 
an equal representation of low, medium and high ALAN intensity sites 
per continent (Extended Data Figs. 6–9). The models fitted to the bal-
anced dataset showed consistently significant nonlinear interactions 
between ALAN and ND across temporal scales (Extended Data Fig. 6), 
and the annual SEM retained the core structure of ALAN indirectly 
influencing NEE through increased Re (Extended Data Fig. 9). Whereas 
several weaker interactions (for example Re ~ T and NEE ~ GS length) 
were no longer significant owing to reduced sample size, the SEM 
retained dominant pathways, and the overall explanatory power was 
comparable (R2

m = 0.64, R2
c = 0.70 for NEE). Notably, the standardized 
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Fig. 2 | Ecosystem carbon flux dependence on modified Arrhenius constraints 
and the effect of ALAN. a,c,e, The symbols are half-hourly FLUXNET2015 
measurements for NEE (gold symbols) (a), daytime GPP (blue symbols) (c) 
and nighttime Re (magenta symbols) (e) for 86 sites across North America and 
Europe. The linear regression lines in a, c and e indicate fixed-effect relationships 
of fundamental constraints on ecosystem carbon fluxes according to the 
modified Arrhenius function (null models as in equation (1)). b,d,f, The box 
plots display the distribution of measured fluxes across bins of the modified 
Arrhenius function (axes labels and units in b, d and f are the same as in a, c and e, 
respectively) grouped by ALAN intensity to illustrate variation in carbon fluxes 
relative to energetic constraints as a function of ALAN. The boxes represent 
interquartile ranges (IQR), the horizontal lines denote medians, the whiskers 
extend to 1.5 × IQR and the points indicate outliers.
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coefficients strengthened between ALAN ~ Re and Re ~ NEE when the 
SEM was fitted to the balanced dataset. Our observed ALAN effects on 
ecosystem metabolism are therefore robust to spatial imbalances in 
ALAN intensity across FLUXNET2015 site distribution.

Our study provides cross-continental evidence of ALAN’s influence 
on ecosystem metabolism across timescales. We demonstrate that 
ALAN consistently modifies the relationship between Fc and their fun-
damental energetic constraints (Figs. 2–4). The Re response to funda-
mental constraints was particularly sensitive to ALAN intensity at short 
(half-hourly and daily) timescales (Fig. 2 and Supplementary Tables 2 
and 6). Alongside Re, GPP and NEE exhibited significant nonlinear inter-
actions between ND and ALAN intensity, revealing the importance of 
ALAN magnitude and timing in modulating ecosystem metabolism 
across scales (Figs. 3 and 4). At annual timescales, the influence of ALAN 
on NEE was primarily mediated through increased Re rather than the 
direct suppression of GPP (Fig. 5). Taken together, our findings dem-
onstrate the role of ALAN as a pervasive stressor capable of disrupting 
carbon balance across spatial and temporal scales.

The nonlinear influence of ALAN on ecosystem metabolism was 
strongly modulated by diel cycles and seasonality, demonstrating the 
importance of phenological dynamics34 and biogeochemical feedbacks 
in shaping long-term carbon balance35. The temporal aggregation led 
to notable shifts in the strength and direction of ALAN effects on Re, 
whereas GPP and NEE displayed more consistent nonlinear responses to 
ND across timescales (Figs. 3 and 4). At the half-hourly resolution, short 
nights showed the strongest ALAN-induced increases in Re (Fig. 3h,i), 
reflecting immediate physiological and microbial responses such as 
prolonged stomatal opening36, sustained leaf dark respiration37 and 
elevated microbial decomposition under disrupted circadian regula-
tion38. By contrast, daily mean nighttime Re estimates indicated larger 
ALAN-related increases during longer nights (Fig. 4f), demonstrat-
ing how aggregation dampens short-term variability while revealing 
broader shifts in Re across longer nights. GPP exhibited consistent 
positive or nonlinear ALAN effects across timescales (Figs. 3 and 4), 
probably driven by nocturnal illumination extending photosynthetic 
activity at medium ALAN intensities39,40. Temporal scale and ND thus 
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of observed fluxes (Supplementary Table 4 and Extended Data Fig. 2). b, e and h 
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collectively shape ALAN’s ecological impact, whereas diel averaging can 
obscure short-lived physiological responses while reflecting cumula-
tive nighttime effects.

Re exhibited greater sensitivity to ALAN than GPP across time-
scales (Figs. 2 and 3 and Supplementary Tables 2–11), and the SEM 
confirmed that ALAN primarily influences NEE indirectly via increased 
Re at annual timescales (Fig. 5). The destabilizing effect of ALAN on 
production-respiration coupling will arise from shifts in multiple auto-
trophic and heterotrophic processes controlling carbon allocation and 
use efficiency17,38. The greater Re sensitivity may reflect a higher capac-
ity of autotrophs to acclimate to ALAN through conservative growth 
strategies such as increased shoot-to-root ratios20,41. In ecosystems 
dominated by C3 plants, for instance, prolonged ALAN exposure can 
disrupt circadian regulation and prolong stomatal opening, reduc-
ing carbon uptake efficiency, increasing mortality and senescence, 
and leading to reduced GPP over time42,43. Such trophic mismatches 
and shifts in carbon allocation are likely to accumulate across levels 
of biological organization, space and time44,45, leading to progressive 
declines in NEE in illuminated ecosystems.

The ecological impacts of ALAN have primarily been examined 
at local scales6,17, but landscape-scale factors will confound or amplify 
these localized effects2. Urban proximity influenced GPP in our analy-
sis, whereas ALAN directly influenced Re (Fig. 5), suggesting distinct 
pathways through which nighttime lighting and urban characteristics 
modify ecosystem metabolism. Balancing sites across low, medium and 
high ALAN intensities further indicates potentially stronger mediat-
ing effects of ALAN on NEE via Re (Extended Data Fig. 9). Despite the 
pervasive nature of light pollution, ALAN remains overlooked in ESM 
carbon–climate projections that otherwise account for climate and 
land use changes. Current observational data, however, do not enable 
the disentangling of the contribution of ALAN relative to sunlight in 
shaping Fc, and future targeted experimental studies will be needed 
to resolve these relationships.

Global eddy covariance networks such as FLUXNET are vital for 
monitoring ecosystem metabolism across diverse climates and land 
use types, but they are typically biased towards temperate regions, 
seminatural landscapes and dark skies (Extended Data Fig. 1). Urban 
flux towers are particularly scarce, and although networks such 
as Urban PLUMBER have been established, they do not measure Fc  
(ref. 46). Similarly, available nighttime light satellite products used 
here (Visible Infrared Imaging Radiometer Suite (VIIRS) and Defence 
Meteorological Satellite Programme (DMSP)) are coarse in spatial 
resolution, are insensitive to blue light emitted by white light-emitting 
diode (LED) lighting47 and cannot fully capture local heterogeneity in 
ALAN exposure at flux tower sites.

Enhanced satellite sensors with improved spectral and spatial 
resolution would advance ALAN monitoring2, but ground-based meas-
urements are also needed to capture how cloud cover exacerbates or 
reduces skyglow (brightening of the night sky) in high or low ALAN 
intensity areas, respectively48. The coordinated expansion of eddy 
covariance flux tower networks along with complementary measure-
ments, such as chamber-based respiration estimates and isotopic 
tracers, will be critical to disentangle the mechanisms by which ALAN 
alters ecosystem metabolism. Expanding ecosystem-level Fc measure-
ments into urbanized, tropical, arid and high-latitude regions is vital 
to evaluate the global relevance of ALAN impacts on carbon cycling. 
While monitoring is essential, mitigation is also readily achievable.

Artificial light is ubiquitous and often beneficial, but the negative 
ecological effects of light pollution can be reduced while balancing 
societal benefits. Retrofitting LED lighting can reduce light pollution5, 
but it often results in over-illumination due to their higher efficiency49. 
Given that lighting accounts for 20% of global electricity consumption 
and 6% of CO2 emissions50 and can exacerbate degraded air quality51,52, 
mitigation interventions such as directional, dimmable and adaptive 
lighting designs2 offer wider cobenefits. Unlike climate and land use 

change, the effects of light pollution could be mitigated overnight53. 
Our study demonstrates the pervasive influence of light pollution 
on ecosystem metabolism across scales and highlights the urgent 
need to integrate ALAN into global change research, assessments of 
carbon–climate feedbacks and mitigation strategies. Developing a 
higher resolution understanding of species, community and ecosystem 
sensitivity to ALAN will be central to designing interventions that both 
safeguard biodiversity and preserve the land carbon sink.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
We combined satellite-derived ALAN intensity metrics with eddy 
covariance flux measurements from 86 FLUXNET2015 sites in North 
America and Europe. The analyses were conducted at half-hourly, daily 
and annual timescales to capture short-term physiological responses, 
aggregated diel patterns and long-term ecosystem dynamics. All Fc 
(NEE, GPP and Re) were first evaluated against their fundamental ener-
getic constraints of T and SW according to the modified Arrhenius 
function (equation (1)) using LMMs. To explore nonlinear interactions, 
we then applied GAMMs which allow the flexible estimation of smooth 
terms. At annual timescales, we used piecewise SEM to account for col-
linearity among multiple drivers and to partition direct and indirect 
effects of ALAN, GS length and climatic variables on Fc. This hierarchi-
cal modelling framework enabled the consistent evaluation of ALAN 
effects across temporal scales.

Global harmonized nighttime light dataset
The Day/Night Band of the VIIRS is the only satellite radiometer cur-
rently acquiring imagery of the Earth at night, providing single-band 
nightscapes at a resolution of 750 m since 2012 across the globe. Prior 
global nightscapes were monitored by DMSP–Operational Linescan 
System (OLS) at a resolution of 1 km between 1992 and 2013. A harmo-
nized global nighttime light dataset, developed by Li et al.32, provides 
a consistent annual time-series of overall luminance between 1992 and 
2018 at ~1 km resolution through the intercalibration of DMSP-like DN 
values. The DNs for all FLUXNET2015 sites (see below) and site years 
were derived from the harmonized dataset of Li et al.32. The low DN 
sites (DN <10) were cross-checked in Google Earth for each site year to 
verify low DN values reflected remote locations by noting distances to 
the nearest built-up area in QGIS (version 3.30.3). The satellite-derived 
DN values from DMSP–Operational Linescan System and VIIRS repre-
sent relative radiance indices and cannot be directly converted into 
absolute illuminance units such as lux, as they do not capture spectral 
composition or ground-level variability54. The ALAN categories used 
here should thus be interpreted as relative exposure gradients rather 
than specific ecological thresholds.

FLUXNET dataset and site selection
FLUXNET is a global network of micrometeorological sites provid-
ing eddy covariance CO2 exchange observations between terrestrial 
ecosystems and the atmosphere30. The FLUXNET2015 dataset used 
in this study includes measurements from 210 eddy covariance flux 
towers across the globe30. A total of five tier-2 sites and two arctic 
sites outside the latitudinal range of the global nighttime light dataset 
(latitude >75° N) were excluded. Originally, DNs from the harmonized 
nighttime light dataset were extracted for 203 FLUXNET2015 sites from 
1992 to 2014 (1,474 site years) (Extended Data Fig. 1). The 203 sites were 
composed of 1,116 low (DN <10), 243 medium (DN ≥ 10 < 30) and 115 
high (DN >30) ALAN intensity site years. Only one high ALAN intensity 
FLUXNET2015 site ( JP-SMF) was located outside of North America or 
Europe, with no replication of low ALAN intensity sites in a 2° latitudinal 
or longitudinal range. The site selection was therefore restricted to 
North America and Europe to reduce noise from additional climatic 
and ecosystem properties at low ALAN intensity FLUXNET2015 sites 
globally. Within both North America and Europe, the latitudinal and 
longitudinal ranges of selected FLUXNET2015 sites were based on the 
presence of medium or high ALAN intensity sites at 2° intervals (Fig. 1 
and Supplementary Table 1).

Disentangling respiration and photosynthesis fluxes during the 
day is complex and relies on modelling techniques with high uncer-
tainty, particularly under low turbulence or during transitional periods 
around dawn and dusk. The FLUXNET2015 dataset undergoes process-
ing to check data quality, filter low turbulence periods and CO2 flux 
partitioning into respiration and photosynthesis using established 
methods30. The measurements were compiled from the FLUXNET2015 

dataset55, which in this study includes non-gap-filled half-hourly and 
annual air temperature (TA_F), incoming shortwave (SW_IN_F), NEE 
(NEE_VUT), nighttime Re (RECO_NT) and daytime GPP (GPP_DT) meas-
urements for 86 sites across 623 site years. Along with the use of night-
time Re and daytime GPP, the half-hourly data were filtered for Re by 
selecting timepoints with GPP <0.001 µmol CO2 m−2 s−1 and outgoing 
SW greater than incoming SW and vice versa for daytime GPP.

Additional environmental and urban variables were derived to 
check for confounding effects, including half-hourly and annual VPD 
(VPD_F) and P (P_F) from FLUXNET2015. Urban metrics pULC_3km, 
pULC_10km and DtNUP were calculated by quantifying the proportion 
of land cover classified as urban within 3- and 10-km buffers around 
each site, using the ESA CCI Land Cover dataset, and computing the 
Euclidean distance (km) from the site centroid to the nearest urban 
polygon in the Copernicus Urban Centre Database56. To account for 
latitudinal and climatic variation in phenology across the 86 sites, 
GS was classified using site-specific 25th percentiles of daily GPP per 
site year. GPP measurements above the 25th percentile threshold was 
classified as occurring within the GS, and other observations were 
classified as non-GS. To avoid classifying transient periods of activity 
as part of the GS, we implemented a hybrid phenological rule requiring 
≥5 consecutive candidate days for GS initiation, and ≥5 consecutive 
non-GS days to mark the GS finish. To estimate the daily duration of 
night at each study site, we calculated the time between astronomical 
sunset and sunrise (UTC) using site-specific latitude, longitude and 
observation dates using the suncalc package. The ND was calculated 
as the time in hours elapsed between sunset on a given day and sunrise 
on the following day.

Model analysis
All model analyses were conducted in R statistical software (version 
4.2.2)57. The null models (equation (1)) describe the relationship 
between Fc (NEE, GPP and Re) and their fundamental constraints (SW 
and T) according to a modified Arrhenius function12. Unlike alterna-
tive functions such as those used in metabolic ecology26, the modi-
fied Arrhenius function enables the exploration of NEE, GPP and Re 
according to a single measure of shared fundamental constraints and 
analysis of untransformed Fc measurements. The null models for NEE, 
GPP and Re according to equation (1) were fitted to half-hourly, daily 
and annual FLUXNET2015 measurements, with LMMs and GAMMs 
applied to half-hourly and daily measurements and an SEM developed 
for annual timescales.

LMMs
First, LMMs were incrementally tested for each carbon flux and explana-
tory variable: continent (North America and Europe), climate (boreal, 
temperate and Mediterranean), International Geosphere–Biosphere 
Programme land use classifications (CRO, CSH, DBF, EBF, ENF, GRA, 
MF and WET), GS (Y and N), ND (hours), month, hour of the day, VPD, P, 
pULC_3km, pULC_10km, DtNUP and ALAN. FLUXNET2015 site (n = 86) 
and latitude (n = 80) were included as random effects to account for 
spatial clustering. The model selection thresholds (ΔAICdf <−5 and 
ΔR2

mdf >0.01) ensured that any increase in explanatory power was pro-
portionate to model complexity and prevented LMM overfitting by only 
relying on ΔAIC selection criteria. The bootstrapped 95% confidence 
intervals for LMM marginal and conditional R2 fits were computed 
by resampling model residuals using 500 semiparametric bootstrap 
replicates. For the half-hourly datasets (4–10 million observations) 
we used random 10% subsamples to provide reliable estimates while 
avoiding computational limitations inherent in very large datasets.

GAMMs
GAMMs were used to explore nonlinear relationships and interactions 
between variables, with initial GAMMs including variables identified 
as potentially important in the LMMs for the temporal resolution 
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(half-hourly and daily) under consideration. The smooth terms were 
specified for continuous explanatory variables, and the categorical 
variables were treated as parametric effects. The tensor product inter-
actions and stratification of categorical variables were also tested 
where ecologically feasible, and FLUXNET2015 site and latitude were 
included as random smooth terms. All final GAMMs identified lati-
tude as a redundant random effect, defined statistically as a lack of 
improvement in model fit and a concurvity value of 1, indicating com-
plete collinearity with other smooth terms. We use a backward selec-
tion approach to sequentially simplify the initial models, with GAMM 
selection based on a combination of penalized likelihood (fREML), 
R2

adj, deviance explained (%) and approximate significance of smooth 
terms. We did not apply R2

adj per df thresholds as with LMMs, as GAMMs 
inherently penalize smooth term complexity during estimation to 
optimize effective df.

To address the risk of overfitting and concurvity (collinearity 
between smooth terms), we evaluated GAMM diagnostics and smooth 
terms exhibiting high concurvity values (>0.8) were identified as 
potentially redundant. Preference during model selection was given 
to simpler models that retained comparable, although usually lower, 
explanatory power while reducing concurvity. Additional explana-
tory variables were then reintroduced to the final backward selected 
GAMMs to compare model performance. Finally, heteroscedasticity 
(non-constant residual variance) in the final GAMMs was accounted for 
by comparing the final selected GAMMs to variance-weighted GAMMs, 
which provide lower weight to observations associated with higher 
residual variance. Model performance and smooth term significance 
were compared between the unweighted and weighted GAMMs to 
ensure robust evidence for the selected explanatory variables. For 
all GAMMs, residual autocorrelation was evaluated using partial 
autocorrelation functions.

SEM
To investigate the relationships between environmental drivers and 
annual NEE, GPP and Re, we developed a piecewise SEM comprising 
three linked LMMs, including NEE ~ GPP + Re, GPP ~ SW and Re ~ GPP + T 
and testing additional exogenous predictors (GS length, mean ND, 
VPD, P, ALAN, pULC_3km, pULC_10km and DtNUP). The annual dataset 
included 605 site years across 84 sites after excluding site years with 
missing variables. Both LMMs and GAMMs were evaluated for compo-
nent models. Given the relatively small sample size, GAMMs presented 
a higher risk of overfitting and unstable smooth functions at the annual 
timescale. The annual aggregation of Fc measurements also inherently 
smoothed diel and seasonal nonlinearities observed in half-hourly 
and daily measurements. Exploratory diagnostics further indicated 
that annual relationships were approximately linear, supporting the 
use of LMMs as a parsimonious framework capable of accounting for 
site-level random intercepts while estimating fixed effects on annual 
Fc. The SEMs included residual covariance terms among exogenous 
predictors to account for collinearity, and model fit between SEM’s 
was evaluated through Fisher’s C and P, AIC and df and marginal and 
conditional R2 for NEE, GPP and Re.

The mediation pathways in the final SEM quantified the indirect 
effect of GS length on NEE via GPP and the indirect effect of ALAN 
on NEE via Re. The uncertainty in direct and indirect effects was esti-
mated through nonparametric bootstrap resampling (1,000 itera-
tions). In each iteration, the three component LMMs were refitted 
on a bootstrap-resampled dataset with replacement, and indirect 
effects were calculated as the product of relevant path coefficients. 
Percentile bootstrap confidence intervals (95%) were derived for each 
estimated effect and considered significant if they did not overlap zero. 
The relative importance of each exogenous predictor in the final SEM 
was inferred through a leave-one-out sensitivity analysis, in which 
each variable was removed in turn and the reduced SEM fit compared, 
rather than absolute effect sizes. The model fit for each alternative 

SEM specification fitted to the same dataset was compared with the 
full model, with higher model sensitivity indicated by a significantly 
poorer fit (P < 0.05), higher AIC, or reduced explanatory power (R2

m and 
R2

c for NEE, GPP and Re) relative to the final selected SEM.

Sensitivity analysis
The sensitivity of models to the composition of FLUXNET2015 sites 
was evaluated by generating a balanced, stratified subset of the full 
dataset with equal representation of low, medium and high ALAN 
intensity sites across both continents at half-hourly, daily and annual 
timescales. A random sample of sites equal to the stratum with the 
fewest available sites (high ALAN sites in North America, n = 4) 
was selected without replacement from each stratum (4 × 2 conti-
nents × 3 ALAN intensity groups = 24 sites in the balanced dataset). 
The half-hourly and daily GAMMs and the annual SEM were refitted 
to the balanced dataset using the same model specification in the 
main analysis.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The FLUXNET2015 data analysed in this study are available at https://
fluxnet.fluxdata.org/data/fluxnet2015-dataset/ (ref. 55) and are subject 
to the FLUXNET data policy (https://fluxnet.org/data/data-policy). 
As the redistribution of raw half-hourly flux data is not permitted, 
we provide only derived products, including daily and annual sum-
maries, processed variables and model outputs, which are available 
under a CC-BY 4.0 license via Figshare at https://doi.org/10.6084/
m9.figshare.29958455 (ref. 58). The ALAN metrics used here are avail-
able at https://doi.org/10.3390/rs9060637 (ref. 32). Summaries for 
each FLUXNET site are also provided in Supplementary Table 1.

Code availability
The R code used for data processing and analysis in this study is avail-
able via Figshare at https://doi.org/10.6084/m9.figshare.29958455 
(ref. 58).
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Extended Data Fig. 1 | Global distribution of FLUXNET2015 sites across 
artificial light intensity gradients. White symbols indicate FLUXNET2015 sites 
within the latitudinal range of the harmonised nighttime light map (n = 203, see 
Methods). Panel a) shows number of sites and b) shows artificial light at night 
(ALAN) digital number (DN) averaged over site years, plotted against latitude. 
Bar and symbol colours in a) and b) indicate low (DN < 10), medium (DN ≥ 10 ≤ 30) 

and high (DN > 30) ALAN intensities. Sites for analysis in this study were selected 
based on replication of FLUXNET2015 sites across high, medium and low ALAN 
intensities (Fig. 1 in the main text, see Methods). Basemap generated with QGIS 
using the harmonized global nighttime light dataset32 under a Creative Commons 
license CC BY 4.0.
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Extended Data Fig. 2 | Residual diagnostics for unweighted and weighted 
GAMMs of half-hourly carbon fluxes. Final unweighted GAMMs (red symbols 
and lines) and weighted GAMMs (black symbols and lines) were fitted to half-
hourly flux observations (see Supplementary Table 4) for a, b) NEE, c, d) GPP,  
e, f) Re. The left-hand panel (a, c, e) show GAMM residuals plotted against mean 

fitted values, with fitted loess lines. The right-hand panel (b, d, f) show residual 
variance by fitted value bins, indicating a reduction in heteroscedasticity across 
the range of predicted values in the weighted GAMMs (black symbols and lines), 
presented in Fig. 3 and Supplementary Table 5.

http://www.nature.com/natureclimatechange
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Extended Data Fig. 3 | Partial effect surfaces and residual autocorrelation 
for half-hourly GAMMs. Final weighted half-hourly GAMMs for a, b) NEE, c, d) 
GPP and e, f) Re are shown. Partial effect surfaces (a, c, e) display the estimated 
tensor-product smooth interaction between ALAN and night duration, as derived 
from the final GAMMs in Supplementary Table 5. Panels b, d and e show partial 

autocorrelation functions of the model residuals (at hourly lags), indicating the 
degree of remaining temporal autocorrelation after model fitting. Dashed blue 
lines represent approximate 95% confidence intervals for the null hypothesis of 
white noise.

http://www.nature.com/natureclimatechange
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Extended Data Fig. 4 | Predicted conditional smooths of daily GAMMs for 
carbon fluxes during growing and non-growing seasons. Panels show:  
a, b) NEE, c, d) GPP and e, f) Re in the growing season (a, c, e) and non-growing 
season (b, d, f) (Supplementary Table 9). Smooth curves illustrate the  

tensor-product interaction between ALAN and night duration (ND, coloured 
lines: 9, 12 and 15 h, with shaded ribbons representing mean predictions ±95% 
confidence intervals).

http://www.nature.com/natureclimatechange
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Extended Data Fig. 5 | Partial effect surfaces and residual autocorrelation  
for daily GAMMs of carbon fluxes. Final variance-weighted daily GAMMs  
for a, b) NEE, c, d) GPP and e, f) Re are shown. Partial effect surfaces (a, c, e) display 
the estimated tensor-product smooth interaction between ALAN and night 
duration, as derived from the final GAMMs in Supplementary Table 9. Panels  

b, d and e show partial autocorrelation functions of the model residuals (at day 
of the month lags), indicating the degree of remaining temporal autocorrelation 
after model fitting. Dashed blue lines represent approximate 95% confidence 
intervals for the null hypothesis of white noise.

http://www.nature.com/natureclimatechange
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Extended Data Fig. 6 | Balanced dataset GAMM predictions of half-hourly and 
daily carbon flux responses to ALAN and night duration. Variance-weighted 
GAMMs were fitted to the balanced ALAN intensity dataset, comprising an equal 
number of sites (n = 4 each in low, medium, and high ALAN intensity categories 
per continent). Panels (a–c) show predicted relative changes in half-hourly (a-c) 

and mean daily (d-f) carbon fluxes for NEE (a, d), GPP (b, e), Re (c, f) as a function 
of ALAN (DN) intensity. Coloured lines represent night duration (ND) categories 
of 9, 12, and 15 h, with shaded ribbons representing mean predictions ±95% 
confidence intervals. The horizontal dashed line denotes zero relative change.

http://www.nature.com/natureclimatechange


Nature Climate Change

Article https://doi.org/10.1038/s41558-025-02481-0

Extended Data Fig. 7 | Distributions of mean daily carbon fluxes in the 
balanced versus full datasets. The balanced dataset represents equal 
distribution of sites in ALAN intensity groups (n = 34,351 across 24 sites) 
compared to the full dataset (n = 231,598 across 86 sites). Boxplots for (a, b)  
NEE, (c, d) GPP, and (e, f) Re are stratified by growing season (N: non-growing 

season, Y: growing season) and grouped according to (left: a, c, e) ALAN 
intensities or (right: b, d, f) Night Duration (ND). Boxes represent interquartile 
ranges (IQR), horizontal lines denote medians, whiskers extend to 1.5 × IQR, and 
points indicate outliers.

http://www.nature.com/natureclimatechange
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Extended Data Fig. 8 | Comparison of annual carbon fluxes and correlations 
with environmental variables in full and balanced datasets. Panels show 
annual: a) NEE, b) GPP and c) Re grouped by ALAN intensity. Boxes (a-c) represent 
interquartile ranges (IQR), horizontal lines indicate medians, whiskers extend 
to 1.5 × IQR, and points denote outliers for the balanced dataset (with equal 
representation of sites across ALAN intensity groups, n = 120) and the full dataset 

(n = 605). Correlation matrices between annual environmental and urban 
variables with carbon fluxes are shown for (d) the balanced dataset and (e) the 
full dataset. Pearson correlation coefficients are shown, with colour intensity 
indicating the strength (lighter: weaker, darker: stronger correlation) and 
direction (red: positive, blue: negative, white: none) of correlations.

http://www.nature.com/natureclimatechange
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Extended Data Fig. 9 | Sensitivity analysis of annual structural equation 
models fitted to the balanced dataset. Panel (a) illustrates the original 
structural equation model (SEM) structure (Fig. 5, fitted to the full dataset). 
The balanced dataset yielded an acceptable SEM fit to the original model in (a) 
Fisher’s C = 25.05, P = 0.199, df = 20, n = 120, AIC = 4,939, R2

m = 0.64, R2
c = 0.71 (NEE) 

but interactions between GPP ~ SW + DtNUP, Re ~ T + VPD, and NEE ~ GS Length 
were no longer significant (p > 0.05, red lines in a). Retained pathways  
(blue lines in a) were fitted to the balanced dataset alongside Re ~ GS Length, 
which was identified as a missing pathway in the balanced SEM. Standardized 

path coefficients are shown for the balanced SEM in (b), adjacent to arrows with 
line thickness indicating the relative strength of relationships. Significance 
levels for path coefficients (solid black arrows in b), p < 0.0001: ****, p < 0.001  
***, p < 0.01 **, p < 0.05 *) are based on two-sided tests, with no multiple 
comparison adjustments. The refitted SEM to the balanced dataset (b) had  
a better global fit (SEM diagnostics shown in plot) than (a) but yielded a  
higher AIC due to the original SEM in (a) having better explanatory power for  
Re (a: R2

m = 0.51; b: R2
m = 0.38).

http://www.nature.com/natureclimatechange
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