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Artificial light pollutionis increasing worldwide with pervasive effects
onecosystem structure and function, yet its influence on ecosystem
metabolism remains largely unknown. Here we combine artificial light at

night (ALAN) intensity metrics with eddy covariance observations across
86 sitesin North America and Europe to show that ALAN indirectly decreases
annual net ecosystem exchange by enhancing ecosystem respiration (R,).
At half-hourly and daily scales, we detect consistent nonlinear interactions
between ALAN and night duration, with R, increasing under higher ALAN
and partially decoupling from gross primary production. At the annual
scale, gross primary production shows no direct ALAN response and is
instead influenced by the growing season length and urban proximity,
whereas R, responds more strongly and consistently across timescales.
Our findings show that ALAN disrupts the fundamental energetic
constraints on ecosystem metabolism, warranting the inclusion of light
pollutionin global change and carbon-climate feedback assessments.

Artificial light pollution is accelerating across the globe'*and has wide-
spread consequences for people®* and the planet®”. Shifts in the lumi-
nance and spectral composition of the nocturnal environment modify
the physiology, behaviour and ecological interactions of organisms’™",
which together play a fundamental role in ecosystem metabolism'>".
Ecosystem metabolism, comprising gross primary production (GPP)
and ecosystemrespiration (R,), directs the magnitude and direction of
carbon-climate feedbacks via net ecosystem exchange (NEE)™. Around
one quarter of global terrestrial ecosystems are exposed to artificial
light at night (ALAN)", but the effects on ecosystem metabolism are
currently unknown.

Changing daily and seasonal cycles of light and dark'® could
decouple the timing of biological processes across trophic networks™®.
Trophic groups are also exposed to ALAN at different intensities and
have varying sensitivities to luminance and spectral composition”.
Plant responses to photoperiod are influenced even at low ALAN
intensities'®", and longer-term exposure influences seasonal phe-
nology, growth form, resource allocation and, thus, potentially car-
bon fixation®®. High ALAN intensity exposure in urban areas disrupts
the behavioural patterns of nocturnally migrating birds* and plant
diversity?? and restructures soil microbial communities, reducing the
functional genes involved in nutrient regulation and plant health®.

Together, the observed effects of ALAN across levels of biological
organization and diverse taxa suggest a potential cascading impact on
ecosystem structure and function. Previous studies of ALAN effects,
however, have focused onlocal or experimental manipulations, leav-
ing uncertainty about whether ALAN effects persist at the ecosystem
level and longer timescales.

GPP and R, are fundamentally constrained by shortwave (solar)
radiation (SW) and temperature (7), respectively** 2. That is, SW
determines the direction and duration of energy flow between the
atmosphere and ecosystems, and T determines the rate of reactions'.
Although ALANis not expected toinfluence SW or T directly, artificial
light could disrupt the processing of energy according to these fun-
damental constraints via acclimation, compensation and adaptation
strategies””®, Abetter understanding of the magnitude and direction of
ALAN effects on ecosystem metabolism could help constrain carbon-
climate processesin Earth system models (ESMs)*. Specifically, largely
uncertain ESM processes and their response to climatic factors could
be compounded by the chronic effects of pervasive anthropogenic
stressors, suchas ALAN.

Global efforts to measure carbon exchange across diverse ecosys-
tems** combined with satellite observations of ALAN distributionand
intensity across the land surface®* enable the exploration of artificial
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Fig. 1| Distribution of flux tower sites across artificial light intensity in North
Americaand Europe. a,d, The location of 86 eddy covariance flux tower sites
from FLUXNET2015 (symbols, colours indicate ALAN intensity according to DN
(higher values represent greater luminance of light at night) (asind) displayed
over a harmonized global nighttime light map for 2012 (for visualization

only) inNorth America (n =34) (a) and Europe (n = 52) (d). b,e, The latitudinal
distribution of sites with different ALAN intensities for North America (b) and for
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indicating number of site years (range: 1-20 years per site between 1992 and
2014, total site yearsin cis 211and in fis 412). Basemaps in a and d were generated
with QGIS using the harmonized global nighttime light dataset® under a Creative
Commons license CC BY 4.0.

light’sinfluence onterrestrial ecosystem metabolism. Here, we leverage
the harmonized nighttime light dataset of Lietal.*?and eddy covariance
observations from FLUXNET2015% to investigate the instantaneous
and aggregated influence of ALAN on ecosystem-scale NEE, GPP and
R. fluxes. Although both datasets have global coverage, the location
of eddy covariance flux towers are biased towards dark sky regions
(Extended DataFig.1). Following definitions by Li et al.>’ and others™®,
we use three digital number (DN, higher values represent greater
luminance of light at night; Methods) groups representative of low
(DN <10), medium (DN =10 < 30) and high (=30, representative of urban
boundaries) ALAN intensity to identify regions with FLUXNET2015 sites
across a range of ALAN intensities. North America and Europe were
the only regions, globally, with more than one high ALAN intensity
FLUXNET2015 site (Methods; Fig. 1a,d). Within both North America
and Europe, sites were selected on the basis of latitudinal ranges at
which medium or high ALAN intensity sites were present (Fig. 1b,e)
to minimize climatic factors in higher or lower latitude sites being
ascribed to low ALAN intensities. In total, 86 FLUXNET2015 sites were
selected, 34 sites in North America (4, 5 and 25 sites at high, medium
and low ALAN intensities, respectively) and 52 sites in Europe (13,17
and 22 sites at high, medium and low ALAN intensities, respectively)
(Methods; Fig.1and Supplementary Table 1). Despite regional imbal-
ances in FLUXNET2015 site distribution across ALAN intensity levels,
the dataset captures adiverse range of ALAN intensities across temper-
ateregions experiencing similar seasonal fluctuationsin 7and SW.

Todetect the potential influence of ALAN on ecosystem metabo-
lism, we investigate half-hourly and mean daily ecosystem carbon
fluxes (F.; F.: NEE, GPP and R,) measurements against their funda-
mental constraints, Tand SW, according to the modified Arrhenius
equation of Weyhenmeyer':

—SwW
F.= T‘&)eWkFC - b, )

where F, is ecosystem C flux (NEE, GPP, R,) (in umol CO? m™2s™), Tis tem-
peratureinKelvin, ois the Stefan-Boltzmann constant (in) m2sK™)
(5.67 x1078), SW is incoming SW (inJ m2s™,) k.. is the slope of the
linear relationship and b is the intercept. The function establishes a
biophysically grounded baseline for different F, by capturing their
shared fundamental constraints (7and SW). The use of the modified
Arrhenius function in this study primarily serves as acomparative
baseline rather than amechanistic model, enabling deviations attrib-
utable to chronic ALAN effects to beidentified relative to fundamental
energetic constraints.

Thenullmodels for NEE, GPP and R, were linear mixed effect mod-
els (LMMs) or generalized additive mixed models (GAMMs) fitted to
equation (1) (Methods) with FLUXNET2015 site and latitude as random
effects and fundamental constraint (ﬂoe%NJ m~s™)asafixed effect
(Fig. 2). The null models were tested against models with additional
explanatory variables, including continent, climate, International
Geosphere-Biosphere Programme land use classifications, growing
season (GS), night duration (ND, hours), vapour pressure deficit (VPD,
hectopascals), precipitation (P, millimetres), ALAN intensity (DN),
distance to nearest urban polygon (DtNUP, kilometres) and proportion
ofurbanland cover in3-and 10-km buffers around each site (pULC_3km,
pULC_10km). The LMM selection criteria for explanatory variables
followed atrade-offbetween explanatory power and parsimony, with
the condition that additional degrees of freedom (df) were accompa-
nied by lower Akaike information criteria (AIC) and higher marginal R
(R%.,) goodness-of-fit measures (AAIC4 <—5and AR?.4+>0.01 compared
withthe nullmodel (Methods; Fig. 2a,c,e). All F.LMMs selected GS; GPP
and R, LMMs selected ND; the GPP LMM selected DtNUP; and the R,
LMM selected VPD and ALAN (Supplementary Tables 2 and 3).

Backward selection and variance-weighting were applied to
GAMM s fitted to half-hourly NEE, GPP and R, observations (Methods;
Supplementary Table 4) with the explanatory variable identified in
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Fig. 2| Ecosystem carbon flux dependence on modified Arrhenius constraints
and the effect of ALAN. a,c,e, The symbols are half-hourly FLUXNET2015
measurements for NEE (gold symbols) (a), daytime GPP (blue symbols) (c)

and nighttime R, (magenta symbols) (e) for 86 sites across North America and
Europe. Thelinear regressionlinesina, c and eindicate fixed-effect relationships
of fundamental constraints on ecosystem carbon fluxes according to the
modified Arrhenius function (null models as in equation (1)). b,d,f, The box
plots display the distribution of measured fluxes across bins of the modified
Arrhenius function (axes labels and unitsinb, d and fare the same asina,cand e,
respectively) grouped by ALAN intensity to illustrate variation in carbon fluxes
relative to energetic constraints as a function of ALAN. The boxes represent
interquartile ranges (IQR), the horizontal lines denote medians, the whiskers
extend to 1.5 x IQR and the points indicate outliers.

the LMMs. In the final GAMMs, all F. retained a significant interaction
between ALAN and ND (Fig. 3 and Supplementary Table 5). Notably,
the NEE GAMM did not retain GS as a significant predictor, suggesting
that the seasonality in instantaneous NEE responses was captured by
GPP and R,, which both retained GS effects (Supplementary Table 5).
During GAMM selection, VPD (selected in the R, LMM) exhibited con-
sistently high concurvity (>0.8) with other smooth terms, includ-
ing models in which ALAN was removed, indicating substantial
collinearity with the modified Arrhenius function. DtNUP, selected
in the GPP LMM, contributed no additional explanatory power in
all GAMMs.

The variance weighting substantially reduced residual hetero-
scedasticity across all F,, with the scale estimate reduced by ~95%
and adjusted R? (R?,;) reduced by 0.06-0.11in weighted compared
with unweighted final GAMMs, indicating improved model stabil-
ity through decreased overfitting to high-variance observations
(Supplementary Table 4 and Extended Data Fig. 2). Figure 3, right
panels, shows weighted GAMM estimates of relative changes in each

F.across gradients of ALAN intensity and ND. Partial effect surfaces
illustrating nonlinear ALAN x ND interactions at half-hourly timescales
are presented in Extended DataFig. 3, along with residual diagnostics
indicating no substantial autocorrelation after model fitting.

LMMs and GAMMs fitted to mean daily NEE, GPP and R, yielded
more consistent trends compared with models fitted to half-hourly
observations. All daily LMMs and GAMMs identified GS and ND as
significant predictors, with the GPP LMM selecting DtNUP and the R,
LMMselecting ALAN as explanatory variables (Supplementary Tables 6
and 7). All of the daily GAMM s selected the smooth tensor product
between ALAN and ND (Supplementary Tables 8 and 9). Compared
with the half-hourly models, the daily GAMMs exhibited smoother
and more monotonic relationships between ALAN and F, reflecting
the reduction in diel and short-term variability through temporal
aggregation (Extended Data Fig. 4). Temporal aggregation led to
clearer trends in predicted relative changes in F. across gradients of
ALAN intensity (Fig. 4), in contrast to more variable patterns in the
half-hourly GAMM predictions (Fig. 3¢,f,i). Notably, whereas ALAN
consistently increased R, in half-hourly GAMMs and particularly dur-
ing short nights (Fig. 3h,i), the daily GAMMs showed a contrasting
pattern, with R, increasing most with ALAN intensity during longer
nights (Fig. 4¢,f). This divergence demonstrates how the aggregation
of diel variability can modify the apparent direction and magnitude
of ALAN effects on F.. The partial effect surfaces from daily models
showed more regular gradients and reduced nonlinear complexity,
whereas residual autocorrelation was minimal, supporting the suit-
ability of daily models for capturing net ALAN effects on ecosystem
metabolism (Extended Data Fig. 5).

The role of ALAN along with longer-term drivers of ecosystem
metabolism was evaluated by constructing a piecewise structural
equation model (SEM) integrating multiple exogenous predictors and
hypothesized mediation pathways. The final SEM incorporated GS
length, ALAN intensity and climatic variablesincluding SW,VPDand T,
along with the urban metric DtNUP (Fig. 5a). The modified Arrhenius
function was not selected, reflecting how annual temporal aggregation
reduces positive and negative deviations in fundamental constraints
compared with short-term flux variability. The aggregated measures
of ND were also not selected, with phenological drivers such as GS
length moreimportant atannual timescales (Supplementary Table 10).
The mediation analysis, using nonparametric bootstrap resampling
to quantify both direct and indirect effects of GS length and indirect
effects of ALAN on NEE, supports the inference that the influence
of ALAN on ecosystem metabolism is primarily mediated through
increased R, (Fig. 5b). The influence of GS length on NEE was signifi-
cantly mediated through increased GPP (Fig. 5b). The leave-one-out
sensitivity analysis of the SEM indicated that no alternative model
performed better than the full model (Supplementary Table 11). Nota-
bly, the exclusion of ALAN, DtNUP, VPD or GS length led to significant
declines in model performance, reflecting the importance of these
predictorsin explaining the interannual variation in ecosystem meta-
bolism (Fig. 5¢).

To ensure our data analysis was robust to site bias across ALAN
intensities (17, 22 and 47 sites at high, medium and low ALAN intensi-
ties, respectively, and 34 sitesin North Americaand 52 sitesin Europe),
werepeated all GAMM and SEM analyses using abalanced dataset with
anequal representation of low, medium and high ALAN intensity sites
per continent (Extended Data Figs. 6-9). The models fitted to the bal-
anced dataset showed consistently significant nonlinear interactions
between ALAN and ND across temporal scales (Extended Data Fig. 6),
and the annual SEM retained the core structure of ALAN indirectly
influencing NEE throughincreased R, (Extended DataFig.9). Whereas
several weaker interactions (for example R, ~ Tand NEE ~ GS length)
were no longer significant owing to reduced sample size, the SEM
retained dominant pathways, and the overall explanatory power was
comparable (R?,, = 0.64, R*.= 0.70 for NEE). Notably, the standardized
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Fig. 3 | Nonlinear influence of ALAN and ND on ecosystem metabolism.

a-i, GAMMs fitted to half-hourly carbon flux measurements consistently
selected smooth tensor product interactions between ALAN and ND for NEE
(a-c), GPP (d-f)and R, (g-i).a (RZadj =0.430; fREML =1.35x107),d and g show
observed versus predicted fluxes for the final variance-weighted GAMMs
(Supplementary Table 5), which account for heteroscedasticity across the range
of observed fluxes (Supplementary Table 4 and Extended Data Fig. 2).b,eand h
illustrate smooth estimates of the tensor product interaction across the gradient

of ALAN intensity and ND (coloured lines, with shaded ribbons representing
mean predictions + 95% confidence intervals). For GPP, e, and R, h, predictions
are shown separately for the GS and non-GS, whereas for NEE, b, the GS was not
selected as asignificant predictor. ¢, fand i depict GAMM-derived estimates
oftherelative change in each flux across gradients of ALAN intensity and ND,
expressed relative to ALAN = 0, with shaded areas denoting 95% confidence
intervals around the mean.

coefficients strengthened between ALAN -~ R, and R, ~ NEE when the
SEMwasfitted to the balanced dataset. Our observed ALAN effectson
ecosystem metabolism are therefore robust to spatial imbalances in
ALAN intensity across FLUXNET2015 site distribution.

Our study provides cross-continental evidence of ALAN’s influence
on ecosystem metabolism across timescales. We demonstrate that
ALAN consistently modifies the relationship between F.and their fun-
damental energetic constraints (Figs. 2-4). The R, response to funda-
mental constraints was particularly sensitive to ALAN intensity at short
(half-hourly and daily) timescales (Fig. 2 and Supplementary Tables 2
and 6). Alongside R., GPP and NEE exhibited significant nonlinear inter-
actions between ND and ALAN intensity, revealing the importance of
ALAN magnitude and timing in modulating ecosystem metabolism
acrossscales (Figs.3 and 4). Atannual timescales, the influence of ALAN
on NEE was primarily mediated through increased R, rather than the
direct suppression of GPP (Fig. 5). Taken together, our findings dem-
onstrate the role of ALAN as a pervasive stressor capable of disrupting
carbon balance across spatial and temporal scales.

The nonlinear influence of ALAN on ecosystem metabolism was
strongly modulated by diel cycles and seasonality, demonstrating the
importance of phenological dynamics®* and biogeochemical feedbacks
in shaping long-term carbon balance®. The temporal aggregation led
to notable shifts in the strength and direction of ALAN effects on R,,
whereas GPP and NEE displayed more consistent nonlinear responses to
ND across timescales (Figs. 3 and 4). At the half-hourly resolution, short
nights showed the strongest ALAN-induced increases in R, (Fig. 3h,i),
reflecting immediate physiological and microbial responses such as
prolonged stomatal opening’®, sustained leaf dark respiration®” and
elevated microbial decomposition under disrupted circadian regula-
tion®®, By contrast, daily mean nighttime R, estimates indicated larger
ALAN-related increases during longer nights (Fig. 4f), demonstrat-
ing how aggregation dampens short-term variability while revealing
broader shifts in R, across longer nights. GPP exhibited consistent
positive or nonlinear ALAN effects across timescales (Figs. 3 and 4),
probably driven by nocturnal illumination extending photosynthetic
activity at medium ALAN intensities**°. Temporal scale and ND thus
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lines denote medians, the whiskers extend to 1.5x the IQR and the points indicate
outliers. d-f, The variance-weighted GAMM predictions (Supplementary Table 9)
for relative changesin daily mean NEE (d), GPP (e) and R, (f), expressed relative

to ALAN = O for ND groups as in Fig. 3, with shaded ribbons representing mean
predictions + 95% confidence intervals.
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the mediation pathways supported by the bootstrap analysis. The SEM was fitted
to complete cases for all variables (605 site years, 84 sites). b, The bootstrap-
derived estimates shown are means and 95% percentiles from 1,000 replicates for
thedirect and indirect effects of GS length and ALAN on NEE. ¢, The outputs from
aleave-one-out analysis show the change in marginal (lighter-coloured symbols
and lines) and conditional (darker-coloured symbols and lines) R? (AR?) for NEE
(gold), GPP (blue) and R, (magenta) relative to the full model after systematically
removing each exogenous predictor (Supplementary Table 11).
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collectively shape ALAN’s ecologicalimpact, whereas diel averaging can
obscure short-lived physiological responses while reflecting cumula-
tive nighttime effects.

R. exhibited greater sensitivity to ALAN than GPP across time-
scales (Figs. 2 and 3 and Supplementary Tables 2-11), and the SEM
confirmed that ALAN primarily influences NEE indirectly viaincreased
R. at annual timescales (Fig. 5). The destabilizing effect of ALAN on
production-respiration coupling will arise from shifts in multiple auto-
trophicand heterotrophic processes controlling carbon allocation and
use efficiency'”*®. The greater R, sensitivity may reflect a higher capac-
ity of autotrophs to acclimate to ALAN through conservative growth
strategies such as increased shoot-to-root ratios**'. In ecosystems
dominated by C; plants, for instance, prolonged ALAN exposure can
disrupt circadian regulation and prolong stomatal opening, reduc-
ing carbon uptake efficiency, increasing mortality and senescence,
and leading to reduced GPP over time*>**, Such trophic mismatches
and shifts in carbon allocation are likely to accumulate across levels
of biological organization, space and time***, leading to progressive
declinesin NEE inilluminated ecosystems.

The ecological impacts of ALAN have primarily been examined
atlocalscales®”, butlandscape-scale factors will confound or amplify
these localized effects®. Urban proximity influenced GPP in our analy-
sis, whereas ALAN directly influenced R, (Fig. 5), suggesting distinct
pathways through which nighttime lighting and urban characteristics
modify ecosystem metabolism. Balancing sites across low, mediumand
high ALAN intensities further indicates potentially stronger mediat-
ing effects of ALAN on NEE via R, (Extended Data Fig. 9). Despite the
pervasive nature of light pollution, ALAN remains overlooked in ESM
carbon-climate projections that otherwise account for climate and
land use changes. Current observational data, however, do not enable
the disentangling of the contribution of ALAN relative to sunlight in
shaping F, and future targeted experimental studies will be needed
toresolve these relationships.

Global eddy covariance networks such as FLUXNET are vital for
monitoring ecosystem metabolism across diverse climates and land
use types, but they are typically biased towards temperate regions,
seminatural landscapes and dark skies (Extended Data Fig. 1). Urban
flux towers are particularly scarce, and although networks such
as Urban PLUMBER have been established, they do not measure F,
(ref. 46). Similarly, available nighttime light satellite products used
here (Visible Infrared Imaging Radiometer Suite (VIIRS) and Defence
Meteorological Satellite Programme (DMSP)) are coarse in spatial
resolution, areinsensitive to blue light emitted by white light-emitting
diode (LED) lighting* and cannot fully capture local heterogeneity in
ALAN exposure at flux tower sites.

Enhanced satellite sensors with improved spectral and spatial
resolution would advance ALAN monitoring?, but ground-based meas-
urements are also needed to capture how cloud cover exacerbates or
reduces skyglow (brightening of the night sky) in high or low ALAN
intensity areas, respectively*®. The coordinated expansion of eddy
covariance flux tower networks along with complementary measure-
ments, such as chamber-based respiration estimates and isotopic
tracers, will be critical to disentangle the mechanisms by which ALAN
alters ecosystem metabolism. Expanding ecosystem-level F.measure-
ments into urbanized, tropical, arid and high-latitude regions is vital
to evaluate the global relevance of ALAN impacts on carbon cycling.
While monitoring is essential, mitigation is also readily achievable.

Artificial lightis ubiquitous and often beneficial, but the negative
ecological effects of light pollution can be reduced while balancing
societal benefits. Retrofitting LED lighting can reduce light pollution®,
butitoftenresultsinover-illumination due to their higher efficiency®.
Giventhatlightingaccounts for 20% of global electricity consumption
and 6% of CO, emissions™ and can exacerbate degraded air quality**,
mitigation interventions such as directional, dimmable and adaptive
lighting designs? offer wider cobenefits. Unlike climate and land use

change, the effects of light pollution could be mitigated overnight™.
Our study demonstrates the pervasive influence of light pollution
on ecosystem metabolism across scales and highlights the urgent
need to integrate ALAN into global change research, assessments of
carbon-climate feedbacks and mitigation strategies. Developing a
higherresolution understanding of species, community and ecosystem
sensitivity to ALAN will be central to designing interventions that both
safeguard biodiversity and preserve the land carbon sink.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41558-025-02481-0.
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Methods

We combined satellite-derived ALAN intensity metrics with eddy
covariance flux measurements from 86 FLUXNET2015 sites in North
Americaand Europe. The analyses were conducted at half-hourly, daily
and annual timescales to capture short-term physiological responses,
aggregated diel patterns and long-term ecosystem dynamics. All F,
(NEE, GPPand R,) were first evaluated against their fundamental ener-
getic constraints of Tand SW according to the modified Arrhenius
function (equation (1)) using LMMs. To explore nonlinear interactions,
we thenapplied GAMMs which allow the flexible estimation of smooth
terms. Atannual timescales, we used piecewise SEM to account for col-
linearity among multiple drivers and to partition direct and indirect
effects of ALAN, GS length and climatic variables on F.. This hierarchi-
cal modelling framework enabled the consistent evaluation of ALAN
effects across temporal scales.

Global harmonized nighttime light dataset

The Day/Night Band of the VIIRS is the only satellite radiometer cur-
rently acquiring imagery of the Earth at night, providing single-band
nightscapes ataresolution of 750 msince 2012 across the globe. Prior
global nightscapes were monitored by DMSP-Operational Linescan
System (OLS) at aresolution of 1 km between1992 and 2013. A harmo-
nized global nighttime light dataset, developed by Li et al.*, provides
aconsistentannual time-series of overall luminance between 1992 and
2018 at-1 kmresolution through the intercalibration of DMSP-like DN
values. The DNs for all FLUXNET2015 sites (see below) and site years
were derived from the harmonized dataset of Li et al.*>. The low DN
sites (DN <10) were cross-checked in Google Earth for each site year to
verify low DN values reflected remote locations by noting distances to
the nearest built-up areain QGIS (version 3.30.3). The satellite-derived
DN values from DMSP-Operational Linescan System and VIIRS repre-
sent relative radiance indices and cannot be directly converted into
absoluteilluminance units such aslux, as they do not capture spectral
composition or ground-level variability**. The ALAN categories used
here should thus be interpreted as relative exposure gradients rather
than specific ecological thresholds.

FLUXNET dataset and site selection

FLUXNET is a global network of micrometeorological sites provid-
ing eddy covariance CO, exchange observations between terrestrial
ecosystems and the atmosphere®®. The FLUXNET2015 dataset used
in this study includes measurements from 210 eddy covariance flux
towers across the globe®. A total of five tier-2 sites and two arctic
sites outside the latitudinal range of the global nighttime light dataset
(latitude >75° N) were excluded. Originally, DNs from the harmonized
nighttime light dataset were extracted for 203 FLUXNET2015 sites from
1992102014 (1,474 site years) (Extended DataFig.1). The 203 sites were
composed of 1,116 low (DN <10), 243 medium (DN =10 < 30) and 115
high (DN >30) ALAN intensity site years. Only one high ALAN intensity
FLUXNET2015 site (JP-SMF) was located outside of North America or
Europe, withnoreplication of low ALAN intensity sites ina2°latitudinal
or longitudinal range. The site selection was therefore restricted to
North America and Europe to reduce noise from additional climatic
and ecosystem properties at low ALAN intensity FLUXNET201S5 sites
globally. Within both North America and Europe, the latitudinal and
longitudinal ranges of selected FLUXNET2015 sites were based on the
presence of medium or high ALAN intensity sites at 2° intervals (Fig. 1
and Supplementary Table1).

Disentangling respiration and photosynthesis fluxes during the
day is complex and relies on modelling techniques with high uncer-
tainty, particularly under low turbulence or during transitional periods
around dawn and dusk. The FLUXNET2015 dataset undergoes process-
ing to check data quality, filter low turbulence periods and CO, flux
partitioning into respiration and photosynthesis using established
methods®°. The measurements were compiled from the FLUXNET2015

dataset™, which in this study includes non-gap-filled half-hourly and
annual air temperature (TA_F), incoming shortwave (SW_IN_F), NEE
(NEE_VUT), nighttime R, (RECO_NT) and daytime GPP (GPP_DT) meas-
urements for 86 sites across 623 site years. Along with the use of night-
time R, and daytime GPP, the half-hourly data were filtered for R, by
selecting timepoints with GPP <0.001 pmol CO, m2s™ and outgoing
SW greater than incoming SW and vice versa for daytime GPP.

Additional environmental and urban variables were derived to
check for confounding effects, including half-hourly and annual VPD
(VPD_F) and P (P_F) from FLUXNET2015. Urban metrics pULC_3km,
pULC_10km and DtNUP were calculated by quantifying the proportion
of land cover classified as urban within 3- and 10-km buffers around
each site, using the ESA CCI Land Cover dataset, and computing the
Euclidean distance (km) from the site centroid to the nearest urban
polygon in the Copernicus Urban Centre Database*®. To account for
latitudinal and climatic variation in phenology across the 86 sites,
GS was classified using site-specific 25th percentiles of daily GPP per
site year. GPP measurements above the 25th percentile threshold was
classified as occurring within the GS, and other observations were
classified as non-GS. To avoid classifying transient periods of activity
aspartofthe GS, weimplemented a hybrid phenological rule requiring
>5 consecutive candidate days for GS initiation, and =5 consecutive
non-GS days to mark the GS finish. To estimate the daily duration of
nightateach study site, we calculated the time between astronomical
sunset and sunrise (UTC) using site-specific latitude, longitude and
observation dates using the suncalc package. The ND was calculated
asthetimeinhourselapsed between sunset onagiven day and sunrise
onthe following day.

Model analysis

All model analyses were conducted in R statistical software (version
4.2.2)*". The null models (equation (1)) describe the relationship
between F, (NEE, GPP and R,) and their fundamental constraints (SW
and T) according to a modified Arrhenius function'. Unlike alterna-
tive functions such as those used in metabolic ecology?, the modi-
fied Arrhenius function enables the exploration of NEE, GPP and R,
according to asingle measure of shared fundamental constraints and
analysis of untransformed F, measurements. The null models for NEE,
GPP and R, according to equation (1) were fitted to half-hourly, daily
and annual FLUXNET2015 measurements, with LMMs and GAMMs
applied to half-hourly and daily measurements and an SEM developed
for annual timescales.

LMMs

First, LMMswereincrementally tested for each carbon flux and explana-
tory variable: continent (North America and Europe), climate (boreal,
temperate and Mediterranean), International Geosphere-Biosphere
Programme land use classifications (CRO, CSH, DBF, EBF, ENF, GRA,
MF and WET), GS (Y and N), ND (hours), month, hour of the day, VPD, P,
pULC_3km, pULC_10km, DtNUP and ALAN. FLUXNET2015 site (n = 86)
and latitude (n = 80) were included as random effects to account for
spatial clustering. The model selection thresholds (AAIC4 <-5 and
AR’ 4>0.01) ensured that any increase in explanatory power was pro-
portionate to model complexity and prevented LMM overfitting by only
relying on AAIC selection criteria. The bootstrapped 95% confidence
intervals for LMM marginal and conditional R? fits were computed
by resampling model residuals using 500 semiparametric bootstrap
replicates. For the half-hourly datasets (4-10 million observations)
we used random 10% subsamples to provide reliable estimates while
avoiding computational limitations inherent in very large datasets.

GAMMs

GAMMs were used to explore nonlinear relationships and interactions
between variables, with initial GAMMs including variables identified
as potentially important in the LMMs for the temporal resolution
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(half-hourly and daily) under consideration. The smooth terms were
specified for continuous explanatory variables, and the categorical
variables were treated as parametric effects. The tensor productinter-
actions and stratification of categorical variables were also tested
where ecologically feasible, and FLUXNET2015 site and latitude were
included as random smooth terms. All final GAMMs identified lati-
tude as a redundant random effect, defined statistically as a lack of
improvementin model fitand a concurvity value of 1, indicating com-
plete collinearity with other smooth terms. We use a backward selec-
tion approach to sequentially simplify the initial models, with GAMM
selection based on a combination of penalized likelihood (fREML),
R%,4;, deviance explained (%) and approximate significance of smooth
terms. We did not apply R?,; per df thresholds as with LMMs, as GAMMs
inherently penalize smooth term complexity during estimation to
optimize effective df.

To address the risk of overfitting and concurvity (collinearity
betweensmooth terms), we evaluated GAMM diagnostics and smooth
terms exhibiting high concurvity values (>0.8) were identified as
potentially redundant. Preference during model selection was given
to simpler models that retained comparable, although usually lower,
explanatory power while reducing concurvity. Additional explana-
tory variables were then reintroduced to the final backward selected
GAMMs to compare model performance. Finally, heteroscedasticity
(non-constantresidual variance) in the final GAMMs was accounted for
by comparing the final selected GAMM s to variance-weighted GAMMs,
which provide lower weight to observations associated with higher
residual variance. Model performance and smooth term significance
were compared between the unweighted and weighted GAMM s to
ensure robust evidence for the selected explanatory variables. For
all GAMMs, residual autocorrelation was evaluated using partial
autocorrelation functions.

SEM

To investigate the relationships between environmental drivers and
annual NEE, GPP and R,, we developed a piecewise SEM comprising
threelinked LMMs, including NEE ~ GPP +R,, GPP~SWandR,.~GPP+ T
and testing additional exogenous predictors (GS length, mean ND,
VPD, P, ALAN, pULC_3km, pULC_10kmand DtNUP). The annual dataset
included 605 site years across 84 sites after excluding site years with
missing variables. Both LMMs and GAMMs were evaluated for compo-
nent models. Given the relatively small sample size, GAMMs presented
ahigherrisk of overfitting and unstable smooth functions at the annual
timescale. The annual aggregation of F, measurements also inherently
smoothed diel and seasonal nonlinearities observed in half-hourly
and daily measurements. Exploratory diagnostics further indicated
that annual relationships were approximately linear, supporting the
use of LMMs as a parsimonious framework capable of accounting for
site-level random intercepts while estimating fixed effects on annual
F.. The SEMs included residual covariance terms among exogenous
predictors to account for collinearity, and model fit between SEM’s
was evaluated through Fisher’s C and P, AIC and df and marginal and
conditional R*for NEE, GPP and R..

The mediation pathways in the final SEM quantified the indirect
effect of GS length on NEE via GPP and the indirect effect of ALAN
on NEE via R.. The uncertainty in direct and indirect effects was esti-
mated through nonparametric bootstrap resampling (1,000 itera-
tions). In each iteration, the three component LMMs were refitted
on a bootstrap-resampled dataset with replacement, and indirect
effects were calculated as the product of relevant path coefficients.
Percentile bootstrap confidence intervals (95%) were derived for each
estimated effect and considered significantifthey did not overlap zero.
Therelativeimportance of each exogenous predictorin the final SEM
was inferred through a leave-one-out sensitivity analysis, in which
eachvariable wasremovedinturnand the reduced SEM fit compared,
rather than absolute effect sizes. The model fit for each alternative

SEM specification fitted to the same dataset was compared with the
full model, with higher model sensitivity indicated by a significantly
poorerfit (P< 0.05), higher AIC, or reduced explanatory power (R*, and
R?.for NEE, GPP and R,) relative to the final selected SEM.

Sensitivity analysis

The sensitivity of models to the composition of FLUXNET2015 sites
was evaluated by generating a balanced, stratified subset of the full
dataset with equal representation of low, medium and high ALAN
intensity sites across both continents at half-hourly, daily and annual
timescales. A random sample of sites equal to the stratum with the
fewest available sites (high ALAN sites in North America, n=4)
was selected without replacement from each stratum (4 x 2 conti-
nents x 3 ALAN intensity groups = 24 sites in the balanced dataset).
The half-hourly and daily GAMMs and the annual SEM were refitted
to the balanced dataset using the same model specification in the
main analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The FLUXNET2015 data analysed in this study are available at https://
fluxnet.fluxdata.org/data/fluxnet2015-dataset/ (ref. 55) and are subject
to the FLUXNET data policy (https://fluxnet.org/data/data-policy).
As the redistribution of raw half-hourly flux data is not permitted,
we provide only derived products, including daily and annual sum-
maries, processed variables and model outputs, which are available
under a CC-BY 4.0 license via Figshare at https://doi.org/10.6084/
m9.figshare.29958455 (ref. 58). The ALAN metrics used here are avail-
able at https://doi.org/10.3390/rs9060637 (ref. 32). Summaries for
each FLUXNET site are also provided in Supplementary Table 1.

Code availability

The R code used for data processing and analysis in this study is avail-
able via Figshare at https://doi.org/10.6084/m9.figshare.29958455
(ref.58).
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Extended Data Fig. 1| Global distribution of FLUXNET2015 sites across and high (DN >30) ALAN intensities. Sites for analysis in this study were selected
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