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W Check for updates

Predicting drought-induced mortality (DIM) of woody plants remains a key
research challenge under climate change. Here, we integrate information
ontheedaphoclimatic niches, phylogeny and hydraulic traits of species

to model the hydraulic risk of woody plants globally. We combine these
models with species distribution records to estimate the hydraulic risk
faced by local woody plant species assemblages. Thus, we produce

global maps of hydraulic risk and test for its relationship with observed
DIM. Our results show that local assemblages modelled as having higher
hydraulic risk present a higher probability of DIM. Metrics characterizing
this hydraulic riskimprove DIM predictions globally, relative to models
accounting only for edaphoclimatic predictors or broad functional
groupings. The methodology we present here allows mapping of functional
trait distributions and elucidation of global macro-evolutionary and
biogeographical patterns, improving our ability to predict potential global
change impacts on vegetation.

A substantial number of woody plant assemblages worldwide are
experiencing increased mortality due to rising drought severity and
temperature (termed drought-induced mortality, DIM), driven by
anthropogenic climate change'™. Such mortality modifies ecosys-
tem composition, structure and functioning®, with large impacts
on biodiversity and biogeochemical cycles*. Generally, DIM is trig-
gered by hydraulic failure’'°, a physiological process causing loss of

functionality of the plant conductive tissue (xylem), eventually lead-
ing to desiccation and death. Previous studies have shown that plant
hydraulic traits have the potential to improve our capacity to under-
stand and predict DIM" and drought impacts on ecosystem fluxes'>",
aswell as the community dynamics'** emerging from these processes.
Accordingly, hydraulic schemes are beingincorporated into forest vul-
nerability assessments'®” and vegetation models, from the regional’®"
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— Mortality observed

— No mortality observed
Number of species with HSM < 0: 7,024 (15.5%)
Number of species with HSM < 0.5: 30,008 (66.2%)
Number of species with HSM < 1: 43,422 (95.9%)

Fig.1|Phylogenetic distribution ofimputed hydraulic traits for species
with observed xylem minimum water potential and/or xylem embolism
vulnerability. Dark orange, species with observed mortality. Green, species

without observed mortality. The mostimportant order names are shown. The
total number of species with trait datais shownin black and the number in dark
orange is the number of those species that have an observed mortality event.

tothe global® scale. However, the predictive capacity of these models
is still poor'®*??, potentially reflecting lack of high-quality hydraulic
data or insufficient understanding of the mechanisms involved.
Hydraulic dysfunction happens when drought stress exceeds the
capability of the xylem to tolerate high tensions (low water potentials),
generating emboli in conduit lumens that disrupt water flow. This
disruption canlead to hydraulic failure if embolism propagates. The

probability of suffering hydraulic failure (that is, hydraulic risk)™** is
commonly quantified with the hydraulic safety margin (HSM), which is
the difference between the minimum observed water potentialin the
xylem (P, ameasure of drought exposure reflecting plant hydraulic
regulation at the tissue level) and the water potential causing 50% or
88% of hydraulic conductivity loss (P, and Pgg measuring vulnerability
to xylem embolism)*?*. HSM is thus an individual- and site-specific

Nature Ecology & Evolution | Volume 7 | October 2023 | 1620-1632

1621


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-023-02180-z

physiological metric likely to be associated with DIM. However, data
availability of P,;,, Ps, and Pgg at broad spatial scales is scarce both
across, and especially, within species, and frequently available datado
notreflectlocal conditions. Not surprisingly, the species HSMis gener-
ally apoor predictor of their mortality and only improves marginally
existing models'?”.

The distribution of HSM values within woody plant assemblages
has been shown to relate to their response to extreme drought
events'>”?® and to the maintenance of productivity under increasing
drought®. This functional variability is probably explained by the
variety of existing species-specific mechanisms to cope with drought®,
influencedinturn by environmentalfiltering and evolutionary legacies
present in any species assemblage®. Here, we posit that our capacity
to predict mortality occurrence will be improved by considering the
variability of hydraulic risk at the site level (assemblages of poten-
tially co-occurring species) and not only the average hydraulic risk of
individual species in the assemblage. However, Py, and P,,;, data are
only available for 1,678 and 819 woody plant species, respectively,
representingless than 1.5% of the world’s estimated number of woody
plantspecies. Nonetheless, we have recently shown that P,;,and Psy are
phylogenetically conserved to a substantial degree and are related to
edaphoclimatic affiliations®. Including phylogenetic and edaphocli-
maticinformationis therefore likely toimprove the traitimputations
required to provide global trait coverage. These results, together with
increased availability of plant distribution data, pave the way towards
predictions of hydraulic risk metrics that cope with the data scarcity
problem, allowing to move from individual species predictions to
analyses of species assemblages at the global scale.

Here, we use anew global database of hydraulic traits** and edapho-
climatic and phylogenetic information coupled with random-forest
modelling® to estimate drought exposure (P,,,,) and xylem drought
resistance (P, and Pgg) and hence hydraulic risk (HSM), for 44,901
woody plant species. We georeferenced these predictions using species
distribution data®* and mapped aggregated hydraulic metrics for
species assemblages at a 5 km resolution, globally. Then, we used
linear models to test which metrics of hydraulic risk characterization
(species-assemblage mean and minimum hydraulic risk, its variabil-
ity and the number of species with high hydraulic risk) can predict
observed DIM, using precisely georeferenced records of DIM occur-
rence’. Finally, we use maximum entropy models® to project DIM
occurrence probability worldwide using different edaphoclimatic
predictors and the newly derived hydraulic metrics. We propose that
species-assemblage hydraulic risk metrics will predict DIM occurrence,
reflecting both that species with lower HSMincur greater mortality risk
andthatassemblages with a higher number of species at hydraulic risk
will experience more DIM. By applying this framework, we provide a
global projection of woody plant hydraulic risk and associated DIM.

Results and discussion

Widespread low HSMs in woody plants

Random-forest models®, considering phylogenetic data jointly with
edaphoclimatic affiliations and trait covariation, had substantial pre-
dictive power for species-specific minimum xylem water potential
(P.») and vulnerability to embolism (Ps,) with a cross-validation R? of
0.60 + 0.10 and 0.54 + 0.12, respectively (mean and standard devia-
tion; Supplementary Table 1; Methods). Estimated species HSM was
related to observed HSM values, with an R? of 0.51. Overall, 7,024 out
of 44,901 species (15.5%) presented negative HSM values, 66.2% of all
species had HSM < 0.5 MPa and 95.9% of all species had HSM <1 MPa
(Fig.1and Supplementary Fig. 1). These results generalize previous
studies” indicating convergence towards low mean HSM in woody
plants, pointing to a prevalent strategy of maximizing the usage of
available water, fixing carbon at the expense of increasing hydraulic
risk. Negative HSM implies embolism levels above 50%, which are
expected to be stressful, especially for gymnosperms>®. Some species
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Fig.2|Example of species assembly hydraulic risk composition. Schematic
representation of species assemblies data, from which the hydraulic metrics are
extracted and mapped.

(particularly angiosperms) may be adapted to recover from embolism
by refilling conduits, resprouting from branch nodes below dead tissues
or radial growth following drought relief". When using Py instead of
Ps, for angiosperms, which may be a more realistic hydraulic failure
threshold for angiosperm species (Psq 55 results hereafter)*®, only 165
speciesout of 44,901 species (0.37%) presented negative HSMy,ss vValues
(HSM calculated using P, for gymnosperms and Pgs for angiosperms;
Supplementary Fig. 2).

Species hydraulicrisk is a poor predictor of mortality

We did not find significant relationships (P> 0.3) between species
hydraulic safety margin (HSM or HSMy,,s5) and species DIM. This
result supports the lack of a strong relationship at broad spatial scales
between species’ mean-hydraulic risk and their mortality’®. However, we
found significant negative relationships of species HSM (slope = -0.16,
s.e.=0.03,P<0.001) and HSM;,ss (slope =-0.34,s.e. = 0.02, P< 0.001)
with the number of recorded DIM events per species. These relation-
ships were significant for both angiosperms and gymnosperms, even
though their predictive power was low (pseudo-R* < 0.15and area under
the curve (AUC) < 0.57 inboth cases). Equivalent results were obtained
when using only observed HSM values (that is, excluding imputed
values). These results together suggest that, even though species with
low HSMtend to present a higher number of recorded DIM events, this
information is not sufficient to predict with reasonable accuracy the
DIM of species. This may be because not only mean species hydraulic
risk but also local environmental conditions are playing a crucial role
in determining mortality risk. Thus, incorporating a geographical
perspective may improve predictive capacity of DIM occurrence.

Characterizing species assemblages hydraulic risk

We aggregated observed and imputed data for species xylem minimum
water potential (P,,;,) and embolism vulnerability (Ps, and Pgg) into
species assemblages expected by species distributiondatain 5 x 5 km?
grid cells (Fig. 2 and Supplementary Fig. 3a,b)** (Methods). Areas with
high droughtincidence such as the Mediterranean basin, southwestern
Africa, southwestern United States and southwestern Australia pre-
sented species assemblages with lower vulnerability toembolism (lower
mean Ps,) (Fig. 3a) but not necessarily lower hydraulic risk (constant
meanHSM) (Fig. 4a; note that hydraulicrisk is represented as negative
HSM so higher values represent higher risk). This pattern underlines
theimportance of tissue-level drought exposure (P,;,, Supplementary
Fig.4)in determining hydraulicrisk, as species can converge towards
similar HSM even when being exposed to very different levels of climatic
drought or present very different HSM under the same conditions
depending on their functional strategies®. However, species present-
ing the highest hydraulic risk were found in places with high drought
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Fig. 3| Global distribution of species-assemblage hydraulic metrics and
their latitudinal patterns. a, Mean xylem vulnerability (Ps,). b, P, variance.
¢, Maximum hydraulic risk represented as negative minimum HSM. The
distribution of species-level values from which metrics are calculated for a
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sample of three representative pixels are shownin histogramsin a. Lateral
scatterplots show the distribution of pixel values. Trend lines for pixel values are
shown for scatterplots by means of generalized additive model (GAM).

incidence (for example, the Mediterranean basin, western United
States, Mexico, southwestern Australia and southern Africa; Fig. 3c),
probably aresult of the combination of high exposure and occurrence
of some sensitive species at those locations. The apparent invariance
of maximum hydraulic risk over some large areas (for example, the
Amazon basin; Fig. 3c) probably results from species with particularly
low HSM values having widespread distributions. In some cases, these
results may be influenced by limited data availability together with
relatively low species diversity (for example, boreal forests in Russia).

Maintaining a reasonably high HSM may imply very different
strategies, including high embolism resistance but also deep roots,
tight stomatal regulation or drought deciduousness to limit P,;,. The
implications of these strategies may not be equivalent, whichisamat-
ter that requires further study. For example, in the case of stomatal
and leafarearegulation, the carbonbalanceis alsoimpacted directly,
which could potentially resultin indirect effects on the hydraulic sys-
tem that could promote dehydration in the longer term or carbon
starvation'®**?°, While hydraulic failure has been ubiquitously
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distribution of pixel values. Trend lines for pixel values are shown for scatterplots
by means of GAM.

associated with drought-induced tree mortality®**°, a high propor-
tion of studies on DIM have also shown substantial reductionsin total
plant non-structural carbon, that is, a potential signal for carbon star-
vation®®. At present, there is not a clear species-level or coarser-scale
threshold for this mechanism of tree mortality, leaving it out of reach
for trait-based models of DIM. However, including drought length and
intensity in future studies might be useful to deepen our understanding

ofthe consequences of changing drought intensities, which are most
likely to invoke stronger interactions between carbon limitations and
hydraulics or in extreme cases may result in greater mortality risk for
plants from carbon starvation.

The functional diversity of species assemblages was further
characterized by estimating the variability of strategies in a commu-
nity (trait variance at the grid cell level). The highest variability for both
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Fig. 5| Relationships between DIM occurrence and species-assemblage
hydraulic metrics. a-h, Represented are: mean HSM (a,b), minimum HSM (c,d),
HSM variance (e,f) and the number of species with HSM < 0 (g,h) excluding
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whiskers represent maxima and minima. b,d,f,h, Mean response curves and the
95% coefficient interval for species-assemblage metrics for each biome. sqrt,
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Ps, and HSM was found in grid cells with relatively high drought inci-
dence (for example, the Mediterranean basin, western United States,
northernMexico, southern Australia, Turkey and the Yemen in Figs. 3b
and 4b), generalizing previous findings at regional scales***. We
observed a spatial decoupling at the global scale between hydraulic
trait variability and species richness. While species richness peaks in
highly favourable habitats without water limitations* (Supplementary
Fig. 3), hydraulic trait variability is higher where water scarcity leads
to different physiological solutions to cope with drought in different
plant lineages, resulting in a wide range of hydraulic trait values***.
These results are in contrast with the favourability proposal*® and
previous results showing a higher functional diversity towards the
equator in some traits*’ but are aligned with other results showing
that evolutionary, and potentially functional, diversity peaks under
intermediate precipitation*®*. Functional diversity may increase in
sites with some degree of resource limitation whichin turn allows the
coexistence of lineages presenting different drought-coping strategies
(forexample, the case of the coexistence of gymnosperms such as Pinus
spp. and angiosperms such as Quercus spp. in Mediterranean forests,
with their divergent hydraulic strategies)*>*°. However, this particular
result may be influenced by higher samplingin areas with more severe
droughts and needs to be confirmed by further studies.

We further characterized the hydraulicrisk of species assemblages
by calculating the number of species presenting HSM < 0, as another
species-assemblage-specific hydraulic risk threshold. This metric
represents the number of species expected to experience hydraulic
dysfunction, potentially providing meaningful information on the
likelihood of asite experiencing DIM. The number of species presenting

HSM < 0 at the pixel level was highly variable (Fig. 4c), showing poten-
tial to characterize hydraulic risk at the species-assemblage level.
Projections showed that species assemblages with a high number of
species with HSM < 0 occur both in dry and wet places (for example,
Mexico and western Amazonia, respectively).

Results based on HSMg,, g5 projections were similar but showed
alower total number of species with negative values. These results
showed lower HSMs in boreal forests, which may be due to the domi-
nance of gymnosperms in this biome and that P, (the value used for
gymnosperms for HSM;s5) may be easier to surpass compared to
Pgs (the value used for angiosperms) (Supplementary Fig. 5).

Species-assemblage hydraulic risk is related to mortality

We found significant relationships (P < 0.01) between species-
assemblage hydraulic risk metrics and DIM (Fig. 5). Compared to species
HSM, species-assemblage hydraulic risk metrics had higher predictive
power for DIM occurrence (pseudo-R? between 0.07 and 0.47, AUC
between 0.68 and 0.84) and far outperformed the predictive power of a
climaticaridity index, annual precipitation and maximum temperature
(pseudo-R*<0.02, AUC < 0.6) (Supplementary Table 2). The relation-
ships of hydraulic metrics with DIM for species assemblages remained
significant even after the climatic aridity index was included in the
models as acovariate (Supplementary Table 3). These resultsindicate
that metrics related to the hydraulic risk of local species assemblages
incorporate meaningfulinformation beyond the local drought status.
Therelationships between DIM occurrence and hydraulic risk metrics
of species assemblage were highly consistent across different biomes
and plant functional types (PFTs) (Fig. 5 and Supplementary Fig. 6).
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importance. a-c, Predictorsincluded in each case were: model type a, biome
and PFT (a); model type a plus continuous edaphoclimatic variables (maximum
temperature, T, aridity index, sand and clay content) (b); and model type b plus

the number of species with HSM < 0 (N spp. HSM < 0) and HSM variance included
in place of the two edaphoclimatic variables with the lowest contributionin
model type b (sand and clay content), to keep the same number of predictive
variables in model types b and model c (c).

Overall, sites comprising species assemblages with higher hydraulic
risk (thatis, lower mean and minimum HSM and higher number of spe-
cies with HSM < 0) exhibited higher DIM probability. In the case of the
relationship between DIM and the number of species with HSM <0,
the effect remained significant when species richness was included as
a covariate. In fact, species richness itself was not a strong predictor
of DIM. Thus, the relationship between the number of species with
HSM < 0 and DIM was not driven by species number per se but by the
relationship between DIM and the number of species with HSM <0,
expected to present a high hydraulic risk. We also show that places with
higher HSM variability tend to present a higher DIM. This pattern was

largely explained by the strong correlation between HSM variability and
minimum HSM, the latter being strongly related to DIM probability. Our
results show that the most hydraulically vulnerable species of an assem-
blage are strongindicators of site-specific mortality risks. Their removal
couldgenerate directional functional changes®, decreasing site-specific
HSM variability, negatively affecting functional diversity and potentially
amplifying negative effects on ecosystem functioning™,

Predicting DIM occurrence
We built on our significant predictive models described above to esti-
mate DIM occurrence probability worldwide using maximum entropy
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models®. Our results supported the usefulness of the newly derived
hydraulic risk metrics at the species-assemblage level to predict DIM,
increasing predictive performance compared to models based only on
edaphoclimaticvariables, biome or PFTs (Fig. 6). Thenumber of species
with HSM < 0 was the most important explanatory variable in these
models. Results showed that high DIM risk is predictedin, for example,
the Mediterranean basin, southern Australia, western North America
and western tropical South America. Models including hydraulic risk
metrics better constrained DIM occurrence probability in places with
abundant mortality information (for example, the Iberian Peninsula),
limiting the environmental space where mortality is predicted to occur
by considering the functional characterization of species assemblages.
However, differences between models are more difficult to interpretin
regions where mortality data are scarce or absent, such as the African
continentand Russian boreal forests (Supplementary Fig. 3¢c). Inthese
cases, theinclusion of hydraulic risk metrics may be overconstraining
the model, leading to an underestimation of the probability of DIM.

These results show the potential of functional data to improve
predictions of vegetation responses to climate change at broad spatial
scales. By considering the geographical variability in functional com-
position, the physiological mechanismsinvolved in species responses
to the environment are characterized and the vulnerability of plant
communities can be better assessed.

Limitations and future directions

Data on plant mortality occurrence and hydraulic traits are limited
and may be subject to geographical, phylogenetic and ontogenetic
biases®****. However, in this study, we find similar patternsin the rela-
tionship between hydraulic risk and DIM across and within biomes.
Thus, we posit that these relationships are not due just to a higher sam-
pling of drier biomes but to ageneralized pattern thatis not expected
to be an artefact of sampling bias. In any case, even with the most
up-to-date hydraulics and mortality information, our results will need
further confirmationin the future. Future efforts toimprove the moni-
toring of observed DIM as well as the characterization of hydraulic risk
under different climate change scenarios will enable better assessments
of when and where high DIM is to be expected and the corresponding
impacts on ecosystem composition, structure and function. Better
knowledge on eco-evolutionary relationships among functional traits
willimprove predictive models, leading to lower imputation error and
abetter functional characterization of species assemblages.

Themacro-evolutionary approach usedin this study based onspe-
cies presence-absence informationalso has limitations. The inclusion
of intraspecific variability in future works will be very important to
better assess geographical patternsin functional traits and associated
environmental responses. Including data on species abundances will
also lead to a more realistic characterization of the HSM distribution
within each species assemblage. Results obtained here substantially
differed from HSM projections using community weighted means for
asmaller region (United States)", even though they were reasonably
consistent for Py, mean projections as well as for metrics that are not
based onabundances, such as trait ranges (Supplementary Fig. 8). Itis
important to note that this study does not provide a causal explanation
of DIMat the global scale. Instead, we show a relationship between func-
tional composition, informed by phylogenetic position and edapho-
climatic variables, with DIM. Consequently, this relationship may also
indicate anindirectrelationship between hydraulic risk and mortality
caused by environmental or phylogenetic signals.

In this study, HSM was considered a static proxy for hydraulic
risk at a given site but any temporally explicit prediction of DIM risk
would need to consider the characteristics of specific droughts in
terms of duration and intensity and their impact on tissue-level expo-
sure. Finally, considering additional ecological and historical factors
such as changes in species-specific traits related to carbon
metabolism, the likelihood of biotic attacks, extreme event legacies

and microclimatic conditions®>*®

of DIM probability.

Inconclusion, we show that species-assemblage hydraulic metrics
arerelated to DIM and improve DIM prediction at the global scale. We
show thatlocations with higher numbers of species with high hydraulic
riskalso have higher DIM. The approach presented here also represents
astep forwardin predicting plant functional trait values in vegetation,
providing continuous maps that supplement environmental and coarse
PFT characterizations. Further, the geographical characterization of
functional trait distributions that we have provided here is probably
of broad interest to improve the parameterization of terrestrial bio-
sphere models™?° and complements other recent efforts using model
inversion to predict hydraulic traits at the global scale®. Mortality
estimates presented here are limited by the availability of spatially
explicit hydraulic and mortality data as well as tree abundance data
and should be seen as astarting point to improve global-scale mortal-
ity projections.

should furtherimprove predictions

Methods

Species distribution data

Spatially explicit alpha-hull terrestrial range distributions of 44,901
species derived from compilations of species presence records® were
used to determine species assemblages within 5 kmgrid cells. Species
nomenclature was standardized using the Taxonstand R package’® and
species taxonomy was filled using the taxonlookup R package”, both
following The Plant List nomenclature.

Hydraulic traits data

We extracted values from the recently updated xylem traits database™
for minimum water potential recorded in the xylem (P,,;,) and water
potential at the 50% and 88% loss of conductivity (Ps, and Pgg) for 685,
1,376 and 735 species, respectively, measured in stems of mature
individuals. The Py, and Pgg included only observations with values
<-0.5 MPa that originated from S-shaped vulnerability curves. Taxo-
nomic standardization was carried out as described earlier.

The P, estimated as the absolute minimum xylem water pressure
recorded for agiven species can be prone to biases>*, so we tested for its
relationship with soil minimum water availability and maximum vapour
pressure deficit within the distribution of the species, which were con-
sidered to be among the main environmental drivers of its variation.
The cross-species relationship between soil and plant minimum water
potentials was positive and significant (R*=0.12). The large scatter
around thisrelationship probably reflects differencesin rooting depth
(and hence explored soil volume) across species, as well as substantial
methodological uncertainties for both P, estimation approaches.
The P, also showed a significant relationship with maximum vapour
pressure deficit (VPD,,,,), as expected, with more negative minimum
water potentials under a higher atmospheric water demand (R* = 0.20).

Environmental data

To characterize edaphoclimatic affiliations for all the species for which
we had range distributions, we downloaded global layers describing
climatic variables from Worldclim®® and soil characteristic variables
from SoilGrids™ at a resolution of 2.5 arcmin. We then extracted the
values for each species using species range distributions dataand the
sfand raster R packages®®®'. Edaphoclimatic variables were selected
on the basis of their importance in a previous study™. The following
layers describing species’ historical climate (averaged values for 1970-
2000)* were considered: mean annual temperature (°C), minimum
temperature of the coldest month (°C), mean temperature of the wet-
test month (°C), mean temperature of the driest month (°C), isother-
mality (unitless), temperature seasonality (°C), annual precipitation
(mm), precipitation of the wettest month (mm), precipitation of the
driest month (mm), precipitation seasonality (mm), precipitation of
the warmest quarter (mm), precipitation of the coldest quarter (mm),
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meansolar radiation (k) m2d™), mean vapour pressure (kPa) and mean
wind speed (ms™). We also extracted monthly maximum temperature
values and the vapour pressure for the same months to calculate maxi-
mum vapour pressure deficit (kPa) for each species distribution using
the SVP function from the humidity R package®. Layers describing
soil characteristics were absolute depth to bedrock (cm), soil water
content at 200 cm depth (percentage), cation exchange capacity at
30 cmdepth (cmolc kg™, centimol positive charge per kg of soil), clay
content at 30 cm depth (percentage), organic carbon at 30 cm depth
(permille) and pH at 30 cm depth (pH).

Mean values for each species range were calculated for each
edaphoclimatic variable and were transformed to achieve normal-
ity where needed (log- or square root-transformed). To summarize
edaphoclimaticinformation, weimplemented a principal component
analysis on species mean values for the whole set of variables using the
princomp function from the stats R package®. The first five principal
components explained 82.3% of the variance and were used in further
analyses.

Additional edaphoclimaticinformation required in some analyses
(see the last two sections in Methods) was downloaded separately.
This included the aridity index®*, historical maximum temperature
for 1970-2000%, as well as biome identity® and pixel-level PFT (ERA
Copernicus 2019 land cover v.2.1.1)%. All these edaphoclimatic layers
were aggregated to a 5 km? resolution for further use with the raster
R package®'.

Mortality database

We used a global database on forest die-off events related to drought
and/or heat"?, whichis an updated and geographically referenced ver-
sion of the ref. 1 dataset. This new database was a spatial points data
frame covering 1,303 mortality events records (Supplementary Fig. 3c),
with documented affected speciesineachinstance (>400 tree species
worldwide). Taxonomic standardization was carried out for speciesin
the mortality database as described above.

Phylogeneticinformation

Toinclude species phylogeneticinformation, we used anewly derived
genus-level phylogeny covering 3,488 genera® to construct a phyloge-
netic distance matrix between taxa using the cophenetic.phylo func-
tion of the ape R package®®. The distance matrix was used to calculate
phylogenetic principal coordinates values for each genus using the
pcoa function of the ape R package®. Then, coordinate values were
assigned to each species®®. Overall, we generated a dataset cover-
ing 44,901 species with complete edaphoclimatic and phylogenetic
dataand some sparse data on hydraulic traits distributed throughout
the phylogeny. We also constructed a species-level phylogeny using
the V.PhyloMaker R package®® matching our species list. We used the
species-level phylogeny only for plotting purposes because it con-
tained many polytomies and because genus-level approaches can be
considered more reliable, especially for tropical clades where species
misidentification can be an issue’.

Hydraulic traits imputation

We used random-forest models as implemented by the missForest R
package® to predict and impute species-level P,,,, and Py, values for
the 44,901 woody plant species for which we had distribution data. This
predictive framework was chosen on the basis of previous results that
showed astrongrelationship between these traits and edaphoclimatic
and phylogenetic data®. Before performing the imputations, we tested
the predictive performance of a set of models including different
combinations of phylogenetic principal coordinates, edaphoclimatic
principal components and including or excluding major evolutionary
affiliation (angiosperms versus gymnosperms). We built models that
predicted one trait at a time or both (P,,;, and Ps,), within the same
model (in the latter case, trait covariation was explicitly considered).

To do so, we used the subset of species for which hydraulic meas-
urements were available and calculated R? values following a tenfold
cross-validation procedure using different proportions of train and
test observations in each case (from 10% to 70% of data used to test
and theremainingto train). Eachmodel was iterated 100 times using a
random selection of training and test points, maintaining the propor-
tionsin each case. We calculated the mean R*and its standard deviation
in each case (Supplementary Table 1) and the model with the highest
mean R?was subsequently used to predict trait values with all available
data as training data and was iterated 100 times. The best predictive
model included the first five phylogenetic principal coordinates and
thefirst five edaphoclimatic principal components, while considering
the covariationbetween traits and major evolutionary affiliation, reach-
ingmean R?of 0.60 + 0.10 and 0.54 + 0.12 for P,,;,and Ps,, respectively
(Supplementary Table 1; see Supplementary Fig. 9 for a schematic
description of the methods). As some studies have pointed out that Pgg
may be a better hydraulic failure threshold for angiosperm species™,
we also performed predictions using Pgg instead of P, for angiosperms
(Pso/ss and HSM;,¢5 hereafter).

Imputed values were summarized at the species level, calculat-
ing the mean and the standard deviation from the 100 iterations of
the predictive model and HSM values were calculated from imputed
mean-hydraulic trait values in each case (HSM = P,,;, — Ps,). Imputed
values were plotted on aspecies-level phylogeny (Fig. 1shows hydraulic
traitsimputationat the species level for those species with at least one
trait with observed values) as well as on the genus-level phylogeny (by
averaging values per genera) (Supplementary Fig. 1 gives standard
deviation of dataaggregated at the genus level). To assess model uncer-
tainty related to the identity and number of species used to train the
predictive model, we repeated it 100 times, randomly excluding 20%
of species with observed data each time and calculating the standard
deviation of the predicted values for each species.

The predictive framework was also implemented using Ps, values
for gymnosperm species and Pgg values for angiosperm species (Pso;ss),
calculating HSMs,5s (Supplementary Fig. 2 gives a genus-level repre-
sentation of these data). We obtained a lower predictive performance,
reachingameanR?of 0.43 + 0.12 (mean and standard deviation for Py gq
fromthe previously described cross-validation procedure), probably
because of a higher error in Pgg estimates and lower data availability
compared to Ps,. Given the lower performance of HSM;,,5s models, the
lower data availability for Ps,ss compared to Psy and considering that
Pgs was highly related to Py, (R*= 0.69), we used P;, and standard HSM
toreport the mainresults.

Hydraulic metrics of species assemblages

To plot hydraulic metrics for species assemblages, we first spatially
referenced species-level imputed data for 44,901 species using their
spatial range distribution®* (Supplementary Fig. 3a,b to see species
range distribution coverage for imputed and observed traits data,
respectively). Spatial projections were implemented by assuming fixed
trait values at the species level (as we expect intraspecific variability
tobe much lower thaninterspecific variability for hydraulic traits)” .
Then, we aggregated trait values for species with overlapping distribu-
tions at the pixel level by calculating their mean, minimumand variance
asameasure of functional variability by using the fasterize function of
the fasterize R package’ and the rasterize function of the raster R pack-
age® in the case of the variance. By doing so, we obtained 5 km? raster
layers for Ps,and HSM mean and their variability (Figs. 3a,b and 4a,b),
minimum HSM (Fig. 3¢), P,,,, mean and its variability (Supplementary
Fig. 4), Psyss and HSMy,ss mean and their variability (Supplementary
Fig.5). Note that mean HSM and minimum HSM are reported as nega-
tive HSM so higher values represent higher hydraulic risk. This was
performed for consistency with P, plots, as higher Py, represents
higher embolism vulnerability. For HSM and HSMy,s5 spatially refer-
enced values, we also calculated the number of species with negative
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values per pixel at 5 km? resolution using the same approach (Fig. 4c
and Supplementary Fig. 5c for HSM and HSM;,s5, respectively). These
maps should be interpreted as predicted values and then will only be
relevantinareas with woody plant vegetation. However, we also provide
maps excludingland cover categories without woody vegetation (using
Copernicus, the land cover map previously referred to as a reference)
(Supplementary Fig.10).

We also spatially aggregated cross-species Ps, and HSM standard
deviations by calculating the mean from the 100 iterations of the pre-
dictive model including all species (Supplementary Fig. 7a,c,e) and
excluding the20% of species with observed trait datain eachiteration
(Supplementary Fig. 7b,d,f). Then, we report two measures of model
uncertainty aggregated at the spatial scale: the first one showing the
uncertainty of the predictive model at the species level and the second
one the uncertainty linked to the identity of the species represented
in the training data used. The uncertainty due to the identity of the
species used to train models is higher than the model uncertainty
(Supplementary Fig. 7).

To better visualize variability in raster plots, we restricted values
using the clamp function from raster R package®, setting the 0.05
quantile as the lower value and the 0.95 quantile as the upper value.

Assessing the predictive capacity of hydraulic traits

First, we tested the relationship between imputed species-level HSM
values and the presence-absence of observed mortality as well as
the number of mortality events recorded per species as reported in
the global mortality database®. We used generalized linear models
through the glm function of the stats R package®, setting the family
parameter to ‘binomial’ in the first case and to ‘Poisson’in the second
one. To see the effects of angiosperm versus gymnosperm affiliation
in this relationship, we included the major evolutionary affiliation as
anexplanatory factor interacting with HSM. As the number of species
without observed mortality was much higher than the number with
observed mortality, we randomly selected the same number of species
without observed mortality events to match the number of species with
mortality events (that is, 482). We repeated this procedure 100 times
and averaged the results in both cases.

To explore the relationship between the spatial projection of
hydraulic metrics and mortality occurrence as reported by the global
DIM database?, we used binomial generalized linear models with the
glmfunction of the stats R package®. We kept one mortality event per
square kilometre, reducing the number of geographical points with
observed DIM from 1,303 to 882 to avoid over-representing areas with a
higher sampling effort. To assess the degree of spatial autocorrelation
of models, we performed Mantel tests on the residuals of all models
using the function mantel.rtest of the Ade4r package”. The spatial
autocorrelation was <0.06 in all cases. The response variable in our
models was mortality occurrence (1for pixels with atleast one mortality
eventobserved and O for the same number of randomly sampled pixels
without observed mortality). Backgrounds could include some pres-
ences, so to deal with the lack of absence points we repeated models
100 times randomly changing background points and averaged results.
The explanatory variables included HSM-derived variables related to
the hydraulicrisk of species assemblages (pixel mean, minimum, vari-
ance and number of species with HSM < 0), as well as their interaction
with biome and PFT (for example, broadleaf deciduous, broadleaf
evergreen, needle-leaved and so on) (Fig. 5 and Supplementary Fig. 6).
Anaridity index, annual precipitation and maximum temperature were
alsoincluded as predictorsinaseparate model to assess their individual
predictive power (Supplementary Table 2). Biome and functional type
categories were reclassified to maintain as many observations per
category as possible (Supplementary Table 4). We included biome and
functional type as factors in the models to check for changes in the mag-
nitude and direction of the relationships between species-assemblage
hydraulic metrics and DIM as well as to improve predictions by better

representing broad vegetation types (for example, see the Amazon
Basinin Fig. 6). Note that our data have alow number of observations
insomebiome and functional type groups, so no firm conclusions were
drawn from the differences among factor levels.

The number of species per pixel was also included as a covariate
in amodel using the number of species with HSM < 0 to check for the
effect of species number on its relationship with DIM occurrence.
HSM variance and HSM minimum as well as their interaction were also
considered together in the same model to better understand their
non-independent relationship with DIM occurrence. Trend significance
was tested by using the emmeans R package” (Supplementary Table 5).
Each model was run 100 times using a different set of background
points and pseudo-R*values were calculated using the rmI R package”
(Supplementary Table 2). Test AUC values were also calculated using
the dismo R package’® following a cross-validation procedure with 80%
of the data to train and 20% to test. All models were rerun including
aridity index values extracted from mortality and background points
as a covariate to test whether trait effects remained significant when
the climate was considered, which was the case. To check for variable
significance, we implemented analysis of variance tests using the
anova function from the stats R package® (Supplementary Table 3
gives the mean results calculated from 100 iterations in each case for
models including aridity index as a covariate). As a further check, we
repeated the same procedures but we were more restrictive in aggre-
gating mortality data to avoid over-representing areas with higher
sampling intensity (western United States, southwestern Australia
and Europe)”. When we kept only one mortality occurrence per 10 km?
(ref. 79), reducing the number of occurrences from 1,303 to 517, the
results did not differ.

Projecting mortality risk using maximum entropy models

We used maximum entropy models® as implemented by the dismo R
package’® to predict and project DIM risk at the global scale. We used
thismethodology instead of the previous binomial generalized linear
modelsasitaccountsbetter for presence/background point dataunder
apredictive framework. This allowed us to better characterize the back-
ground by including more background points than presences, a proce-
dure not recommended with generalized linear models®’. Moreover,
this technique presents higher predictive performance than general-
ized linear models because of its capability to account for nonlinearities
and multipleinteractions between predictors®’. Three types of models
wererun:type ausing only functional type and biome distributions as
predictors, typebasintype aplus continuous edaphoclimatic variables
and type c asin type b plus the projected hydraulic metrics as predic-
tors. To maximize predictive performance while keeping the lowest
number of predictors, only continuous variables with high predictive
power that presented Pearson cross-correlation coefficients among
themselves lower than 0.75 were included in models b and c. These
variables were maximum temperature, aridity index, soil sand and clay
content for modelsincluding edaphoclimatic variables and the number
of species with HSM < 0, HSM variance, maximum temperature and
aridity index for modelsincluding both hydraulic traits and edaphocli-
matic variables. In all cases, biome and functional type were included
as predictive factors. Note that none of the edaphoclimatic variables
used to predict mortality wasincluded in the edaphoclimatic principal
components used to predict species-level hydraulic traits from which
species-assemblage hydraulic metrics were calculated. Modelsband ¢
were constructed to contain the same number of predictors to facilitate
their comparability.

Inthisinstance, mortality data were aggregated to keep one occur-
rence per 10 km? to avoid overfitting’® (number of occurrences 517)
while standardizing the spatial resolution with the layers used as pre-
dictors. Models were trained using the ‘hinge’ option (similar to GAM)
with 10,000 randomly sampled background points (but models were
also trained using 1,000 and 50,000 randomly sampled background
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points to assess model consistency). To evaluate model performance,
each model was trained using 80% of the data and tested using the
remaining 20% and this procedure was repeated 100 timesin each case
(randomly changing training and test data points) and test AUC values
were calculated and summarized by calculating their mean and stand-
ard deviation to assess performance (Fig. 6). We made sure to include
both points with observed mortality and background pointsinall cases
by sampling the 80% and the 20% in each of these groups separately
and then unifying the datasets, following previous implementations®.
Finally, asingle model trained using all observations was implemented
for model types a, b and c (see earlier) and used to project mortality
occurrence probability geographically (Fig. 6). Variable importance
was assessed by its relative (percentage) contribution to the fit of
the models as generated by the maxent jack-knife procedure, which
compares the training gain for each variableinisolationto the training
gain of the model with all variables (Fig. 6). Permutation importance
was also calculated for each edaphoclimatic variable by randomly
permuting presence and background values, re-evaluating the model
and calculating the resulting drop in training AUC, normalized as a
percentage (Fig. 6).

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability
The minimum dataset needed to replicate the analyses can be
found in the following public repository: https://doi.org/10.6084/
m9.figshare.23635446.

Code availability
Thecodeused canbe foundinthe following repository: https://github.
com/pablosanchezmart/Sanchez-Martinez_etal-2022.
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