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Chromosomes are a central unit of genome organization. One-tenth of all
described species on Earth are butterflies and moths, the Lepidoptera, which

generally possess 31 chromosomes. However, some species display dramatic
variation in chromosome number. Here we analyse 210 chromosomally
complete lepidopteran genomes and show that the chromosomes of extant
lepidopterans are derived from 32 ancestral linkage groups, which we term
Merian elements. Merian elements have remained largely intact through
250 million years of evolution and diversification. Against this stable
background, eight lineages have undergone extensive reorganization either
through numerous fissions or acombination of fusion and fission events.
Outside these lineages, fusions are rare and fissions are rarer still. Fusions
ofteninvolve small, repeat-rich Merian elements and the sex-linked element.
Our results reveal the constraints on genome architecture in Lepidoptera
and provide adeeper understanding of chromosomal rearrangements in
eukaryotic genome evolution.

Chromosomes are the central units of genome architecture in eukary-
oticorganisms. They determine processes such asrecombination and
segregation. While chromosomes are generally stable over evolutionary
time, large-scale rearrangements, such as fusions and fissions, can occur.
Consequently, chromosomes of extant species can be used to infer the
linkage groups present in acommon ancestor, termed ancestral link-
age groups (ALGs). ALGs have been identified in many taxa including
Diptera’, flowering plants®, Nematoda®*, mammals®, vertebrates® and
Metazoa’. Chromosomal rearrangements have important consequences
for genome function®, speciation’ and adaptation'®. For example, het-
erozygous chromosomal fusions can interfere with meiosis, resulting
inreproductively isolated populations™'%. The evolutionary forces con-
straining chromosome number and maintaining ALGs remain unclear.
Moreover, how and why certain taxa evade such constraints and experi-
ence high rates of karyotypic change are not understood.

In monocentric chromosomes, a single region, the centromere,
serves as the organizing centre for Mendelian partitioning of homo-
logues during mitosis and meiosis. Discrete centromeres are absent
in holocentric chromosomes as centromeric functions are dispersed
along the chromosome. Holocentricity has evolved independently

several times across the tree of life, including in nematodes, four times
in plants and multiple times in arthropods®”™®. The most speciose of
these holocentric groupsis Amphiesmenoptera, comprising theinsect
orders Lepidoptera (moths and butterflies) and Trichoptera (caddis-
flies), which together account for 15% of all described eukaryotic spe-
cies?. The convergent evolution of holocentricity in many speciose
groupsindicates that this alternative solution to accurate segregation
of chromosomes may be evolutionarily advantageous.

Holocentricchromosomes are suggested to facilitate rapid karyo-
typicevolution as fragments derived from fission could maintain kine-
tochore function®?, Lepidoptera are the most karyotypically diverse
group of any non-polyploid eukaryote, with haploid chromosome
numbers (hereafter chromosome number, n) ranging from 5 to 223
(refs. 23,24). However, most species have haploid counts of n=29-31
(refs. 25,26), indicating that further mechanisms must constrain holo-
centric karyotype evolution. Indeed, chromosome numbers and their
gene contents are generally stable over evolutionary time in both
holocentric and monocentric taxa”.

Changesin chromosome number alter the recombination rate
InLepidoptera, where recombination only occursin males (ZZ), there
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Fig.1|Phylogeneticrelationships of 210 lepidopteran species and the
distribution of large-scale rearrangement events. a, Phylogeny was inferred
using the amino acid sequences of 4,947 orthologues that were present and
single copy in 90% of all species sampled under the LG substitution model

with gamma-distributed rate variation amongsites. The tree was rooted using
five representative species of the two main suborders from the sister group,
Trichoptera (caddisflies). Excluding the ancient fusion between M17 and M20,
whichis shared by all Ditrysians (purple asterisk), half of the species have
retained intact Merian elements since the last common ancestor of Lepidoptera
(blacklines). Orange branches indicate lineages with at least one fusion or
fission event. Orange circles indicate internal nodes where descendants share
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afusion event. We inferred no fission events at internal orange nodes. Red
branchesindicate lineages with extensively reorganized genomes (Lysandra
coridon, Lysandra bellargus, Pieris brassicae, Pieris napi, Pieris rapae, Tinea
semifulvella, Melinaea menophilus, Melinaea marsaeus, Aporia crataegi, Brenthis
ino, Operophtera brumata, Philereme vetulata, Leptidea sinapis and Apeira
syringaria). Red nodes indicate internal nodes where extensively reorganized
descendants share fusion or fission events. Scale in substitutions per site is
shown.b,c, The distribution of haploid chromosome number (n) (b) and genome
size (Mb) (c) across 210 lepidopteran species. Alternating shades distinguish
different taxonomic families. Source data for this figure can be found in

Supplementary Tables1and 6 and in the Zenodo repository'?.

tends to be one crossover event per chromosome per generation®* %,

Thus, loci on a fused chromosome formed from two equally sized
progenitors will experience a50% reduction in per base recombination
raterelative to the unfused chromosomes. Changesin recombination
rate will impact the evolutionary forces that shape genome archi-
tecture, altering the effect of selection at linked sites and therefore
effective population size. Lower recombination rates also intensify
Hill-Robertson interference between tightly linked beneficial loci,
hindering adaptive evolution®. However, local adaptation is facilitated
byreduced recombinationbetween locally adaptedlociinthe presence
of gene flow***,

Here, we infer ALGs for Lepidoptera, which we term Merian ele-
ments, from 210 chromosomal genome assemblies using a reference-
free, phylogenetically aware approach. We find that Merian elements
have remained intactin most species. While infrequent fusions occur,
fissions are extremely rare. Constraints on large-scale reorganization
have beenrelaxedineightlineages, resultingin chromosomesthat are
the products of either many fissions or numerous fusion and fission
events. Across Lepidoptera, we find that fusions are biased towards

shorter autosomes and the Z sex chromosome, suggesting that both
chromosome length and haploidy in the heterogametic sex play key
rolesin constraining genome rearrangement.

Over 200 chromosomally complete lepidopteran
genomes

To explore karyotype variation across Lepidoptera, we selected
chromosome-level reference genomes for 210 species of Lepidoptera,
representing 16 of the 43 (37%) superfamilies, including basal lineages
such as Micropterigidae and Tineidae. AlImost 90% of the assemblies
(188 of 210) were generated by the Darwin Tree of Life project®® (Sup-
plementary Table 1). These reference genomes are high-quality, with
high gene completeness (mean 98.24%, s.d. = 1.75%); assessed by bench-
marking using single-copy orthologues (BUSCO; lepidoptera odb10
dataset)”, high contiguity (mean contig N5013.47 Mb, s.d. = 6.92) and
the vast majority of each assembly scaffolded into chromosomes (mean
99.56%,s.d.=1.28) (Supplementary Tables 1,2 and 3 and Supplementary
Figs.1and 2). Using BUSCO loci, we inferred a phylogeny of the 210
species, which we rooted with five Trichoptera (caddisflies; Fig. 1a).
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Fig.2|Defining 32 Merian elements. a, Inferred ancestral karyotype of
Lepidopteraand the fusion between M17 and M20 found in all Ditrysia. The
phylogeny contains representatives of Trichoptera, Limnephilus marmoratus
and Glyphotaelius pellucidus, in addition to the early-diverging lineage within
Lepidoptera, Micropterix aruncella and the early-diverging lineage within
Ditrysia, Tinea trinotella and a representative of Ditrysia, Diarsia rubi. To the right
of each speciesin the phylogeny, an Oxford plot of the chromosomes containing
orthologues belonging to M17 and M20 in the species is shown relative to
Melitaea cinxia, which has the chromosome complements of a typical ditrysian
species. b, Merian elements painted across the chromosomes of Micropterix
aruncella, Tinea trinotella, Diarsia rubi, Melitaea cinxia and Pieris napi. Each
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chromosome is represented by a rectangle within which the position of each
orthologue is painted grey if it belongs to the most common Merian element
for that chromosome or else coloured by the alternative Merian element.
Chromosomes that have undergone fusions and/or fission events are outlined
inred. Source data for this figure can be found in Supplementary Tables 4 and
10, the Zenodo repository'?? and in the Source Data. Silhouette of Limnephilus
lunatusby Christoph Schomburg, PhyloPic. Credits for the photographs from
which the remaining silhouettes were derived: Diarsia rubi and Glyphotaelius
pellucidus, Donald Hobern/Flickr; Tinea trinotella, llia Ustyantsev/Flickr;
Micropterix aruncella, Christoph Schomburg/Flickr; alladapted under a Creative
Commons license CC BY-SA 2.0 DEED.

Thekaryotypesinferred from the genome assemblies were con-
sistent with previous cytological determinations, ranging fromn =14
in Brenthis ino to n=90 in Lysandra coridon®. Four-fifths (82%) of
the lepidopteran species had an assembled n of 28-31 (Fig. 1b and
Supplementary Fig. 3). Genome size varied tenfold, from 230 Mb
(Aporiacrataegi)to2.29 Gb (Euclidia mi) (Fig.1c and Supplementary
Fig. 4). In contrast to previous studies®®, we found no significant
correlation between genome size and chromosome number (phy-
logenetic linear model, t = 0.83, P= 0.4087, adjusted r* = 0.00795).
(Supplementary Fig. 5).

We observed strong patterning of features along each chromo-
some, including GC content, repeat and coding densities, consistent
with previous observations®. Both GC content and repeat density
were higher towards the ends of chromosomes compared to their
centres (Extended Data Fig. 1a,b). In contrast, coding density tended
to decrease towards chromosome ends (Extended Data Fig. 1c). Nor-

malizing for chromosome length, we found that the pattern of feature
distribution was similar across all autosomes and the Z chromosome

(Extended DataFig. 1d).

Thirty-two ancestral lepidopteran linkage groups
We used 5,287 single-copy orthologues in 210 lepidopteran and 4
trichopteran species to define ALGs in a reference-free, phyloge-
netically aware manner (Fig. 1a), using the tool syngraph*°. In brief,

syngraphimplements an adjacency-based approach which exploits the
co-occurrence of loci onthe same chromosome, without regard to their
order, toinfer linkage groups and interchromosomal rearrangements.
Although previous work proposed 31 ALGs in the last common ances-
tor of Lepidoptera*™*, we assigned 4,112 orthologues (78%) to 32 ALGs
(Fig.2a):31autosomes and Z, the sex chromosome. Hereafter, we refer
tothese ALGs as Merian elements, named after the seventeenth-century
lepidopterist and botanical artist, Maria Sibylla Merian**. Merian ele-
ments were named in order of the number of orthologues they carry,
ranging from273inthelargest Merian element (M1) to 19 inthe smallest
(M31). The sex-linked Merian element (MZ) contains 161 orthologues
(Supplementary Table 4). We tested the robustness of syngraph infer-
ences by performing 100 bootstrap replicates and consistently recov-
ered thesame 32 ALGs (Methods). Theindependent ALG inference tool
AGORA® yielded highly congruent results (Supplementary Text and
Supplementary Figs. 6 and 7).

Anancientfusioninvolving M17 and M20 occurred on the branch
leading to the last common ancestor of Ditrysia, the most taxonomi-
callyand ecologically diverse group of Lepidoptera (Fig. 1a), generating
the 31linkage groups observed in most extant Ditrysia. We refer to this
fusionas‘M17 + M20’, where the ‘+' denotes an end-to-end fusion, with-
out mixing of genes. In Micropterix aruncella, fromthe early-branching
family Micropterigidae, M17 and M20 are distinct chromosomes.
M17 and M20 ALGs were also distinct in the last common ancestor
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Fig. 3| Therelationship between Merian element length and tendency
tobeinvolvedinfusions. a, Conservation of Merian element length across
Lepidoptera. Box plots of the variation in proportional chromosome length
within each Merian element. The box plots show the median (centre line) and

the first and third quartiles (Q1 and Q3; box limits) and the whiskers extend to
thelast point within 1.5 times the interquartile range below and above Ql and Q3
respectively. Observations that fall outside Q1 and Q3 are shown as outliers. Only
Merian elements that have remained intact (no large-scale rearrangements) were

included. b, Matrix of fusion events between pairs of Merian elements, where

the shade of red indicates the total number of fusion events per Merian element.
¢, Bar chart of the number of autosome-autosome and sex chromosome-
autosome fusion events that each Merian element was involved in. Merian
elements are ordered on the basis of average proportional length across the 210
species. Source data for this figure can be found in Supplementary Tables 1, 6 and
10 andinSource data.

of Trichoptera. As the separations of loci defining M17 and M20 were
identicalin M. aruncella and the four Trichoptera, this excludes the pos-
sibility that these represent two independent fissions of an ancestral
element (Fig. 2a).

We explored the evolutionary dynamics of Merian elements by
‘painting’ the positions of the orthologues that define each element
onto chromosomes of present-day species (Fig. 2b). Except for the
ancient M17 + M20 fusion, the chromosomes of most species corre-
sponded to intact Merian elements. Simple fusion and fission events
identified in several species reflected previous cytological karyotype
assessments”. For example, the chromosomes of M. aruncella directly
corresponded tosingle, intact Merian elements, with the exception of
one Z-autosome fusion (MZ + M11). We identified a distinct Z-auto-
some fusion (MZ + M29) in Tinea trinotella which is consistent with a
cytological n of 30 (ref. 46). Gene order synteny within each element
was highly conserved, even after chromosomal fusion events, including
the ancient M17 + M20 (Fig. 2a). More complex rearrangements have
occurredin 14 species from 8 lineages. For example, in Pieris napi, most
chromosomes were made up of segments derived from more thanone
Merian element and individual Merian elements were fragmented
across several chromosomes, indicating a history of many fusion and
fission events, as proposed previously*. In chromosomes that had not
undergone rearrangement events, the proportional length of each
Merian element was broadly conserved across species (Fig. 3a). We
compared the distribution of the orthologues allocated to Merian ele-
ments to their allocation to bilaterian ALGs (BLGs; n = 24)”, from which
Merian elements descend and which date to ~560 million years ago*®. As
expected, Merian elements show some correspondence to BLGs with
17 Merian elements showing greater similarity in orthologue assign-
ment with BLGs than expected under random sampling. However,
most Merian elements were rearranged relative to BLGs, possessing
combinations of loci from multiple BLGs (Extended Data Fig. 2a-c).

Distribution of fusion and fission events across
Lepidoptera
Merian elements provide afoundation for the inference of pattern and
processinlepidopteran chromosome evolution. We used phylogeneti-
cally aware tools to infer the rearrangement histories of 196 species
where chromosome painting indicated simple fusions between com-
plete Merian elements or fission of single Merian elements.
Excluding the ancient M17 + M20 fusion, 54% (106 of 196 species)
haveretained intact Merian elements since the last common ancestor
of Lepidoptera.Inthe 90 Ditrysian species that deviate from n =31, we
identified 183 simple fusion events and four fission events (Fig. 1b).
Fissionwas observed injust three species (Celastrina argiolus, Macaria
notata and Eupithecia centaureata), which have one, one and two fis-
sions, respectively. We also identified asingle instance where segments
of two Merian elements had fused together and the remaining portions
existed as separate chromosomes, resulting from two fissions (M1
and M6 in Eupithecia centaureata) (Supplementary Fig. 8). Most (159,
86%) of the 183 simple fusions appeared to be evolutionarily young,
as they were observed in single species. However, 25 fusions mapped
to 14 internal nodes and were shared by all descendants (Fig. 1a)
(Supplementary Tables 5 and 6). In all fusions, the domains derived
from the ancestral chromosomes remained unmixed and retained
the gene order of the ancestral elements. We found that the number
of species-specific fusionsis significantly greater than expected under
a uniform model of evolution across the phylogeny (see Methods).
The scarcity of older fusions suggests that lineages with fusions have
areduced probability of persisting over time. Alternatively, fusions
could revert via subsequent fission but we found no instances where
reversionwas a parsimonious explanation of observed chromosomes.
We explored whether all Merian elements were equally likely to
be involved in fusions. For this analysis, only chromosomes resulting
fromasingle fusion event between two elements were considered and
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Fig. 4 | Extensive chromosomal rearrangements in Lysandra and Pierini.

a, Relationships of Lysandra species with reorganized genomes and sister species
Polyommatus icarus that has retained intact Merian elements with the exception
of seven fusions shared by all lycaenids. b, Relationships of the Pierini species
that have reorganized genomes and their sister species, Anthocharis cardamines,
whichis notreorganized. Inboth panels, Merian elements are painted across the
chromosomes of each species. Each chromosome is represented by arectangle

within which the position of each orthologues is painted grey if it belongs to the
most common Merian element for that chromosome or coloured if it belongs to
an alternative Merian element. Chromosomes that have undergone large-scale
rearrangements (fusions or fissions) are outlined in red. The full list of identified
rearrangements is available in Supplementary Table 7. Source data for this figure

canbe found in Supplementary Table 10 and in the Zenodo repository'?.,

the ancient fusion observed in all Ditrysia was considered as one unit.
We found that some Merian elements were more frequently involved
infusion than others (Fig. 3b). The most common fusion pairings were
MZ + M31 and MZ + M24 (each with four independent occurrences).
Strikingly, MZ was involvedin the highest number of fusion events (30
independent fusion events). We found that small autosomal elements
wereinvolved in more fusion events than were larger ones (Spearman’s
rank correlation, p(29) =-0.62, P=2 x10™*) (Fig. 3cand Extended Data
Fig. 3). A bias towards the involvement of smaller chromosomes in
fusion events has been found in Bombyx mori and Heliconius mel-
pomene**. Our analysis suggests that this holds across Lepidopteraand
istrue for both autosome-autosome fusions and Z-autosome fusions.

Extensive rearrangementsin eightindependent
lineages

Against the backdrop of strong constraint on karyotype evolution,
14 species from 8 lineages had highly reorganized genomes (Fig. 1a
and Supplementary Table 7). We identified two distinct patterns, one
exemplified by Lysandra, where fission has been dominant (Fig. 4a)
and the other by tribe Pierini (Pieridae), where chromosomes have
undergone many nested fusion and fission events (Fig. 4b). Both pat-
terns have resulted in fragmentation of Merian elements. We found no
evidence of polyploidy in any lineage.

Toinvestigate the dynamics of fissionin Lysandra (Nymphalidae),
we reconstructed the events that gave rise to the genome structures
of Lysandra coridon and Lysandra bellargus. Seven pairwise fusions
generated akaryotype of n =24 in the last common ancestor of family

Lycaenidae. Fifteen fissions then generated n =39 in the last common
ancestor of Lysandra (Fig. 4a). Subsequently, L. bellargus underwent
six fissions generating n =45 and L. coridon experienced at least one
fissioneventin 37 of the 39 chromosomes of the Lysandralast common
ancestor. The MZ element did not undergo fissionin either species but
fused to a portion of M16 in L. coridon. An overwhelming majority of
the 90 chromosomesin L. coridon mapped to asingle Merian element
and show conservation of gene order (Supplementary Fig. 9). The few
L. coridon chromosomes that contained segments from more than one
Merian element derive from the seven fused chromosomes presentin
the common ancestor of Lycaenidae. A similar pattern of dominance
of fission was observed in Tinea semifulvella, which has undergone
15 fission events, resulting in a karyotype of n =45 relative to Tinea
trinotella (n=30) (Supplementary Fig.10).

In Pierini (Pieridae), chromosomes are mosaics of segments of
Merian elements. We inferred parsimonious rearrangement histories
that explain the karyotypes of Pieris napi, Pieris rapae, Pieris brassicae
and Aporia crataegi (Fig. 4b). A set of fusions and fissions occurred in
thelast common ancestor of Pierini and are thus absent in the outgroup
Anthocharis cardamines. Further fusions and fissions occurred inde-
pendently in the lineages leading to A. crataegi and to the three Pieris
species. P. rapae and P. napi share 25 orthologous, collinear chromo-
somes and thus have maintained the same karyotype as the last com-
mon ancestor of Pieris for ~30 million years*. In contrast, P. brassicae
underwent ten more fusions resulting inareduced karyotype of n=15.

Complex, nested rounds of fusion and fission have also shaped the
genomes of Melinaea (Nymphalidae). A series of fusions and fissions
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Fig. 5| The correlates of chromosome length and sequence features across
Lepidoptera. a-c, Proportional chromosome length against sequence
features: repetitive element content (a); synteny, defined as the proportion

of orthologues that are adjacent in both the reference species Melitaea cinxia
and the given species (b); proportion of chromosomal gene content that is
made up of orthologues that are single copy and present across Lepidoptera
(c).Eachlineis coloured greenif the correlation with proportional length

was significant (Spearman’s rank, P < 0.05) or orange if it was non-significant
(Supplementary Table 8). Spearman’s rank correlation coefficients (R) and
Pvalues were obtained by two-sided Spearman’s correlation test. Only autosomes
were included in the correlation analysis. Autosomes were filtered to only retain
those that corresponded to intact Merian elements (that had not undergone
fusion or fission). Only species with at least ten autosomes after filtering were
analysed and only superfamilies represented by at least five species are shown.

Proportional chromosome

Polyommatus icarus

Proportional chromosome

length (%) length (%)

d,e, Proportional chromosome length against repetitive element content

for Agrochola circellaris (d), which has a recent fusion and for Aphantopus
hyperantus (e), which has an older fusion. f, The difference between the average
repeat density of a given Merian element and its current repeat density in the
context of a fused chromosome is shown, where small Merian elements are M25,
M29, M30 and M31. The box plots show the median (centre line) and the first and
third quartiles (Q1 and Q3; box limits) and the whiskers extend to the last point
within 1.5 times the interquartile range below and above Q1 and Q3 respectively.
Observations that fall outside Qland Q3 are shown as outliers.n =180
independent pairwise fusions examined. g,h, Proportional chromosome length
against repetitive sequence content is shown for a set of Pierini species plus the
sister species Anthocharis cardamines (g) and for species in genus Lysandra and
the sister species Polyommatus icarus (h). Source data for this figure can be found
inSupplementary Tables 10 and 8 and in the Source data.

occurred in the last common ancestor of Melinaea, with further inde-
pendent fusions and fissions occurring in Melinaea marsaeus and
Melinaea menophilus (Supplementary Fig.11). Likewise, the genomes of
Brenthisino (Nymphalidae) and Apeira syringaria (Geometridae) reflect
ahistory of many fusions and fissions, having undergone an estimated
total of 33 and 38 events, respectively (Supplementary Figs.12 and 13).
Leptidea sinapis (Pieridae) has undergone 29 fusion and 26 fission
events, resulting in n =48 compared to its close relative, Anthocharis
cardamines, which has n =30 (Supplementary Fig. 14). Two closely
related species in Geometridae, Operophtera brumata and Philereme
vetulata, had highly reorganized genomes. We infer that three fissions
occurred in their last common ancestor. O. brumata experienced a
further11fissions and 30 fusions. In contrast, one fusion and 35 fissions
occurred in P. vetulata (Supplementary Fig. 15). Notably, in all highly
reorganized lineages, MZ has remained intact with no fissions and in
all lineages, except P. vetulata, it has fused to one or more autosomal
Merian elements.

Understanding biases in chromosomal fusionsin
Lepidoptera

Small and sex-linked Merian elements are more frequently involvedin
fusion events. This leads to the question of whether there are compo-
sitional differences that vary with chromosome length. We observed
anegative correlation between GC content and proportional chromo-
somelengthin 84% (163 of193) of analysed species (Spearman’srank,
P <0.05) (Supplementary Table 8 and Extended Data Fig. 4a) with small
chromosomes having high GC content. GC content has several drivers,

including contributions fromrepetitive elements but GC3 (the GC con-
tent of the third bases of potentially degenerate codons) isindependent
of many of these. Only half (48%; 93 0f 184) of the species analysed had
higher GC3 values in smaller chromosomes (Supplementary Table 8
and Extended Data Fig. 4b) suggesting that some variation in GC is
driven by the density of features such as repeats. Consistent with this,
smaller chromosomes have a higher repeat density than larger chro-
mosomes (Fig. 5a). Negative correlation between chromosome length
andrepeat density was observedin 93% (180 of 193) of assayed species
(Spearman’srank, P < 0.05), ranging in strength from —0.41 (Notocelia
uddmanniana) to —0.98 (Biston betularia) (Supplementary Table 8).
High repeat density in smaller chromosomes was not associated with
specificrepeat types. All major repeat families were enriched inshorter
chromosomes, albeit some families more so than others (Extended
DataFig.5).In contrastto GC content and repeat density, we observed
no consistent correlation between coding density and chromosome
size (negative correlationin 0.5% (10f184) and positive correlationin
18% (33 of 184) of species; Spearman’s rank, P < 0.05) (Extended Data
Fig. 4c), reflecting previous conflicting trends observed in several
Nymphalid species®.

While gene order synteny is highly conserved in Lepidoptera,
smaller chromosomes were generally less syntenic than longer chro-
mosomes (Fig. 5b). Asignificant positive correlation (Spearman’srank,
P <0.05) was observed in 68% of species (132 of 193) with correlation
strength ranging from 0.82 (Limenitis camilla) to 0.37 (Chrysoteuchia
culmella) (Spearman’s, P < 0.05) (Supplementary Table 8). We explored
whether the types of genes on small chromosomes were different from
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those on larger chromosomes. Smaller chromosomes were depleted
insingle-copy orthologuesrelative to larger chromosomesin 95% (174
of'184) of all analysed species (Spearman’s rank, P < 0.05) (Fig. 5c).
Inseveral of these analyses, the Zchromosome was an outlier given
itsrelative length (Supplementary Table 9). Unfused MZ chromosomes
had low average GC and GC3 content, in line with GC decreasing with
chromosome length (Extended Data Fig. 6a,b). However, the average
repeat content for MZ chromosomes was higher than expected onthe
basis of chromosome length alone (Extended Data Fig. 6¢). Although
the level of coding density on MZ chromosomes fell within the range
exhibited by autosomes (Extended DataFig. 6d), they had amuchlower
level of synteny than expected on the basis of chromosome length
(Extended DataFig. 6e). MZ chromosomes were also relatively depleted
in single-copy, conserved genes (Extended Data Fig. 6f). Together,
these patternsindicate that other evolutionary forces, in additionto the
chromosome length, have shaped the content of the Z chromosome.

Consequences of fusions

The composition of Merian elements might be anintrinsic part of their
functional biology rather than driven by their relative sizes. Intrinsic
function would maintain Merian element-specific feature landscapes
in fused chromosomes, while length-related drivers would result in
amelioration through time. For phylogenetically recent fusions, we
observed that the constituent Merian elements had a repeat density
similar to that of their ancestral, unfused homologues. For example,
in the species-specific M30 + M5 fusion in Agrochola circellaris (Noc-
tuidae) we found arepeat-richM30 segment and alarger and relatively
repeat-poor M5 segment. Therepeat densities of these segments were
in line with expectations from the ancestral, unfused sizes (Fig. 5d).
As noted above, chromosomes have higher repeat densities at their
ends and, in recent fusion chromosomes, a shoulder of higher repeat
densityinthe area of the fusion (probably arelic from the contributing
parts) was evident (Extended DataFig. 7a-c). Aphantopus hyperantus
(Nymphalidae) had a phylogenetically older M29 + M14 fusion that
was shared by members of subfamily Satyrinae. While the M29- and
M14-derived domains of the fused chromosome were still distinct in
syntenic gene content, they both had repeat densities consistent with
an expectation derived from the fused chromosome length (Fig. 5e).
There was no central shoulder of increased repeat density (Extended
Data Fig. 8). In all simple fusions involving one of the four smallest
Merian elements, the smaller Merian element tended to have experi-
enced a greater shiftin repeat density relative to its unfused ancestor
(paired t-test, P< 0.01) (Fig. 5f). Thus, the repeat landscape of fused
chromosomes evolves over time to reflect that expected of larger
chromosomes. Patterns of features on chromosomes are therefore
largely driven by the relative chromosome length, not the identities
of the genes carried.

Average chromosome length will be smaller in species with more
chromosomes and thus would be expected to accumulate a higher den-
sity of repeats. The small, highly reorganized chromosomes of Pierids
were indeed repeat-rich relative to the chromosomes of Anthocharis
cardamines (Fig. 5g) and the small chromosomes resulting from ram-
pantfissioningroups suchas Lysandrawere also repeat-rich (Fig. 5h).
Despite the lack of correlation between chromosome number and
genome size across all species, repeat accumulation in species with
many, smaller chromosomes was associated withanincreasein genome
size in Lysandra species (Supplementary Fig. 16), L. sinapis (Supple-
mentary Fig.17), P. vetulata (Supplementary Fig.18) and T. semifulvella
(Supplementary Fig. 19). Symmetrically, reduction in chromosome
numbers was associated with reduced genome size in Pierini (Sup-
plementary Fig. 20), A. syringaria (Supplementary Fig. 21) and B. ino
(Supplementary Fig.22) but notin O. brumata (Supplementary Fig. 18)
and Melinaea species (Supplementary Fig.23). It may be that the many
fusions that reduce chromosome number in these last species were
recentand insufficient time has passed for repeat content to decrease.

Discussion

The ongoing revolutionin sequencing is enabling major projects such
asthe Darwin Tree of Life to produce large numbers of chromosomally
complete genomes across eukaryotic diversity***2. These rich data
permit comprehensive, large-scale, taxon-wide analysis of features
and processes®. Using over 200 chromosomally complete genomes,
we mapped the evolutionary dynamics of chromosome maintenance,
fusion and fission in a holocentric group, the Lepidoptera. We found
that the chromosomes of extant species are derived from 32 ALGs or
Merian elements. Except for an ancient Ditrysian fusion, Merian ele-
ments have remained intactin most species. Our findings complement
previous work that demonstrated strong conservation of macrosynteny
in Lepidoptera* ** by defining their precise orthologue content. These
elements have consistent differences in genomic features and carry
distinct sets of conserved genes that retain a syntenic order. Merian
elements provide a unifying system to explore genomic stasis and
change in Lepidoptera, similar to Muiller elements of Drosophila and
Nigon elements of rhabditid nematodes®****,

Across Lepidoptera, we find that fusions are rare and fissions rarer
still. Surprisingly, we found relatively few fusions on deeper branches of
the phylogeny, consistent with lineages possessing fusions being less
likely to persist. Alternative explanations, such as a general increase
in the rate of fixation of fusions in recent time or frequent reversion
by exact fission seem unlikely. We note that this analysis is based on a
fraction of Lepidopteran diversity and requires deeper investigation
with denser species sampling. We also found that Lepidopteran chro-
mosomes arising from fusions retain syntenic domains that reflect the
original elements. Remarkably, this includes the M17 + M20 fusion,
which occurred ~200 million years ago. In contrast, holocentric chro-
mosomes in nematodes have a high rate of intrachromosomal rear-
rangement thatleads to rapid mixing of genes from Nigon elementsin
fused chromosomes®*. We find that smaller Merian elements are more
ofteninvolvedin fusion eventsthanarelarger autosomal elements. The
distinct relative sizes of Merian elements also mean that they evolve
differently. In Lepidoptera, each bivalent typically undergoes one mei-
otic recombinationin males®**’, meaning that smaller Merian elements
experience higher per base recombination rates than longer elements.
In addition to reducing linkage disequilibrium and enhancing the
efficacy of selection, recombination is mutagenic>®, meaning smaller
elements will experience higher mutational pressures. The stability of
Merian element size across Lepidopterameans that these differences
will have had along-termimpact on the evolutionary trajectories of the
genes and genetic systems each element carries and elements that fuse
or split will experience astep-changein evolutionary rates. Consistent
with this, fused Nymphalidae chromosomes have decreased nucleotide
diversity compared to their unfused homologuesinsister species® and
raised barriers to introgression™*¢,

Small Merian elements show some similarities to the monocentric,
GC-richmicrochromosomes of vertebrates®. Interestingly, compara-
tive analyses indicate that the ancestral vertebrate possessed a set of
small gene-rich chromosomes. Subsequently, subsets of microchro-
mosomes progressively fused, resultingin macrochromosomes. There-
fore, our finding of the involvement of small chromosomesin genome
reorganizationacross Lepidopterashows some similarity to vertebrate
chromosome evolution. However, unlike small Lepidopteran chromo-
somes, vertebrate microchromosomes are repeat-poor and gene-rich.

In our dataset, MZ was usually the largest chromosome and had
sequence patterns that diverged from expectations derived from the
longer autosomes, including repeat and gene content, and degree of
synteny. Because of achiasmatic oogenesis, 67% of the population of
MZ elements undergo crossovers each generation, in contrast to only
50% of the population of autosomal elements. The elevated recombi-
nation rate of the Z and haploid exposure in females probably explain
these patterns®’. Z-autosome fusions have previously been described
in many lepidopteran species® ®. We corroborate these studies by
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demonstrating that MZ has a higher rate of fusions than any autosomal
elementacross Lepidoptera. Sex chromosome-autosome fusions are
also overrepresented in rhabditine nematodes®, flies®, vertebrates®
and plants®’. Possible drivers include female meiotic drive®®, sexually
antagonistic selection®” and deleterious mutation sheltering’® 2. The
setof 30 independent MZ-autosome fusions described here presents
avaluable dataset for dissection of the drivers of the rate of molecular
evolution in sex chromosomes and, for fusions, illumination of the
forces that shape autosomes. The resistance of MZ to fissionin species
where fission is dominant also requires deeper exploration.

Why have Merian elements remained largely stable in gene content
and order through ~250 million years”>”* of lepidopteran evolution?
Species with holocentric chromosomes are theoretically more per-
missive to karyotypic change. This is reflected in some holocentric
groups, such as Carex sedges, where karyotype evolution is rapid™>’®
but clear differences are not seen in monocentric versus holocentric
insects”. One potential constraint on the fixation of rearrangements
is the ability to undergo meiosis. Individuals heterozygous for rear-
rangements can be sterile due to unbalanced segregation leading to
heterozygote disadvantage (underdominance)””. Structural het-
erozygosity impacts reproductive fitnessin holocentric Caenorhabditis
elegans nematodes and Carex®*®'. Homologue pairing and kinetochore
activity have been suggested to constrain karyotype evolution®%*,
In C. elegans, homologue pairing is restricted to discrete regions
enriched for short-sequence motifs while kinetochores assemble
across regions of low transcriptional activity. While pairing centres
have notbeenfoundinLepidoptera, kinetochore assembly in B. moriis
non-sequence-specificand occursinregions with low transcriptional
activity®. Understanding lepidopteran kinetochore and pairing centre
biology willilluminate the roles of these basic systemsin constraining
or promoting chromosome number evolution.

Merian elements may be maintained to facilitate cis-regulation
between genes. This has been suggested in vertebrates where the
gene-rich microchromosomes experience alower interchromosomal
rearrangement rate than their larger counterparts®**%, It has been
suggested that the syntenic blocks of genes resulting from fusion and
fission in Pieris represent gene sets with related functions and these
networks present a constraint”’. Consistent with this, fusions disrupt
patterns of chromosomal contacts in mouse germ cells® and rear-
rangement hotspots exist at the boundaries of topologically associated
domainsin mammalian chromosomes®. However, topologically associ-
ated domains are usually much shorter thanindividual chromosomes
and so are unlikely to offer acomplete explanation of Merian element
conservation.

Chromosome evolution in Lepidoptera is not homogenous.
Against a background of stasis, we find eight lineages that have expe-
rienced major change. We classify these lineages into autosomal
fission-only, with extensive fission of autosomal elements resulting
inmany smallautosomes and alarge, intact MZ, or fission-fusion, with
many fission and fusion events. Inalllineages, MZ wasinsulated from fis-
sion. Inthefission-fusion lineages, we alsoidentified re-establishment
of karyotype stability, albeit at chromosome numbers other than
n=31-32.Forexample, after fission and fusions, Pieris species restabi-
lized at n = 25, with most Pieris species possessing this karyotype®. The
three processes which generate lepidopteran chromosomal comple-
ments, karyotype-stabilizing constraint and karyotype-diversifying
fission and fusion, can be separately modified in different lineages.
For example, the mechanisms preventing fission were derepressedin
Lysandra and fission and fusion were derepressed but fusion was more
recently dominant in P. brassicae. Elevated rates of fixation of rear-
rangements may be a product of neutral processes such as genetic drift
of mildly deleterious and/or underdominant changes during sustained
periods of low effective population size’. Alternatively, functional dif-
ferences in core chromosome biology could drive change. In parrots
(Aves; Psittaciformes), frequent rearrangements have been linked to

the loss of genes involved in the repair of double-strand breaks and
genome stability maintenance®. The existence of lepidopteran line-
ages where fission and fusion rates have been individually modified
will permit detailed investigation of their mechanistic bases. We note
that several species with highly reorganized genomes display variable
karyotypes between populations’>*?, where mating between individu-
alswith highly divergent karyotypes can produce fertile offspring, sug-
gesting that meiosisinsome lepidopterans can tolerate heterozygosity
for many rearrangements***%, However, the persistence of hybrid
zones between populations with different karyotypes indicates a fit-
ness costin hybrids®. Transposable elements are suggested to facilitate
high rates of chromosome fusion*>*”” by promoting deletion, trans-
location and inversion®®, The smaller lepidopteran autosomes, which
aremore frequently involvedin fusions, do have higher repeat content
but MZ, which has relatively low repeat density and fuses frequently,
doesnot. Theevidence of repeatinvolvementin lepidopteran fusions
isequivocal, asanenrichment of LINEs at fusion boundaries observed
in L. sinapis’ may be arelic of recent chromosomal fusion and analysis
ofthe P. napigenome found no enrichment of repeats at fusion bounda-
ries and no repeat class was expanded compared to other species”.

While theimpacts of karyotype on evolutionary trajectories may
beindirect, their effects can be profound. All other things being equal,
changeinkaryotype between species is unlikely to be neutral. Funda-
mentally, change probably promotes speciation®®. However, the pattern
of overall stasis indicates that lineages with highly variant karyotypes
may be at a macroevolutionary disadvantage despite any short-term
speciation advantage. Interestingly, karyotype analyses suggest that
species with high rates of chromosomal change have both the highest
speciation rates and the highest species turnover reflecting higher
extinction rates®®, potentially consistent with unstable diversification
with extinction over time. We highlight that higher chromosome counts
mean more recombination and thus potentially faster evolutionary
rates (or more effective selection) overall. This effect will be particularly
marked for genes on elements directly involved in fusions and fissions
and genome-wide in extensively rearranged species. Dense genomic
sampling of closely related species that differ in rearrangements or,
better still, individuals heterozygous for rearrangements, will provide
agreater understanding of theimmediate consequences of interchro-
mosomal rearrangements on three-dimensional genome structure,
recombination rate and the role of specific sequence features. Under-
standing the drivers and constraints of chromosome change expands
our understanding of genome evolution and the role of chromosomal
changein the evolution of diversity across the tree of life.

Methods

Chromosomal genome assemblies, annotations and transpos-
able elements identification

We downloaded all representative chromosome-level reference
genomes for Lepidopteraand Trichoptera that were available on INSDC
on27June2022.Ofthese 212 lepidopterangenomes and 4 trichopteran
genomes, 191 were generated by the Darwin Tree of Life Project™®.
Accession numbers and references for all genomes are given in Sup-
plementary Table 1. For species generated by the Darwin Tree of Life
projectthat donot have areference, the methods were the same as for
ref. 99. We used the primary assembly for all analyses. The speciose
Noctuoidea (71 species) and the intensely studied Papilionoidea (51
species) contribute most to the genomes.

Gene annotations were generated by Ensembl'° (http://rapid.
ensembl.org) for 201 species (Supplementary Table 3). Species that
had publicly available RNA sequencing (RNA-seq) data were anno-
tated using Genebuild, which makes use of both RNA-seq and protein
homology evidence. For species that did not have transcriptomic data,
the genomes were annotated using BRAKER2 (ref. 101) using protein
homology information as evidence. Protein data consisted of OrthoDB
(v.11) data'* for Lepidoptera combined with all lepidopteran proteins
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with protein evidence levels1or 2 from UniProt'® (where level 1or 2 rep-
resent evidence fromeither proteomic or transcriptomic data). Details
of each annotation are provided in Supplementary Table 3. The gene
sets contained between 9,267 (Tinea trinotella) and 23,879 (Miltochrista
miniata) protein-coding genes and between 15,416 (Erynnis tages) and
41,125 (Dendrolimus puncatus) transcripts. Transposable elements (TE)
were identified using the Earl Grey TE annotation pipeline (v.1.2)"%*1%
on each genome as described in ref. 106, with the Arthropoda library
from Dfam release 3.5 (refs.107,108).

Two genomes were excluded from further analysis due to quality
issues. The first, Zerene cesonia (GCA 012273895.2), contained 246
unlocalized scaffolds that contained 351 BUSCOs. The high number of
BUSCOsinthese scaffolds means that erroneous rearrangement events
would be inferred if this genome were to be included. In the second,
Cnaphalocrocis medinalis (GCA 014851415.1), most genes belonging
to the M30 Merian element were present on unlocalized scaffolds.
We identified two more genomes that contained minor misassembly
issues that we were able to address before downstream analysis (Sup-
plementary Text). In Dendrolimus kikuchii (GCA 019925095.1), we found
two scaffolds with a high proportion of duplicated BUSCOs (most of
whichcorresponded to the M30 Merian element), indicating that they
represented haplotypic duplication. When we removed these scaffolds
from the assembly, we successfully recovered a fusion between M30
and MZ that would have otherwise been missed. In Spodoptera fru-
giperda (GCA 011064685.2), we removed an unlocalized scaffold that
contained 22 BUSCOs before downstream analyses to avoid inferring
afission eventin this species due to assembly issues.

Phylogenetic tree reconstruction
We used BUSCO (v.5.4.3) (using the metaeuk mode and the lepidoptera
odbl10 dataset)* toidentify single-copy orthologues in each genome.
We used busco2fasta.py (available at https://github.com/Istevens17/
busco2fasta) to identify 5,046 BUSCO genes that were single copy
and present in at least 90% of the genomes. We aligned the protein
sequences of these BUSCOs using MAFFT (v.7.475)'°° and trimmed
alignments using trimal (v.1.4)"° with parameters -gt 0.8, -st 0.001,
-resoverlap 0.75, -seqoverlap 80. A total of 4,947 alignments passed
thealignment thresholds. We concatenated the trimmed alignments to
formasupermatrix using catfasta2phyml (available at https://github.
com/nylander/catfasta2phyml). We provided this supermatrix to
IQ-TREE (v.2.03)" to infer the species tree under the LG substitution
model™withgamma-distributed rate variation amongsitesand 1,000
ultrafast bootstrap replicates™. The tree was rooted on the node sepa-
rating Trichoptera and Lepidopteraand visualized alongside genome
size and chromosome number information using ggtree (v.3.0.2)"*'",
To test for a correlation between genome size and chromosome
number, we used a phylogenetic linear model using the R package
phylolm (v.2.6.2)"° with genome size as the response variable and
chromosome number as afixed factor. To account for shared ancestry
between species, the phylogenetic tree described above was included.
The most appropriate model for the error terms was identified as Orn-
stein-Uhlenbeck (OU) by fitting all implemented models that allow
for measurement error and then selecting the best-fitting model via
the AIC values.

Defining and visualizing Merian elements

Weinferred the ancestral lepidopteran linkage groups using syngraph
(available at https://github.com/A-J-F-Mackintosh/syngraph)*° (using
athreshold of five orthologues and using the mode that infers fusions
and fission events) using the BUSCO-derived single-copy orthologues
and the phylogeny derived from all 210 chromosomal lepidopteran
genomes and 4 chromosomal trichopteran genomes. As described in
ref. 40, syngraph uses parsimony to infer the arrangement of ortho-
logues in the last common ancestor of species triplets. Syngraph
works from the tips towards the root to infer ALGs (and fusion and

fission events, discussed below) at each internal node in the tree. We
used the ALGs inferred by syngraphinthe last common ancestor of all
Lepidoptera in our analysis, which we termed Merian elements. We
named Merian elementsinascending order on the basis of the number
of orthologues contained (M1-M31). The group of orthologues that
represented the ancestral Zchromosome were named MZ. We ‘painted’
the chromosomes of each extant species to show the distribution
of these Merian elements using custom scripts (available at https://
github.com/charlottewright/lep_busco_painter). Merian elements
also can be painted onto a given genome via the interactive website
https://charlottejwright.shinyapps.io/busco_painter/. We also visual-
ized synteny between pairs of species using Oxford plots generated
using customscripts (available at https://github.com/charlottewright/
Chromosome_evolution_Lepidoptera_MS).

To assess the extent to which our orthologue assignments to
Merian elements is dependent upon species sampling, we performed
a bootstrap analysis. We performed 100 iterations of ancestral unit
inference using syngraph, each time with a different random set of 110
(50%) of Lepidopteran species. As the ancient fusion of M17 and M20
is only apparent when including the Trichoptera representatives as
outgroups and M. aruncella, we kept these species in each iteration.
We recovered 32 linkage groups in all 100 iterations. There was not a
single conflicting orthologue assignment in any of the 100 iterations
(that is, no orthologue was assigned to a different Merian element).
The only variation between iterations was the number and identity of
orthologues that were unassigned. On average, each Merian-defining
orthologue was unassigned in12% of iterations, which probably arises
from stochastic absences or duplicationin the sampled species.

We also verified the accuracy of our orthologue assignments by
performing ancestral genome reconstruction using AGORA (v.3.1)*
which, in addition to inferring linkage, also reconstructs gene order.
The input for AGORA was prepared by running ‘convert_buscos.py’
on the set of 214 BUSCO tables. The resulting orthologue groups
and the species tree were then used to run ‘agora-basic.py’. All 4,112
Merian-defining orthologues were in the reconstruction of the last
common ancestor of Lepidoptera from AGORA. Of these, AGORA
placed 3,092 into 683 contiguous ancestral regions (CARs). All CARs
contained orthologues mapping to a single Merian element, with the
exceptionof asingle CAR (CAR_68) which contained nine orthologues
belonging to M4 and one conflicting orthologue which corresponded
to M1 (Supplementary Fig. 6). The results from AGORA therefore cor-
respond extremely closely to Merian elements inferred from syngraph,
with 99.97% agreement (3,091 0f 3,092). We opted not to use the AGORA
output because it was highly fragmented (Supplementary Fig.7) dueto
thefact that AGORA requires gene order conservation and many small
gene order differences exist between M. aruncella and T. trinotella.

Comparison of Merian elements to bilaterian linkage groups

To assess the extent to which Merian elements are conserved beyond
Lepidoptera, we compared Merian elements to the ALGs of Bilateria’.
To do so, we first downloaded the gene annotation for Tribolium cas-
taneum from Ensembl Metazoa (release 75) and filtered the protein
annotation file using AGAT (v.1.0.0)"” to retain only the longest iso-
form per gene. We then inferred 1:1 single-copy orthologues with the
isoform-filtered proteinfile of Melitaea cinxia (Supplementary Table 3)
by running OrthoFinder (v.2.5.4)"® on the two sets of proteins. The
single-copy orthologues were filtered to only retain those which had
beenassignedtoaBLGinref.7. To compare to Merian elements, we ran
BUSCOs (v.5.4.3) (using the lepidoptera odb10 dataset) on the protein
set of M. cinxia and filtered the output to only retain orthologues which
are assigned to both Merian elements and BLGs. This resulted in a set
of 916 orthologues. To assess whether Merian elements are associated
with BLGs, we assessed the variation in distribution of orthologues
from given Merian elements across the set of 24 BLGs. To construct a
null distribution of orthologue assignment, we performed 100,000
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simulations where the variance was calculated from a random dis-
tribution of the orthologues of a given Merian element across BLGs,
weighted by the number of orthologues per BLG. We then compared
this distribution of variance to the observed variance in the distribu-
tion of the orthologues of each Merian element across the 24 BLGs.
We considered observed levels of variance above a 99.99% percentile
as significantly higher than expected under a null distribution of
random assignment.

Inferring fusion and fission events

We inferred simple fusion and fission events (defined as those that
involve complete Merian elements and did not appear to be nested)
using two complementary approaches: syngraph*’ and lep_fusion_fis-
sion_finder (LFFF) (available at https://github.com/charlottewright/
lep_fusion_fission_finder). As discussed above, syngraphinfers ALGs at
eachinternal nodeinthe tree along with any fusion and fission events
that occurred ateach branch. Incontrast, LFFF uses aset of ALGs (in this
case, the Merian elements inferred by syngraph) to identify fused or
splitchromosomesin extant species only. Todo this, LFFF identifies the
most common Merian elementin non-overlapping windows of agiven
size. Fused chromosomes are identified as those containing windows
assigned to two or more Merian elements (and the position along the
chromosome where Merian-element identity switches is recorded as
the fusion position). Split chromosomes areidentified as thoseinwhich
aMerianis assigned to two or more chromosomes. Fusion and fission
events are then inferred by mapping these fused and split chromo-
somes onto the phylogeny. We identified the optimal number of ortho-
logues asathresholdinboth syngraph and LFFF by manually assessing
theinferred events. Atlow thresholds (<17), small rearrangement events
or unlocalized scaffolds are often identified as fused chromosomes
or split chromosomes. However, at higher thresholds (>17), small or
split Merian elements are often erroneously excluded. We identified
the optimal threshold at 17 for both syngraph and LFFF. Using this
threshold, we obtained nearly identical results with both approaches,
with the only differences being due to how fusions involving more
than two Merian elements are denoted (Supplementary Tables 5
and 6). The genomes of species that had one or more examples in which
orthologuesbelonging to asingle Merian element were present along
more than one chromosome and in which such chromosomes are not
the product of simple fission events, were classified as highly rear-
ranged species with complex rearrangements and so were analysed
separately. Similarly, species with genomes resulting from many fission
events, leading to atleast one chromosome with fewer Merian-defining
orthologues than our threshold (<17), were classified as highly rear-
ranged and so analysed separately. To analyse these species, syngraph
was runonthe complete set of 210 lepidopterans and 4 trichopterans
using alower, more sensitive threshold of five orthologues.

We tested whether an excess of fusions was inferred to be
species-specific, thatis occurred along external branches, by simulat-
inganulldistribution of fusion events over the lepidopteran phylogeny
using acustomscript (available at https://github.com/charlottewright/
Chromosome_evolution_Lepidoptera_MS). Todo this,100,000 simu-
lations were performed where the branch lengths were recorded over
the phylogeny and whether the branch was external orinternal. Then,
arandom sample of 183 fusions were weighted by branch lengths,
with the assumption that fusions happen uniformly across the tree.
The number of the 183 fusions that were on external branches versus
internal branches was then recorded and compared to the observed
number of events on external branches. We considered a number
of fusion events on external branches above a 99.99% percentile as
significantly higher than expected under a uniform distribution of
fusions across the phylogeny.

The strength of rank-based correlation between the average
proportional chromosome length of each Merian element and the
frequency of fusion events was calculated using Spearman’s rank

implemented in the R package stats (v.4.1.0), with a P < 0.05 cutoff to

assess significance™.

Describing feature distributions across chromosomes

We calculated the distribution of sequence features (GC, repeat den-
sity and coding density) along each chromosome 100 kb windows.
GC content per 100 kb was calculated using fasta_windows (v.0.2.4)
(https://github.com/tolkit/fasta_windows). For other features, a BED
file specifying the start and end of each 100 kb window was gener-
ated for each genome with BEDtools (v.2.30.0)?°. Repeat density was
calculated using BEDtools coverage and the repeat annotation file
produced by Earl Grey. To calculate coding density, we filtered the
GFF3 files using AGAT (v.1.0.0)" to retain only the longest transcript
pergene. As aquality check, we excluded CDS sequences that were not
divisible by three using a custom Python script (available at https://
github.com/charlottewright/genomics_tools). The resulting filtered
GFF3files were used with BEDtools coverage to calculate CDS density
in100 kb windows.

We also calculated the density of each feature by splitting each
chromosome into 100 windows. First, a BED file specifying the posi-
tion of each window along chromosomes was made using BEDtools
makewindows with the fastaindex file generated from samtoolsindex
(v.1.7)"". Repeat density was then calculated per window using BED-
tools coverage (v.2.30.0)'*°. GC per window was calculated from the
output from running fasta_windows (v.0.2.4) on100 kb windows, using
a custom Python script (https://github.com/charlottewright/Chro-
mosome_evolution_Lepidoptera_MS) and the BED file containing the
positions of each window.

Describing feature distributions between chromosomes

We calculated the average density of various features (GC, GC3, repeat
density, coding density, synteny and proportion of single-copy ortho-
logues) in each chromosome (Supplementary Table 10).

Theaverage GC content of each chromosome was calculated using
fasta_windows (v.0.2.4) (https://github.com/tolkit/fasta_windows). To
calculate the average GC3 value per chromosome, the GC3 value for
each coding sequence was calculated using gff-stats (https://github.
com/charlottewright/gff-stats/) and these values were used to calculate
the average per chromosome using a custom Python script (available at
https://github.com/charlottewright/genomics_tools/). Average repeat
density per chromosome was calculated using BEDtools (v.2.30.0)'*°.

We calculated the degree of synteny, defined as conserved gene
order, per chromosome using acustom Pythonscript (available at https://
github.com/charlottewright/genomics_tools/). We calculated synteny as
the proportionofadjacent gene pairs that have collinear orthologues in
acorresponding species. We used the BUSCO genes defined previously
and calculated synteny in each species relative to Melitaea cinxia.

The proportion of conserved single-copy orthologues relative
to multicopy orthologues and species- or clade-specific genes was
inferred from the annotated proteins obtained from Ensembl. We
first filtered the GFF3 files for each species using AGAT to contain
only the longest isoform per protein-coding gene. We filtered the
corresponding protein files using fastaqual_select.pl (https://github.
com/sujaikumar/assemblage). We then clustered all protein files into
orthologous groups using OrthoFinder (v.2.5.4)""%. By analysing these
groups, we found that the annotation for one species, Pieris napi, was
missing many orthologues present in most of the other annotations
(Supplementary Fig.1,2). We therefore removed this annotation from
the dataset and re-inferred orthologues with OrthoFinder. We identi-
fied 4,946 orthologous groups that were duplicated or missing in
no more than 10% of species. We then classified each gene as either
single copy, multicopy or clade-specific using acustom Pythonscript
(available at https://github.com/charlottewright/genomics_tools/).
The classified genes were used to calculate the proportion of genes
per chromosome that were classified as single copy versus non-single
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copy using a custom Python script (available at https://github.com/
charlottewright/genomics_tools/).

To compare the density of these features across lepidopteran
chromosomes, we considered only those species which contained ten
or more chromosomes that had not undergone afusion or fission event
(which left 193 species). Nine of these species did not have a publicly
available gene annotation and so coding density, GC3 and proportion
of single-copy orthologues could not be analysed. For each feature,
the strength of the rank-based correlation between the feature value
and proportional chromosome length (calculated as the chromosome
length divided by the genome size) was calculated using Spearman’s
rankimplemented in the R package stats (v.4.1.0), with P < 0.05 cutoff
to assess significance.

Repeat analysis within fusion chromosomes

Tounderstand the effect of fusion on the repeat content of fused chro-
mosomes, we chose fusions that involved M31, M30, M29 or M25 (which
arethe Merian elements with the lowest proportional length and were
therefore expected to contain the highest repeat content). We expected
the chromosomes involved in these fusion events to display the largest
differencein repeat content before the fusion event. We created a BED
file for each fused chromosome containing two windows, split at the
fusion points that were defined by LFFF previously. The average repeat
content for each window was calculated using BEDtools coverage. The
difference between the repeat content of the larger-in-length Merian
element and the smaller Merian element was statistically compared
with a paired t-test asimplemented in the R package stats (v.4.1), with
P<0.05to cutoffto assess significance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The reference genomes analysed in this study are available at https://
www.ncbi.nlm.nih.gov/and the accession numbers are givenin Supple-
mentary Table1. Gene annotations are available at rapid.ensembl.org
andarelisted in Supplementary Table 3. The Arthropodalibrary from
Dfam release 3.5 used to identify transposable elements is available
at https://www.dfam.org/releases/Dfam_3.5. Large data files associ-
ated with this paper, including repeat annotations, repeat libraries
and phylogenies are available at the Zenodo repository https://doi.
org/10.5281/zenodo.7925505 (ref. 122). Other data supporting the
findings presented in this paper are available in the Supplementary
Tables aswell ason GitHub (https://github.com/charlottewright/Chro-
mosome_evolution_Lepidoptera_MS), which has beenaccessionedin
Zenodo at https://doi.org/10.5281/zenodo.10373060 (ref.123). Source
dataare provided with this paper.

Code availability

The code associated with the analyses and figures can be found at
https://github.com/charlottewright/Chromosome_evolution_Lepi-
doptera_MS, which has been accessioned in Zenodo at https://doi.
org/10.5281/zenodo.10373060 (ref.123).
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Extended Data Fig. 7 | Repeat density across fused chromosomes and their
unfused homologues in pairs of sister species. a-c, Repeat density in fused
chromosomesin one species, compared to the repeat density of the unfused
orthologous chromosomes in a sister species. As each fusion is present in one
species and absentin the other sampled species from the same genus, they
are likely very recent fusions. Agrochola circellaris, compared to A. macilenta
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(a), Dendrolimus kikuchii compared to D. punctatus (b) and Agonopterix
subpropinquella and A. arenella (c). Repeat density is plotted along each
chromosome in100 kb windows, where the chromosome positionis scaled

to proportional length by dividing by genome size. Lines represent LOESS
smoothing functions fitted to the data. Points are coloured by Merian element.
Blue dashed lines indicate the fusion point along fused chromosomes.
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Extended Data Fig. 8 | Repeat density across the fused chromosomein chromosomes and so is not shown. Repeat density is plotted along the
Aphantopus hyperantus. Repeat density across the fused chromosome chromosome in100 kb windows, where the chromosome positionis scaled
(M29 + M14) in Aphantopus hyperantus. The distance between A. hyperantus to proportional length by dividing by genome size. Lines represent LOESS
and the closest relative with an unfused M29 and M14 (Danaus plexippus) is smoothing functions fitted to the data. Points are coloured by Merian element.
too large for the unfused chromosomes to be a suitable proxy for the ancestral Blue dashed lines indicate the fusion point along the fused chromosome.
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Replication rearrangements. Each analysis was performed once as replication was not relevant. Otherwise, as this was a comparative genomic study
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