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% Check for updates Dating the tree of Fungi has been challenging due to a paucity of

fossil calibrations and high taxonomic diversity of the group. Here we
reconstructed and dated a comprehensive phylogeny comprising 110 fungal
species, utilizing 225 phylogenetic markers and accounting for across-site
compositional heterogeneity in amino acid sequences. To address
uncertainties in fungal dating, we sampled chronograms from four relaxed
molecular clock analyses, each integrating distinct sets of calibrations
andrelative time-order constraints. The first analysis used a core set of 27
calibrations alongside 17 relative constraints derived from fungi-to-fungi
horizontal gene transfer events. Three further analyses extended this core
set with additional timinginformation identified in our reevaluation of the
evolution of pectin-specific enzymes in Fungi. Our timetree, integrating
analytic uncertainties, suggests older ages for crown Fungi (1,401-896 Ma)
thanrecently reported, providing a minimum age for ancient interactions
involving fungi and the algal ancestors of embryophytes in terrestrial
ecosystems (1,253-797 Ma). This supports a protracted gap between the
onset of these interactions and the rise of modern land plants. Altogether,
our study provides arefined timescale for fungal diversificationand a
temporal framework for future investigations into early interactions
involving fungi and the algal ancestors of embryophytes.

The fungal kingdomis composed of an extensive diversity of organisms
thatevolved toinhabit nearly all of Earth’s ecosystems'. Fungi are involved
in key ecological interactions that were probably important during the
early evolution of complexlife’. Among other hypotheses, it has been pro-
posed that fungiand plants colonized land as mutualistic partners, paving
the way for the radiation of macroscopic life in terrestrial habitats®*.
Fungi exhibit diverse morphologies’, lifestyles® and com-
plexity levels’, the best known of which are filamentous and

mushroom-forming fungi and yeasts, most of which belong to the sub-
kingdom Dikarya. Fungi, however, also contain several ‘early-diverging’
non-Dikarya phyla, including Zoopagomycota, Mucoromycota, Olpidi-
omycota, Blastocladiomycotaand Chytridiomycota'. While less studied
than Dikarya, these phyla and their ancestors experienced some of
the most important events in fungal evolution, including the origin
of multicellular hyphae®, terrestrialization(s) and the loss(es) of a
flagellum®'°, and the transition from a phagotrophic feeding strategy
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Group Preferred habitat Feeding strategy Septate hyphae Spitzenkorper Fruiting bodies Flagellum ?
Ascomycota (Dikarya) Terrestrial Osmotrophy Yes Yes Yes No ::: a
Basidiomycota (Dikarya) Terrestrial Osmotrophy Yes Yes Yes No 4
WlRIe B (ingluding Terrestrial Osmotrophy Rare No Rare No N &
Glomeromycotina)
Zoopagomycota Terrestrial Osmotrophy Rare Rare No No fQ%
Olpidium Aquatic and terrestrial Osmotrophy No No No Yes N ‘ N
Blastocladiomycota Aquatic Osmotrophy Rare Rare No Yes \\\ ~":\§}f;;
Chytridiomycota Aquatic Osmotrophy Rare No No Yes W \“ \\\ ‘.
Aphelida Aquatic Endobiotic phagotrophy No No No Yes \\ \“\ (.;\‘b
Rozellida Aquatic Endobiotic phagotrophy No No No Yes \\\‘ ‘H
Microsporidia Aquatic and terrestrial Intracellular parasite No No No No
Nucleariidea Aquatic Phagotrophy No No No No 4*“9&’

Fig. 1| Features of main fungal groups (coloured) and of the sister relatives
of fungi. We defined Fungi as the clade including the coloured groups, as they
are characterized by an absorptive/filamentous specialized osmotrophic

lifestyle that distinguishes them from their closest relatives in the tree of life
(non-coloured groups). Silhouettes are from PhyloPic (see Supplementary
Information section 6 for credit and license details).
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Fig. 2| Reconstructing a dated ToF. a, Main challenges. b, Asummary of the methodological workflow executed to deal with these challenges and produce the

‘Default’ set of chronograms. See the main text and Methods for further details.

to osmotrophy". Osmotrophy unites Dikarya with the early-diverging
non-Dikarya phyla®, and we use it as a defining feature of Fungi that
leaves Aphelida, Rozellida, Microsporidia and Nucleariidea as the
closest relatives of Fungi in the tree of life'>™* (Fig. 1).

Theevolutionof non-Dikarya phyla has been the subject of intense
study. As a result, their phylogenetic relationships are relatively well
known”>'®, with the exception of a few hard-to-resolve relationships,
which seemto be sensitive to methodological choices”. Aside fromthe
phylogenetic relationships, establishing a dated phylogeny of Fungiis
crucial tounderstand when major clades originated or how interactions
between fungiand other lineages shaped the biosphere.

Main challenges in dating the ToF

Thereconstruction of adated tree of Fungi (ToF) is confronted by four
major challenges (Challenges A-D; Fig. 2a). From a taxonomic stand-
point, the availability of genomic data has historically been skewed
towards Dikarya'®, leaving some early-diverging phyla underrepre-
sented in genomic databases (Challenge A, although substantial pro-
gress has been achieved thanks toinitiatives such as the 1000 Fungal
Genomes Project™).Inaddition, dating abroad and diverse phylogeny
constitutes a difficult computational endeavour. While researchers
have developed tools to accelerate molecular dating analyses for large

phylogenetic datasets?, these often use simplified models that can-
not account for complex protein sequence properties, such asamino
acid site compositional heterogeneity®-** (Challenge B). Furthermore,
deep phylogenetic relationships are not yet fully resolved”, including:
(1) whether Chytridiomycota' or Blastocladiomycota® is the sister
group to the rest of the fungi; (2) the position of the flagellated group
Olpidiomycota’, whichis critical to understanding whether terrestrial
fungal groups originated from one or multiple terrestrialization events;
and (3) the placement of the genus Basidiobolus, which has been vari-
ably positioned near Mucoromycota'® or Zoopagomycota® (Challenge
C). Finally, fungal fossils are scarce, especially for unicellular groups
that diverged before Dikarya. This issue is compounded by previous
studies largely relying on a narrow set of calibration points, such as
Paleopyrenomycites, with limited exploration of additional fossils*>**
(Challenge D). Aiming to address these challenges, we implemented a
comprehensive methodological workflow that integrates cutting-edge
phylogenetic and molecular dating techniques (Fig. 2b).

Results

Abroad and diverse taxon sampling

To achieve a phylogenetically broad and taxonomically diverse ToF
(addressing Challenge A), we utilized publicly available datafrom the
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1000 Fungal Genomes Project” to gather a genomic taxon sampling
of 110 fungal species, including 43 from non-Dikarya fungal groups,
plus an additional 43 non-fungal taxa, enabling us to contextualize
the ToF within a broader diversity of eukaryotes (see taxon sampling
in Fig. 3). We combined three distinct strategies to collect a total of
889 phylogenetic protein markers from the downloaded genomic data
(see‘Candidate marker set’sectionin Methods). We then selected 225
markers based on optimal metrics screening (see ‘Filtering the marker
set’ section in Methods), and the selected markers were aligned and
concatenated into a supermatrix comprising 95,968 protein amino
acid sites and 153 taxa. This supermatrix provided the molecular data
to reconstruct a dated ToF by means of a two-step process (Fig. 2b):
(1) inference of the ToF (the phylogenetic relationships between the
species) and (2) the datation of the ToF.

Dealing with topological uncertainties

For the first step of the process, reconstructing the topology of the
ToF, modelling amino acid site compositional heterogeneity (the fact
that protein sites evolve under non-homogeneous compositional con-
straints) has been shown to be crucial in solving deep phylogenetic
relationships®**~'. Among the available implemented models to handle
this, the CAT model® has proven to be useful to solve complex scenarios
of long branch attraction*-*7%**** However, CAT is computationally
costly and only available in a Bayesian framework (Phylobayes soft-
ware)*?°, Among the alternative approaches explored (Methods), we
used the CAT-PMSF pipeline” (where PMSF is posterior mean site fre-
quencies), whichallowsinference of amino acid preferences at each site
without the computational overhead of afull Bayesianinference across
tree topologies. We also used acomplementary species tree reconstruc-
tion analysis using the software ASTRAL" to better capture topological
uncertainty in the ToF. The CAT-PMSF tree (Extended Data Fig. 1) but
not the ASTRAL tree (Extended Data Fig. 2) shows B. meristosporus
grouped with Zoopagomycota, as expected based on its taxonomic
classification®. Meanwhile, Chytridiomycotabranched as asister group
to the rest of Fungiin both trees, consistent with the most recently
published ToFs that also used site-heterogeneous models'>"*'*", Finally,
the placement of the flagellated fungi O. bornovanus was unresolved,
alsointhe ASTRAL topology.

To clarify the position of O. bornovanus in relation to the
non-flagellated terrestrial fungi, we tested five alternative topologies
using two different approaches. Two of these topologies were rejected
onthebasis of approximately unbiased (AU) tests* applied to the con-
catenated matrix (P < 0.05), while a further two were dismissed using
aphylogenetic reconciliation approach*’, which analysed 38,837 gene
families (see Methods for details). Only the topology in which Olpidi-
omycotabranched asthesister group to theterrestrial fungal clade com-
posed by Dikarya + Mucoromycota + Zoopagomycotawas not rejected.
We thus consider the recovered monophyly of the non-flagellated
terrestrial fungias the most likely topology. This agrees with recent find-
ings’ and supports the hypothesis that these groups share acommon
ancestor that transitioned fromanaquaticto aterrestrial environment,
potentially losing the flagellum as a result of this shift™™°.

A core set of calibrations and HGT-derived relative constraints
After having inferred a topology for the ToF (CAT + PMSF topology,
with O. bornovanus positioned as sister to terrestrial fungal groups;

Fig. 3), the next step was to date it. As a source of timing information
todatethetree (Challenge D), wefirst established, as described below,
a core set of calibrations as well as relative constraints derived from
horizontal gene transfer (HGT) data.

Compiling a broad and reliable set of calibrations is critical for
relaxed molecular clock analyses providing local checks onrate varia-
tion*’. To this end, we derived aninitial set of 17 fossil-based calibration
points for the fungal clade following the best practice principles*
(calibrations 1-4 and 6-18; Supplementary Information section1). In
Metazoa and Embryophyta, maximum age calibrations (maxima) can
be established on the basis of absence data, qualified by taphonomic
outgroup controls that demonstrate that in-group representatives
would be preserved if they existed; this is possible because most line-
ages of animals and plants have a structured and predictable fossil
record®. By contrast, fungal vegetative structures fossilize very poorly
and their fossil record is, for the most part, unstructured and unpre-
dictable. We could, however, transfer the maximum constraint on the
age of Embryophytato three fungal nodes based on their phylogenetic
and ecological association with the land plant crown clade. First, we
transferred the maximum age proposed for crown Embryophyta**
to crown Endogonales® (Jimgerdemannia flammicorona + Endogone
sp. clade, calibration 5) and to crown Glomeromycotina*® (Gigaspora
sp. + Glomus cerebriforme clade, calibration 7B). This was based on the
observation that representatives of both groups are involved in com-
plexand ancient symbiotic associations withembryophytes, suggest-
ing that they probably originated after the emergence of Embryophyta
(see Supplementary Information section1for details). We also used the
maximum age calibration for crown Embryophyta to the Cadophora
sp. + Tolypocladium inflatum clade within Dikarya (calibration 20) on
the basis of a HGT event from within Embryophyta to this clade (Sup-
plementary Information section 2). This HGT event was identified on
the basis of asystematic and conservative screening of potential HGT
cases involving Embryophyta and Fungi (Methods). Apart from the
mentioned calibrations, all of which calibrate nodes within Fungi, we
alsoincluded calibration 19 (a maximum for the root of the tree), and
calibrations 21-24, which calibrate other eukaryotic nodes (Supple-
mentary Information section 1). Overall, this set includes 27 calibra-
tions for 24 nodes (3 nodes have both maximum and minimum age
calibrations, 19 of the calibrated nodes are from Fungi).

Beyond these 24 calibration points, this core set incorporated
17 relative constraints inferred from a second HGT screen, this time
exploring HGTs involving distantly related fungal groups. This allowed
ustoidentify 19 fungi-to-fungi HGTs (Supplementary Information sec-
tion 3) fromwhichweinferred 17 relative time-order constraints based
on non-repetitive HGT information. Relative time-order constraints
establish older and younger relationships between nodes in the tree
based onthe principle that the parent node of the lineage identified as
the HGT donor must be older than the descendant node of the lineage
identified as the receptor of the HGT event**,

Accelerated chronogram sampling based on sophisticated
methods

Once we inferred the topology of the ToF and obtained the core set of
timing information described above, we used Mcmcdate®** to date
the tree. This tool performs relaxed molecular clock analyses from
a precomputed set of phylogram data (trees with branch lengths

Fig. 3| A dated ToF, including 110 fungi and 43 representatives from other
eukaryotic groups. Four chronogram sets were produced: ‘Default’ (based on
acore set of 24 calibration points and 17 relative constraints), and three other
chronogram sets that incorporated calibrations and relative constraints based
onplausible scenarios related to the evolutionary history of pectin and pectin
specific-enzymes (PSE) in Fungi (see Fig. 4). To be conservative and to account
for node age uncertainty, the branch lengths of this figure correspond to mean
divergence times from ‘Default’, while node age bars show the oldest and the

lowest among the 95% high posterior density (HPD) credibility interval values
retrieved from the four chronogram sets reconstructed. Consensus chronograms
obtained separately from each of these four analyses are available in the extended
dataFig.s 3, 6,7 and 8. Supplementary Fig. 2 includes cumulative probability
distributions for node ages. Supplementary Data includes more detailed
information on node age probabilities and pairwise node age orderings to
complement the summary HPD data displayed in this figure. Silhouettes are from
PhyloPic (see Supplementary Information section 6 for credit and license details).
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Fig. 4 | Distribution of sampled node ages (Ma) based on four distinct sets

of sampled chronogram data, each corresponding to arelaxed molecular
clock analysis that was run under a specific set of calibrations and relative
constraints (see main text). All nodes correspond to the last common ancestors
ofthe named groups (see Fig. 3 for a phylogenetic context). ‘Default’ analysis was
donebased on the core set of 24 calibration points and 17 relative constraints

(see ‘A core set of calibrations and HGT-derived relative constraints’ section). For
information on ‘PSE-constraint A’and ‘PSE-constraint A + calib’, see ‘Exploring a
relative constraint involving streptophytes and early terrestrial fungi’ section.
For information on ‘PSE-constraints B + C’, see ‘Exploring relative constraints
involving embryophytes with macroscopic terrestrial fungi’ section.

representing substitutions per site), from which Mcmcdate takes less
thanaday onastandard laptop to complete the analysis. This allowed
us to overcome the computational constraints of large-scale dating
(Challenge B) and also to perform preliminary analyses to evaluate
theimpact of methodological variables (see details in Supplementary
Information section 5). For example, we evaluated whether model-
ling across-site compositional heterogeneity (for example, with CAT),
which is more computationally expensive than the typically used site
homogeneous models, also has animpact for branch length estimation
asit has for the inference of the topology”**%*>** We found that, at
least for the employed methodology, using CAT to sample input phy-
logram data for Mcmcdate had a substantial impact on the sampled
node ages, more than, for example, exchanging the autocorrelated
for the uncorrelated rates clock model (Supplementary Information
section 5-Fig.1). Inthis regard, posterior predictive simulations showed
that using CAT for phylogram sampling led to a better modelling of
the input alignment than not using it (Supplementary Information
section 5-Table 1). We also observed that CAT led to chronogram sets
with lower variance in node age (Supplementary Information section
5-Fig.3). Altogether, we decided to use phylograms sampled under the
CAT model for the definitive dating analyses. In addition, to provide
information that could be valuable for future studies, we assessed
whether the number of sites in the input alignment has an impact
on branch length estimation. We found that, despite some increase
in node age variance (Supplementary Information section 5-Fig. 3),
10,000 randomly subsampled sites from the full phylogenetic marker
set (whichis one order of magnitude larger) would have been sufficient
to get consistent node ages, whereas 5,000 sites would not have been
(Supplementary Information 5-Figs. 1, 5and 6). Finally, progressively
subsampling sites from either the slowest- or fastest-evolving markers
hadlessimpact onthe estimated ages than changing the clockmodel or
omitting the use of CAT (Supplementary Information section 5-Fig. 1).

We continued the exploratory analyses described above, next
testing the impact of the core set of 27 calibrations and 17 relative
constraints on the resulting ages. We found that the ages retrieved
by using this core set (‘Default’ analysis; Extended Data Fig. 3) were

substantially older than the ages retrieved froman alternative analysis
done by using only the least possible calibration information (‘Only
root calibration’ analysis; Extended Data Fig. 4a). Thistrend probably
stems from the influence of the 21 minimum age calibrations (minima;
Extended DataFig. 5a,b), whereas the maximum age calibrations (max-
ima) in this core set had a more localised effect on the retrieved ages
(Extended Data Fig. 5¢,d). Given the uncertainty on the informativity
ofthe maximaavailablein the core set, in the next sections we aimed to
explore the incorporation of additional timing information to finally
produce atimetree of Fungi thataccounts for this uncertainty (Fig. 3).

Reevaluating the pectin-related maximum age calibration
A strategy to mitigate the lack of maxima extracted from palaeonto-
logical evidenceistoretrieve calibration information from molecular
data. In particular, Changetal. (2015)** and Changetal. (2021)° imposed
a soft maxima of 750 million years ago (Ma) and 850 Ma, respec-
tively, on the last common ancestor of Chytridiomycota + Dikarya
(LCA-Chytridiomycota + Dikarya, whichin our phylogeny corresponds
to the last common ancestor of Fungi, LCA-Fungi). Changet al. (2015)*
imposed this calibration based on inference of an ancestral expansion
in LCA-Chytridiomycota + Dikarya of enzymes specifically involved in
pectindegradation (pectin-specific enzymes, PSE). Pectins are matrix
polysaccharides of the cell walls of plants and are involved in control-
ling growth, cell wall porosity and expansion, among other important
functions®**, Rather than being restricted to Embryophyta, some strep-
tophyte algalrelatives of land plants also have pectins related to those
foundinembryophytes®~¢. Based ontheincrease of PSE content found
in LCA-Chytridiomycota + Dikarya, Chang et al. (2015)** hypothesized
that this early fungus should have been younger than the last common
ancestor of streptophytes with pectin cell walls. Accordingly, they
imposed a maximum (750 Ma) for LCA-Chytridiomycota + Dikarya
based on published age inferences for Streptophyta. Chang et al. (2021)°
applied this same topological calibration but constrained it to 850 Ma.
Given the impact this maximum age calibration has for the time-
scale of fungal evolution, we revisited the evolutionary history of
PSE in Fungi, previously done by Chang et al. (2015)%, in the light of
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Fig. 5| Evolutionary trajectory of PSE in Fungi. a, Expansion of PSEin the
ancestral path to macroscopic terrestrial fungi. The right axis (dashed lines)
shows the relative PSE copy number in the ancestral paths leading to Cadophora
sp. (Pezizomycotina) and Mycena galopus (Agaricomycotina), the two species
showing the largest PSE content in both groups of macroscopic fungi. See
Methods for details on how PSE content per My was computed. The left axis
shows the percentage of chronograms in which each fungal clade (non-dashed
lines) is found to be older than a certain age. Plausible Streptophyta partners
for terrestrial fungi over time are shown based on the 95% HPD Cl values

retrieved for the Streptophyta nodes as showninb. b, The 95% HPD credible
interval (CI) of sampled ages from the four chronogram sets obtained by
relaxed molecular clock analyses based on distinct sets of calibrations and
relative constraints (Fig. 4). The 95% HPD Clinformation was retrieved from
Fig. 3. Klebsormidium + Embryophyta is the node subtending the branch in
which classic pectin/pectin sensu stricto (pectins.s.) probably originated (see
‘Exploring arelative constraintinvolving streptophytes and early terrestrial
fungi’ section).

amore comprehensive genome dataset. For this, we reconstructed
ancestral gene content of PSE families, including methods that
account for HGT. As a justification of modelling HGT when recon-
structing ancestral gene content for PSE, a manual screening of the
PSE phylogenies revealed 17 instances of HGT (Supplementary Infor-
mation section 4). When we used HGT-aware methods for ancestral
gene content reconstruction, we did not recover PSE presence in
LCA-Chytridiomycota+Dikarya (Supplementary Information section
4). Instead, the oldest fungal ancestor for which all the reconstruc-
tion methods detected PSE content was the last common ancestor
of Mucoromycota + Dikarya (LCA-Mucoromycota + Dikarya). Given
the lack of support by the HGT-aware method for PSE presence in
LCA-Chytridiomycota + Dikarya, we refrained from using the
pectin-related maximum age calibration as used in previous studies.
Instead, we performed a series of additional datation analyses, each
incorporating distinct sets of timing information inferred from our
evolutionary reconstruction of PSE evolution in Fungi. For that, we
took advantage of Mcmcdate implementing relative constraintsin the
relaxed molecular clock analysis.

Exploring arelative constraint involving streptophytes and
early terrestrial fungi

The first relative constraint tested, implemented in the
‘PSE-constraint A’ condition (Fig. 4), covers the possibility that
LCA-Mucoromycota + Dikarya could have been younger than

Klebsormidium + Embryophyta, the node subtending the branch in
which classic pectin/pectin sensu stricto probably originated. By classic
pectin, we refer to pectin cell wall fractions with similar polysaccharide
profiles to the pectin cell wall fractions of embryophytes, based on
homogalacturonan with calcium-bridged a-(1->4)-GalA residues as
main pectic fraction, and which have been shown to be hydrolysed in
endopolygalacturonase-mediated digestion assays®”®. The relative
constraintisjustified on ourinference of ancestral gene content of PSE
familiesin LCA-Mucoromoycota + Dikarya that, based onrecent works,
seemto digest only the pectin cell wall fractions of those streptophyte
groups that diverged later than Klebsormidium from the lineage path
leading to Embryophyta (see ‘A PSE-related relative age constraint’in
Supplementary Information section 4 for a detailed justification of
this relative constraint).

We expected ‘PSE-constraint A’ to be informative as, in the ini-
tial dating scheme (‘Default’ in Fig. 4), LCA-Mucoromycota + Dikarya
(1,138 Ma; Extended Data Fig. 3) was found to be substantially
older than the Klebsormidium + Embryophyta node (686 Ma).
Accordingly, incorporating this relative constraint resulted in
a substantially older age for Klebsormidium + Embryophyta
(1,129 Ma; Fig. 3 and Extended Data Fig. 6). By contrast, the age of
LCA-Mucoromycota + Dikarya remained almost identical (1,107 Ma),
aswell as the age of the rest of Fungi (Extended Data Fig. 4b).

We next tested ‘PSE-constraint A + calib’, aiming to cover the
possibility that our taxon sampling and calibration set, conceived to
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reconstruct and date the ToF, may be limited to provide accurate age
estimates for the Streptophyta side of the tree. The ‘PSE-constraint
A+ calib’ condition extends ‘PSE-constraint A’ by incorporating a soft
maximum age calibration for the Klebsormidium + Embryophytanode
based on age estimates provided for this node in the bibliography.
Among recently published timescaled phylogenies including a broad
sampling of Streptophyta, Harris et al. (2022)*° incorporated arich set
of timing information, including novel fossil calibrations and a rela-
tive constraint. As a conservative soft maximum calibration for Kleb-
sormidium + Embryophyta, we set the upper bound of the credibility
interval reported by Harris et al. (2022)°° for the Arabidopsis + Klebsor-
midium clade (927 Maaccording tothe supplementary dataprovidedin
this study). ‘PSE-constraint A + calib’ (Extended Data Fig. 7) resulted in
younger ages for LCA-Mucoromycota + Dikaryaand LCA-Fungi (Fig.4),
as well as for more internal nodes of the tree (Extended Data Fig. 4c).
Younger ages thanin ‘PSE-constraint A’ were also estimated for the Kleb-
sormidium + Embryophyta, consistent with the implemented calibra-
tion, aswellas for the parent node of this node, LCA-Streptophyta (Fig. 3).

Exploringrelative constraints involving embryophytes with
macroscopic terrestrial fungi

Finally, we also tested the ‘PSE-constraints B + C’ condition. This covers
the possibility that the main expansions of PSE content in terrestrial
Fungi may have occurredinresponse to the emergence of Embryophyta
asanecologically dominantstreptophyte lineage in terrestrial settings.
Fromtheearly PSE contentinherited from LCA-Mucoromycota + Dikarya
(Fig. 5a), two main PSE expansions occurred in terrestrial fungi. On the
one hand, a gradual and longstanding expansion trajectory started
in Yarrowia lipolytica + Cadophora sp. (Supplementary Table 5), the
parent node of LCA-Pezizomycotina. Pezizomycotinais one of the two
major groups of terrestrial macroscopic Fungi. On the other hand,
asecond expansion occurred in concomitance to the emergence of
Agaricomycotina, the second major clade of macroscopic terrestrial
fungi. Within Agaricomycotina, the expansion of PSE content started
in Calocera viscosa + Mycena galopus (Supplementary Table 6), the
descendant node of LCA-Agaricomycotina. Both Agaricomycotina
and Pezizomycotina are well represented by species with lifestyles
related toembryophytes, either as symbionts (for example, mycorrhiza
and lichens), plant pathogens or decomposers of plant material®*®°.
Itis plausible that PSE expansions in both groups may correspond to
gene content adaptations to the establishment of embryophytes as
an ecologically relevant lineage in terrestrial settings. Based on that,
the ‘PSE-constraints B + C’ condition incorporates two soft relative
constraints forcing the nodes in which the onset of both PSE expan-
sions were detected (Y. lipolytica + Cadophora sp. and C. viscosa + M.
galopus) tobeyounger than LCA-Embryophyta. ‘PSE-constraintsB + C’
(Extended DataFig. 8) led to younger ages in Fungi thanin the ‘Default’
condition, not only for Agaricomycotina and Pezizomycotinabut also
for the most internal nodes including LCA-Mucoromycota + Dikarya
and LCA-Fungi (Fig. 4 and Extended Data Fig. 4d). However, in contrast
to ‘PSE-constraint A’and ‘PSE-constraint A + calib’, the ages of the most
internal nodes of Streptophyta (Klebsormidium + Embryophyta and
LCA-Streptophyta) remained similar to the ‘Default’ condition (Fig. 4).

A timescale of fungal diversification

The ages retrieved by the ‘PSE-constraint A’, ‘PSE-constraint A + calib’
and ‘PSE-constraints B + C’ cover aseries of plausible scenarios related
to our evolutionary reconstruction of PSE evolution in Fungi. While
the scenarios represented by each of these conditions are certainly
hypothetical, we consider them plausible enough to extend the age
ranges obtained in the ‘Default’ analysis (Extended Data Fig. 3) by
incorporating the chronogram data sampled under the other three
datation analyses (Extended Data Figs. 6-8). We present a timeline for
fungal diversification based on our extended, conservative age esti-
mates (Fig. 3). The eukaryotic supergroup Opisthokonta diverged into

Holozoa (the clade containing animals) and Holomycota (the clade con-
taining Fungi) between 1,767 Ma and 1,151 Ma. Within Holomycota, the
lineage leading to Fungi separated from the lineage leading to Parap-
helidiumtribonemae (Aphelida)—agroup of endobiotic, phagotrophic
algae parasites—between1,470 Maand 945 Ma. The emergence of crown
Fungi marked the first major divergence in extant fungal diversity, with
the Chytridiomycota and the Blastocladiomycota + Sanchytriomycota
clades branching off from the main fungal line between 1,401 Ma and
896 Ma and between 1,374 Ma and 877 Ma, respectively.

Within Chytridiomycota, Chytridiomycetes, characterized by
coenocytic thallus and rhizoids, diverged between 1,222 Maand 462 Ma
from the lineage leading to Neocallimastigomycetes (Orpinomyces
sp. + Anaeromyces robustus clade, 72-40 Ma, anaerobic symbionts
found in ruminant digestive systems). Blastocladiomycota, a group
of saprotrophs and aquatic parasites (1,106-591 Ma), diverged from
the branch leading to Sanchytriomycota, a clade of chytrid-like para-
sites with amoeboid zoospores and reduced flagella (Amoeboradix
gromovi + Sanchytrium tribonematis clade, 484-150 Ma), between
1,217 Maand 705 Ma.

Asubsequentdivergence occurred between1,303 Maand 831 Ma,
when Olpidiomycota, an obligate zoosporic endoparasite, split from
the clade comprising non-flagellated terrestrial fungi—the Zoopago-
mycota + Mucoromycota + Dikarya clade. Within this clade, Zoop-
agomycota and Mucoromycota have largely overlapping age ranges
(1,252-796 Maand 1,213-678 Ma, respectively) and diversified before
Dikarya (1,114-701 Ma). Zoopagomycota encompasses lineages with
predominantly non-plant-related lifestyles, while Mucoromycota
includes Glomeromycotina (Gigaspora sp. + Rhizophagus irregularis
clade, 580-408 Ma) and Endogonales (Endogone sp. + Jimgerdemannia
flammicorona clade, 340-76 Ma), both of which form complex symbi-
oticrelationships with land plants.

From Dikarya, the most extensively studied fungal group, the
Ascomycota and Basidiomycota clades originated between 940 Ma
and 577 Ma and between 889 Ma and 550 Ma, respectively. These two
groups exhibit considerable phenotypic diversity, spanning unicel-
lular yeasts in Saccharomycotina (Yarrowia lipolytica + Saccharomy-
ces cerevisiae clade, 643-347 Ma) and Wallemiomycotina (Wallemia
mellicola + Basidioascus undulatus clade, 559-279 Ma), to complex
multicellular fungi in Pezizomycotina (661-409 Ma) and Agaricomy-
cotina (706-430 Ma).

Discussion

We applied a comprehensive methodological framework to address
the challenges of reconstructing and dating the evolutionary history
of Fungi, adeep eukaryoticlineage (Fig. 2). This approach enabled the
reconstruction of a timetree of Fungi (Fig. 3), incorporating exten-
sive taxon sampling of 153 taxa (110 fungi and 43 other eukaryotes),
phylogenetic information from 225 protein markers and substitu-
tion models that account for site-specific amino acid compositional
heterogeneity**. Site-heterogeneous models were used for both phy-
logeny inference and species tree dating. To overcome the computa-
tional bottleneck of dating with site-heterogeneous models, we utilized
the Mcmcdate software®**, which performs relaxed molecular clock
analyses on precomputed phylograms (trees with branch lengths rep-
resenting substitutions per site). Once phylograms are generated, sam-
pling chronograms (trees with branch lengths expressing divergence
times) takes less than one day on astandard laptop. This allowed us to
benchmark distinct methodological variables. We found that, at least
for our dataset and for our methodological workflow, sampling chrono-
grams by accounting for site compositional heterogeneity had alarger
impactthan, for example, the choice of the molecular clock model used
for the relaxed molecular clock analyses. We also concluded that 10,000
randomly subsampled amino acid sites would have been sufficient to
produce consistent results with the ages obtained from the full phyloge-
netic marker set, whichis of one order of magnitude larger. This offers
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apathway to accelerate even more the chronogram sampling process
without compromising accuracy. Finally, site-homogeneous models
are much less computationally demanding than site-heterogeneous
models, and as such, they allow reconstructing and dating very large
phylogenies (for example, see alternative timetree with 662 speciesin
Supplementary Fig.1). However, site-homogeneous models can offer
apoorer fit and a worse modelling of the amino acid diversity in the
input alignment, as we observed for our 153-taxa dataset for which
we could benchmark site-homogeneous versus site-heterogeneous
models (Supplementary Information section 5-Table 1).

Our core set of timing information includes 27 absolute age cali-
brations (6 maxima—S5 excluding the root calibration—and 21 minima
for 24 calibrated nodes, including 19 nodes from Fungi). This is a sub-
stantial increase compared with previously published timetrees of
Fungi (for example, 13 calibrated fungal nodes in Lutzoni et al. (2018)*
and 8in Chang et al. (2019)%). Our core set of timing information also
includes17relative time-order constraintsinformed by a conservative
fungi-to-fungi HGT screening. These 17 relative constraints, reflecting
speciation order between nodes, reduced node age uncertainty across
the phylogeny (Supplementary Information section 5-Figs. 8 and 9).
Regarding the core set of calibrations, sensitivity analyses confirmed
theinformativity of the 21 minima, which led to ageneralized increase
innode ages. By contrast, the five maxima did not have aglobal impact
onthetimescale, suggesting that these may not have been sufficiently
informative. Given this uncertainty, we aimed to extend our analyses
by incorporating additional timing information. Following Chang
et al. (2015)%, we re-examined the evolutionary history of PSE with
HGT considerations, resulting in three additional sets of calibrations
andrelative constraints (Fig. 4), each representing a plausible scenario
related to PSE evolution in Fungi.

The agerangesshowninFig. 3 integrate the uncertaintiesinherent
in the four different sets of calibrations and relative constraints used
(Fig.4). Aggregating node age uncertainty leads to broader uncertainty
ranges (Extended DataFig. 9). Notwithstanding this, we emphasize the
conservative age ranges in Fig. 3, as they illustrate the complexities
of dating eukaryotic lineages with a limited fossil record, particu-
larly compared with animals or plants (but see Supplementary Fig. 2
and Supplementary Data for more specific information on node age
probability distributions). Based on Fig. 3, we provided a timeline
for fungal diversification (see ‘A timescale of fungal diversification’
section in the Results), starting from the split between the lineage
leading to fungi and the lineage leading to animals (Opisthokonta,
1,767-1,152 Ma; for an alternative timescale more especially focusedin
the whole Opisthokonta supergroup, we refer toref. 17, and for alterna-
tive timescales of Fungi, we refer to refs. 9,61).

How old are Fungi? The age range retrieved for crown Fungi (1,401~
896 Ma; Fig. 3), as well as the age ranges reported by Chang et al. (2021)°
and Lutzoni etal. (2018)*' (-980-650 Ma and ~950-715 Ma, respectively,
based on the figures shown in these studies), are compatible with the
potential fungal identity of recently reported fossils dated to 1,010~
890 Ma (ref. 63) and 810-715 Ma (ref. 64). However, our timescale is also
compatible with older—although more uncertain—fungal fossils, suchas
thespecimensdescribed by Hermannand Podkovyrov® (1,025-1,015 Ma)
and, more generally, with the possibility that bona fide fungal fossils from
the Mesoproterozoic (1.6-1.0 Ga) could be reported in future studies
(LCA-Fungiis>1Gain 88.5% of our chronograms; Supplementary Fig. 2
and Supplementary Data). It is important to clarify that the discussed
fossils were notincluded among our calibrations because we considered
their assignment to crown Fungi plausible but not unequivocal. At the
sametime, we acknowledge that temporal compatibility between fossil
and clade agesis not initself evidence of affinity.

Ourresults also have implications concerning ancient fungi-algae
interactions preceding the emergence of crown embryophytes. Previ-
ously hypothesized based, for example, on comparative timescale
information (for example, ref. 61), following ref. 52 (see ‘Reevaluating

the pectin-related maximum age calibration’and ‘Exploring a relative
constraint involving streptophytes and early terrestrial fungi’ sections
inthe Results), our findings on PSE evolution and aggregated chrono-
gramdata (Fig. 5) provide evidence for suchinteractions and suggest a
minimum age for early interactions involving ancestral streptophytes
and Fungi (1,253-797 Ma, LCA-Mucoromycota + Dikarya), predating
by hundreds of million years the emergence of modern land plants
(LCA-Embryophyta, 612-431 Ma). Thisis supported by our inference of
ancestral PSE content in LCA-Mucoromycota + Dikarya, indicating that
this fungus presented specific enzymes to degrade pectin. Changetal.
(2015)*?inferred PSE content also in LCA-Chytridiomycota + Dikarya,
an older fungal ancestor. However, we did not recover PSE content in
this ancestor when HGT-aware methods were used.

Altogether, the reported timescale (Fig. 3) adds more weight to the
reinterpretation of the Mesoproterozoic and early Neoproterozoic, not
asa‘boringbillion’ (1.8-0.8 Ga)®®, but as an important interval in which
eukaryotelineages diversified® . This episode is not especially well doc-
umented by the fossil record, and therecord that exists is challenging to
interpret®®°, Assuch, itisimportant to use molecular approaches to see
through thegapsin the fossil record. Concerning the emergence of mac-
roscopic eukaryotes—such as plants, animals or some fungi—after the
notso ‘boringbillion’, attempts have been made to establish a causal link
between the origin of complex multicellularity and Cryogenian Snowball
Earth events” "% Regarding Fungi, if the emergence of complex multi-
cellularity in Pezizomycotina and Agaricomycotina roughly coincided
with the last common ancestor of both groups, LCA-Agaricomycotina
(706-430 Ma) and LCA-Pezizomycotina (660-409 Ma), then these could
have originated either during or after the Cryogenian Snowball Earth
events (-720 - 635 Ma (ref. 72)), but not before them.

LCA-Mucoromycota + Dikarya, an ancestral fungus in which we
identified PSE content, is an early representative of the major clade
of terrestrial fungal groups (Fig. 3). Given this, and given also that
streptophyte algae share some adaptations found inembryophytes to
terrestrial life”>”, we consider it plausible that early interactions involv-
ing LCA-Mucoromycota + Dikarya and streptophyte algae occurred in
terrestrial settings or in freshwater-terrestrial interfaces, possibly in
primitive microbial communities resembling modern biological soil
crusts or microbial mats™. During the protracted gap between the onset
oftheseinteractions and the emergence of crown embryophytes, early
fungi and streptophytes may have coexisted as mere ecosystem part-
ners, or may have already been involved in complex symbiotic inter-
actions®. Fossil evidence for such hypothetical interactions remains
elusive (the oldest unequivocal fossils representing mycorrhizae and
lichen associations are from ~400 Ma (refs. 76-78), already from the
Embryophyta period). Further work is needed in characterising eco-
logical interactions involving extant fungi and streptophyte algae’ to
better understand how these two lineages may have interacted before
therise of embryophytes, and how important these interactions may
have been for the terrestrialization process of both eukaryotic groups.
To our knowledge, beyond co-occurrences® (for example, strepto-
phytes have been foundinthe microbiome of lichens, but neverinthe
role of the main algal partner’), as well as some lineages of fungi and
some fungal relatives being able to parasitise®* and to feed on strepto-
phyte algae®, no complex symbiosis involving fungi and streptophyte
algaehasbeenreported inmodern microbial interactions. Altogether,
our study provides a refined timescale of the diversification process
of Fungi, offering also atemporal framework for future investigations
concerning early interactions involving fungi and the algal ancestors
of embryophytesin terrestrial ecosystems.

Methods

Taxon sampling

We constructed a protein sequence dataset including 110 fungal spe-
cies (+12 outgroup species, see below), hereafter referred to as origi-
nal_dataset (Supplementary Table 1, this dataset was extended later
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to incorporate a total of 153 species; see ‘Incorporation of additional
taxon sampling into the species tree’ section). These species were
selected to maximize the most balanced possible representation of
every major fungal group (detailed below) and also the inclusion of
representatives from clades for which fossil data are less scarce. In
particular, original_dataset includes 42 Basidiomycota, 25 Ascomycota,
15 Mucoromycota (including 3 Glomeromycotina), 9 Zoopagomy-
cota,10lpidiomycota,12 Chytridiomycota and 6 Blastocladiomycota,
includingalso 2 Sanchytriomycota species. In addition, 12 non-fungal
species from the Amorpheadivision of eukaryotes were alsoincluded
asoutgroups for phylogeny rooting purposes (Supplementary Table1).
Outgroup selection wasto a great extent based on the speciesincluded
inone of the latest published ToFs at the time this project started”.

Candidate marker set

For the inference of the species tree, marker genes were selected
fromthree different methodological sources: (1) we started grouping
original_dataset sequences into clusters using MCL v.14-137%* with an
inflation value of 2, using —log;,-transformed E-values as a similarity
metric. E-values were retrieved from an all-against-all alignment of all
original_dataset sequences with BLASTP® (v.2.10.1+) using the follow-
ing parameters: [-evalue le-3 -soft_masking yes -max_target_seqs1000].
From the resulting clusters, we initially selected as potential mark-
ers those that were single-copy—that is, clusters without duplicated
sequences at the species level. We next allowed clusters to become
single-copy after eliminating terminal duplications. For this, a prelimi-
nary alignment (MAFFT®®v.7.313-linsi) and gene tree reconstruction
(FastTree® 2.1.11, phylogenetic model: WAG) were performed. We
selected and eliminated terminal duplications only from those gene
trees where all duplicated proteins of aspecies formed amonophyletic
clade using a custom-made script® (https://github.com/zsmerenyi/
compaRe/blob/main/Terminaldupdet.zip. (2) We performed ahidden
Markov model (HMM)-based search by running BUSCO® v.3.0.2on the
fungal profiles (fungi_odb9) over our original_dataset. Only ‘Complete’
and ‘Fragmented’ proteins were considered. (3) Finally, we ranan HMM
search onoriginal_dataset using HMMER 3.3.2°° and the HMM profiles
from the Joint Genome Institute 1086 marker gene set®” as a query
(https://github.com/1KFG/Phylogenomics_HMMs/tree/master/HMM/
JGI_1086). For (3), we considered only the best matches for each species
(ordered by E-value and full score), using the E-value cut-off <1 x 10~ for
the full alignment. Also, for each HMM query, we identified the most
represented MCL clusters among the target sequences, and excluded
fromthetargetsetallthe original_dataset sequences groupedin other
MCL clusters. Then, to prevent the inclusion of saturated markers, we
removed those candidate markers from the three methodological
sources showing average amino acid alignment distance >1.5 using the
WAG model of the function dist.ml from the phangorn package. Also,
we eliminated candidates containing potential ancestral paralogues
with the same method as in ref. 88. Finally, we also excluded clusters
if (1) they were represented by <25 species and (2) if they included
repeated sequences from other clusters (in such a case, we prioritized
first the markers obtained from MCL clusters, and then those obtained
from the Joint Genome Institute marker gene set over those obtained
from the BUSCO dataset). This altogether led to a set of 839 markers
representing atotal of 261,382 amino acid sites (candidate market set).
For each of these candidate markers, we aligned the corresponding
sequences using MAFFT and trimmed the resulting alignments with
trimAI°*1.2rev59 using the -gappyout option. A preliminary gene tree
was constructed from each candidate marker using IQ-TREE™ v.1.6.12
(LG + G4 model, 1,000 optimized ultrafast bootstraps) to compute the
metrics needed to select the definitive marker set (see below).

Filtering the marker set
Because we recovered more markers than needed for our target of
approximately 100,000 amino acid sites, we discarded from the

candidate set those markers that exhibited suboptimal metrics (low
number of sites, low bootstrap values, high tip-to-root distance and
high tip-to-root covariance®). In particular, we discarded candidate
markers that met any of the following criteria: (1) anumber of sites lower
than that of 66% of the candidates, (2) UFBoot support values lower
than those of 66% of the candidates, (3) tip-to-root distance metrics
higher than those of 75% of the candidates, and (4) tip-to-root covari-
ance metrics higher than those of 75% of the candidates. Moreover, we
retained only those candidate markers found in atleast >50% of Dikarya
taxa, 250% of other fungal groups and =50% of outgroup sequences.
This altogether led to a definitive set of 225 markers representing a
total of 97,487 amino acid sites (definitive market set), which were
concatenated intoasole file (Data/MSAs/original_concatenate.phylip).

Species tree inference and selecting the most supported
topology
We performed a first inference of the species tree using the software
IQ-TREE and the LG + F + G4 + C60 model, which allows modelling
compositional and rate heterogeneity betweensitesin the alignment.
This analysistook 6 days and 5.5 hon 48 central processing unit (CPU)
threads of Intel Xeon 4116 @ 2.1 GHz CPUs. Using C60 provided a mark-
edly better modelfit (C60 + LG + G4 + F, Bayesianinformation criterion
score 23,863,331) than site-homogenous alternatives (LG + G4 +F,
Bayesian information criterion score 24,389,728), underscoring the
importance of using site-heterogeneous models for supermatrix-based
species tree inferences. While the resulting tree (Supplementary Fig. 3)
fromthis first round of inference showed an overall reasonably congru-
enttopology withrecent publicationsinthe bibliography (forexample,
refs.13,16), three main potentially conflicting topologies were identi-
fied: (1) Blastocladiomycota being the first branch within Fungiinstead
of Chytridiomycota; (2) Basidiobolus meristosporus (Zoopagomycota)
branching with Mucoromycota; and (3) Olpidium bornovanus (found
to be the closest relatives of non-flagellated fungal groups in ref. 9)
branching within a clade of non flagellated Fungi. Aiming to recover
amore congruent topology, we used a more complex model such as
the CAT + GTR + G4 model available in Phylobayes®*’. As running this
complex model with our dataset would have been computationally
impractical, we used the recently developed approach CAT-PMSF*,
CAT-PMSF could be simplified as atwo-step process. First, site-specific
stationary distributions are sampled by running Phylobayes under the
CAT + GTR + G4 using the LG + F + G4 + C60 topology as guide topology
(the method has been proven to be robust to the chosen topology?).
For this, we ran two Phylobayes chains for more than 20,000 gen-
erations each, and site-specific stationary distributions (amino acid
exchangeabilities and site-state frequencies) were sampled after chain
convergence assessment (burn-in10,000). This analysis took 37 days
on 240 CPU threads of Intel Xeon 4116 CPU @ 2.1 GHz for each chain.
Then, we performed a species tree inference with IQ-TREE using the
PMSF approach”, combining the sampled amino acid exchangeabilities
and site-state frequencies with the G4 model (Extended Data Fig. 1).
This analysis took 11 h using 16 CPU threads of Intel Xeon Silver 4116
CPU @ 2.1 GHz. To corroborate our choice of the CAT-PMSF over the
LG +F + G4 + C60 topology, we conducted a model adequacy test as
described by ref. 96. We simulated 100 parametric bootstraps using
AliSim” implemented in IQTree’* v.2.4.0 with the same model specifica-
tionsused toinfer the species trees and then comparing the across-sites
amino acid diversity of the simulated samples with the original data. We
measured a18-fold lower Zscore (4.95) for the CAT-PMSF model than
forthe LG +F + G4 + C60 (Zscore —89.26), supporting our decision to
use thetopology inferred by CAT-PMSF in the downstream analysis. The
scriptsandinput files for generating parametric bootstrap samples and
calculatingthe Zscores are available in Data/Model_adequacy_tests.zip.
To clarify the position of Olpidium bornovanus (Obor), we per-
formed two separate rounds of AU topology tests*’ based on two
alternative approaches. The first approach, the most standard one,
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consisted of running five rounds of the CAT + PMSF analysis but con-
straining each time the inference to agiven topological hypothesis (1)
Oborbranching as sister group to Mucoromycota, (2) Oborbranching
as sister group to Mucoromycota + Dikarya, (3) Obor branching as
sister group to Zoopagomycota, (4) Oborbranching as sister group to
Zoopagomycota + Dikarya and (5) Obor branching as sister group to
Mucoromycota + Zoopagomycota + Dikarya (Supplementary Table 7).
Topologies (1) and (4) were rejected with the AU test (AU-test P values
0.000751 and 4.47 x 1078; Supplementary Table 7). We then submit-
ted the three remaining topologies to the second approach, which
consisted of running three runs of gene-tree species-tree reconcili-
ation with the software ALE?®, each run using one of the three surviv-
ing topologies as species tree, and always the same set of optimized
ultrafast-bootstrap replicates sampled for each gene family (one gene
family per MCL cluster). (To sample ultrafast-bootstrap replicates for
each MCL cluster, we followed the same approach as we did to pro-
duce gene trees for the MCL clusters that were among the candidate
marker set; see ‘Candidate marker set’ section above.) We retrieved
the likelihood values from the uml_rec files produced by ALE for each
gene family (a total of 38,824 likelihood values for each ALE run), and
used the AU test to test whether some of the remaining topologies
can be rejected. The logic for performing this test was the following.
ALE reconciles every gene family with the species tree and outputs a
likelihood value. Amorerealistic species tree can be expected to result
infewer discordances with gene trees, leading toimproved likelihood
values. For each of the three tested topologies, we had a total of 38,824
likelihood values. Analogously, each of these can be seen asifthey were
the likelihood values corresponding to alignment sites representing
each of the three topologies to be tested. Based on AU-test results
performed with CONSEL" v.0.20, we could reject topologies (2) and (3)
(AU-test Pvalues 1.00 x 10 and 2.00 x 10~; Supplementary Table 7),
leaving topology (5) as the only non-rejected topology. We thus used
the phylogenetictreereconstructed during the constrained inference
of topology (5) with the CAT-PMSF model as the topology from which
to produce chronogram data.

Calibrations and HGT-derived relative time-order constraints

Justification of the node age calibrations used in this study can be
found in Supplementary Information section 1. This section also
includes ajustification of the maximum age calibrationinferred froma
broad-scale exploration of the HGT events from Embryophyta to Fungi
(see Supplementary Information section 2 for details on how thisHGT
exploration analysis was done). Regarding HGT-derived relative time
node order constraints, the methodology and the HGT events based
on which relative constraints were established are detailed in Sup-
plementary Information section 3. The retrieved node ages are robust
to the possibility that some relative constraint may have introduced
erroneous relative node order information (Supplementary Fig. 4).

Reevaluating the evolutionary history of PSE in Fungi

Toinfer ancestral PSE presence in Fungi, which could have implications
to calibrate the maximum age of Fungi**, we reevaluated the evolution-
ary history of PSE in Fungi. See Supplementary Information section 4
for details on these analyses.

Incorporation of additional taxon sampling into the species tree
The reconstruction of PSE evolution (Supplementary Information
section 4) showed evidence of ancestral interactions involving Fungi
andthealgal ancestors of embryophytes. To further explore the codi-
versification of both groups, we incorporated ten additional taxafrom
the Streptophytaside of eukaryotes. We also incorporated 21 additional
taxa from other eukaryotic groups for a broader representation of
intermediate lineages branching between Fungi and Streptophyta
(Supplementary Table 2). Given this expanded taxon sampling, our
original species tree—used to guide the phylogram sampling process

required for chronogram reconstruction (see below)—had to be
extended to incorporate the phylogenetic relationships of the addi-
tional taxa, based on existing bibliographic references’*'°*'! (Fig. 3).
We also had to extend the concatenate alignment using the follow-
ing strategy. (1) We built HMM profiles for each of the 225 definitive
markers (those that were used to reconstruct the species tree with
the original taxon sampling of 122 species). We used this set of HMM
profiles toscanaconcatenate of FASTA sequences for the 31 extended
taxon sampling. Positive hits for each marker (candidate sequencesto
be incorporated) were considered for step 3. (2) We used Diamond'®?
v.2.0.14.152 [-e 1.0E-03 --more-sensitive --masking 1] to align that same
FASTA concatenate against alarge dataset including the original 122 set
of species, as well as alarge representation of non-eukaryotic taxa (to
ensure the exclusion of potential prokaryote contaminant sequences).
(3) Wefiltered the candidate sequences and incorporated only those for
which the best Diamond hit corresponded to amember of the marker
set being used. The candidate marker FASTA files were thus extended
with the sequences from the 31 extended taxon sampling that passed
thisfilter. (4) Togenerate the final concatenate alignment, the extended
candidate markers were aligned with MAFFT [-linsi], alignments were
trimmed with trimAl [-gappyout], and the trimmed alignments were
concatenated into a FASTA file thatincluded 153 taxaand 95,968 amino
acid sites (Data/MSAs/extended_concatenate.phylip).

Chronogram inference

We used Phylobayes”-** mpi v.1.8b to sample phylograms (branch
lengths) for the chronogram sampling process. In particular, two chains
were run for more than 11,000 generations using the CAT + GTR + G4
model (‘CAT’ stands for stick-breaking Dirichlet process mixture, ‘GTR’
for amino acid exchangeabilities estimated from the data and ‘G4’ for
discrete gamma distribution of rates across sites with four catego-
ries). The phylogram sampling process was accelerated by constrain-
ing the sampling of branch lengths to a fixed species tree topology
(Fig. 3). A burn-in of the first 5,000 generations was considered after
chain convergence assessment. Post burn-in resulted in two sets of
6,390 phylograms per chain. In total, this analysis took 22 days on
192 threads of Intel Xeon 4116 CPU @ 2.1 GHz for each chain. We next
used Mcmcdate®™*'v.1.0.0.0 software to sample chronograms based
on the sampled phylograms, using the auto-correlated lognormal
model and the full covariance matrix to approximate the likelihood
calculation. We arbitrarily chose the phylograms from the first chain
as input for Mcmcdate, because an exploration made revealed very
minor differences between chronogram sets obtained from four dis-
tinct Mcmcdate runs (two runs per phylogram set—chain1and chain2;
Supplementary Table 4). The MCMC sampler was run for 8,000 itera-
tions after aburn-in of 4,930 iterations, sampling a timetree for every
10iterations. Each Mcmcdate runtook <1 day on astandard computer.
Data files from each chronogram analysis (‘Default’, ‘PSE-constraint
A, ‘PSE-constraint A+calib’ and ‘PSE-constraints B + C’) are available
in Data/Chronograms. For hard bound and soft bound calibrations
(Supplementary Informationsection1), we allowed, respectively, 0.01%
and 3% of the probability mass to fall outside the corresponding age
boundary. Inthe case of the constraints, the probability mass allowed
to fall outside was 2.5%.

Dating PSE content expansions

PSE content over time in the ancestral paths leading to Cadophora
sp. (Pezizomycotina) and Mycena galopus (Agaricomycotina) were
computed by crossing information on (1) ancestral PSE content
(Supplementary Tables 5and 6) with (2) branch existence probability
over time. In particular, PSE content for every million year (My) time
unit was computed with a weighted mean in which every branchin
the evolutionary path towards the target species (either Cadophora
sp. or M. galopus) had an influence on each My unit according to a
specific weight determined by the relative frequency of chronograms
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supporting the existence of that branch lineage in the given My time
unit. All chronograms sampled in the process of constructing the
consensus chronogram shown in Fig. 3 (Data/Chronograms) were
used for this purpose.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Data are available via figshare at https://doi.org/10.6084/

m9.figshare.28046594 (ref.103). Source dataare provided with this paper.
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Extended Data Fig. 2| Species tree topology reconstructed by coalescent
methods (ASTRAL). In contrast to the concatenate approach from the main
analysis, to run ASTRAL, we first run Phylobayes (CAT + GTR + G4 model) on the
trimmed multiple sequence alignment of each of our 225 phylogenetic markers.
We then run Phylobayes bpcomp to compute a consensus with branch supports
by pooling the trees of all the runs obtained. The retrieved topologies (1 per gene

tree) were put together into a single text file used asinput to run ASTRAL version
5.7.8 with the default settings (ASTRAL annotates branches by default with the
posterior probability values obtained for the main resolution). As in Strassert
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Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article https://doi.org/10.1038/s41559-025-02851-z

Arabidopsis_thaliana
Gnetum_

Fontinalis_a

_punctatus

PP musicola
1 K flaccidum
C
Volvox_carteri
[ 5778 T—=""_ Chlamydomonas_reinhardlii
L Chlorella_variabilis
173132 [ 2555 i s_pusilla
t e! s tauri
90258 Cyanidi 1_merolae
304628t Galdieria_ i
Chondrus_crispus
89935 1_infestans

ﬁﬁ 5. L 5_siliculosus
I Vitrella_| ic i

_natans
Cyathus_striatus
Crucibulum_laeve
Laccaria_bicolor
Hebeloma_cylindrosporum
Agaricus_bisporus
Amanita_muscaria
Gymnopus_luxurians
Schizophyllum_commune
Mycena_galopus
Pleurotus_ostreatus
Suillus_luteus
Paxillus_involutus
Serpula_lacrymans
Piloderma_croceum
Fibulorhizoctonia_sp

Fungi
[ Basidiomycota ] zoopagoomycota
Ascomycota [ Blastocladiomycota
Mucoromycota [] chytridiodiomycota

Plicaturopsis_crispa
:02 Trametes_versicolor
17 Pycnoporus_cinnabarinus
afsanoderma_sp
Other eukaryotes 167, ichomitus squalens
Wolfiporia_cocos

] Metazoa [E Embryophyta (Streptophyta) e Tootashor oantajun
- Clavicorona_pyxidata
[] other streptophyta

_annosum
Rickenella_meliea
Fomitiporia_

5 stellatus
1_suecicum
icularia_delicata
Sebacina_vermifera

[ ? \_solani

| ssds: Calocera_viscosa

Tremella_

1 —aazgg————————— Wallemia_melliicola
t i s_undulatus
e 1 _reilianum
| T ="Ustilago_maydis
56T s roseus

Tolypocladium_inflatum
Metarhizium_acridum
Trichoderma_virens

C

Cryphonectria_parasitica
Diaporthe_ampelina
Phaeoacremonium_aleophilum
Neurospora_crassa
Daldinia_ i
Cadophora_sp
Botrytis_cinerea
42593 36 Aspergillus_fumigatus
21 ‘Aspergillus_niger
Coccidioides_immitis
[ Exophiala_L
- 4 Xanthoria_parietina
C

100711

t jum_pullulans
75374 e rys_oligospora

— | ims5B4 Tuber._
Dekkera

40, 3223
e e ) cerevisiae

113859, Yarrowia_lipolytica
Taphrina_
t mbe

5 por
Cokeromyces_recurvatus

F85—  Mucor_circinelloides

.93 Rhizopus_oryzae
vesiculosa
25932 y
e Saksenaea_vasilormis
|

Lichtheimia_corymbife
Umbx

174 | 1052 T—"_ Endogone_sp

7o irregularis
102433 [wviwzy ~©—="Glomus_cerebriforme
L Gigaspora_sp
=747 Mortierella_alpina
=" Mortierella_verticillata

.0 )
118641 ,—:% Linderina_pennispora
t 61571 Coemansia_reversa

[ 31302 Smittium_culicis
[107824 |
T - muscae
[ coronatus
P -
Olpidium_|

127971

ix_gromovi
[—Fm— Homolaphlyctis_polyrhiza
563.86. X
etz e s _punctatus
T 8l 5_helicus
b is { 65248 i ium_globosum

7998,  0§rpinomyces_sp

[ .9firomyces_sp
ot | Lol robustus
1_prolifera

itosporidium_daphniae

Rozella_allomycis
o163t Fonticula_alba

05 Parvularia_atlantis

T Nuclearia.

s Homo_sapiens
_ [oEH vectensis
Ty

175442 [ 116040 joeca_rosetta
148989 ganas/ga_ brevicollis

1635.75.

17624 Ci 1 perkinsii
| Wogr— rahons
Tl Pygsuia_biforma
81696 1zt Dictyostelium_discoideum
t 1 castellanii
J— 43 1035 Diphylleia_rotans
t Rigifila_ramosa
s _longa

2000 1800 1600 1400 1200 1000 800 600 400 200
Millions of years ago (Ma)

Extended Data Fig. 3| Consensus chronogram reconstruction based on the core set of timing information (‘Default’ analysis). Chronograms were sampled with
relaxed molecular clock software Mcmcdate (see Main text and methods). Mean node age values and node age 95% HPD credibility intervals are both shown.

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-025-02851-z

A

'Default’ ages - 'Only root calibration' ages

e\ o L[]

>
o4

)

Fungi
[3 Basidiomycota ] zoopagoomycota
@ Ascomycota [ Blastocladiomycota
[ Mucoromycota [] chytridiodiomycota

Other eukaryotes
[] Metazoa [E Embryophyta (Streptophyta)
[] other streptophyta ] Chlorophyta

C 'PSE-A+calib.' ages - 'Default’ ages

I,

.
.

3

W

)

N
) W

Extended Data Fig. 4 | See next page for caption.

'PSE-A'" ages - 'Default’ ages

Difference in mean age
- 450 Ma

+ 450 Ma
BT T T T T T T T T TT T

'PSE-B+C' ages - 'Default' ages

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article https://doi.org/10.1038/s41559-025-02851-z

Extended DataFig. 4 | Branch length color representation of mean age comparisons. The chronogram represented (topology and relative branch
differences between selected pairs of compared chronograms. For every lengths) in each case is the second among the two chronograms compared (for
chronogram comparison, for example ‘Default’ ages - ‘Only root calibration’ example, ‘Only root calibration’in the case of panel a). Branches are colored
agesinpanel a, we subtracted the mean ages found in the second chronogram withagradient corresponding to the difference in mean age retrieved in each
to the mean ages found in the first chronogram. See panels b, c and d for further comparison for the node subtending the branch.
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to the mean ages found in the first chronogram. See panels b, c and d for further
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example, ‘Only root calibration’ in the case of panel a). Branches are colored

with agradient corresponding to the difference in mean age retrieved in each
comparison for the node subtending the branch. ‘Default’ condition corresponds
toarelaxed molecular clock analysis done with the 21 minimum age calibrations
(minima) and the 6 maximum age calibrations (maxima), and ‘Only root
calibration’ corresponds to a relaxed molecular clock analysis done with just the
maximum age calibration for the root.
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Sample size We gathered a dataset including complete species proteomes as predicted from published genome sequences (proteome dataset), consisting
of 1,363,672 protein sequences from 86 eukaryotic species. Adequate sample size was determined based on the need of including a
sufficiently diverse but at the same time taxonomically-balanced representation of the different eukaryotic groups represented, particularly
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Data exclusions  The use of proteome datasets derived from genome projects was prioritised over proteome predictions derived only from transcriptome data.
Proteomes from transcriptomic projects were only used for groups with very few genomic data available (e.g., Glaucophyta); to expand the
representation of certain osmogroups (e.g., Teretosporea); or to sample clades which branch close to the osmogroups in the eukaryotic
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Randomization  This work reports phylogenetic and comparative genomics analyses. As it is standard for the field, the robustness of the inferences was
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these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
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Blinding blinding was not relevant to your studly.

Did the study involve field work? []ves []no

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
the date of issue, and any identifying information).

i}
Q
Q
(e
=
)
e,
o)
=
o
=
—
(D
S,
o)
=
i}
(@]
wv
(e
3
3
Q
2
=

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern

Plants
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Antibodies

Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,
export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.




Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.
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Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method, if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration | Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes
[] Public health

|:| National security
|:| Crops and/or livestock
|:| Ecosystems
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Plants

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

Seed stocks

Novel plant genotypes

Authentication

ChlP-seq

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied.
Describe-any-atthentication-procedures foreach seed stock- tised-ornovel-genotype-generated.Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links

For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,

May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session
(e.g. UCSC)

Methodology

Replicates

Sequencing depth

Antibodies

Peak calling parameters

Data quality

Software

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
enable peer review. Write "no longer applicable" for "Final submission" documents.

Describe the experimental replicates, specifying number, type and replicate agreement.

Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.

Describe the antibodies used for the ChiP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and
lot number.

Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
used.

Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Describe the software used to collect and analyze the ChiP-seq data. For custom code that has been deposited into a community
repository, provide accession details.
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Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.
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Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] Used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).




Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based [ | Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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