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Pesticides and habitat loss additively reduce 
wild bees in crop fields
 

Pesticide use and habitat loss are major anthropogenic drivers of bee 
decline, raising global concerns about impaired crop pollination. However, 
the relative importance of these stressors and their combined impact on 
bee assemblages comprising species with different traits, such as body 
size or nesting strategy, remains unknown. Here we addressed these key 
knowledge gaps in a global quantitative synthesis analysing bee assemblage 
data from 681 crop fields across three continents. We found that both local 
pesticide hazards and decreasing proportions of semi-natural habitats in 
surrounding landscapes negatively affected wild bee abundance and species 
richness in crop fields, while pesticides additionally reduced functional 
and phylogenetic diversity. Semi-natural habitat availability did not buffer 
against these negative pesticide effects, nor did we identify any specific 
traits rending bees more vulnerable to one of the two drivers. Our findings 
highlight the pressing need to reduce non-target effects of pesticide use 
and emphasize that conservation and restoration of semi-natural habitats 
successfully promote wild bees, but are insufficient strategies to mitigate 
pesticide-driven losses of wild bee pollinators from crop fields.

The abundance and functional diversity of wild bees play a key role for 
plant pollination, but their declines in many regions of the world put 
wider biodiversity, the functioning of terrestrial ecosystems and polli-
nation services to crops at risk1–3. A major driver of this decline is the loss 
of suitable habitats through agricultural intensification4,5. In addition, 
this intensification is accompanied by increased use of agrochemi-
cals, many of which pose a threat to pollinators in agroecosystems6–9. 
Sustainable agricultural practices and stable long-term yields of 
insect-pollinated crops require the conservation of several facets of 
pollinator community structure1,10,11, but it remains unknown how the 
use of pesticides affect wild bees in different cropping systems world-
wide with respect to their abundance, species richness, functional and 
phylogenetic diversity. Moreover, we currently lack a general under-
standing of how additional stressors, such as the loss of semi-natural 
habitats (SNH) in landscapes surrounding crop fields, may accelerate 
the decline of wild bees through synergistic interactions12.

Here we address these research gaps through a global analysis 
of 36 primary datasets covering 681 agricultural fields across various 
cropping systems on the African, European and North American conti-
nents (Extended Data Fig. 1 and Supplementary Table 1). Datasets were 

selected on the basis of a systematic literature search of published field 
studies on the effects of pesticide use and SNH loss on wild bee assem-
blages in crop fields. The analysed data includes information on the 
abundance and potential response traits (body size, lecty, sociality, nest 
location, nesting strategy and kleptoparasitism; Extended Data Table 1) 
of 910 bee species (19,593 specimens). Two measurements of pesticide 
hazard in focal fields were used: (1) high versus low intensity of pesticide 
use based on production systems (conventional or organic, additionally 
supported by information on typical pesticide management for exam-
ple through farmer interviews), available for 27 datasets, or (2) hazard 
quotients (HQ) that incorporate application rates and the toxicity of 
applied pesticides (including insecticides, fungicides and herbicides) 
to bees13, available for 28 datasets with a total of 6,667 individual pes-
ticide applications. Studies selected sites to achieve representative 
gradients of SNH proportions in landscapes and/or pesticide hazard, or 
site selection was random in relation to the respective driver. Approxi-
mately half the crops grown in focal fields were attractive to bees and 
the proportion of SNH (for example, semi-natural grasslands, forests, 
shrublands and hedgerows; Supplementary Table 2) in landscapes 
ranged typically from 0 to 80%. Comparison to continental databases 
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these effects were not mainly driven by underlying differences between 
production systems, for example in floral resource availability, we 
additionally tested HQ effects only on the subset of conventionally 
managed crop fields (322 of the total of 466 fields used in the main 
analysis across both production systems). Results were consistent and 
qualitatively similar to analyses including fields from both production 
systems, showing negative effects on bee abundance, species richness 
and phylogenetic (but not functional) diversity in conventionally man-
aged fields as HQ increased (Extended Data Fig. 3). These results suggest 
that bees are harmed by the direct toxic effects of pesticides, which 
does not exclude any possible additional differences between organic 
and conventional production systems that contribute to overarching 
patterns including reduced functional diversity of bees.

We assumed that the effects of pesticide hazard would be greater 
in bee-attractive crops during flowering compared with non-attractive 
crops. In contrast to our predictions, pesticides did not have a stronger 
negative effect on bee abundance and diversity in bee-attractive crops 
versus non-attractive crops (Extended Data Fig. 4). This result supports 
previous evidence that the effects of pesticides can vary substantially 
across different types of bee-attractive crops9,26, and that bees are 
exposed to pesticides through a variety of routes in agricultural sys-
tems. For example, pesticide drift from spray applications or leach-
ing through the soil can result in residues in weeds within fields or in 
non-target wildflowers along field margins, representing likely routes 
of oral exposure27–31.

A high proportion of SNH could mitigate the negative effects of 
pesticide use on bees in focal fields through at least three, non-exclusive 
pathways: (1) through reduced pesticide exposure of bees when also 
foraging or nesting in SNH where flowers and soils are less contami-
nated with pesticides compared with those in crop fields, (2) through 
improved resilience of bees against negative pesticide impacts due 
to nutritional benefits obtained from floral resources in SNH and (3) 
through reduced mortality rates at the population level in landscapes 
with larger and more distributed populations due to larger amounts of 
SNH (that is, when SNH provides valuable habitat, a smaller proportion 

and literature corroborates that these ranges can be considered rep-
resentative for these global growing regions14–16.

Results
Effects on bee communities in crop fields
As individual bees are lost from communities because of exposure to 
anthropogenic stressors, abundance is decreased and species are sub-
sequently lost through random attrition, with potential consequences 
for functional and phylogenetic diversity17. In addition, anthropogenic 
stressors are hypothesized to affect bee species differently depend-
ing on how the traits of a species shape their response to pesticide 
hazard and loss of SNH2,18. Consequently, stressors could restructure 
communities by favouring species with trait combinations that help 
them persist in simplified and intensively managed agroecosystems, 
while resulting in population decline and even extinction of species 
with less favourable traits19. The resulting bee assemblages would be 
characterized by an altered community structure with expected effects 
on functional mean pairwise distance (MPD), evenness or specializa-
tion. Beyond these parameters, we also measured phylogenetic MPD 
to test for environmental filtering by unidentified traits associated 
with phylogenetic relatedness. This metric is expected to decrease 
with increasing stressor intensity, because traits that enable species 
to cope better with stressors (for example, detoxification enzymes) 
are often conserved within taxonomic groups2,20.

We found that bee abundance and species richness decline with 
decreasing proportions of SNH and increasing pesticide hazard in agri-
cultural landscapes. Pesticide hazard was additionally associated with 
lower functional and phylogenetic diversity of wild bee assemblages in 
crop fields (Figs. 1 and 2and Extended Data Fig. 2). These relationships 
were detected irrespective of whether hazard was quantified on the 
basis of pesticide-use intensity or as HQ. Additionally, these effects did 
not vary significantly across the major global growing regions studied 
(North America, Europe and Africa). Furthermore, we did not detect 
shifts in the distribution of traits within bee assemblages along gradi-
ents of increasing pesticide hazard or decreasing proportions of SNH in 
landscapes as the functional and phylogenetic MPDs and the functional 
evenness and specialization of communities were not related to these 
stressors (Fig. 2). In accordance with ref. 21, these results suggest that 
the community disassembly of bees observed in relation to pesticides 
and SNH loss is not strongly driven by specific traits.

The lack of general patterns of community filtering may arise 
when the fitness consequences of certain traits or trait combinations 
depend on the focal crop and/or the landscape context22. For example, 
pesticide exposure of ground-nesting bees through contaminated soil 
may occur mainly in crops with low vegetation cover as bees depend 
on bare soil to build their nests, whereas exposure may be much lower 
in dense crops23. Pesticide exposure may also depend on the foraging 
preference of bees for crop flowers or other floral resources in crop 
fields18,24,25. However, no information was available on specific for-
aging preferences beyond the degree of floral specialization. At the 
landscape level, the presence and composition of different types of 
SNH may shape the availability of specific floral resources and nesting 
sites for ground-nesting versus above-ground-nesting bees leading to 
undirected patterns of trait filtering by the proportion of SNH.

Underlying pathways of pesticide effects
In agricultural systems, there are two main pathways through which the 
use of pesticides can affect bees: (1) through toxic effects or increasing 
susceptibility to other stressors when bees are exposed to pesticides 
via contaminated food or spray contact and (2) through reduced floral 
resource availability as a result of chemical weed control. While the 
adverse effects of pesticide-use intensity (based on organic versus 
conventional production system) cover both pathways, the negative 
effect of the HQ corroborates direct toxicity as a main route by which 
bees in crop fields are affected by pesticides (Fig. 2). To confirm that 
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Fig. 1 | Loss of SNH in the agricultural landscape and pesticide hazard 
additively reduced bee abundance and diversity in crop fields. A total of  
681 crop fields were sampled. Pesticide hazard was calculated as an HQ based on 
pesticide application protocols considering application rates and the toxicity 
of active ingredients to bees (LD50). Numbers represent standardized slope 
estimates of linear mixed effects models accounting for non-independence 
within dataset, solid lines indicate significant effects (P ≤ 0.05) and dashed lines 
trends (0.05 < P ≤ 0.1). Credit: Illustrations by Janine Schwarz; bee photos from 
Apidarium (https://apidarium.de).
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of the population forages in crops and is exposed to pesticides)26,32–34. 
Landscape configuration may further modulate such mitigation effects 
as better connected SNH patches and crop fields could facilitate the use 
of complementary floral resources by bees and improve recolonization 
of crop fields from SNH. However, we found that impacts of pesticide 
hazards and SNH availability on bee assemblages were additive, not 
interactive, indicating that variation in bee abundance and diversity 
related to pesticide use was not mitigated by increasing proportions 
of SNH in the vicinity of crops (Extended Data Fig. 4). This result was 
consistent across local field sizes and landscape configurations (edge 
density calculated on the basis of the global maps of land use/land cover 
(LULC) derived from ESA Sentinel-2 imagery (Methods)) (no significant 
three-way interactions).

Buffering effects of flower availability on the impact of pesticides 
on bees have been documented in individual studies9,13,35,36. However, 
our study suggests that this may not be a general pattern, although 
between-study heterogeneities in landscape-wide flower availability 
may have obscured buffering in certain agroecosystems. Furthermore, 
it is conceivable that the high density of floral resources in agricultural 
fields is generally so attractive to bees that they forage on these flowers 

until they reach harmful doses of pesticides, even if they occasionally 
also forage in SNH37. Additionally, foraging on wildflowers in SNH 
could be impaired by sublethal pesticide effects that reduce cognitive 
abilities and memory38 or the potential for buffering may be limited 
by spray drift contaminating wildflowers and nesting sites in SNH27,28. 
Irrespective of the exact mechanism, our study underpins the impor-
tance of conserving and restoring SNH for maintaining bee abundance 
and diversity in crop fields1,2,4, but at the same time cautions that such 
habitats may have limited potential to mitigate pesticide hazards 
for pollinators39.

Effects on beta diversity of bees
Anthropogenic stressors can also shape patterns of species composi-
tion across agroecosystems with different levels of intensification 
(reflected in beta diversity), with different consequences for the over-
all species pool in the region (that is, gamma diversity)12. Nestedness 
reflects a disassembly process characterized by pruning species from 
the species pool resulting in a subset of species, whereas turnover 
indicates a species loss accompanied by simultaneous dissimilarity 
in species composition resulting from the replacement of a subset of 
the species pool (Supplementary Fig. 1). While turnover among sites 
may mitigate patterns of bee decline in a region to some extent, nest-
edness inevitably reduces regional diversity17. A better mechanistic 
understanding of how pesticide use and SNH loss in agroecosystems 
shape the several components of community disassembly is, therefore, 
relevant to protecting bees.

Bee assemblages showed stronger nestedness than would be 
expected by chance along gradients of increasing pesticide hazard, 
but in contrast, effects were weak and not significant along gradients 
of decreasing SNH (nestedness measured as WNODF, a metric based on 
weighted overlap and decreasing fill considering species abundances; 
Methods) (Fig. 3a,b). When directly comparing pairs of nestedness 
responses obtained from the same studies, nestedness was greater 
along crop fields of increasing pesticide hazard compared with decreas-
ing SNH (Fig. 3c). However, when studying beta diversity based on 
species occurrence data, both nestedness and turnover characterized 
patterns of species variation among crop fields related to pesticide 
hazard and SNH availability (Extended Data Fig. 5). These findings are 
in line with those for alpha diversity and indicate that high pesticide 
hazards adversely affect different key properties of bee diversity within 
and across crop fields.

Discussion
Although habitat loss has received more attention than other factors as 
a cause of bee diversity decline in agroecosystems2,11,40,41, our findings 
suggest that, in addition to the clear effects of SNH, local pesticide 
hazard is associated with lower wild bee abundance and diversity in crop 
fields. Pesticide hazard also related more to the pruning of bees from 
assemblages found across different crop fields than the difference in 
SNH between landscapes. However, it is important to note that, while 
we quantified impacts of pesticide hazard and SNH loss on wild bee 
assemblages visiting crop fields in this synthesis, the loss of SNH may 
have even more pronounced impacts on bee abundance and diversity 
within those habitats themselves42.

This study demonstrates that the ability of SNH to provide a buffer 
against the negative impacts of pesticides on bee communities is not 
ubiquitous. We posit that the relative quality of SNH, such as floral and 
nesting resource availability, may be as—if not more—important than 
SNH quantity or configuration. Yet, while not all types of SNH necessar-
ily represent good foraging or nesting habitats for bees43,44, cropland 
can provide valuable resources for certain bee species, especially when 
combined with other resources that bees depend on in heterogeneous 
agricultural landscapes45,46. To further understand the roles of SNH 
and to develop landscape management strategies to mitigate adverse 
pesticide effects, future work should consider the quality of different 
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SNH habitat types with respect to their nest site availability and the 
distribution, seasonality and quality of floral resources—beyond SNH 
amount and configuration.

Our findings that pesticide hazard was associated with low wild bee 
abundance, species richness and functional and phylogenetic diversity 
suggest that current pesticide regulations are insufficient to prevent 
the loss of wild bee pollinators in crop fields and thus raise concerns 
about the sustainability of intensive crop production systems relying 
on high pesticide inputs. This is particularly true for crops that are 
dependent on pollinators, as taxonomically and functionally diverse 
pollinator communities are important for pollination services1,2,47,48. 
Furthermore, the loss of functional diversity may constrain community 
resistance and resilience to future environmental stress12. The situa-
tion may be even more problematic in regions such as South America 
or Asia, which have the highest pesticide use per agricultural land 
area globally, still including highly bee-hazardous pesticides such as 
neonicotinoids49,50, but data from such regions were lacking for our 
analysis. Therefore, to safeguard bees and other pollinators and to 
maintain pollination services to crops and wild plants, coordinated 
strategies are required to achieve both reduction of pesticide risks 
for bees and promotion of their habitats in agricultural landscapes.

Beyond strengthened pesticide regulation and technological 
advances, integrated pest and pollinator management51 may contribute 
to reducing pesticide hazards to bees and other pollinators. Moreover, 
holistic agroecological approaches, which integrate co-creation pro-
cesses among stakeholders to develop more sustainable, resilient and 
diversified production systems, provide promising transition paths 
towards a less pesticide-input dependent agriculture52. We therefore 
encourage the consistent implementation and reinforcement of global 
policy efforts such as the COP 15 goals on the Convention on Biological 
Diversity and the European Farm to Fork strategy53,54.

Methods
We followed the PRISMA extension for ecology and evolution55 to fulfil 
quality standards for data collection, analysis and reporting through-
out the research process. A summary of how these recommendations 
were adapted to our analytical approach of a quantitative synthesis 
can be found in Supplementary Table 3.

Data collection
A systematic Web of Science search (core collection database) using 
‘bee’ AND (‘wild bee abundance’ OR ‘diversity’ OR ‘species richness’) 
AND (‘organic’ OR ‘production system’ OR ‘pesticides’ OR ‘agrochemi-
cals’ OR ‘insecticides’ OR ‘fungicides’) was performed in June 2019 to 
find a representative sample of studies. The search yielded a total of 
170 publications, which were checked for eligibility on the basis of the 
following criteria: (1) the studies were entirely observational, with no 
manipulation of pesticide exposure; (2) the studies characterized wild 
bee communities in crop fields and/or their margins; (3) information 
on field-realistic pesticide use was collected for the focal crop field 
where bees were captured or for crop fields adjacent to field margins 
in which bees were collected; (4) the proportion of SNH in agricultural 
landscapes surrounding the local field was measured; (5) the studies 
used a paired design with high and low pesticide use in landscapes of 
similar proportion of SNH or sites were selected along independent 
gradients of pesticide use and proportion of SNH; and (6) studies 
identified bees to species (or morphospecies) level and had a sufficient 
sampling effort (more than ten bees on average per sampling site) 
as required for the quantification of species richness and functional 
diversity. Corresponding authors of suitable studies were asked to 
share their data and, to minimize potential publication bias and to 
maximize the number of relevant datasets, we asked them for further 
potentially suitable unpublished datasets collected by themselves or 
researchers in their network (Supplementary Fig. 2).

This search resulted in 26 studies and 36 datasets, including data 
from 681 sites, mostly from Europe and North America (Supplementary  
Fig. 2, Supplementary Table 1 and Extended Data Fig. 1), which were col-
lected between 2003 and 2018. We defined a dataset as data collected 
by the same group of researchers for a particular crop species across 
a replicated set of different study sites in the same time period11,56. If 
data were collected across several years, data collected in different 
years were considered as separate datasets as long as different sites 
were studied across years (Supplementary Table 1). Of these 36 data-
sets, 28 (from 19 studies, 466 sites) contained detailed information 
on pesticide application protocols during the years of bee collection 
and 27 datasets (from 20 studies, 514 sites) contained information on 
low versus high pesticide-use intensity based on differences in the 
production systems (conventional or organic, additionally supported 
by information on typical pesticide management, for example, through 
farmer interviews) (Supplementary Table 2). In all subsequent analyses, 
these two types of datasets were analysed separately (see section on 
‘Statistical analysis’ below).

Bee assemblage data
Bee assemblages were sampled in focal crop fields and/or along field 
margins with different sampling methods, mainly including timed 
observations and pan trapping (Supplementary Table 2). On the basis 
of the raw data, we calculated a range of wild bee assemblage metrics 
for each site, including abundance and measures of taxonomic, func-
tional and phylogenetic diversity. Apis mellifera was excluded from 
all metrics because its abundance strongly depends on management, 
although it can also be affected by stressors. While species richness and 
functional and phylogenetic diversity are expected to decline along 
with a general loss of bees through random attrition17,57, functional 
evenness, functional specialization and functional and phylogenetic 
MPD should only change when community composition is altered 
as a result of environmental filtering2,10,57–60. Functional evenness of 
an assemblage expresses the weighted regularity of species in the 
functional space (along the minimum spanning tree) while functional 
specialization represents the weighted mean distance of the species 
in an assemblage to the centroid of the global species pool (that is, 
centre of the functional space). Functional and phylogenetic MPD 
are the mean pairwise distance between all pairs of species found in 
an assemblage in the functional space or along the phylogenetic tree, 
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increasing HQ were significantly larger than zero (two-sided one-sample t-test: 
mean WNODF = 1.08, 95% CI = 0.31–1.84; t = 2.96, n = 19, P = 0.008). b, WNODF 
values along decreasing SNH proportions were not significantly different from 
zero (two-sided one-sample t-test: mean WNODF = 0.61, 95% CI = −0.06–1.27; 
t = 1.86, n = 26; P = 0.074). c, Pesticide hazard generally contributed more to 
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calculated across gradients of several locations. Therefore, each data point 
represents a nestedness measure from a single study. Boxplots show the median 
(line), interquartile range (box; 25th–75th percentiles) and range (whiskers).
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respectively58,61,62. Total functional and phylogenetic diversity per 
site were measured as the total branch length of the functional and 
phylogenetic dendrogram63,64.

Functional and phylogenetic diversity were calculated with 
the alpha function from the BAT package65 in R v.4.3.266. Abundance 
weighted functional MPD, evenness and specialization were calcu-
lated with the mFD package58, while phylogenetic MPD was obtained 
from the Picante package67. We used abundance weighted measures 
rather than species occurrence data as the former are more sensitive 
to changes in community composition and environmental filtering. 
However, analyses using metrics from species occurrence data yielded 
qualitatively similar results. Since functional traits can be correlated, 
we calculated functional community descriptors using independent 
principal components obtained from a principal coordinates analysis 
(PCoA) using the Gower multitrait dissimilarity matrix obtained with 
the gawdis package68. Gower multitrait dissimilarity matrices were 
calculated separately for each dataset to optimize the quality of the 
PCoA-based functional spaces for each set of comparable bee com-
munities58. For phylogenetic diversity, we used Grafen branch lengths 
based on taxonomic relationships of species10.

For estimates of functional diversity, we included traits of 910 wild 
bee species and morphospecies (19,593 specimens) from six families 
(Andrenidae, Apidae, Colletidae, Halictidae, Megachilidae and Melitti-
dae). We used traits that have been considered to modulate pesticide 
exposure and susceptibility to habitat loss2,18,20,69–75; that is, body size, 
lecty, sociality, nest location, nesting strategy and kleptoparasitism 
(Extended Data Table 1).

Trait data were partly provided in the primary datasets, but were 
supplemented with literature and existing databases such as the Palae-
arctic Osmiine Bees database76. For body size and lecty we obtained trait 
information for 76% and 72% of species, respectively (data mostly miss-
ing for morphospecies), while missing values for the other traits were 
below 5%. As analysis of functional diversity can be sensitive to missing 
values (we did not use imputation of missing values)58, we repeated 
all statistical analyses on functional diversity excluding body size and 
lecty and obtained highly similar results for all metrics. Taxonomy of 
all species was checked and standardized where necessary using the 
Integrated Taxonomy Information System (https://www.itis.gov/).

For studies in which the functional and/or taxonomic composi-
tion could have been biased by the sampling method (for example, 
sampling by trap nests excluding ground-nesting bees), biased traits 
were excluded from the calculation of functional diversity and the 
entire study was excluded from the analysis of phylogenetic diversity 
and MPD. For this reason, sample sizes varied slightly between analyses.

Proportion of SNH in landscapes
The proportion of SNH in agricultural landscapes was provided by hold-
ers of primary datasets (Supplementary Fig. 3), which has the advantage 
that the classification of bee-relevant SNH was based on local expert 
knowledge. SNH categories included forests, hedgerows, extensively 
managed grasslands and floral enhancements under agri-environment 
schemes (Supplementary Table 2). Studies measured the proportion 
of SNH in a radius of either 0.5 km or 1 km (Supplementary Table 2), 
matching the scale of landscape structure considered most appropri-
ate by dataset holders on the basis of typical foraging ranges of bees 
in the study systems77.

To examine whether landscape configuration modulates effects 
of the proportion of SNH on bee community properties in crop fields, 
we calculated edge density on the basis of the global maps of LULC 
from 2020 derived from ESA Sentinel-2 imagery at 10-m resolution78. 
Forest, rangeland (including natural meadows, pastures, moderate 
cover of bushes and shrubs) and arable land were considered the most 
relevant land-use classes for the question addressed in this study (how 
configuration of SNH may shape its capacities to buffer effects of 
pesticide hazard on bee communities) and were therefore included 

in calculations of edge densities, while the remaining classes (water, 
bare ground and built area) were combined into a single class. Calcula-
tions were performed within a 1-km radius (which was the radius most 
frequently used for the quantification of SNH) with the lsm_l_ed func-
tion from the landscapemetrics package in R (ref. 79). Additionally, 
these global land-use data were used to calculate SNH as proportion 
of forest and/or rangeland, confirming that direct measures of SNH 
from primary studies consistently correlated better with bee com-
munity descriptors than those obtained from the Sentinel-2 LULC 
(Supplementary Fig. 3d). We therefore used the data from primary 
studies for all subsequent analyses. SNH values provided by studies 
and those derived from Sentinel-2 LULC were fairly well correlated, 
with correlation coefficients (r) ranging from 0.12 to 1.0 and a median 
of 0.91. The correlation did not depend on the year in which the study 
was conducted, suggesting that Sentinel-2 LULC predictions vary 
more with regional landscape composition and structure than with 
past land-use changes.

Pesticide hazard
We used two measures of field-realistic pesticide hazard for bees, 
depending on the data provided by each study. For 27 datasets, 
pesticide-use intensity was classified as either high or low depending 
on the local production system (conventional or organic). For this clas-
sification we only considered studies that had collected information 
on typical pesticide application protocols associated with the different 
production systems (that is, farmer interviews at a subset of sites), con-
firming a higher toxicity to bees in conventional compared with organic 
production systems. For 28 datasets, pesticide hazard was quantified 
as HQ based on farmers’ pesticide application records and the toxicity 
of pesticides to bees. To calculate HQ, we used spray records of insecti-
cides, fungicides and herbicides as provided in primary datasets13 and, 
where available, seed treatments with neonicotinoids7:

HQ =
N
∑
n=1
log

application rate (active ingredient per ha)
LD50

HQ sums up all N applications of a site, considering the application 
rate of the active ingredient and the toxicity of systemic pesticides (oral 
lethal dose 50 (LD50) from honey bees)80,81. To evaluate the suitability 
of the HQ, corresponding HQs were calculated for oral, contact or 
both exposure pathways. The HQ, as defined above, was selected for 
further analysis as it showed the best prediction (based on correlation 
coefficient r) of bee abundance, species richness and functional and 
phylogenetic diversity (Supplementary Fig. 3c). Three datasets (but 
no study) only contained two distinct values of HQ across all sites (two 
datasets only included herbicide applications and one a single fungi-
cide application at two sites). These datasets were removed from the 
data, since several analyses require a gradient of HQ.

Log transformation was included in the calculation of HQ to 
account for the nonlinear relationships of dose–response curves for 
individual applications80,82. Transformed data showed better pre-
dictions for bee community metrics obtained from the quantitative 
synthesis as well as for pesticide risk measured in ref. 9.

In total, we collected information on 6,667 pesticide applica-
tions, including 277 active ingredients, considering applications from 
the beginning of the season until the last date of bee sampling. The 
information for the concentration of active ingredients in the applied 
products was gathered from the national product labels (either made 
available by national web pages of production companies or by national 
pesticide databases such as the US Environmental Protection Agency). 
Application rates were available from primary studies based on farmer 
interviews and, where missing (that is, when farmers reported only the 
product applied without providing the application rate), were assumed 
to be those recommended for respective crop and development stage 
by the national product label. Oral LD50 from honey bees were obtained 
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from the pesticide properties database and bio pesticides database83. 
For active ingredients with unbounded estimates (‘>’ that is, based 
on limit tests; mostly fungicides and herbicides that contribute little 
to pesticide hazard; 64% of active ingredients) minimal LD50 were 
used. For some active ingredients where no oral LD50 value could be 
obtained (6% of active ingredients), contact LD50 was used as a proxy. 
For single applications that only included information about pesticide 
type (for example, herbicides, 3% of applications), HQ was imputed 
as the mean HQs of the same pesticide type and production system 
(conventional or organic) within the same study or, if entirely missing 
from the study, as the mean of the same pesticide type and production 
system across studies.

A limitation of the HQ used here is that only pesticide use on the 
focal field was considered, while bees that forage in several crop fields 
may also be exposed to other agrochemicals35. For this reason, residue 
data obtained from bee-collected pollen have increasingly been used 
to quantify pesticide risk (PR) for specific bee species9,29, whereas this 
is not feasible when investigating bee communities. However, to test 
how well HQ predicts PR, we used the recently published dataset from 
ref. 9. Pesticide application and residue data from bumble bee pollen 
stores were available for 86 sites across seven countries in Europe. At 
each site three bumble bee colonies were placed either at a canola field 
or an apple orchard during the flowering period. All pesticide applica-
tions to focal fields during this period were recorded, while pesticide 
residues were quantified at the end of crop bloom. HQ was calculated 
with the formula provided above, while PR was quantified as described 
in ref. 9. These data were then analysed with a linear mixed effects model 
with PR as response and the HQ as explanatory variable. Country was 
included as random intercept and crop as covariate. Results showed 
that the HQ, as defined above, predicted pesticide risk fairly well, 
with R2 = 0.45 (P < 0.001) (Supplementary Fig. 3e), demonstrating the 
robustness of our approach. Moreover, the effects of pesticide hazard 
(pesticide-use intensity or HQ) on wild bee community descriptors 
remained consistent regardless of focal field size, further supporting 
the robustness of our findings across the different scales of pesticide 
hazard quantification (Supplementary Table 5).

Because pesticide hazard in focal fields and bee community 
descriptors were mostly quantified within a single year (Supplementary  
Table 1), it is possible that our approach primarily captures lethal and 
sublethal effects on adult foraging bees, as well as potential impacts on 
worker development in social species. Fully assessing population-level 
effects, including next-generation impacts, would require long-term 
studies. However, in the studies that assessed pesticide hazard over 
several years, pesticide HQ values were, on average, moderately  
correlated across subsequent years (r = 0.53), indicating that HQ 
measurements are generally representative of past management 
practices as well.

Statistical analysis of effects of stressors on bee  
assemblage descriptors
Linear mixed effects models were used to test for the effects of pes-
ticide hazard and the proportion of SNH in surrounding landscapes 
on descriptors of bee assemblages (abundance, species richness, 
functional diversity, functional MPD, functional evenness, functional 
specialization, phylogenetic diversity and phylogenetic MPD) in crop 
fields. Random intercept and slope models were fit by allowing for dif-
ferent relationships of predictors and response variables across data-
sets, as recommended84, to better account for heterogeneity in effects 
across datasets and to reduce the risk for type 1 errors compared with 
random intercept models. All continuous explanatory and response 
variables were scaled (z-transformation) within datasets before sta-
tistical analysis to account for differences in bee sampling protocols, 
pesticide recording (for example, time window) and classifications of 
SNH necessary for comparability1,11,56. To test for potential buffering of 
pesticide effects through a high proportion of SNH in the landscape, 

the original models also included the interaction term between  
these two variables.

In some studies, sampling was repeated across several years at the 
same site. To avoid pseudoreplication due to repeated measures of bees 
during several years in these studies compared with single-year studies, 
mean values across years were used for bee community descriptors 
and HQs. Furthermore, to avoid any bias from unbalanced designs, 
measures from different sampling methods (for example, timed obser-
vation and pan trapping) were averaged per site. To control for small 
differences in sampling effort across sites within some studies, we 
calculated the relative bee abundance per sample. To test for potential 
biases by sampling incompleteness and sampling effort on species 
richness, additional models were fit to species richness obtained by 
individual-based rarefaction and extrapolation using the iNEXT func-
tion in R85 returning similar results as for observed species richness 
(Supplementary Fig. 4).

Additional models were run to ensure that results were robust and 
consistent across different regional contexts and scales (that is, major 
global growing regions, edge density, field size and bee attractiveness 
of crop) as well as methodological aspects of the individual studies (that 
is, bee sampling method, bee sampling period, landscape radius and 
classification of SNH) and data inclusion criteria (threshold of sampling 
effort for inclusion of studies). However, none of these tests revealed 
evidence of bias or modulatory effects (Supplementary Tables 4–9); 
therefore, the final models included only pesticide hazard and SNH 
proportion in landscapes86.

As pesticide hazard was measured either as HQ or as pesticide-use 
intensity, two models were fit for each wild bee community descriptor. 
These two models are not fully independent, however, as for 45% of the 
total 681 sites both measures of pesticide hazard were available. Addi-
tionally, since the two models returned similar estimates for the effect 
of SNH (Supplementary Table 10), we report SNH effect estimates from 
the model including pesticide-use intensity due to its larger sample size 
(514 sites compared with 466 in the model with HQ).

P values were obtained by likelihood ratio tests and model assump-
tions were checked by graphical validation86. Where necessary, trans-
formation of response variables was done before scaling (square root 
transformation was used for abundance and species richness). Models 
showed no spatial autocorrelation, which was tested with the Test-
SpatialAutocorrelation function from the DHARMa package. Also, 
both HQ and pesticide-use intensity showed low correlation with SNH  
(HQ, r = −0.02; pesticide-use intensity, r = −0.11) and all models showed 
low multicollinearity based on variance inflation factor (VIF) values.  
For linear mixed effects models, we used the glmmTMB package. To test 
for potential publication bias, we ran additional meta-analysis models 
on the different metrics of alpha diversity using the metafor package87 
and created funnel plots, which showed no evidence of publication bias. 
All statistical analyses were performed in R v.4.3.266.

Beta diversity—nestedness and turnover
We quantified two different components of beta diversity—nestedness 
and turnover. Nestedness reflects a disassembly process character-
ized by pruning species from the species pool resulting in a subset of 
species, whereas turnover indicates a species loss accompanied by 
simultaneous dissimilarity in species composition resulting from the 
replacement of a subset of the species pool (Supplementary Fig. 1).

As a measure of nestedness, we used abundance weighted 
nestedness of bee assemblages based on overlap and decreasing fill 
(WNODF)2,88. WNODF was calculated separately for each dataset across 
comparable assemblages recorded in the same crop and during the 
same year(s) (Supplementary Table 1). Abundance data from different 
years were averaged and site-by-species assemblage matrices were 
ordered by increasing HQ or decreasing SNH to calculate WNODF 
with the nestednodf function from the vegan package89. For each 
assemblage matrix, we additionally created 999 null communities 
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by randomly permuting the site-by-species matrix with the swap 
algorithm from the bipartite package90,91, which keeps the matrix fill 
and marginal totals constant. WNODF values from each dataset were 
z-transformed with means and standard deviations obtained from 
null models88,92 and then tested against a null expectation of µ = 0 in a 
one-sample t-test. To control for pseudoreplication of datasets from 
the same study, different WNODF z-scores obtained from the same 
study were averaged (actual communities and null communities) 
before testing. Each study, therefore, represented a data point in the 
t-test, resulting in sample sizes of 19 and 26 for the analysis of pesticide 
hazard and SNH proportion, respectively. To test if one stressor con-
tributed more to nestedness than the other, we used a two-sided paired 
Wilcoxon test, comparing WNODF z-scores obtained from the same 
study along gradients of both increasing pesticide hazard and SNH loss.

To understand patterns of nestedness and turnover of species 
occurrence in bee assemblages along gradients of increasing HQ and 
decreasing proportion of SNH, we measured turnover and nestedness 
across sites of increasing anthropogenic stressors with the directional.
response function from the adespatial package, developed to investi-
gate directional community changes along environmental gradients93. 
The site (rows) by species (columns) matrices containing species occur-
rence data were ordered either by increasing HQ or by decreasing 
proportions of SNH in agricultural landscapes. As sites of equal or 
highly similar stressor levels were common (for example, several sites 
with a pesticide hazard of zero), we did not compare subsequent sites 
along the gradients, but rather pairs of sites shifted by three positions 
(for example, site 1 with site 4 and so on) were compared. The Jaccard 
denominator was used to obtain comparable measures, independent 
of species number. As this analysis requires species occurrence data 
(which are less sensitive to annual conditions than abundance data), 
we pooled data from the same study collected across different years 
using the same standardized sampling protocol. However, bee com-
munities sampled in different crops or with varying sampling efforts 
across years were analysed separately. This approach was taken to 
find a good compromise between having a representative gradient 
of HQ and SNH across a sufficient number of sites, while also ensur-
ing standardized sampling and comparability of communities. This 
resulted in 30 matrices with gradients of SNH loss and 23 with gradients 
of pesticide hazard.

To test if losing turnover and nestedness increased with pesticide 
hazard or SNH loss, values from each study were compared with gain-
ing turnover and nestedness using a random effect meta-analysis 
model incorporated in the metafor package87. Standardized mean 
differences were compared using a t-test. Model assumptions were 
validated graphically for all models and to ensure robustness against 
outliers, Cook’s distance was checked but only showed values below 
0.5. Mixed effects models, including bee attractiveness of the focal 
crop as moderator, were simplified on the basis of Omnibus tests, 
resulting in random-effects models only94. Total variability could be 
fully attributed to sampling variability (H2 = 1), while heterogeneity 
among true effects was estimated to be zero (I2 = 0%). Accordingly, the 
test for heterogeneity was non-significant for all models (all P > 0.90).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated during the study are available via FigShare at 
https://doi.org/10.6084/m9.figshare.30281617 (ref. 95). Source data 
are provided with this paper.
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Extended Data Fig. 1 | Worldwide distribution of study sites (N = 681 sites) and crop type with a closer view of Europe (ellipse). Circle sizes are proportional to the 
number of sites per region.
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Extended Data Fig. 2 | Effects of pesticide hazard on bee communities. 
Estimates ± 95% CI derived from linear mixed effects models accounting for 
non-independence within dataset (N = 681 sites) on the effect of the pesticide 
hazard quotient (HQ, calculated from pesticide application protocols 
considering application rates and the toxicity of active ingredients to bees) 

(left) and high pesticide-use intensity (based on production system considering 
typical application protocols) (right) on functional and phylogenetic diversity of 
bees in crop fields (from top down). Colors indicate datasets and corresponding 
random slopes.
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Extended Data Fig. 3 | Effects of pesticide hazard quotient (HQ) on bee 
communities in crop fields within conventional production system.  
Estimates ± 95% CI derived from linear mixed effects models accounting for  
non-independence within dataset (N = 322 sites) on the effect of the pesticide 

hazard quotient (HQ, calculated from pesticide application protocols 
considering application rates and the toxicity of active ingredients to bees) on 
abundance, species richness, and functional and phylogenetic diversity of bees 
in crop fields.
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Extended Data Fig. 4 | Interaction terms of statistical models used to test for 
buffering of pesticide hazard by semi-natural habitat (SNH) proportion in 
landscapes and for increased effects of pesticide hazard in bee-attractive 
crops. a–d, Estimates ± 95% CI derived from linear mixed effects models 
accounting for non-independence within dataset (N = 681 sites) on the studied 
descriptors of bee communities in crop fields (MPD = mean pairwise distance) by 

pesticide hazard quotient (HQ, calculated from pesticide application protocols 
considering application rates and the toxicity of active ingredients to bees) × 
SNH (a), high pesticide use intensity intensity (based on production system 
considering typical application protocols) × SNH (b), HQ × bee attractiveness of 
focal crop (c), high pesticide use intensity × bee attractiveness of focal crop (d).
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Extended Data Fig. 5 | Nestedness and turnover of bee communities along 
gradients of stressor intensity. (a) Nestedness along increasing pesticide hazard 
(hazard quotient HQ) (standardized mean differences = -0.17, 95% CI = -0.32 to 
-0.03, N = 23, t = -2.51, p = 0.020). (b) Turnover along increasing pesticide hazard 
(HQ) (standardized mean differences = -0.19, 95% CI = -0.33 to -0.05, N = 23, 
t = -2.77, p = 0.011). (c) Nestedness along decreasing proportions of semi-natural 
habitat (SNH) in surrounding landscapes (standardized mean differences = -0.16, 
95% CI = -0.27 to -0.04, N = 30, t = -2.75, p = 0.010). (d) Turnover along 

decreasing proportions of SNH in surrounding landscapes (standardized mean 
differences = -0.15, 95% CI = -0.26 to -0.03, N = 30, t = -2.62, p = 0.014). Shown are 
standardised mean differences between the losing and gaining component of 
nestedness or turnover ± 95% CI per study from a two-sided meta-analysis model. 
A negative estimate indicates a loss of species along gradients of increasing 
intensity of stressors and is obtained when the losing component is larger than 
the gaining component. Point sizes reflect sample sizes per study and their 
association with the weighting in the model.
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Extended Data Table 1 | Traits expected to affect bees’ susceptibility to pesticide hazard (PH) and loss of (semi-natural) 
habitat (HL)
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