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Community conservatism is widespread 
across microbial phyla and environments
 

Lukas Malfertheiner    , Janko Tackmann    , João Frederico Matias Rodrigues     &  
Christian von Mering     

Phylogenetic signal describes the tendency of related organisms to 
resemble each other in morphology and function. Related organisms tend 
to also live in similar ecological niches, which is termed niche conservatism. 
The concepts of both phylogenetic signal and niche conservatism are widely 
used to understand crucial aspects of evolution and speciation, and they are 
well established in animals and plants. However, although assumed to be 
present, the extension of these concepts to microorganisms is challenging 
to assess. Here we hypothesize that two closely related microbial species 
should be found in samples with similar community compositions, 
reflecting their ecological similarity. We propose ‘community conservatism’ 
to refer to this phenomenon and leverage a database with millions of 
samples and hundreds of thousands of pairs of microorganisms to assess 
their relatedness and the similarity of the communities they occupy. Our 
findings reveal that community conservatism can be observed globally in 
all environments and phyla tested, over nearly all taxonomic ranks, but to 
varying extents. Analysing community conservatism shows promise to 
advance our understanding of evolution, speciation and the mechanisms 
governing community assembly in microorganisms. Furthermore, we 
propose that it can be used to reintegrate ecological parameters into 
operational taxonomic unit delimitation.

Organisms tend to retain their ancestral ecological niches over time1,2. 
This so-called niche conservatism is often discussed in the context of 
a broader concept, phylogenetic signal, in which closely related spe-
cies tend to resemble each other morphologically and functionally3. 
Numerous studies have shown niche conservatism and phylogenetic 
signal in animals and plants4–6. Therein, the analysis and distribution of 
various traits, such as habitat preferences, morphology (for example, 
leaf shape; Fig. 1a) and physiology, shed light on crucial aspects of evo-
lution, including speciation. In addition, these studies help to predict 
how eukaryotes may adapt to rising challenges such as the spread of 
invasive species or climate change7,8.

Apart from animals and plants, microorganisms also fulfil crucial 
roles in almost all areas of life, from driving biogeochemical cycles to 
influencing human health and diseases9–11. Despite their importance, 
much less is known about the ecology and long-term evolution of 

microorganisms: even the concept of species in microorganisms itself 
is a long-standing matter of debate12–14. In addition, their phenotypes 
and habitats are more difficult to assess, compared with animals and 
plants, especially considering that many cannot yet be cultivated under 
controlled conditions15. Regardless of these difficulties, the assumption 
that phylogenetic signal and niche conservatism are present globally in 
microorganisms is used in many popular algorithms, such as UniFrac 
and Phylogenetic Interaction-Adjusted index (PINA)16,17. Characterizing 
microbial niche conservatism and phylogenetic signal on a global scale 
is thus crucial, yet challenging owing to the lack of information about 
the characteristics of uncultured microorganisms10,18. While related 
microorganisms have been predicted to more frequently interact 
with one another (phylogenetic assortativity)19–21 and at least a broad 
social community preference is detectable in microorganisms22, only 
limited direct evidence exists for niche conservatism and phylogenetic 
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Results and discussion
Community structure as a proxy for niches and  
functional potential
We investigated global microbiomes using the MicrobeAtlas35 project 
(https://www.microbeatlas.org), an online database from which we 
used a filtered set of 1,153,349 environmental microbiome sequencing 
samples. MicrobeAtlas clusters microbial taxa into hierarchical OTUs 
using different similarity thresholds (from 90% to 99% full-length 16S 
rRNA sequence similarity, whereas 97–99% traditionally correspond 
to ‘species-level’ taxonomic groups36). By using such standardized 
occurrence data on a global scale, classical ecological questions can be 
investigated, such as the function of the ocean microbiome or which 
microorganisms are crucial for dissolving organic carbon31,37,38.

We worked with 182,876 OTUs defined at 99% sequence similarity 
(16S rRNA similarity) and initially assessed in which samples these OTUs 
occur globally (Fig. 2a). Next, we compared OTUs in a pairwise manner 
and calculated two main parameters for each pair: (1) the relatedness 
of the involved OTUs and (2) the similarity of the communities in which 
they occur (Fig. 2b). Relatedness is estimated from a large phylogenetic 
tree, from which we randomly sampled pairs of OTUs to obtain a uni-
form distribution of phylogenetic distances (Supplementary Fig. 1). 
We then assessed the beta diversity of all communities in which we 
detected them. For each pair, all samples containing the first OTU are 
compared with all samples containing the second OTU, measured 
as average pairwise Bray–Curtis similarity (BCS: 1 − Bray–Curtis dis-
similarity). Previous work showed that BCS can adequately distinguish 
ecological niches22 and it can be efficiently computed at scale using 
optimized software39. Lastly, pairwise plotting of relatedness and 
average community similarity values of each OTU pair—combined with 
curve fitting—is used to assess the community conservatism signal 
(Fig. 2c). Our pairwise approach more explicitly assesses the related-
ness of microorganisms independent of taxonomic binning and allows 

signal23–26, which is generally restricted to selected environments or 
taxa. For instance, studies indicate that some genome-derived traits 
can be conserved over long time periods in microorganisms (Fig. 1b)27,28.

Here we look for an alternative to trait-based assessments of ecol-
ogy, as environmental parameters are often not known and morpho-
logical features are scarce. We focus on the high-quality data that we 
have: millions of DNA-sequenced microbial community samples from 
all over the globe, and phylogenetic marker genes such as 16S rRNA that 
enable us to estimate in which communities a given microbial species 
occurs. Community structure can accurately distinguish different eco-
logical niches29–33 and has successfully been used to determine niche 
ranges in generalist and specialist animals34 and microorganisms22.

Following this line of work, we here treat community composition 
as a proxy for the realized niche of a microorganism—the latter being 
determined through multiple, often unknown effects, ranging from the 
abiotic environment to microbial interactions. Thus, we hypothesized 
that by using a community-centric approach, we can approximate 
phylogenetic signal and niche conservatism in microorganisms by 
analysing the tendency of closely related organisms to occur in similar 
communities (Fig. 1c).

We show with an extensive analysis that more closely related taxa 
indeed occur in more similar communities. Remarkably, this trend is 
consistently detectable in all investigated phyla and environments. 
We suggest the term ‘community conservatism’ for this phenomenon 
and show that remnants of microbial community preferences can be 
traced back billions of years. Furthermore, we show varying trends 
of community conservatism in different phyla, infer generalism- and 
specialism-specific signals, and provide hundreds of operational taxo-
nomic unit (OTU) pairs with potential interest for diverse research 
areas. Lastly, we outline the potential use of community conservatism 
as a second parameter—next to sequence similarity—in OTU clustering, 
to reintegrate ecological information in the future.

?

a b cPlants and animals Microorganisms Communities

?

?

?

While there are indications of traits being
correlated with relatedness, a comprehensive
global picture is still missing. Not all
microorganisms have an associated genome,
and not all traits can be deduced.

Instead, we investigate the tendency of closely
related microorganisms to be found in similar
communities: community conservatism. We
use community structure as a proxy for the
functional potential and the ecological niche of
microorganisms.

Phylogenetic signal, the trend of closely
related organisms to share traits, is well
established in animals and plants. Here it is
shown in oak trees using leaf shape as a
morphological feature.
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Fig. 1 | Community composition to measure evolutionary patterns in 
microorganisms. a, The leaf shape of oak trees is a morphological feature that 
shows a strong phylogenetic signal. Closely related species have similar leaf 
shapes, whereas more distantly related species have larger differences. b, In 
bacteria, there are also indications that traits are phylogenetically conserved, 
as in ref. 28. However, we often do not know enough about the morphology 

or physiology of these organisms, as most of them remain uncultured. c, We 
propose community conservatism as an alternative approach: instead of 
comparing bacterial species directly in terms of physiology or morphology, we 
assume that if they are related (and thus potentially have a similar function and 
occupy a similar ecological niche), then their community composition will also 
be similar. Images in a adapted with permission from ref. 6, PNAS.
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us—separately for each lineage—to quantify how community structure 
changes over evolutionary timescales, extending earlier work22.

To illustrate the general workflow, we compared four example 
OTUs with one another, at varying levels of relatedness: Streptococcus 
sanguinis subclade 1, S. sanguinis subclade 2, Companilactobacillus 
crustorus and Sar324 (Fig. 2). The two S. sanguinis clades, belonging to 
the Bacillota, are closely related commensals found in the oral cavity of 
humans40 with similar communities (average BCS of 0.15). C. crustorus is 
a more distantly related Bacillota OTU found in diverse environments, 
including the human microbiome41,42. Thus, despite sharing some com-
munity members (BCS 0.03), C. crustorus occupies different niches and 
appears to be more of a generalist. Lastly, SAR324 is a predominately 
marine bacterium that is found in different layers of the ocean43. It 
is only distantly related to the other OTUs, and as expected also its 
inhabited communities are very dissimilar (BCS 0.005). Hence, our 
hypothesis that more closely related OTU pairs occur in similar com-
munities is supported in this small example.

Community conservatism is present on a global scale
To extend this workflow to a global scale, we chose 25,000 strictly 
quality-filtered, taxonomically annotated 99% OTU pairs. We first 
assessed their sample-by-sample co-occurrence, showing that 

related OTUs tend to occur more frequently in the same samples 
(Extended Data Fig. 1). While probably biologically relevant, this signal 
would compound our observations by inflating beta diversity values 
when comparing identical samples. To mitigate this effect, we chose 
a conservative approach and compared only samples that were not 
identical and did not belong to the same research project (that is, do 
not share the same ‘project ID’ at the Sequence Read Archive).

We aimed to select the OTU threshold that best reflects the ecologi-
cal niche for the computation of beta diversities. While we observed 
the same community conservatism trends with 90%, 97% or 99% OTU 
definitions (Extended Data Fig. 2), it has been hypothesized that 
microbial ecological niches are most clearly reflected at the species44,45 
or genus level9,46. In our dataset, 90% sequence similarity between 
OTUs roughly corresponded to a genus- or family-level divergence47 
(Supplementary Fig. 2). More sequence reads can be unambiguously 
assigned when using 90% OTUs; thus, we decided to use this level for 
all community similarity calculations (y axis in Fig. 3a) going forwards.

Our results show the presence of community conservatism in 
microorganisms (Fig. 3a): OTU pairs that are more closely related 
(x axis, towards the left) are more similar in their communities (y 
axis, towards the top). To visualize this observation, we fitted a 
locally weighted scatter plot smoothing (lowess; Fig. 3a) as well as 
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Fig. 2 | Analysis workflow. a, Illustration of the workflow using four selected 
example OTUs: two closely related S. sanguinis subclades, C. crustorus still 
belonging to the same phylum (Bacillota) but a different family and an only 
distantly related SAR324 strain. Within the MicrobeAtlas database, all microbial 
sequencing samples (and their communities, respectively) matching strict 
quality filters are retained for testing, resulting in a global picture of the 
communities in which each OTU occurs (1,153,349 samples, 182,876 99% OTUs). 
b, We compared OTU pairs using two main parameters: their relatedness, 

estimated by the tree branch length from a 16S rRNA tree, and the average of all 
beta diversity calculations (Bray-Curtis similarity, BCS) from the communities 
in which they are found. c, After selecting test pairs following a uniform 
phylogenetic distribution, we visualize three selected pairs in a scatter plot. 
Each dot is one OTU–OTU pair, with their relatedness shown on the x axis and the 
average similarity of their communities on the y axis. Pairs that are closely related 
and show a large community conservatism are expected on the top left, and 
distantly related pairs with different communities, on the bottom right.
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an exponential decay function (Extended Data Fig. 3) to the data. 
We found that both fitted curves strongly deviate from a null model 
based on expected average community similarities between ran-
dom samples (exponential decay coefficient: −4.23). Trends remain 
similar when using medians or other percentiles to aggregate com-
munity similarities (Extended Data Fig. 4), or when log transforming 
the data before calculating beta diversity to exclude the possibility 

that the observed trend is mostly driven by highly abundant OTUs 
(Extended Data Fig. 5).

To obtain a statistical estimation of community conservatism, 
OTU pairs were binned according to their latest shared taxonomy. 
Significant deviation above the baseline was observed for each taxo-
nomic level to the next, all the way up to the phylum level (PMann–Whitney U =  
2.7 × 10−23; Fig. 3b). This indicates that community preference can 
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Fig. 3 | Community conservatism is present globally in microorganisms.  
a, Community similarity tends to fall as phylogenetic distance increases, 
visualized here through 25,000 OTU pairs with available taxonomic annotation 
to the species level; locally weighted scatter plot smoothing (lowess) fit and 
random expectation are shown as blue and red dotted lines, respectively. Each 
dot corresponds to one OTU pair coloured according to their most specific 
shared taxonomic rank, with their relatedness (tree branch length) shown on 
the x axis and the average similarity of their communities (Bray-Curtis similarity, 
BCS) on the y axis. b, All OTU pairs are binned based on the most specific 

taxonomic rank they share. Each dot corresponds to a pair, and the number of 
pairs per taxonomic bin corresponds to n. There are significant decreases in the 
community similarity between all taxonomic levels, down to the phylum level 
(***two-sided PMann–Whitney U < 1.0 × 10−8). Exact values are presented in Source 
Data. Each violin outlines the kernel density distribution of the data. Grey boxes 
indicate the interquartile range (IQR) and the median (horizontal line), while 
whiskers extend to 1.5 × IQR. c, Density plot showing the phylogenetic distance 
distribution of pairs belonging to the same taxonomic groups.
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be traced back to—and has potentially been transmitted across—bil-
lions of years48,49. The largest differences in the average BCS exist 
between the species and genus levels (PMann–Whitney U = 3.4 × 10−37), sug-
gesting that species-level adaptations are particularly important for 
community preferences.

To test whether the assigned taxonomy is indeed reflected by 
phylogenetic distance, we checked how well the taxonomic related-
ness of OTUs, based on available National Center for Biotechnology 
Information (NCBI) annotations, overlapped with the tree branch 
lengths that we use to estimate relatedness. Overall, taxonomic 
ranks follow phylogenetic distances as expected (Fig. 3c). However, 
it is also apparent that in some cases taxonomic classifications and 
16S rRNA sequence similarities do not fully agree. This is consistent 
with known deviations between trait-based taxonomies and purely 
sequence-based clustering50.

We showed that OTU pairs belonging to the same species are 
often found in very similar communities, and hence, competition due 
to their overlapping niches might be expected. The coexistence of 
many direct competitors should not be feasible according to classical 
ecological models51–53 and can lead to phylogenetic overdispersion54. 
While this conflicts with our observation that closely related strains are 
also often co-occurring (Extended Data Fig. 1), there have been more 
observations showing the said co-occurrence55–57. Recent research has 
shown that horizontal gene transfer might alleviate the competition 
between related microbial species and allow the coexistence of many 
closely related competitors58. However, competition or exclusion 
of closely related microorganisms at strain-level resolution—which 
remains mostly undetectable in our 16S rRNA-based analysis—cannot 
be excluded. In support of our results, we checked whether commu-
nity conservatism trends are recurrent within localized time-series 
data, spanning multiple years. To achieve this, we analysed samples 
belonging to the Hawaiian Ocean Time (HOT) series and analysed 
which OTUs show the highest correlations of their abundance profiles, 
indicating that they fluctuate together in different seasons and years. 
The OTU pairs with the highest Pearson correlation values also turn 
out to be more closely related (Extended Data Fig. 6a). Moreover, 
marine OTU pairs having correlated abundance profiles in the time 
series also occur in more similar communities outside the context of 
time-series experiments, in the global database within MicrobeAtlas 
(Extended Data Fig. 6b; r = 0.31, PPearson = 7.7 × 10−96).

Environmental preferences are entangled with  
community conservatism
Consistent with the concept of niche conservatism, we postulated 
that related OTUs would tend to inhabit similar niches. To test whether 
related OTUs are indeed found in similar habitats, we used Microbe-
Atlas environmental annotations to select five diverse main environ-
ments covering many samples: soil (n = 204,329), animal (n = 594,104), 
plant (n = 130,212), marine (n = 133,837) and freshwater (n = 38,414). 
We implemented prevalence-based majority voting to assign each 
OTU to one of these five primary environments. Our analysis revealed 
a consistent trend for related species to be found in the same main 
environment, partially driving the observed community conservatism 
trends (Fig. 4a). These findings suggest that broad-scale niche conserva-
tism, the tendency of OTUs to remain in their primary environments, 
is also evident in microorganisms. While we used only broad, diverse 
habitat classifications, previous observations of niche conservatism 
at a smaller scale25,59 indicate that this concept could extend to more 
specific ecological niches.

We were furthermore curious whether community conserva-
tism extends beyond these broad environmental preferences, that is, 
whether it still persists even when the primary environment is normal-
ized for. In addition, we hypothesized that microorganisms also tend 
to keep similar ‘partners’, for example, in mutualistic relations or by 
preferring certain abiotic factors that extend beyond the traditional 

definitions of a niche. For instance, we expected that when mitigating 
the environmental effect, any remaining differences would mainly 
reflect ‘interaction conservatism’ (phylogenetic assortativity). To 
investigate whether the community conservatism signal remains when 
accounting for broad environmental preferences and to quantify dif-
ferences across environments, we repeated our workflow with OTU 
pairs that were predominately found in the same main environment 
or to pairs belonging to different environments (Fig. 4b).

This analysis revealed that community conservatism is consist-
ently observable even within different environments, interestingly 
to varying degrees. Conversely, as expected, OTU pairs annotated 
to different main environments had the lowest overall community 
similarities—but still with a clearly visible community conservatism 
signal. Most environments showed similar BCS ranges of their OTU 
pairs, with the notable exception of soils, which showed almost twice 
the community similarity of other environments.

While soil microbial communities can vary substantially even at 
centimetre scales and show the highest OTU richness, they are glob-
ally more similar than often assumed and are usually dominated by 
relatively few OTUs, which would lead to high community similarity 
values60,61. Interestingly, the community conservatism of OTUs mainly 
annotated to plants already plateaus at approximately genus-level 
phylogenetic similarity. This could potentially be rationalized by OTUs 
having ‘locked in’ preferences for certain plant types or for different 
plant areas (root or shoot) already at a broader phylogenetic level. The 
environments differ in their alpha diversity and sequencing depth, 
which may impact our results by shifting beta diversity values system-
atically. In our dataset, we found that altering sequencing depth did 
not influence the overall beta diversity values (Extended Data Fig. 7a). 
By contrast, artificially reduced richness resulted in an overall lower 
BCS—probably owing to the absence of shared, rarer taxa found in many 
samples (Extended Data Fig. 7b). The general trend, however, remained 
stable in all tested scenarios. It is important to note that only 2,781 OTUs 
are predominately annotated to plants, which is fourfold less than in 
any other environment (next lowest: freshwater, 11,671 OTUs). To verify 
whether the smaller number of OTUs in plants could have caused the 
observed plateau, we reduced the animal environment to a similar 
number of OTUs (1,500 and 3,000). The trend line remained almost 
identical, indicating that the plateau of plant OTUs is probably due to 
true biological distributions and not driven by the lower number of 
plant OTUs (Extended Data Fig. 7c).

Phylum-specific characteristics of community conservatism
We showed that community conservatism is present in microorganisms 
on a global scale, irrespective of their main environment, and extend-
ing as far back as the phylum level. The next question we wanted to 
address is whether we can infer characteristics of the ecology, specia-
tion and community assembly processes across the different phyla. 
For this, we next repeated the previous analysis separately for each 
phylum represented by a minimum of 500 OTUs in the MicrobeAtlas 
database, while also calculating an individual phylogenetic tree for 
each phylum. In total, these were 3 archaeal and 16 bacterial phyla 
(Extended Data Fig. 8a). As we showed previously, the environment 
in which the phyla are mainly found strongly influences community 
conservatism. This is, for instance, visible in Acidobacteriota and Gem-
matimonadota. Both phyla show a high average community similarity 
as they are predominately found in soil. To mitigate that environmental 
effect, we calculated phylum-specific null models, considering the 
expected community similarity values by accounting for the main envi-
ronments of the compared OTUs (Supplementary Table 1). By normal-
izing our community similarity metrics against these phylum-specific 
baselines (Methods), we obtained normalized community conserva-
tism curves. Intriguingly, these curves trend differently across phyla, 
with those containing less than 3,000 OTUs showing increased 
noise (Extended Data Fig. 8b). Yet, most phyla show a clear decrease 
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in community conservation when assessing increasing taxonomic 
distances from the species level to the phylum level. We see a steep 
descent in some phyla (for example, Methanoproteota, Chloro-
flexota), while in others, the decrease is more gradual (Fig. 4c). We 
hypothesized that quantifying the steepness of the trend line, as well 
as differences to the baseline, would help us characterize ecological 
characteristics of each phylum: a steep curve would indicate recent 
ecological shifts: very closely related OTUs still share similar com-
munities, but slightly more distant relatives already occur in different 
communities, suggesting that niche specialization arose between these 
points. As not all OTUs were taxonomically annotated to the species 
level, we instead used the density gradients obtained in Fig. 3c and 

binned the OTUs accordingly to approximate the taxonomic levels. 
In all investigated phyla, we observed highly significant (two-sided  
PMann–Whitney U < 0.05, Supplementary Table 2 and Fig. 4d) decreases in 
community conservatism when comparing the species level to the 
phylum level. We furthermore quantified the decrease of community 
conservatism from the species level to the genus level (Fig. 4d), rea-
soning that ongoing changes in community preferences should be 
reflected by differences in the species and genus levels. We found 15 
phyla that were still significantly different in their community conserva-
tion when comparing the species level with the genus level (two-sided  
PMann–Whitney U < 0.05, Supplementary Table 2). For instance, Thermo
proteota have large increases at both levels (species/genus ratio:  
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Fig. 4 | Environmental effects and phylum-level differences. a, The 
phylogenetic distance of 25,000 OTU pairs is plotted against the similarity of 
the communities they occupy. The pairs are coloured according to whether they 
share the same main annotated environment (blue) or are assigned to differing 
environments (orange). Bray-Curtis, BCS. b, Only OTU pairs belonging to the 
same given main environment (soil, marine, freshwater, soil or plant) or to 
different environments (grey) are compared, 25,000 pairs each. The solid lines 
represent the mean of 30 bootstrapped lowess fits. The shaded areas denote 

±1.96 × standard deviation (approximate 95% confidence interval). c, All phyla 
with >3,000 available OTUs are shown here, and a lowess fit is created for each, 
calculated from 10,000 OTU pairs per phylum. The signal is normalized by 
environmental preference (Methods). In addition, taxonomic ranges (estimated 
from Fig. 3c) are indicated by colour shade (purple = species, green = genus, 
grey = phylum). d, Community conservatism ratios (curve steepness) calculated 
from the taxonomic bins (c) of all 19 investigated phyla.
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1.6; species/phylum ratio: 3.9), showing a strong and ongoing ten-
dency to change communities and to specialize into different niches. 
All investigated archaeal phyla show sharp increases (species/phy-
lum ratios > 2.8), aligning with their tendency to be found in extreme 
environments and their adaptability to new environmental factors62. 
However, phyla such as Acidobacteriota, predominately found in soils63, 
show a comparatively shallow increase (species/genus ratio: 1.1; spe-
cies/phylum ratio: 1.6). This indicates that most members of this phylum 
have long been restricted to their respective niches and do not usually 
adapt and evolve quickly into new habitats or roles. For very OTU-rich 
phyla, for instance Pseudomonadota (former Proteobacteria), it is also 
feasible to investigate lower phylogenetic levels separately, such as 
Alphaproteobacteria, Deltaproteobacteria and Gammaproteobacteria. 
While the overall pattern of community conservatism remains evident 
at these finer taxonomic scales, the classes vary in the strength of the 
signal (Extended Data Fig. 9).

Our analysis of community conservatism provides a quantifi-
able measure of ecological similarity among related OTUs, a concept 
central to methods such as UniFrac16. UniFrac compares communi-
ties by considering phylogenetic relationships through tree branch 
length calculations16 (that is, closely related species are assumed to 
be similar and thus to contribute less to diversity). However, UniFrac 
defines relatedness for all microorganisms equally, while our study 
reveals that different phyla show varying rates of community similar-
ity with decreasing relatedness. We propose that the values presented 
in our analysis, or alternative metrics of ecological similarity within 
microbial phyla, could be used to develop a more ecologically resolved 
version of UniFrac in the future. This enhanced method would apply 
taxon-specific weights (depending on the ecological similarity) when 
aggregating tree branch lengths, potentially offering a more nuanced 
approach to community comparison. In practice, this would assign 
greater weights to closely related taxa that are ecologically divergent 
(indicating rapid niche shifts) while down-weighting distantly related 
taxa that nevertheless share similar communities.

Specialists and generalists have distinguishable community 
conservatism trends
Conceivably, the observed differences between phyla in terms of com-
munity conservatism might hint at general differences in their degree 
of ecological specialization: when members of a phylum show little 
specialization (that is, they are generalists), we would expect their 
communities to be fairly diverse, with community–community dis-
tances averaging out at a certain level set by the overall diversity of 
the available data. Conversely, in phyla predominantly composed of 
specialists, closely related pairs would be hypothesized to share very 
similar communities, whereas the communities of pairs with larger 
phylogenetic distances are expected to be very dissimilar as they occur 
in very distinct niches.

To check for this, we first devised a habitat generalism score for 
each OTU, based on their normalized abundances across different envi-
ronments (Methods). We then selected the top 10% OTUs (‘generalists’) 
and the bottom 10% OTUs (‘specialists’) and calculated the commu-
nity conservatism of both groups. Strikingly, the results reveal a clear 
separation: generalists show small, steady increases of community 
conservatism, with a relatively high baseline even in non-related pairs, 
whereas specialists show a much steeper trend line, with non-related 
pairs found in very different communities, whereas closely related 
pairs appear in very similar communities (Fig. 5a).

Applying this observation to individual phyla (Extended Data  
Fig. 8 and Fig. 4c), we are tempted to speculate that phyla with shallow 
increases in community conservatism, such as Pseudomonadota and 
Mycoplasmatota, could be more generalist in nature. In contrast, phyla 
with specialist-like trend lines, such as Fusobacteriota and several 
archaeal phyla, might indeed have specialist lifestyles. Similar to ref. 22, 
we hence leverage community composition data to infer generalist and 

specialist phyla—but here with a pairwise OTU comparison approach. 
For this, we compare pairs of OTUs to assess whether phyla with 
distinct generalism and specialism scores show different trends of 
community conservatism. Indeed, per-phylum aggregated habitat 
generalism scores are significantly correlated with curve steepness 
(r = 0.46, PPearson = 0.045; Supplementary Table 3). These scores show 
similar correlative trends with the phylum-specific social niche breadth 
scores of ref. 22, albeit not quite significant (r = 0.41, PPearson = 0.079; 
Supplementary Table 3). These results give support to both the social 
niche breadth metric and our use of curve steepness to independently 
infer generalist and specialist phyla based on community composition.

Outliers can be ecologically informative
Most of the sufficiently sampled OTUs conform to the trends above—
but it may also be interesting to look at outliers: pairs that are closely 
related but dissimilar in their communities are hinting at relatively 
recent evolutionary pressures to change niches. Conversely, distantly 
related OTU pairs that are similar in their communities might depend on 
each other or have a shared niche requirement independent of phylog-
eny. We provide a list of both types of outliers (Supplementary Tables 4 
and 5) and highlight two examples in detail below (Fig. 5b).

On the bottom-left corner of the overall distribution plot are two 
Pseudomonas aeruginosa subclades that are closely related. Yet, against 
global conservatism trends, they occupy different communities, hence 
hinting at a strong ecotype difference between both subclades. To bet-
ter understand their respective niches, we investigated all samples in 
which the OTUs are detected through metadata keyword summaries. 
This analysis indicates that P. aeruginosa clade 1 is adapted to the human 
host and enriched in samples of patients with cystic fibrosis, while P. 
aeruginosa clade 2 is a generalist found in many non-human environ-
ments. This overlaps with existing research showing that P. aeruginosa 
can be found in both niches64–66. However, the OTU pair of Haemophilus 
influenzae and Streptococcus pneumoniae are only distantly related, 
belonging to different phyla. Nevertheless, they share many com-
munity members and are both abundant in the human oral cavity and 
lungs (Fig. 5b), where they occasionally even form biofilms together67.

These and other examples led us to the hypothesis that commu-
nity similarity is informative when identifying ecologically interacting 
OTU pairs: OTUs with more similar background communities should 
be more likely to interact. To investigate this, we analysed all inves-
tigated OTU pairs with FlashWeave, a software package that statisti-
cally predicts potential ecological interactions between OTUs21. And 
indeed, OTU pairs predicted to interact this way show much higher 
community similarity (PMann–Whitney U = 1.1 × 10−17, Cohen’s d = 1.37), also 
when correcting for phylogenetic relatedness (PMann–Whitney U = 4.7 × 10−5, 
Cohen’s d = 0.56; Fig. 5c). Together, these observations and the underly-
ing data could prove useful to improve the inference of interacting or 
niche-defining OTU pairs.

Outlook and conclusion
Reintegrating ecological information into OTU delimitation in 
the future
How to best cluster bacterial and archaeal lineages into meaningful 
units that resemble a species is still under debate. Some argue for a 
strict operational approach using phylogenetic marker genes, usually 
by implementing a chosen species-level threshold (for example, 97% 
for 16S rRNA, 96.5% for average nucleotide identity (ANI) of the whole 
genome)68,69. Others argue that this procedure is too simplistic and 
that phenotypic and ecological information should be considered as 
well70. In any case, most agree that delimiting species-level clusters 
using the same specific thresholds is pragmatic and operational, but 
not always ideal71. Using the full genome as in the Genome Taxonomy 
Database is probably the best way of delineating microorganisms, 
but many microorganisms still do not have an associated genome: in 
MicrobeAtlas, only 11.3% of the 111,870 OTUs (97% level) are covered 
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by genomes in ProGenomes3 and BacDive35. In addition, 16S-based 
amplicon sequencing is still the predominant method of analysing 
microbial datasets (almost tenfold increase over other technologies35). 
Hence, it will also be crucial to improve the delimitation of taxonomic 
groups for which only 16S sequences are available: while in some cases 
bacterial strains that belong to the same OTUs may differ strongly 

in their environmental role, others might be traditionally assigned 
to two different OTUs, while performing the same principal role in 
the ecosystem.

Previous research has argued that a distribution-based approach 
could be used to improve OTU delimitation72,73. Here we propose 
to build upon these ideas and, instead of solely relying on marker 
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similarity (Fig. 6a), to reintegrate ecological information into OTU 
delimitation. More specifically, we suggest achieving this by incor-
porating community conservatism information (Fig. 6b), resulting 
in a combined clustering strategy (Fig. 6c). Operationally, we envi-
sion a two-step OTU clustering approach (Extended Data Fig. 10):  
first, a purely sequence-based OTU clustering on the finest level (99%) 
would serve as an initial cursory analysis point that also provides a 
phylogenetic scaffold. In a second step, pairwise ecological simi-
larities could be incorporated as an additional weighting to define 
‘ecologically informed OTUs’ (eOTUs). Importantly, this approach 
is not intended to merge unrelated lineages, but rather to select the 
appropriate granularity to split overly inclusive sequence-based clades 
(for example, 97% OTUs) that may in fact contain ecologically distinct 
groups. This potential multiphased approach would be constrained 
by the original evolutionary phylogeny of a larger taxonomic group 
and then use the pairwise ecological similarities (altering only the 
branch lengths) to define eOTUs. For instance, if two 99% OTUs were 
found in different environments and thus dissimilar communities, 
we would expect them to occupy diverse niches and fulfil different 
roles, hence assigning them both to individual eOTUs. However, if 
a group of 99% OTUs appear very similar in their environments and 
co-occupants, we hypothesize that they would also perform a similar 
function in nature—thus retaining their broader 97% clustering as 
one eOTU (Extended Data Fig. 10d). This combined approach could 
yield a more natural OTU clustering, ideally combining advantages 
of phenotypically and ecologically informed taxonomy and purely 
sequence similarity-based OTU clustering. The choice of how highly 
to weigh sequence similarity versus community similarity will be 
subject to empirical and theoretical considerations. Similarly, while 
we here used pragmatic, data-driven measures for sequence identity 
and community similarity, the choice of metrics is flexible. Future 
work on this will require fine-tuning, benchmarking and compari-
sons to genome phylogenies that are outside the scope of this study. 
For now, we wish to highlight that community preferences and their 
conservation trends are easily assessed from cross-sectional data (in 
contrast to other relevant phenotypes) and show promise for more 
ecologically meaningful OTU delimitation.

Conclusion
We found that community conservatism is present in all investigated 
phyla and environments, on a global scale. We postulate that this 
community conservatism signal could be useful to infer how quickly 

members of a given microbial lineage usually adapt to new environ-
mental conditions (or communities). Potential applications include 
microbiome engineering, in which such inferences could improve 
predictions of species addition or removal effects in a given community, 
based on their niches74.

Our analysis is mostly based on 16S rRNA, which comes with some 
implications. Barely measurable divergences of 16S sequences can 
often reflect a substantial evolutionary divergence (1% divergence 
corresponds to millions of years)75, differing between phylogenetic 
lineages. One microbial genome may also contain more than one 
divergent copy of the 16S rRNA gene76,77. In addition, horizontal gene 
transfer occurs frequently between closely related microorganisms78 
and, occasionally, horizontal gene transfer can occur even in 16S rRNA 
genes79. While those aspects have the potential to affect our analysis, 
they should (if anything) rather weaken the observed signal: if, for 
instance, horizontal gene transfer of 16S occurs, we might erroneously 
compare a ‘distantly related’ OTU pair as very closely related. Despite 
this, we consistently observe community conservatism across different 
phyla, timescales and environments.

Niche conservatism and phylogenetic signal are well-established 
concepts in the study of animals and plants, but their assessment in 
microorganisms has been limited by the challenges in ascertaining 
phenotypes and niches in free-living organisms. The concept of com-
munity conservatism offers an alternative approach to investigating 
these patterns in microbial communities, as well as the prospect of 
reintegrating ecological information into OTU delimitation.

Methods
MicrobeAtlas data retrieval
We used samples processed within the MicrobeAtlas project35. Briefly, 
we searched the NCBI Sequence Read Archive80 for samples and studies 
containing any of the keywords ‘metagenomic’, ‘microb*’, ‘bacteria’ or 
‘archaea’ in their metadata and downloaded the corresponding raw 
sequence data. Raw data were quality filtered by discarding reads with 
low-quality bases. We additionally excluded samples containing less 
than 1,000 reads and/or less than 20 OTUs defined at 97% 16S rRNA gene 
identity, and further retained only samples with at least 90% estimated 
community coverage. The total filtered set amounted to 1,153,349 
samples. Community coverage of in-reference OTUs was extrapolated 
using formula 4a in ref. 81 (based on an improved version of the Good–
Turing frequency estimator). To assign OTU labels, quality-filtered 
data were mapped using MAPseq v.2.2.1 at a ≥0.5 confidence level36. 
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both as a more realistic system: reintegrating ecological information (such as 
community conservatism) into OTU clustering, considering both sequence 
similarity and ecological information when forming ecologically informed OTUs 
(eOTUs) using a multiphased clustering approach.
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Furthermore, we removed all eukaryotic reads to solely focus on the 
prokaryotic diversity.

The MicrobeAtlas project contains multiple hierarchically clus-
tered OTUs at different sequence identity thresholds (90%, 96%, 
97%, 98% and 99%) as described in ref. 36, resulting in hierarchical 
OTU definitions (parents and children). Clustering was performed 
using HPC-CLUST39.

NCBI Sequence Read Archive sample metadata were parsed to 
classify every sample into five general environments: animal, marine, 
freshwater, plant and soil. If a sample was assigned to more than one 
main environment (for example, ‘animal|soil’), it was counted for 
both environments; if it had no assignment, it was not counted for 
the environmental calculations. The environmental keywords ‘sea’, 
‘ocean’ and ‘marine’ were combined into marine, and ‘lake’, ‘river’ and 
‘freshwater’ into freshwater. Each OTU was then also assigned a main 
environment, based on a majority vote of sample prevalence. Environ-
mental assignments and keywords of all samples can be found in the 
file ‘samples.env.info’ obtained from https://microbeatlas.org/index.
html?action=download, on 10 March 2023. The identifiers of all specifi-
cally named OTUs used in the figures (Figs. 2 and 5b) are provided in 
Supplementary Table 6.

Selection of OTU pairs, exclusion criteria
We used stringent criteria in selecting the OTUs (at a 99% identity 
threshold) and samples that we analysed. We compare only sam-
ples that do not belong to the same project ID. Each OTU is allowed 
only in a maximum of 9 comparisons (increased to 30 in phyla and 
environments <3,000 OTUs) to avoid overrepresentation of certain 
taxonomic groups.

For the general trend, we compared 25,000 pairs (formed 
by ~14,000 OTUs); we used an equal number of pairs for the 
environment-specific pairs. For the phylum-specific points, we used 
10,000 pairs each. To obtain a uniform distribution of distances, we 
created 50 bins of phylogenetic distances and filled each bin with ran-
domly drawn pairs within that reach. We removed the furthest 3% of 
distances (that is, the most distantly related pairs), as they may contain 
some misclassified OTUs, or cases in which the bin would otherwise be 
impossible to fill (Supplementary Fig. 1). The taxonomy of the OTUs 
was assigned according to the NCBI assignments of the representative 
16S rRNA sequences.

Phylogenetic tree generation
All full-length 16S rRNA gene reference sequences from MAPref v.2.2.1 
were aligned with Infernal36. A large, phylogenetic tree of all OTUs 
was generated from the alignment using fastTree 2.1.10 with the 
‘-nt -gtr -gamma’ parameters82, and multifurcations were removed 
subsequently using the resolve_polytomy (recursive=true) func-
tion in ete3 version 3.1.2 (ref. 83). To increase precision and avoid 
rare misplacements of some lineages in the universal phylogenetic 
tree, phylum-specific trees for each phylum with >500 OTUs were 
generated with the same evolutionary model to ensure compa-
rability. Tree distances were extracted using the distance function  
of ete3.

Fraction of shared samples and sequence similarity
For all OTU pairs that were compared in their tree distances and com-
munity similarities, we additionally calculated the sequence similarities 
of the full-length representative 16S rRNA sequences with a custom 
script. We furthermore calculated the fraction of shared samples based 
on the overlap in prevalence within MicrobeAtlas.

Calculation of community similarities
The BCS (also called the quantitative Sørensen–Dice index) was calcu-
lated using the formula 1 − Bray–Curtis dissimilarity. HPC-CLUST v1.1.0 
(ref. 39) was used for the calculations with the following parameters: 

‘-t samples -nthreads 30 -dfunc braycurtis_skipproj -makecluststats 
-projf’. We repeated the analysis with the ‘-minlogfrac’ parameter to 
calculate log-transformed BCS. For each OTU pair, we compared all 
samples that do not belong to the same research project (that is, do not 
share the same ‘project ID’ at the Sequence Read Archive) in which they 
are detected in a pairwise manner (for example, if OTU 99_1 is found 
in samples A and B, and OTU 99_2 is detected in samples A, C and D, 
we would compare the community similarities of A–C, A–D, B–C and 
B–D; A–A would not be compared). We record multiple quantiles but 
use the mean in all plots unless specified otherwise. We used 90% OTUs 
for the computation of community similarity values. The output was 
further processed with pandas v1.0.3 (ref. 84) and plotted with bokeh 
version 2.2.3. We used a locally weighted scatter plot smoothing (low-
ess, statsmodel.api.nonparametric.lowess, frac = 1/5) as well as an 
exponential decay function (scipy.optimize.curve.fit) to fit the data. 
For quality control, we repeated the analysis twice: while rarefying all 
samples to 10,000 reads (discarding samples with a lower number) 
and furthermore by restricting the richness to the 50 most abundant 
OTUs per sample. Final plots were adjusted using Affinity Designer. All 
custom code is available via GitHub at https://github.com/lukasmalfi/
community_conservatism.

Null model generation
To create a general null model, we compared the communities of 
50,000 randomly chosen sample pairs with the same parameters as 
described above. We verified this baseline by randomly picking the 
average number of samples (n = 2,150) of an OTU pair 1,000 times and 
averaging the resulting baselines. We furthermore created individual 
baselines for all environmental combinations (that is, comparing only 
soil–soil samples, animal–animal, animal–soil and so on). We then used 
these values (Supplementary Table 1) to generate phylum-specific 
baselines. There, we estimate the primary environment of each OTU in 
the pair and record their combinations (for example, a soil-associated 
OTU paired with an animal-associated OTU would be classified as ‘soil–
animal’). We then computed the ratios of their environment combina-
tions of the OTU pairs (for example, 10,000 pairs: animal–animal: 1,000 
pairs: 0.1, animal–soil: 0.85, animal–aquatic: 0.05) and calculated the 
respective null model (0.1 × animal–animal baseline + 0.85 × animal–
soil baseline + 0.05 × animal–aquatic baseline). For the community 
similarity values of different phyla, we normalized those by dividing the 
mean community similarity values by the calculated phylum-specific 
null model.

Phylum-specific ratios
As many of the OTUs are not taxonomically annotated to species 
or genus level, we estimated the approximate range of species and 
genus OTU pairs from the general trend. We used the middle 60% of 
rank-specific distributions (that is, excluding the top and bottom 20%, 
respectively) to obtain ‘species-level’, ‘genus-level’ and ‘phylum-level’ 
bins based on the phylogenetic distance. We then calculated the aver-
age community similarities of those three bins for each phylum. As a 
next step, we divided each species-level bin by the other two to create 
the ratios used to estimate the increase in community similarity from 
the genus level to the species level, and from the phylum baseline to 
the species level.

Outlier OTU pairs
We classified OTU pairs as outliers on both extrema: (1) pairs that 
are very closely related (tree branch length < 0.2), yet very different 
in their communities (mean BCS < 0.04), and (2) pairs that are quite 
distantly related (tree branch length > 0.8), yet their communities are 
similar (mean BCS > 0.08). In addition, we considered only outliers for 
which at least 10,000 sample comparisons had been calculated. We 
provide a list of all outliers that fall into these bounds in Supplementary  
Tables 4 and 5.
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Generalist and specialist analysis
We calculated a generalism metric related to Levins’ breadth, an ‘envi-
ronmental flexibility’ index, for each OTU based on its abundance dis-
tribution across animal, aquatic, soil and plant environments35. In brief, 
for each OTU, average relative abundances were computed for each 
environment and normalized to sum to 1. Then, the Shannon entropy 
over these proportions was computed, yielding a generalism score that 
increases for more uniform abundances across these environments 
(indicating greater generalism) and decreases for OTUs with uneven 
abundances (suggesting more specialized adaptations). In Fig. 5a we 
plotted 25,000 ‘specialist’ OTU pairs (lowest environmental flexibility 
score) and 25,000 ‘generalist’ OTU pairs (highest environmental flex-
ibility score). The individual generalism scores of all 99% OTUs with 
taxonomic annotations were aggregated to obtain phylum-level gen-
eralism scores. These were correlated with the increase of community 
conservatism from species to genus level (ratios) with a Spearman cor-
relation using the stats.spearmanr function of the scipy package v1.4.1.

Connection to ProGenomes3 and gene number analysis
To connect our OTUs to genomes, we mapped OTUs defined at 99% to 
the ProGenomes3 database85, containing almost one million bacterial 
genomes. For each genome, genes were called and counted by running 
Prodigal86 (v2.6.3) with the following parameters: translation table 11 
(-g 11), closed ends (-c), treat runs of N as masked sequence (-m) and 
single procedure (-p single). Out of the genomes, 753,909 representa-
tive 16S rRNA sequences were extracted using barrnap and mapped 
with MAPseq v2.2.1 to 99% MicrobeAtlas OTUs to obtain the number 
of genes per OTU. We then repeated our main analysis workflow to esti-
mate relatedness and community similarities. The trend of community 
conservatism remains stable when using only OTUs with a genome 
link (Supplementary Fig. 3a). When analysing the number of genes 
per genome, we found that more closely related OTU pairs also have 
a more similar number of genes (Supplementary Fig. 3b). All genome 
mappings are available for future studies (Supplementary Table 7).

Hawaii Ocean Time series
We selected all samples belonging to the HOT series project 
‘SRP092796’. These samples were collected from HOT cruises from 
August 2010 through April 2016 at the North Pacific Subtropical Gyre 
at Station ALOHA. We selected all 99% OTUs with >10% prevalence and 
calculated relative abundances in each sample. We then calculated 
Pearson correlation coefficients of all pairwise abundance profiles 
(corrcoef function of numpy 1.18.1) and pairwise phylogenetic tree 
branch lengths as described earlier. In addition, we calculated the 
pairwise community similarity of 5,000 uniformly selected (phyloge-
netic distance) marine OTU pairs with minimum prevalence of 10% in 
the HOT series as described previously. We created hexagonal binned 
plots to visualize our results with matplotlib.

Word clouds
For each OTU, keywords of all samples in which they were found were 
added to a list using custom code in Python 3.7.6. The list of obtained 
keywords was used to create a word cloud with WordCloud v1.5.0 using 
a custom colour map and the following parameters: stopwords = stop-
words, prefer_horizontal = 1, min_font_size = 10, max_font_size = 150, 
relative_scaling = 0.4, width = 1000, collocations = False, height = 400, 
max_words = 15, random_state = 1, background_color = “white”.

Interaction network analysis
We analysed the OTU pairs plotted in Fig. 3 by constructing a global net-
work of predicted interactions. While FlashWeave uses co-occurrence, 
our main analysis pipeline excludes the co-occurrence signal, making 
the analysis thus orthogonal. We used the local-to-global learning 
approach87 using FlashWeave v.0.19.0 (ref. 21). This method gener-
ates a Bayesian network skeleton, representing potential ecological 

relationships between species while accounting for ecological or tech-
nical confounding factors.

FlashWeave’s algorithm operates in two main steps: first, it heu-
ristically identifies likely confounding variables for each species pair 
based on univariate associations and previous algorithm iterations. 
Second, it tests whether the focal association persists when condi-
tioned on these candidate confounders.

We configured FlashWeave with the following parameters: 
sensitive = false, heterogeneous = true and max_k = 3. With these 
settings, the software converts non-zero read counts to centred 
log-ratio-transformed values, addressing compositionality issues, 
and then discretizes these values. Conditional mutual information 
tests are subsequently performed on the discretized data.

We chose the 100 OTU pairs with the highest predicted interaction 
score to compare them against a random selection of 100 random OTU 
pairs from the same dataset. In addition, a second control group was 
chosen with a phylogenetic distribution matching the high-interaction 
pairs, to correct for phylogenetic relatedness. To this end, for each 
OTU pair selected, a random control within ±0.025 tree branch length 
was drawn.

Statistics
The comparisons of the community similarity values of different taxo-
nomic groups were performed using a two-sided Mann–Whitney U test 
in the scipy package v1.4.1 (‘stats.mannwhitneyu’)88. We calculated the 
differences between the interacting pairs and the control groups using 
a two-sided Mann–Whitney U test. Resulting P values were corrected 
for multiple testing using the Benjamini–Hochberg method. Effect size 
was calculated using Cohen’s d.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data are available via Zenodo at https://doi.org/10.5281/
zenodo.15689423 (ref. 89). For this study, we used an older version of 
MicrobeAtlas that can be downloaded via the same Zenodo link. Source 
data are provided with this paper.

Code availability
All custom code used in the analysis can be obtained via GitHub at 
https://github.com/lukasmalfi/community_conservatism.
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Extended Data Fig. 1 | Closely related OTUs tend to co-occur across samples. 
The percentage of shared samples in closely related OTU-pairs (phylogenetic tree 
branch length <= 0.2, n = 2,716) is shown on the left-hand side in yellow. Weakly 

related OTU-pairs (phylogenetic tree branch length > 0.2, n = 22,284) are on the 
right side in red. The black dot denotes the mean percentage of shared samples ± 
standard deviation shown as black lines.
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Extended Data Fig. 2 | Different OTU-thresholds for the calculation of community similarities. Different granularity OTUs (90%, 97% and 99%) used to compute the 
beta diversity in the microbial communities (y-axis). Each dot corresponds to one OTU-pair colored according to their most specific shared taxonomic rank.
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Extended Data Fig. 3 | Community similarity follows an exponential decay 
with phylogenetic distance. Community similarity falls as phylogenetic 
distance increases, visualized here through 25,000 OUT pairs with available 
taxonomic annotation to species level: exponential fit (and formula) as well as 

random expectation are shown as red and purple dotted lines, respectively. Each 
dot corresponds to one OUT-pair colored according to their most specific shared 
taxonomic rank, with their relatedness shown on the x-axis and the average 
similarity of their communities (Bray-Curtis similarity) on the y-axis.
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Extended Data Fig. 4 | Community conservatism signal remains consistent 
when using different community similarity percentiles. Different percentiles 
of community similarities are shown here, in addition to the respective lowess 
fit as blue lines. Each dot corresponds to one OTU-pair colored according to 

their most specific shared taxonomic rank, with their relatedness shown on the 
x-axis and the average similarity of their communities (Bray-Curtis similarity) 
on the y-axis.
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Extended Data Fig. 5 | Community conservatism remains consistent when 
giving less emphasis to highly abundant OTUs. Community similarity falls as 
phylogenetic distance increases, visualized here through 25,000 OUT pairs with 
available taxonomic annotation to species level; lowess fit is shown as blue line. 

Each dot corresponds to one OUT-pair colored according to their most specific 
shared taxonomic rank, with their relatedness shown on the x-axis and the 
average similarity of their communities (log transformed Bray-Curtis similarity 
to mitigate any bias towards the most abundant OTUs) on the y-axis.
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Extended Data Fig. 6 | Community conservatism is recurrent in longitudinal 
sampling. a. Closely related OTU-pairs (x-axis, left) also show a higher correlation 
of their abundance profiles (y-axis, higher=more similar) over the course of 
multiple years within the Hawaii Ocean Time-series (HOT). The red line shows a 

lowess fit to the data. b. These marine OTUs with a higher correlation also tend 
to overall occur in more similar communities across the whole dataset (x-axis, 
right), with a Pearson correlation of 0.31 (p pearson = 7.7e-96) shown with a red 
dotted line.
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Extended Data Fig. 7 | Community conservatism is robust to potential 
confounding factors. a. The same OUT-pairs as in Plot 3a are shown based on 
a rarefied subset of samples, downsampled to 10,000 reads. The original null 
model is shown. b. In this plot, the alpha diversity (richness) of all samples is 
reduced to the 50 most abundant OTUs. c. Trendlines of animal OTUs are  

shown with the original number of OTUs (n = 66,026), and two reduced sets 
(n = 3,000 and n = 1,500). The solid line shows the mean of 30 bootstrapped 
lowess fits. Shaded areas denote 1.96 x standard deviation (approximate  
95% confidence interval).
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Fusobacteriota 516
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Extended Data Fig. 8 | Microbial phyla differ in shape and strength of 
community conservatism. a. Lowess trendlines (non-normalized) of all phyla 
with >500 OTUs are shown here. Each lowess fit stems from 10,000 OTU-pairs. 
b. Normalized lowess trendlines of all the additional phyla with >500 and <3000 

OTUs are shown here. Each lowess fit is calculated from 10,000 OTU-pairs each. 
Each phylum is separately normalized according to Supplementary Table 1 (See 
Methods). This panel shows an increased level of noise in the form of bumps 
when comparing it to Fig. 4c (normalized phyla trendlines with >3000 OTUs).
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Extended Data Fig. 9 | Normalized trendlines reveal differences among three Pseudomonadota classes. Lowess trendlines of the three classes Alpha
proteobacteria, Betaproteobacteria and Gammaproteobacteria are shown. Each lowess fit is calculated from 10,000 OTU-pairs. Each class is separately normalized 
according to Supplementary Table 1 (See Methods).

http://www.nature.com/natecolevol
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Extended Data Fig. 10 | Conceptual framework for potential eOTU clustering. 
a. In this conceptual example, four 99% OTUs are closely related. Pair-wise 
sequence similarity values are shown in the illustrated table. When using a 97% 
clustering threshold in OTUs, 99_1 and 99_2 would cluster together into one 
97% OTU; and 99_3 and 99_4 would form a second such OTU. b. Pair-wise Bray-
Curtis similarities (BCS) are shown in the table. When investigating ecological 
information, it becomes apparent that 99_1 and 99_2 are very similar in their 
niches, whereas other pairwise comparisons point to diverse habitats/ecological 
preferences. c. We propose to join both metrics to inform the potential definition 
of ecological OTUs: eOTUS. In this hypothetical example, a to-be-determined 
eOTU threshold delimits the four 99% OTUs into three ecologically consistent 

eOTUs. More specifically, considering the environmental information would 
result in an alternative clustering that groups the environmentally similar OTUs 
99_1 and 99_2 into one eOTU. On the other hand, 99_3 and 99_4 appear to occupy 
different niches and would thus be considered as their own respective eOTUs.  
d. A different schematic representation of this approach with five fine scale  
(for example 99%) OTUs, emphasizing the constraints by existing evolutionary 
and phylogenetic relationships. The phylogenetic branching based on sequence 
similarity values can define OTUs of various granularity. Branch-lengths can be 
adjusted by their respective community similarity values, resulting in a combined 
strategy where clustering thresholds are more ecologically meaningful and 
enable a multi-phased OTU-clustering into eOTUs of different granularities.

http://www.nature.com/natecolevol
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Imaging type(s) Specify: functional, structural, diffusion, perfusion.
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Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
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Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.
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Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.
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Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).
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