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Phylogenetic signal describes the tendency of related organisms to
resemble each other in morphology and function. Related organisms tend
toalsoliveinsimilar ecological niches, which is termed niche conservatism.
The concepts of both phylogenetic signal and niche conservatism are widely
used to understand crucial aspects of evolution and speciation, and they are

well established in animals and plants. However, although assumed to be
present, the extension of these concepts to microorganisms is challenging
to assess. Here we hypothesize that two closely related microbial species
should be found in samples with similar community compositions,
reflecting their ecological similarity. We propose ‘community conservatism’
to refer to this phenomenon and leverage a database with millions of
samples and hundreds of thousands of pairs of microorganisms to assess
their relatedness and the similarity of the communities they occupy. Our
findings reveal that community conservatism can be observed globally in
allenvironments and phyla tested, over nearly all taxonomic ranks, but to
varying extents. Analysing community conservatism shows promise to
advance our understanding of evolution, speciation and the mechanisms
governing community assembly in microorganisms. Furthermore, we
propose that it can be used to reintegrate ecological parametersinto
operational taxonomic unit delimitation.

Organisms tend to retain their ancestral ecological niches over time'~.
This so-called niche conservatismis often discussed in the context of
abroader concept, phylogenetic signal, in which closely related spe-
cies tend to resemble each other morphologically and functionally®.
Numerous studies have shown niche conservatism and phylogenetic
signalinanimals and plants*®. Therein, the analysis and distribution of
various traits, such as habitat preferences, morphology (for example,
leaf shape; Fig. 1a) and physiology, shed light on crucial aspects of evo-
lution, including speciation. In addition, these studies help to predict
how eukaryotes may adapt to rising challenges such as the spread of
invasive species or climate change’.

Apart from animals and plants, microorganisms also fulfil crucial
roles in almost all areas of life, from driving biogeochemical cycles to
influencing human health and diseases’ . Despite their importance,
much less is known about the ecology and long-term evolution of

microorganisms: even the concept of speciesin microorganismsitself
is along-standing matter of debate'* ™. In addition, their phenotypes
and habitats are more difficult to assess, compared with animals and
plants, especially considering that many cannot yet be cultivated under
controlled conditions®. Regardless of these difficulties, the assumption
that phylogenetic signal and niche conservatism are present globally in
microorganisms is used in many popular algorithms, such as UniFrac
and Phylogenetic Interaction-Adjusted index (PINA)'*". Characterizing
microbial niche conservatism and phylogenetic signal onaglobal scale
isthus crucial, yet challenging owing to the lack of information about
the characteristics of uncultured microorganisms'**s, While related
microorganisms have been predicted to more frequently interact
with one another (phylogenetic assortativity)'**' and at least a broad
social community preference is detectable in microorganisms*, only
limited direct evidence exists for niche conservatism and phylogenetic
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a Plants and animals b
Phylogenetic signal established

Phylogenetic signal, the trend of closely
related organisms to share traits, is well
established in animals and plants. Here it is

shown in oak trees using leaf shape as a
morphological feature.

Fig.1| Community composition to measure evolutionary patternsin
microorganisms. a, The [eaf shape of oak trees is a morphological feature that
shows astrong phylogenetic signal. Closely related species have similar leaf
shapes, whereas more distantly related species have larger differences. b, In
bacteria, there are also indications that traits are phylogenetically conserved,
asinref. 28. However, we often do not know enough about the morphology

Microorganisms c

Trait based, incomplete

While there are indications of traits being
correlated with relatedness, a comprehensive
global picture is still missing. Not all
microorganisms have an associated genome,
and not all traits can be deduced.

Communities
This study

Instead, we investigate the tendency of closely

related microorganisms to be found in similar

communities: community conservatism. We

use community structure as a proxy for the

functional potential and the ecological niche of

microorganisms.

or physiology of these organisms, as most of them remain uncultured. ¢, We
propose community conservatism as an alternative approach: instead of
comparing bacterial species directly in terms of physiology or morphology, we
assume thatif they are related (and thus potentially have a similar function and
occupy asimilar ecological niche), then their community composition will also
be similar. Images inaadapted with permission fromref. 6, PNAS.

signal®°, which is generally restricted to selected environments or

taxa. For instance, studies indicate that some genome-derived traits
canbe conserved over long time periods in microorganisms (Fig. 1b)*"%,

Here welook foranalternative to trait-based assessments of ecol-
ogy, as environmental parameters are often not known and morpho-
logical features are scarce. We focus on the high-quality data that we
have: millions of DNA-sequenced microbial community samples from
allover the globe, and phylogenetic marker genes such as 16S rRNA that
enable us to estimate in which communities agiven microbial species
occurs. Community structure can accurately distinguish different eco-
logical niches?** and has successfully been used to determine niche
ranges in generalist and specialist animals®* and microorganisms®.

Following thisline of work, we here treat community composition
as a proxy for the realized niche of a microorganism—the latter being
determined through multiple, often unknown effects, ranging from the
abioticenvironment to microbial interactions. Thus, we hypothesized
that by using a community-centric approach, we can approximate
phylogenetic signal and niche conservatism in microorganisms by
analysing the tendency of closely related organisms to occur in similar
communities (Fig. 1c).

We show with an extensive analysis that more closely related taxa
indeed occur in more similar communities. Remarkably, this trend is
consistently detectable in all investigated phyla and environments.
We suggest the term ‘community conservatism’ for this phenomenon
and show that remnants of microbial community preferences can be
traced back billions of years. Furthermore, we show varying trends
of community conservatism in different phyla, infer generalism- and
specialism-specific signals, and provide hundreds of operational taxo-
nomic unit (OTU) pairs with potential interest for diverse research
areas. Lastly, we outline the potential use of community conservatism
asasecond parameter—next to sequence similarity—in OTU clustering,
toreintegrate ecological informationin the future.

Results and discussion

Community structure as a proxy for niches and

functional potential

Weinvestigated global microbiomes using the MicrobeAtlas® project
(https://www.microbeatlas.org), an online database from which we
used afiltered set of1,153,349 environmental microbiome sequencing
samples. MicrobeAtlas clusters microbial taxa into hierarchical OTUs
using different similarity thresholds (from 90% to 99% full-length 16S
rRNA sequence similarity, whereas 97-99% traditionally correspond
to ‘species-level’ taxonomic groups>®). By using such standardized
occurrence dataonaglobalscale, classical ecological questions canbe
investigated, such as the function of the ocean microbiome or which
microorganisms are crucial for dissolving organic carbon®*"*,

We worked with 182,876 OTUs defined at 99% sequence similarity
(16SrRNA similarity) and initially assessed in which samples these OTUs
occur globally (Fig. 2a). Next, we compared OTUs in a pairwise manner
and calculated two main parameters for each pair: (1) the relatedness
oftheinvolved OTUs and (2) the similarity of the communitiesin which
they occur (Fig. 2b). Relatednessis estimated froma large phylogenetic
tree, from which we randomly sampled pairs of OTUs to obtain a uni-
form distribution of phylogenetic distances (Supplementary Fig. 1).
We then assessed the beta diversity of all communities in which we
detected them. For each pair, all samples containing the first OTU are
compared with all samples containing the second OTU, measured
as average pairwise Bray-Curtis similarity (BCS: 1 - Bray-Curtis dis-
similarity). Previous work showed that BCS can adequately distinguish
ecological niches* and it can be efficiently computed at scale using
optimized software®, Lastly, pairwise plotting of relatedness and
average community similarity values of each OTU pair—combined with
curve fitting—is used to assess the community conservatism signal
(Fig. 2c). Our pairwise approach more explicitly assesses the related-
ness of microorganisms independent of taxonomic binning and allows
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Fig. 2| Analysis workflow. a, Illustration of the workflow using four selected
example OTUs: two closely related S. sanguinis subclades, C. crustorus still
belonging to the same phylum (Bacillota) but a different family and an only
distantly related SAR324 strain. Within the MicrobeAtlas database, all microbial
sequencing samples (and their communities, respectively) matching strict
quality filters are retained for testing, resulting in a global picture of the
communities in which each OTU occurs (1,153,349 samples, 182,876 99% OTUs).
b, We compared OTU pairs using two main parameters: their relatedness,

estimated by the tree branch length from a16S rRNA tree, and the average of all
beta diversity calculations (Bray-Curtis similarity, BCS) from the communities
inwhich they are found. ¢, After selecting test pairs following a uniform
phylogenetic distribution, we visualize three selected pairs in ascatter plot.
Eachdotis one OTU-OTU pair, with their relatedness shown on the x axis and the
average similarity of their communities on the y axis. Pairs that are closely related
and show a large community conservatism are expected on the top left, and
distantly related pairs with different communities, on the bottom right.

us—separately for each lineage—to quantify how community structure
changes over evolutionary timescales, extending earlier work*.

To illustrate the general workflow, we compared four example
OTUswith one another, at varying levels of relatedness: Streptococcus
sanguinis subclade 1, S. sanguinis subclade 2, Companilactobacillus
crustorus and Sar324 (Fig. 2). The two S. sanguinis clades, belonging to
the Bacillota, are closely related commensals found in the oral cavity of
humans*® with similar communities (average BCS of 0.15). C. crustorusis
amoredistantly related Bacillota OTU found in diverse environments,
including the human microbiome**. Thus, despite sharing some com-
munity members (BCS 0.03), C. crustorus occupies different niches and
appears to be more of a generalist. Lastly, SAR324 is a predominately
marine bacterium that is found in different layers of the ocean®. It
is only distantly related to the other OTUs, and as expected also its
inhabited communities are very dissimilar (BCS 0.005). Hence, our
hypothesis that more closely related OTU pairs occur in similar com-
munities is supported in this small example.

Community conservatism is present on aglobal scale

To extend this workflow to a global scale, we chose 25,000 strictly
quality-filtered, taxonomically annotated 99% OTU pairs. We first
assessed their sample-by-sample co-occurrence, showing that

related OTUs tend to occur more frequently in the same samples
(Extended Data Fig.1). While probably biologically relevant, this signal
would compound our observations by inflating beta diversity values
when comparing identical samples. To mitigate this effect, we chose
a conservative approach and compared only samples that were not
identical and did not belong to the same research project (that is, do
not share the same ‘project ID’ at the Sequence Read Archive).
Weaimedtoselectthe OTU threshold that best reflects the ecologi-
cal niche for the computation of beta diversities. While we observed
the same community conservatism trends with 90%, 97% or 99% OTU
definitions (Extended Data Fig. 2), it has been hypothesized that
microbial ecological niches are most clearly reflected at the species***
or genus level®*. In our dataset, 90% sequence similarity between
OTUs roughly corresponded to a genus- or family-level divergence*’
(Supplementary Fig. 2). More sequence reads can be unambiguously
assigned when using 90% OTUs; thus, we decided to use this level for
all community similarity calculations (y axis in Fig. 3a) going forwards.
Our results show the presence of community conservatism in
microorganisms (Fig. 3a): OTU pairs that are more closely related
(x axis, towards the left) are more similar in their communities (y
axis, towards the top). To visualize this observation, we fitted a
locally weighted scatter plot smoothing (lowess; Fig. 3a) as well as
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Fig. 3| Community conservatism is present globally in microorganisms.

a, Community similarity tends to fall as phylogenetic distance increases,
visualized here through 25,000 OTU pairs with available taxonomic annotation
to the species level; locally weighted scatter plot smoothing (lowess) fit and
random expectation are shown as blue and red dotted lines, respectively. Each
dot corresponds to one OTU pair coloured according to their most specific
shared taxonomic rank, with their relatedness (tree branch length) shownon
the x axis and the average similarity of their communities (Bray-Curtis similarity,
BCS) ontheyaxis. b, All OTU pairs are binned based on the most specific
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taxonomic rank they share. Each dot corresponds to a pair, and the number of
pairs per taxonomic bin corresponds to n. There are significant decreases in the
community similarity between all taxonomic levels, down to the phylum level
(***two-sided Pynn-whiteyw < 1.0 X 107%). Exact values are presented in Source
Data. Each violin outlines the kernel density distribution of the data. Grey boxes
indicate the interquartile range (IQR) and the median (horizontal line), while
whiskers extend to 1.5 x IQR. ¢, Density plot showing the phylogenetic distance
distribution of pairs belonging to the same taxonomic groups.

an exponential decay function (Extended Data Fig. 3) to the data.
We found that both fitted curves strongly deviate from a null model
based on expected average community similarities between ran-
dom samples (exponential decay coefficient: -4.23). Trends remain
similar when using medians or other percentiles to aggregate com-
munity similarities (Extended Data Fig. 4), or when log transforming
the data before calculating beta diversity to exclude the possibility

that the observed trend is mostly driven by highly abundant OTUs
(Extended Data Fig. 5).

To obtain a statistical estimation of community conservatism,
OTU pairs were binned according to their latest shared taxonomy.
Significant deviation above the baseline was observed for each taxo-
nomiclevel to the next, all the way up to the phylumlevel (Py,un-whitney v =
2.7 x107%; Fig. 3b). This indicates that community preference can
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be traced back to—and has potentially been transmitted across—Dbil-
lions of years*®*°. The largest differences in the average BCS exist
between the species and genus levels (Py,nn-whiney v = 34 X 107), sug-
gesting that species-level adaptations are particularly important for
community preferences.

To test whether the assigned taxonomy is indeed reflected by
phylogenetic distance, we checked how well the taxonomic related-
ness of OTUs, based on available National Center for Biotechnology
Information (NCBI) annotations, overlapped with the tree branch
lengths that we use to estimate relatedness. Overall, taxonomic
ranks follow phylogenetic distances as expected (Fig. 3c). However,
itis also apparent that in some cases taxonomic classifications and
16S rRNA sequence similarities do not fully agree. This is consistent
with known deviations between trait-based taxonomies and purely
sequence-based clustering™.

We showed that OTU pairs belonging to the same species are
oftenfoundin very similar communities, and hence, competition due
to their overlapping niches might be expected. The coexistence of
many direct competitors should not be feasible according to classical
ecological models®**and can lead to phylogenetic overdispersion®*.
While this conflicts with our observation that closely related strains are
also often co-occurring (Extended Data Fig. 1), there have been more
observations showing the said co-occurrence® ', Recent research has
shown that horizontal gene transfer might alleviate the competition
between related microbial species and allow the coexistence of many
closely related competitors®. However, competition or exclusion
of closely related microorganisms at strain-level resolution—which
remains mostly undetectablein our 16S rRNA-based analysis—cannot
be excluded. In support of our results, we checked whether commu-
nity conservatism trends are recurrent within localized time-series
data, spanning multiple years. To achieve this, we analysed samples
belonging to the Hawaiian Ocean Time (HOT) series and analysed
which OTUs show the highest correlations of their abundance profiles,
indicating that they fluctuate together in different seasons and years.
The OTU pairs with the highest Pearson correlation values also turn
out to be more closely related (Extended Data Fig. 6a). Moreover,
marine OTU pairs having correlated abundance profiles in the time
series also occur in more similar communities outside the context of
time-series experiments, in the global database within MicrobeAtlas
(Extended Data Fig. 6b; r = 0.31, Ppeyrson = 7.7 X 107).

Environmental preferences are entangled with

community conservatism

Consistent with the concept of niche conservatism, we postulated
that related OTUs would tend to inhabit similar niches. To test whether
related OTUs are indeed found in similar habitats, we used Microbe-
Atlas environmental annotations to select five diverse main environ-
ments covering many samples: soil (n =204,329), animal (n = 594,104),
plant (n=130,212), marine (n =133,837) and freshwater (n = 38,414).
We implemented prevalence-based majority voting to assign each
OTUtoone of these five primary environments. Our analysis revealed
a consistent trend for related species to be found in the same main
environment, partially driving the observed community conservatism
trends (Fig. 4a). These findings suggest that broad-scale niche conserva-
tism, the tendency of OTUs to remain in their primary environments,
is also evident in microorganisms. While we used only broad, diverse
habitat classifications, previous observations of niche conservatism
at a smaller scale” indicate that this concept could extend to more
specific ecological niches.

We were furthermore curious whether community conserva-
tism extends beyond these broad environmental preferences, that is,
whetheritstill persists even when the primary environment is normal-
ized for. In addition, we hypothesized that microorganisms also tend
to keep similar ‘partners’, for example, in mutualistic relations or by
preferring certain abiotic factors that extend beyond the traditional

definitions of aniche. For instance, we expected that when mitigating
the environmental effect, any remaining differences would mainly
reflect ‘interaction conservatism’ (phylogenetic assortativity). To
investigate whether the community conservatism signal remains when
accounting for broad environmental preferences and to quantify dif-
ferences across environments, we repeated our workflow with OTU
pairs that were predominately found in the same main environment
or to pairs belonging to different environments (Fig. 4b).

This analysis revealed that community conservatism is consist-
ently observable even within different environments, interestingly
to varying degrees. Conversely, as expected, OTU pairs annotated
to different main environments had the lowest overall community
similarities—but still with a clearly visible community conservatism
signal. Most environments showed similar BCS ranges of their OTU
pairs, with the notable exception of soils, which showed almost twice
the community similarity of other environments.

While soil microbial communities can vary substantially even at
centimetre scales and show the highest OTU richness, they are glob-
ally more similar than often assumed and are usually dominated by
relatively few OTUs, which would lead to high community similarity
values®®®". Interestingly, the community conservatism of OTUs mainly
annotated to plants already plateaus at approximately genus-level
phylogenetic similarity. This could potentially be rationalized by OTUs
having ‘locked in’ preferences for certain plant types or for different
plantareas (root or shoot) already at abroader phylogeneticlevel. The
environments differ in their alpha diversity and sequencing depth,
which mayimpact our results by shifting beta diversity values system-
atically. In our dataset, we found that altering sequencing depth did
notinfluence the overall beta diversity values (Extended Data Fig. 7a).
By contrast, artificially reduced richness resulted in an overall lower
BCS—probably owingto the absence of shared, rarer taxafound inmany
samples (Extended DataFig. 7b). The general trend, however, remained
stableinall tested scenarios. Itisimportant tonote that only 2,781 0TUs
are predominately annotated to plants, which is fourfold less than in
any other environment (next lowest: freshwater, 11,671 OTUs). To verify
whether the smaller number of OTUs in plants could have caused the
observed plateau, we reduced the animal environment to a similar
number of OTUs (1,500 and 3,000). The trend line remained almost
identical, indicating that the plateau of plant OTUs is probably due to
true biological distributions and not driven by the lower number of
plant OTUs (Extended Data Fig. 7c).

Phylum-specific characteristics of community conservatism

We showed that community conservatismis presentin microorganisms
onaglobalscale, irrespective of their main environment, and extend-
ing as far back as the phylum level. The next question we wanted to
addressis whether we caninfer characteristics of the ecology, specia-
tion and community assembly processes across the different phyla.
For this, we next repeated the previous analysis separately for each
phylum represented by a minimum of 500 OTUs in the MicrobeAtlas
database, while also calculating an individual phylogenetic tree for
each phylum. In total, these were 3 archaeal and 16 bacterial phyla
(Extended Data Fig. 8a). As we showed previously, the environment
in which the phyla are mainly found strongly influences community
conservatism. Thisis, forinstance, visible in Acidobacteriotaand Gem-
matimonadota. Both phylashow a high average community similarity
asthey are predominately foundin soil. To mitigate that environmental
effect, we calculated phylum-specific null models, considering the
expected community similarity values by accounting for the main envi-
ronments of the compared OTUs (Supplementary Table 1). By normal-
izing our community similarity metrics against these phylum-specific
baselines (Methods), we obtained normalized community conserva-
tism curves. Intriguingly, these curves trend differently across phyla,
with those containing less than 3,000 OTUs showing increased
noise (Extended Data Fig. 8b). Yet, most phyla show a clear decrease
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Fig. 4| Environmental effects and phylum-level differences. a, The
phylogenetic distance 0of 25,000 OTU pairs is plotted against the similarity of
the communities they occupy. The pairs are coloured according to whether they
share the same main annotated environment (blue) or are assigned to differing
environments (orange). Bray-Curtis, BCS.b, Only OTU pairs belonging to the
same given main environment (soil, marine, freshwater, soil or plant) or to
different environments (grey) are compared, 25,000 pairs each. The solid lines
represent the mean of 30 bootstrapped lowess fits. The shaded areas denote

+1.96 x standard deviation (approximate 95% confidence interval). ¢, All phyla
with >3,000 available OTUs are shown here, and a lowessfit is created for each,
calculated from 10,000 OTU pairs per phylum. The signal is normalized by
environmental preference (Methods). In addition, taxonomic ranges (estimated
from Fig. 3c) areindicated by colour shade (purple = species, green = genus,
grey = phylum). d, Community conservatism ratios (curve steepness) calculated
from the taxonomic bins (c) of all 19 investigated phyla.

in community conservation when assessing increasing taxonomic
distances from the species level to the phylum level. We see a steep
descent in some phyla (for example, Methanoproteota, Chloro-
flexota), while in others, the decrease is more gradual (Fig. 4c). We
hypothesized that quantifying the steepness of the trend line, as well
as differences to the baseline, would help us characterize ecological
characteristics of each phylum: a steep curve would indicate recent
ecological shifts: very closely related OTUs still share similar com-
munities, but slightly more distant relatives already occur in different
communities, suggesting that niche specialization arose between these
points. As not all OTUs were taxonomically annotated to the species
level, we instead used the density gradients obtained in Fig. 3c and

binned the OTUs accordingly to approximate the taxonomic levels.
In all investigated phyla, we observed highly significant (two-sided
Prtann-whimey v < 0.05, Supplementary Table 2 and Fig. 4d) decreasesin
community conservatism when comparing the species level to the
phylum level. We furthermore quantified the decrease of community
conservatism from the species level to the genus level (Fig. 4d), rea-
soning that ongoing changes in community preferences should be
reflected by differences in the species and genus levels. We found 15
phylathat were still significantly differentin their community conserva-
tion when comparing the species level with the genuslevel (two-sided
Prtann-whimey v < 0.05, Supplementary Table 2). For instance, Thermo-
proteota have large increases at both levels (species/genus ratio:

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-025-02957-4

1.6; species/phylum ratio: 3.9), showing a strong and ongoing ten-
dency to change communities and to specialize into different niches.
All investigated archaeal phyla show sharp increases (species/phy-
lum ratios > 2.8), aligning with their tendency to be found in extreme
environments and their adaptability to new environmental factors®.
However, phylasuchas Acidobacteriota, predominately found insoils®,
show a comparatively shallow increase (species/genus ratio: 1.1; spe-
cies/phylumratio: 1.6). Thisindicates that most members of this phylum
havelongbeenrestricted to their respective niches and do not usually
adaptand evolve quickly into new habitats or roles. For very OTU-rich
phyla, forinstance Pseudomonadota (former Proteobacteria), it is also
feasible to investigate lower phylogenetic levels separately, such as
Alphaproteobacteria, Deltaproteobacteriaand Gammaproteobacteria.
While the overall pattern of community conservatism remains evident
atthese finer taxonomic scales, the classes vary in the strength of the
signal (Extended Data Fig. 9).

Our analysis of community conservatism provides a quantifi-
able measure of ecological similarity among related OTUs, a concept
central to methods such as UniFrac'. UniFrac compares communi-
ties by considering phylogenetic relationships through tree branch
length calculations' (that is, closely related species are assumed to
be similar and thus to contribute less to diversity). However, UniFrac
defines relatedness for all microorganisms equally, while our study
reveals that different phyla show varying rates of community similar-
ity with decreasing relatedness. We propose that the values presented
in our analysis, or alternative metrics of ecological similarity within
microbial phyla, could be used to develop amore ecologically resolved
version of UniFrac in the future. This enhanced method would apply
taxon-specific weights (depending on the ecological similarity) when
aggregating tree branch lengths, potentially offering amore nuanced
approach to community comparison. In practice, this would assign
greater weights to closely related taxa that are ecologically divergent
(indicating rapid niche shifts) while down-weighting distantly related
taxa that nevertheless share similar communities.

Specialists and generalists have distinguishable community
conservatism trends

Conceivably, the observed differences between phylain terms of com-
munity conservatism might hint at general differencesin their degree
of ecological specialization: when members of a phylum show little
specialization (that is, they are generalists), we would expect their
communities to be fairly diverse, with community-community dis-
tances averaging out at a certain level set by the overall diversity of
the available data. Conversely, in phyla predominantly composed of
specialists, closely related pairs would be hypothesized to share very
similar communities, whereas the communities of pairs with larger
phylogenetic distances are expected to be very dissimilar as they occur
invery distinct niches.

To check for this, we first devised a habitat generalism score for
each OTU, based on their normalized abundances across different envi-
ronments (Methods). We thenselected thetop10% OTUs (‘generalists’)
and the bottom 10% OTUs (‘specialists’) and calculated the commu-
nity conservatism of both groups. Strikingly, the results reveal a clear
separation: generalists show small, steady increases of community
conservatism, with arelatively high baseline evenin non-related pairs,
whereas specialists show a much steeper trend line, with non-related
pairs found in very different communities, whereas closely related
pairs appear in very similar communities (Fig. 5a).

Applying this observation to individual phyla (Extended Data
Fig.8 and Fig. 4c), we are tempted to speculate that phyla with shallow
increases in community conservatism, such as Pseudomonadota and
Mycoplasmatota, could be more generalistin nature. In contrast, phyla
with specialist-like trend lines, such as Fusobacteriota and several
archaeal phyla, mightindeed have specialist lifestyles. Similar toref. 22,
we hence leverage community composition datatoinfer generalist and

specialist phyla—but here with a pairwise OTU comparison approach.
For this, we compare pairs of OTUs to assess whether phyla with
distinct generalism and specialism scores show different trends of
community conservatism. Indeed, per-phylum aggregated habitat
generalism scores are significantly correlated with curve steepness
(r=0.46, Ppeyrson = 0.045; Supplementary Table 3). These scores show
similar correlative trends with the phylum-specific social niche breadth
scores of ref. 22, albeit not quite significant (r=0.41, Ppesrson = 0.079;
Supplementary Table 3). These results give support to both the social
niche breadthmetricand our use of curve steepness toindependently
infer generalist and specialist phyla based on community composition.

Outliers can be ecologically informative

Most of the sufficiently sampled OTUs conform to the trends above—
but it may also be interesting to look at outliers: pairs that are closely
related but dissimilar in their communities are hinting at relatively
recent evolutionary pressures to change niches. Conversely, distantly
related OTU pairs that are similar in their communities might depend on
each other or have ashared niche requirementindependent of phylog-
eny. We provide alist of both types of outliers (Supplementary Tables 4
and 5) and highlight two examples in detail below (Fig. 5b).

Onthe bottom-left corner of the overall distribution plot are two
Pseudomonas aeruginosasubclades that are closely related. Yet, against
global conservatismtrends, they occupy different communities, hence
hinting at astrong ecotype difference between both subclades. To bet-
ter understand their respective niches, we investigated all samples in
which the OTUs are detected through metadata keyword summaries.
Thisanalysisindicates that P. aeruginosacladelisadapted tothehuman
host and enriched in samples of patients with cystic fibrosis, while P.
aeruginosa clade 2 is a generalist found in many non-human environ-
ments. This overlaps with existing research showing that P. aeruginosa
can be foundinboth niches® ¢, However, the OTU pair of Haemophilus
influenzae and Streptococcus pneumoniae are only distantly related,
belonging to different phyla. Nevertheless, they share many com-
munity members and are both abundant in the human oral cavity and
lungs (Fig. 5b), where they occasionally even form biofilms together®’.

These and other examples led us to the hypothesis that commu-
nity similarity isinformative whenidentifying ecologically interacting
OTU pairs: OTUs with more similar background communities should
be more likely to interact. To investigate this, we analysed all inves-
tigated OTU pairs with FlashWeave, a software package that statisti-
cally predicts potential ecological interactions between OTUs?. And
indeed, OTU pairs predicted to interact this way show much higher
community similarity (Pynn-whitney v = 1.1x 1077, Cohen’s d =1.37), also
when correcting for phylogenetic relatedness (Pyann-whitneyv = 4.7 X107,
Cohen’sd =0.56;Fig.5c). Together, these observations and the underly-
ing data could prove useful to improve the inference of interacting or
niche-defining OTU pairs.

Outlook and conclusion

Reintegrating ecological information into OTU delimitationin
the future

How to best cluster bacterial and archaeal lineages into meaningful
units that resemble a species is still under debate. Some argue for a
strict operational approach using phylogenetic marker genes, usually
by implementing a chosen species-level threshold (for example, 97%
for16SrRNA, 96.5% for average nucleotide identity (ANI) of the whole
genome)®®®’, Others argue that this procedure is too simplistic and
that phenotypic and ecological information should be considered as
well”. In any case, most agree that delimiting species-level clusters
using the same specific thresholds is pragmatic and operational, but
not always ideal”. Using the full genome as in the Genome Taxonomy
Database is probably the best way of delineating microorganisms,
but many microorganisms still do not have an associated genome: in
MicrobeAtlas, only 11.3% of the 111,870 OTUs (97% level) are covered
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Fig. 5| Community conservatism correlates with ecological properties.

a, Atotal of 25,000 OTU pairs consisting of only generalists are compared with
25,000 specialist pairs. Lowess fits of both groups (pink and light blue trend
lines) are plotted on top. b, Two outlier OTU pairs are highlighted here: two
closely related P. aeruginosa subclades and H. influenzae and S. pneumoniae.
The OTUs are annotated with the most common keywords obtained from

the metadata of their global distributions. We supply all further outlier pairs
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Community similarity
inSupplementary Tables 4 and 5. ¢, Violin plots depicting the community
similarities of OTU pairs that are predicted to interact based on FlashWeave
(n=100, blue violin plot), the same number of randomly selected pairs (green)
and random pairs corrected for phylogenetic relatedness bias (orange). Vertical
lines denote the mean in each violin plot. **Potentially interacting pairs
compared with non-interacting: two-sided Py,ny-whitney v = 1.1 X 10™7; comparing
with the phylogeny corrected set: two-sided Py,nn-whitney s = 4.7 X107

by genomes in ProGenomes3 and BacDive®. In addition, 16S-based
amplicon sequencing is still the predominant method of analysing
microbial datasets (almost tenfold increase over other technologies™).
Hence, it will also be crucial toimprove the delimitation of taxonomic
groups for which only 16S sequences are available: while in some cases
bacterial strains that belong to the same OTUs may differ strongly

in their environmental role, others might be traditionally assigned
to two different OTUs, while performing the same principal role in
the ecosystem.

Previousresearch hasargued thatadistribution-based approach
could be used to improve OTU delimitation’*”>, Here we propose
to build upon these ideas and, instead of solely relying on marker
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a, Each grey dot denotes a hypothetical pair of lineages (strains). The classical
assignment of lineages into OTUs takes only sequence similarity into account
(usually, 16S rRNA similarity or ANI). b, A hypothetical classification of lineages
based only on ecological niche similarity. ¢, We propose acombination of
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both as a more realistic system: reintegrating ecological information (such as
community conservatism) into OTU clustering, considering both sequence
similarity and ecological information when forming ecologically informed OTUs
(eOTUs) using amultiphased clustering approach.

similarity (Fig. 6a), to reintegrate ecological information into OTU
delimitation. More specifically, we suggest achieving this by incor-
porating community conservatism information (Fig. 6b), resulting
in a combined clustering strategy (Fig. 6c). Operationally, we envi-
sion a two-step OTU clustering approach (Extended Data Fig. 10):
first,a purely sequence-based OTU clustering on the finest level (99%)
would serve as an initial cursory analysis point that also provides a
phylogenetic scaffold. In a second step, pairwise ecological simi-
larities could be incorporated as an additional weighting to define
‘ecologically informed OTUs’ (eOTUs). Importantly, this approach
is not intended to merge unrelated lineages, but rather to select the
appropriate granularity to split overly inclusive sequence-based clades
(for example, 97% OTUs) that may in fact contain ecologically distinct
groups. This potential multiphased approach would be constrained
by the original evolutionary phylogeny of a larger taxonomic group
and then use the pairwise ecological similarities (altering only the
branchlengths) to define eOTUs. For instance, if two 99% OTUs were
found in different environments and thus dissimilar communities,
we would expect them to occupy diverse niches and fulfil different
roles, hence assigning them both to individual eOTUs. However, if
agroup of 99% OTUs appear very similar in their environments and
co-occupants, we hypothesize that they would also perform asimilar
function in nature—thus retaining their broader 97% clustering as
one eOTU (Extended Data Fig. 10d). This combined approach could
yield a more natural OTU clustering, ideally combining advantages
of phenotypically and ecologically informed taxonomy and purely
sequence similarity-based OTU clustering. The choice of how highly
to weigh sequence similarity versus community similarity will be
subject to empirical and theoretical considerations. Similarly, while
we here used pragmatic, data-driven measures for sequence identity
and community similarity, the choice of metrics is flexible. Future
work on this will require fine-tuning, benchmarking and compari-
sons to genome phylogenies that are outside the scope of this study.
For now, we wish to highlight that community preferences and their
conservation trends are easily assessed from cross-sectional data (in
contrast to other relevant phenotypes) and show promise for more
ecologically meaningful OTU delimitation.

Conclusion

We found that community conservatism is present in all investigated
phyla and environments, on a global scale. We postulate that this
community conservatism signal could be useful to infer how quickly

members of a given microbial lineage usually adapt to new environ-
mental conditions (or communities). Potential applications include
microbiome engineering, in which such inferences could improve
predictions of species addition or removal effects in agiven community,
based on their niches™.

Our analysisis mostly based on16S rRNA, which comes with some
implications. Barely measurable divergences of 16S sequences can
often reflect a substantial evolutionary divergence (1% divergence
corresponds to millions of years)”, differing between phylogenetic
lineages. One microbial genome may also contain more than one
divergent copy of the 16S rRNA gene’®”’. In addition, horizontal gene
transfer occurs frequently between closely related microorganisms’®
and, occasionally, horizontal gene transfer can occur evenin16S rRNA
genes’”’. While those aspects have the potential to affect our analysis,
they should (if anything) rather weaken the observed signal: if, for
instance, horizontal gene transfer of 16S occurs, we might erroneously
compare a‘distantly related’ OTU pair as very closely related. Despite
this, we consistently observe community conservatismacross different
phyla, timescales and environments.

Niche conservatism and phylogenetic signal are well-established
concepts in the study of animals and plants, but their assessment in
microorganisms has been limited by the challenges in ascertaining
phenotypes and niches in free-living organisms. The concept of com-
munity conservatism offers an alternative approach to investigating
these patterns in microbial communities, as well as the prospect of
reintegrating ecological information into OTU delimitation.

Methods

MicrobeAtlas data retrieval

We used samples processed within the MicrobeAtlas project™. Briefly,
we searched the NCBISequence Read Archive®® for samples and studies
containing any of the keywords ‘metagenomic’, ‘microb*, ‘bacteria’ or
‘archaea’ in their metadata and downloaded the corresponding raw
sequence data. Raw data were quality filtered by discarding reads with
low-quality bases. We additionally excluded samples containing less
than1,000 reads and/or lessthan20 OTUs defined at 97%16S rRNA gene
identity, and further retained only samples with at least 90% estimated
community coverage. The total filtered set amounted to 1,153,349
samples. Community coverage of in-reference OTUs was extrapolated
using formula4ainref. 81 (based onanimproved version of the Good-
Turing frequency estimator). To assign OTU labels, quality-filtered
data were mapped using MAPseq v.2.2.1at a >0.5 confidence level*®.
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Furthermore, we removed all eukaryotic reads to solely focus on the
prokaryotic diversity.

The MicrobeAtlas project contains multiple hierarchically clus-
tered OTUs at different sequence identity thresholds (90%, 96%,
97%, 98% and 99%) as described in ref. 36, resulting in hierarchical
OTU definitions (parents and children). Clustering was performed
using HPC-CLUST?.

NCBI Sequence Read Archive sample metadata were parsed to
classify every sample into five general environments: animal, marine,
freshwater, plant and soil. If a sample was assigned to more than one
main environment (for example, ‘animal|soil’), it was counted for
both environments; if it had no assignment, it was not counted for
the environmental calculations. The environmental keywords ‘sea’,
‘ocean’ and ‘marine’ were combined into marine, and ‘lake’, ‘river’ and
‘freshwater’ into freshwater. Each OTU was then also assigned a main
environment, based on amajority vote of sample prevalence. Environ-
mental assignments and keywords of all samples can be found in the
file‘samples.env.info’ obtained from https://microbeatlas.org/index.
html?action=download, on10 March2023. The identifiers of all specifi-
cally named OTUs used in the figures (Figs. 2 and 5b) are provided in
Supplementary Table 6.

Selection of OTU pairs, exclusion criteria

We used stringent criteria in selecting the OTUs (at a 99% identity
threshold) and samples that we analysed. We compare only sam-
ples that do not belong to the same project ID. Each OTU is allowed
only in a maximum of 9 comparisons (increased to 30 in phyla and
environments <3,000 OTUs) to avoid overrepresentation of certain
taxonomic groups.

For the general trend, we compared 25,000 pairs (formed
by ~14,000 OTUs); we used an equal number of pairs for the
environment-specific pairs. For the phylum-specific points, we used
10,000 pairs each. To obtain a uniform distribution of distances, we
created 50 bins of phylogenetic distances and filled each bin with ran-
domly drawn pairs within that reach. We removed the furthest 3% of
distances (thatis, the most distantly related pairs), as they may contain
some misclassified OTUs, or cases in which the bin would otherwise be
impossible to fill (Supplementary Fig. 1). The taxonomy of the OTUs
was assigned according to the NCBI assignments of the representative
16S rRNA sequences.

Phylogenetic tree generation

Allfull-length16S rRNA gene reference sequences from MAPrefv.2.2.1
were aligned with Infernal®®. A large, phylogenetic tree of all OTUs
was generated from the alignment using fastTree 2.1.10 with the
‘“nt -gtr -gamma’ parameters®’, and multifurcations were removed
subsequently using the resolve_polytomy (recursive=true) func-
tion in ete3 version 3.1.2 (ref. 83). To increase precision and avoid
rare misplacements of some lineages in the universal phylogenetic
tree, phylum-specific trees for each phylum with >500 OTUs were
generated with the same evolutionary model to ensure compa-
rability. Tree distances were extracted using the distance function
of ete3.

Fraction of shared samples and sequence similarity

For all OTU pairs that were compared in their tree distances and com-
munity similarities, we additionally calculated the sequence similarities
of the full-length representative 16S rRNA sequences with a custom
script. We furthermore calculated the fraction of shared samples based
ontheoverlap in prevalence within MicrobeAtlas.

Calculation of community similarities

The BCS (also called the quantitative Sgrensen-Dice index) was calcu-
lated using the formula1- Bray-Curtis dissimilarity. HPC-CLUST v1.1.0
(ref. 39) was used for the calculations with the following parameters:

‘-t samples -nthreads 30 -dfunc braycurtis_skipproj -makecluststats
-projf’. We repeated the analysis with the “minlogfrac’ parameter to
calculate log-transformed BCS. For each OTU pair, we compared all
samplesthat do not belongto the sameresearch project (thatis, donot
sharethe same ‘project ID’ at the Sequence Read Archive) inwhich they
are detected in a pairwise manner (for example, if OTU 99 _1is found
in samples A and B, and OTU 99_2 is detected in samples A, C and D,
we would compare the community similarities of A-C, A-D, B-C and
B-D; A-A would not be compared). We record multiple quantiles but
usethe meaninall plots unless specified otherwise. We used 90% OTUs
for the computation of community similarity values. The output was
further processed with pandas v1.0.3 (ref. 84) and plotted with bokeh
version2.2.3. We used alocally weighted scatter plot smoothing (low-
ess, statsmodel.api.nonparametric.lowess, frac =1/5) as well as an
exponential decay function (scipy.optimize.curve.fit) to fit the data.
For quality control, we repeated the analysis twice: while rarefying all
samples to 10,000 reads (discarding samples with a lower number)
and furthermore by restricting the richness to the 50 most abundant
OTUs persample. Final plots were adjusted using Affinity Designer. All
custom codeisavailable via GitHub at https://github.com/lukasmalfi/
community_conservatism.

Null model generation

To create a general null model, we compared the communities of
50,000 randomly chosen sample pairs with the same parameters as
described above. We verified this baseline by randomly picking the
average number of samples (n =2,150) of an OTU pair 1,000 times and
averaging the resulting baselines. We furthermore created individual
baselines for all environmental combinations (that is, comparing only
soil-soil samples, animal-animal, animal-soil and so on). We then used
these values (Supplementary Table 1) to generate phylum-specific
baselines. There, we estimate the primary environment ofeachOTU in
the pair and record their combinations (for example, asoil-associated
OTU paired with an animal-associated OTU would be classified as ‘soil-
animal’). We then computed the ratios of their environment combina-
tions of the OTU pairs (for example, 10,000 pairs: animal-animal:1,000
pairs: 0.1, animal-soil: 0.85, animal-aquatic: 0.05) and calculated the
respective null model (0.1 x animal-animal baseline + 0.85 x animal-
soil baseline + 0.05 x animal-aquatic baseline). For the community
similarity values of different phyla, we normalized those by dividing the
mean community similarity values by the calculated phylum-specific
null model.

Phylum-specific ratios

As many of the OTUs are not taxonomically annotated to species
or genus level, we estimated the approximate range of species and
genus OTU pairs from the general trend. We used the middle 60% of
rank-specificdistributions (thatis, excluding the top and bottom20%,
respectively) to obtain ‘species-level’, ‘genus-level’ and ‘phylum-level’
bins based on the phylogenetic distance. We then calculated the aver-
age community similarities of those three bins for each phylum. As a
nextstep, we divided each species-level bin by the other two to create
the ratios used to estimate the increase in community similarity from
the genus level to the species level, and from the phylum baseline to
the specieslevel.

Outlier OTU pairs

We classified OTU pairs as outliers on both extrema: (1) pairs that
are very closely related (tree branch length < 0.2), yet very different
in their communities (mean BCS < 0.04), and (2) pairs that are quite
distantly related (tree branchlength > 0.8), yet their communities are
similar (mean BCS > 0.08).In addition, we considered only outliers for
which atleast 10,000 sample comparisons had been calculated. We
providealist of all outliers that fallinto these bounds in Supplementary
Tables4 and 5.
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Generalist and specialist analysis

We calculated ageneralismmetric related to Levins’ breadth, an ‘envi-
ronmental flexibility’ index, for each OTU based on its abundance dis-
tributionacross animal, aquatic, soil and plant environments™®. In brief,
for each OTU, average relative abundances were computed for each
environment and normalized to sum to 1. Then, the Shannon entropy
over these proportions was computed, yielding ageneralism score that
increases for more uniform abundances across these environments
(indicating greater generalism) and decreases for OTUs with uneven
abundances (suggesting more specialized adaptations). In Fig. 5a we
plotted 25,000 ‘specialist’ OTU pairs (lowest environmental flexibility
score) and 25,000 ‘generalist’ OTU pairs (highest environmental flex-
ibility score). The individual generalism scores of all 99% OTUs with
taxonomic annotations were aggregated to obtain phylum-level gen-
eralismscores. These were correlated with the increase of community
conservatism from species to genus level (ratios) with a Spearman cor-
relationusing the stats.spearmanr function of the scipy package v1.4.1.

Connection to ProGenomes3 and gene number analysis

To connectour OTUs to genomes, we mapped OTUs defined at 99% to
the ProGenomes3 database®, containing almost one million bacterial
genomes. For eachgenome, genes were called and counted by running
Prodigal® (v2.6.3) with the following parameters: translation table 11
(-g 11), closed ends (-c), treat runs of N as masked sequence (-m) and
single procedure (-p single). Out of the genomes, 753,909 representa-
tive 16S rRNA sequences were extracted using barrnap and mapped
with MAPseq v2.2.1to 99% MicrobeAtlas OTUs to obtain the number
ofgenes per OTU. We thenrepeated our main analysis workflow to esti-
mate relatedness and community similarities. The trend of community
conservatism remains stable when using only OTUs with a genome
link (Supplementary Fig. 3a). When analysing the number of genes
per genome, we found that more closely related OTU pairs also have
amore similar number of genes (Supplementary Fig. 3b). All genome
mappings are available for future studies (Supplementary Table 7).

Hawaii Ocean Time series

We selected all samples belonging to the HOT series project
‘SRP092796". These samples were collected from HOT cruises from
August 2010 through April 2016 at the North Pacific Subtropical Gyre
atStation ALOHA. We selected all 99% OTUs with>10% prevalence and
calculated relative abundances in each sample. We then calculated
Pearson correlation coefficients of all pairwise abundance profiles
(corrcoef function of numpy 1.18.1) and pairwise phylogenetic tree
branch lengths as described earlier. In addition, we calculated the
pairwise community similarity of 5,000 uniformly selected (phyloge-
netic distance) marine OTU pairs with minimum prevalence of 10% in
the HOT series as described previously. We created hexagonal binned
plots to visualize our results with matplotlib.

Word clouds

For each OTU, keywords of all samples in which they were found were
addedtoalist using custom code in Python 3.7.6. The list of obtained
keywords was used to create aword cloud with WordCloud v1.5.0 using
acustom colour map and the following parameters: stopwords = stop-
words, prefer_horizontal =1, min_font_size =10, max_font_size =150,
relative_scaling = 0.4, width =1000, collocations = False, height =400,
max_words =15, random_state =1, background_color = “white”.

Interaction network analysis

We analysed the OTU pairs plotted in Fig. 3 by constructing aglobal net-
work of predicted interactions. While FlashWeave uses co-occurrence,
our main analysis pipeline excludes the co-occurrence signal, making
the analysis thus orthogonal. We used the local-to-global learning
approach® using FlashWeave v.0.19.0 (ref. 21). This method gener-
ates a Bayesian network skeleton, representing potential ecological

relationships between species while accounting for ecological or tech-
nical confounding factors.

FlashWeave’s algorithm operates in two main steps: first, it heu-
ristically identifies likely confounding variables for each species pair
based on univariate associations and previous algorithm iterations.
Second, it tests whether the focal association persists when condi-
tioned on these candidate confounders.

We configured FlashWeave with the following parameters:
sensitive = false, heterogeneous = true and max_k = 3. With these
settings, the software converts non-zero read counts to centred
log-ratio-transformed values, addressing compositionality issues,
and then discretizes these values. Conditional mutual information
tests are subsequently performed on the discretized data.

We chose the100 OTU pairs with the highest predicted interaction
score to compare them againstarandom selection of 100 random OTU
pairs from the same dataset. In addition, a second control group was
chosenwithaphylogenetic distribution matching the high-interaction
pairs, to correct for phylogenetic relatedness. To this end, for each
OTU pairselected,arandom control within £0.025 tree branch length
wasdrawn.

Statistics

The comparisons of the community similarity values of different taxo-
nomic groups were performed using a two-sided Mann-Whitney Utest
inthe scipy package v1.4.1 (‘stats.mannwhitneyu’)**, We calculated the
differences between the interacting pairs and the control groups using
atwo-sided Mann-Whitney Utest. Resulting P values were corrected
for multiple testing using the Benjamini-Hochberg method. Effect size
was calculated using Cohen’s d.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data are available via Zenodo at https://doi.org/10.5281/
zenodo.15689423 (ref. 89). For this study, we used an older version of
MicrobeAtlas that canbe downloaded via the same Zenodo link. Source
data are provided with this paper.

Code availability
All custom code used in the analysis can be obtained via GitHub at
https://github.com/lukasmalfi/community_conservatism.
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confounding factors. a. The same OUT-pairs asin Plot 3a are shown based on
ararefied subset of samples, downsampled to 10,000 reads. The original null
modelis shown.b. Inthis plot, the alpha diversity (richness) of all samplesis
reduced to the 50 most abundant OTUs. c. Trendlines of animal OTUs are

Phylogenetic distance

Phylogenetic distance

shown with the original number of OTUs (n = 66,026), and two reduced sets
(n=3,000 and n=1,500). The solid line shows the mean of 30 bootstrapped
lowess fits. Shaded areas denote 1.96 x standard deviation (approximate

95% confidence interval).
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Extended Data Fig. 8 | Microbial phyla differ in shape and strength of

community conservatism. a. Lowess trendlines (non-normalized) of all phyla
with >500 OTUs are shown here. Each lowess fit stems from 10,000 OTU-pairs.
b. Normalized lowess trendlines of all the additional phyla with >500 and <3000
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OTUs are shown here. Each lowess fit is calculated from 10,000 OTU-pairs each.
Each phylumis separately normalized according to Supplementary Table1(See
Methods). This panel shows anincreased level of noise in the form of bumps
when comparingitto Fig. 4c (normalized phyla trendlines with >3000 OTUs).
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Extended Data Fig. 9| Normalized trendlines reveal differences among three Pseudomonadota classes. Lowess trendlines of the three classes Alpha-
proteobacteria, Betaproteobacteriaand Gammaproteobacteria are shown. Each lowess fit is calculated from 10,000 OTU-pairs. Each class is separately normalized
according to Supplementary Table 1(See Methods).
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Extended Data Fig. 10 | Conceptual framework for potential eOTU clustering.
a.Inthis conceptual example, four 99% OTUs are closely related. Pair-wise
sequence similarity values are shownin theillustrated table. When using a 97%
clustering threshold in OTUs, 99_1and 99_2 would cluster together into one

97% OTU; and 99_3 and 99_4 would form a second such OTU. b. Pair-wise Bray-
Curtis similarities (BCS) are shown in the table. When investigating ecological
information, it becomes apparent that 99_1and 99_2 are very similar in their
niches, whereas other pairwise comparisons point to diverse habitats/ecological
preferences. c. We propose to join both metrics to inform the potential definition
of ecological OTUs: eOTUS. In this hypothetical example, a to-be-determined
eOTU threshold delimits the four 99% OTUs into three ecologically consistent

eOTUs. More specifically, considering the environmental information would
resultin an alternative clustering that groups the environmentally similar OTUs
99_1and 99 2into one eOTU. On the other hand, 99_3 and 99_4 appear to occupy
different niches and would thus be considered as their own respective eOTUs.
d. A different schematic representation of this approach with five fine scale
(for example 99%) OTUs, emphasizing the constraints by existing evolutionary
and phylogenetic relationships. The phylogenetic branching based on sequence
similarity values can define OTUs of various granularity. Branch-lengths can be
adjusted by their respective community similarity values, resulting in acombined
strategy where clustering thresholds are more ecologically meaningful and
enable a multi-phased OTU-clustering into eOTUs of different granularities.
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Sample size Describe how sample size was determined, detailing any statistical methods used to predetermine sample size OR if no sample-size calculation
was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data exclusions | Describe any data exclusions. If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the
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OR if there are any findings that were not replicated or cannot be reproduced, note this and describe why.
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Blinding describe why OR explain why blinding was not relevant to your study.

Behavioural & social sciences study design
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Data collection
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Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
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Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.
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All studies must disclose on these points even when the disclosure is negative.

Study description
Research sample
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Data exclusions
Reproducibility
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All code for reproducability is uploaded on github and zenodo.
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Antibodies

Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines | Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.




Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.
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Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:
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[] public health

D National security
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D Ecosystems
D Any other significant area
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Plants

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

Seed stocks

Novel plant genotypes

Authentication

ChlIP-seq

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Describe-any-authentication procedures for-each seed stock used-or-novel-genotype generated.- Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Data deposition

D Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links

For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,

May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session
(e.g. UCSC)

Methodology

Replicates

Sequencing depth
Antibodies
Peak calling parameters

Data quality

Software

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
enable peer review. Write "no longer applicable" for "Final submission" documents.

Describe the experimental replicates, specifying number, type and replicate agreement.

Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.

Describe the antibodies used for the ChiP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and
lot number.

Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
used.

Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community
repository, provide accession details.
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Flow Cytometry

Plots

Confirm that:
D The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

D The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
D All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.
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Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

D Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state,; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ Jused [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.qg.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).




Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based [ _| Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

>
Q
5
(e
c
()
©
O
=
S
=
-
D
©
O
=
>
(@)
wm
(e
3
3
Q
S=

Models & analysis

n/a | Involved in the study
D |:| Functional and/or effective connectivity

D |:| Graph analysis

D |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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