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Soaring global deployment of solar photovoltaics (PV) could 
mitigate problems related to energy generation, but may 
exacerbate other issues. PV manufacturing depletes scarce 

resources, such as silver, tellurium and copper1,2. For instance, silver 
production could peak by 2030, with a risk of demand outstripping 
supply around 20753. Although minerals and metals are essential for 
the transition to a low-carbon society, increased use could aggravate 
social and ecological problems4. Large-scale PV deployment also 
will produce substantial amounts of end-of-life (EOL) PV materials. 
By 2050, a cumulative 80 Mt of PV modules are expected to reach 
EOL globally, with 10 Mt in the United States alone5.

Outcomes associated with increased PV deployment depend on 
the economic approach applied. In today’s predominantly linear 
economy, resources are extracted to manufacture goods, which are 
later discarded. The alternative circular economy (CE) model could 
mitigate resource and ecological challenges6 by encouraging dema-
terialization and the recovery and reuse of products and materials6,7. 
Challenges to a PV CE include low recycling rates3,8, non-specialized 
PV recycling9, which results in low material recovery rates and prof-
its8, difficult separation of module components3 and product reuse 
limited by consumer awareness and attitude towards used products 
as well as to the current policy10.

Adopting a social viewpoint to complement other perspectives 
could increase the effectiveness of circularity-promoting interven-
tions. Social behaviours could play a critical role in developing 
secondary PV markets and managing EOL PV, because psychologi-
cal and behavioural traits often undermine the viability of techni-
cal solutions11–14. Sovacool and Griffiths, for instance, report that 
culturally rooted driving behaviours influence the adoption of 
fuel-efficient vehicles and ride-sharing services14. However, current 
studies of material circularity (that is, the degree to which materials 
are recirculated in the economy) are limited to the technical and 
economic material efficiency potentials and do not account for con-
sumer behaviour13,15. This assessment means that major changes in 
the way CE is analysed need to be undertaken12,16,17.

We help fill this gap by incorporating social considerations into 
an exploration of the techno-economic, market and policy condi-
tions that may improve the material circularity of the dominant 

crystalline-silicon (c-Si) PV module technology. We applied an 
agent-based model (ABM) to represent multiple actors involved 
with the PV life cycle as well as social factors (attitude and peer 
influence) that constrain CE strategies, and built a machine-learning 
(ML) metamodel (that is, a model of a model) to conduct a global 
sensitivity analysis. An ABM is well-suited to a study of the CE tran-
sition because it considers temporal aspects, adopts a systemic view, 
accounts for human decisions and interactions between actors16, 
and exploits recent advances in behavioural economics and psy-
chology16,18–20. ABMs are used to study CE scenarios in relation to 
waste management21–24, but no previous model has included sec-
ondary market dynamics that underlie the reuse CE strategy. Many 
ABM studies have addressed PV adoption19, but the method has not 
been used to investigate renewable technologies through EOL. By 
integrating social considerations, we not only analyse the factors 
that affect PV CE scenarios more comprehensively than previous 
studies have, but we also explore types of CE interventions—such 
as strengthening warranties for used PV modules and ‘seeding’ used 
modules to encourage secondary-market development—that can-
not be assessed using techno-economic analysis alone. The result 
is a fuller picture of the options available to promote PV circularity 
and a fuller picture of the potential effectiveness of those options 
separately and in combination. However, given the exploratory 
nature of our work, the results should be viewed as estimates of how 
CE principles could affect EOL management of PV modules in the 
future, rather than robust predictions.

ABM of PV circularity
In our ABM, four types of agents (PV owners, installers, recy-
clers and manufacturers) and five EOL management options 
(repair, reuse, recycling, landfilling and storage) are defined 
(Supplementary Fig.  1), with a focus on CE strategies that have 
been proposed by stakeholders as likely to contribute most to the 
CE in the future25. Landfilling and storage are included because 
those options are reported in the United States26,27. Two purchasing 
options are also modelled: the purchase of new or of used PV mod-
ules. For each type of agent, behavioural rules are defined to model 
the adoption of CE strategies. For instance, for PV owners, the ABM  
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projects the cumulative amount of PV modules in use as well as 
the waste generated at their EOL. Then, the PV owner agents make 
decisions about whether to comply with a particular CE strategy 
according to the theory of planned behaviour (TPB), which is one 
of the most influential theories used to explain human behaviour13 
and accounts for various factors that affect human decisions, such 
as economics and peer influence. Details are presented in Methods 
and Supplementary Table 1.

Our ABM simulates the current US conditions, although 
changing several rules and other parameters would enable it to 
simulate EOL decisions for PV modules anywhere in the world. 
The European Union, where PV modules must be recycled at the 
EOL based on waste electrical and electronic equipment (WEEE)  

regulations, is the most constrained region because only a few 
pathways are allowed. The United States is projected to have the 
second-largest amount of EOL modules by 20505, and landfilling 
is considerably cheaper than recycling26. In this challenging envi-
ronment for a PV CE, it is vital to identify the most effective and 
cost-efficient strategies or combinations of strategies to improve 
material circularity. To do so, we assessed not only the fraction of 
EOL mass that avoids being landfilled (and stored), but also soci-
etal costs (that is, the net costs of manufacturers, recyclers and 
installers) and recyclers and installers net revenue, because these 
metrics are relevant to assuring the sustainability of the CE. The 
dynamic factors considered include the PV module failure rate and 
the learning effect for module recycling—that is, the decrease in  
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Fig. 1 | Various interventions could improve material circularity in the PV sector. a–i, Landfill ban (a), high material recovery (96%) and US $18 per 
module recycling costs (b), lower recycling costs (US $18 per module) (c), higher landfill costs (US $2.75 per module) (d), improved learning (from 30 
to 60 yr in 2050) (e), improved learning effect (learning parameter = 0.6) (f), reuse warranties (equal new/used attitude) (g), seeding reuse (5% of 
population per year) (h) and baseline (i). Some interventions, which include improved warranties (g) and seeding used modules (h), particularly boost 
module repair and reuse. Other interventions, such as lower initial recycling costs (c) and higher landfill costs (d), boost recycling.
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recycling costs with increasing recycled volumes due to factors such 
as economies of scale and technological advancement28. Our ABM 
is also stochastic to account for variability in some parameters, such 
as landfill costs, and to enable advanced sensitivity and uncertainty 
analysis (Supplementary Table 1). We ran 30 simulations for each 
scenario from 2020 to 2050 and present the means in this article; 
we selected the number of simulations based on a stability analysis 
reported in Supplementary Fig.  2. The ABM differs from similar 
waste-management models as it includes decisions related to the 
demand and supply sides of reuse, accounts for technical factors, 

such as the recycling learning effect, and extends the reported met-
rics21–24. Our approach also differs from current literature on PV 
EOL management in that behavioural aspects are captured to better 
characterize the CE transition. We start by providing an overview 
of CE scenarios, and show that many interventions besides regula-
tions could promote circularity (Fig. 1, Supplementary Table 2 and 
Supplementary Figs. 3 and 4). In the subsequent sections, we fur-
ther explore several of the interventions from Fig. 1.

The baseline scenario reflects the current US conditions, cali-
brated to the available evidence (through iterations of full factorial  
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Fig. 2 | The influence of recycling costs on the material recycling rate. a, In the baseline scenario, the volume of materials recycled (cumulative total in 
2050) quickly increases with falling initial recycling costs until it reaches a plateau. Not accounting for economic factors (costs of recycling for PV owners) 
and social factors (attitude and peer influence) misrepresents the effect of lower initial recycling costs on the volume of materials recycled. Recycling is 
profitable (provides negative net costs, that is, recycling costs minus value of recovered materials) by 2050 for initial recycling costs of US $21 per module 
or less (black dashed line). Shaded areas represent 95% confidence intervals, blue and red lines correspond to the left and right y axes, respectively. b, 
Recycling costs (without accounting for the value of recovered materials) decrease with the amount of PV modules being recycled. Shaded areas represent 
95% confidence intervals, blue and red lines correspond to the left and right y axes, respectively (see Supplementary Fig. 7 for a y axis in US $ kg–1). c, High 
initial subsidies (initial recycling costs of US $10 per module, yellow) boost recycling and help recyclers be profitable (due to the learning effect) more 
quickly than low subsidies do (initial recycling costs of US $18 per module, green), which results in lower overall costs for the subsidy provider (US $16 
million per year instead of US $56 million per year to reach a 40% recycling rate).
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experiments, the unknown PV owners’ attitudes towards CE 
behaviours were set to values that reproduced today’s low recy-
cling and reuse rates8,29). The baseline scenario also reproduces 
projected cumulative PV capacity and EOL modules based on the 
literature5. In this scenario, 500 GW of PV will be installed in the 
United States between 2020 and 2050, which generate 9.1 Mt of 
PV waste during the same period (Supplementary Fig.  5). The 
average initial recycling costs are US $28 per module, the average 
repair costs are US $65 per module, the used module prices are 
36% of the new module prices on average and the average landfill 
costs are US $1.38 per module (Supplementary Table 1). In this 
scenario, most modules are landfilled (83%), with 1.2% reused 
and 9.5% recycled (here, the percentages are mass fractions of the 
total generated waste). Only 80% of a given module’s materials is 
recovered through recycling in the baseline scenario, because the 
assumed recycling process entails simple mechanical separation, 
which recovers only the aluminium frame and glass sheets from 
EOL modules9. Thus, the material recycling rate is 7.7%, equiva-
lent to 0.7 Mt cumulatively through to 2050 (Fig. 1i). In the fol-
lowing, we express all the EOL rates as the mass percentage of 
materials and represent cumulative amounts in 2050 unless oth-
erwise specified. In this baseline scenario, recycling is not profit-
able in any year, even when the learning effect and the revenue 
from recovered materials is accounted for, so PV owners must pay 
a recycling fee (Supplementary Fig. 5).

Techno-economic interventions could improve PV materials cir-
cularity. Research and development in recycling technologies could 
yield lower costs (Fig. 1c), better performance or both (Fig. 1b,f). 
Research and development to improve module durability would 
lower the amount of PV EOL materials generated (Fig. 1e). Market 
interventions, such as better warranties for recovered modules 
(Fig. 1g), higher landfill costs (Fig. 1d), ‘seeding’ of used modules 
to encourage secondary market development (Fig.  1h) and exist-
ing regulatory policies, such as a landfill ban11 (Fig. 1a) could also 
increase circularity. We also examined two existing business models 
of PV module manufacturers: extended producer responsibility and 
waste-generator responsibility (Supplementary Fig.  6). In Fig.  1, 
the reuse of EOL PV modules is limited by customer willingness to 
purchase used modules, which explains the circularity rate decline 
around 2035 in some scenarios, as EOL PV modules move from 
the reuse pathway to other EOL pathways. Although the simulations 
start in 2020, the generation of EOL PV modules is assumed to start 
from modules installed in 2000.

Effect of lower recycling costs on the recycling rate
One barrier to recycling EOL PV modules is the lack of profitabil-
ity11,26,30. Module materials are difficult to separate and, for the most 
part, have low values30. For example, silver accounts for half of the 
material value but represents less than 1% of the module mass5. 
Thus, recycling costs are not offset by revenues from recovered 
materials in the current simple mechanical processes of glass and 
metal recyclers in the United States, which leads to recycling fees 
of US $25–30 per module that PV owners or installers must bear in 
the absence of enhanced product responsibility or take-back pro-
grammes26. Some states, such as Maryland and Washington, have 
proposed tax incentives to overcome this issue31,32.

Figure 2a (blue line with circles) shows the effect of varying the 
initial (year 1) recycling costs in the ABM. The percentage of recy-
cled EOL modules increases steeply with the falling initial recycling 
costs before it plateaus and reaches 73% recovery at zero cost. The 
plateau is due to several factors: part of the materials from recycled 
modules is still landfilled (for example, silicon), for some PV own-
ers storage costs are null, so storage competes with free recycling 
and some cliques of agents reinforce each other into non-recycling 
behaviours through peer influence (these agents are tightly con-
nected in the social network and therefore strongly influence each 
other’s decisions). Owing to the learning effect (Fig. 2b), recycling 
is profitable by 2050 for each value of the initial recycling costs 
below US $21 per module (Fig. 2a, red line with circle markers). 
With the current PV installed capacity and volumes of EOL mod-
ules, module recycling can still be considered in its infancy, and 
the learning effect will probably drive recycling costs down during 
2020–2050. For instance, at an initial recycling cost of US $18 per 
module (similar to the processing costs of high-recovery mechani-
cal processes reported in the literature30) instead of US $28 per 
module in the baseline scenario, the recycling rate increases from 
7.7 to 44% (or 4.0 Mt) in 2050 (Fig. 1 and Supplementary Fig. 3). 
With the learning effect, this initial recycling cost enables recy-
cling to be profitable by 2050 with a net income of US $0.09 kg–1. 
The material recycling rate is also higher when recycling pro-
cesses recover more materials, for example, with the full-recovery 
end-of-life photovoltaic (FRELP) process. In this process, 94% of 
the silver and 97% of the silicon in c-Si PV modules are recov-
ered26, which greatly enhances the value of the recovered materials 
(Fig. 3a, blue lines, and Supplementary Fig. 4).

When costs alone are included in the model, the recycling rate is 
always null as long as recycling is more expensive than landfilling 
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(that is, when the initial recycling costs are above US $3 per mod-
ule)—see the ‘No social factors’ line in Fig. 2a. However, when social 
factors that influence the PV owner decisions, such as peer influ-
ence and attitude towards recycling, are included, the recycling rate 
increases with falling recycling costs. When social factors alone are 
included (the ‘No costs factors’ line in Fig. 2a), the recycling rate 
is overestimated or underestimated. These results demonstrate the 
relevance of accounting for social aspects in the techno-economic 
analysis, because they may explain how and why a technology or 
behaviour is adopted. In our case study, the positive effect of social 
factors on circularity when the initial recycling costs are high shows 
the potential importance of nurturing early adopters of recycling 
behaviours who create a trend for other PV owners to follow.

One strategy to increase recycling is to provide a subsidy until 
the recycling rate target is achieved. Our simulations indicate that a 
larger initial subsidy can be less costly than a smaller subsidy, because 
it engages more PV owners to recycle earlier (Fig. 2c). Moreover, the 
learning effect supports recycling behaviours by lowering costs fur-
ther, which leads to more PV owners adopting the recycling path-
way. Overall, if the stream of EOL modules that reaches recyclers 
keeps increasing (which is likely), the learning effect could spur 
profitable recycling without subsidies. In our simulations, a 20% 
recycling target can be reached earlier with an US $18 per module 
subsidy (12 years) than with a US $10 per module subsidy (18 years), 
which limits the period over which subsidies must be provided. The 
simulations show that a yearly recycled volume above 15,000 t of 
EOL modules could make recycling profitable owing to the learning 
effect, a threshold value in line with the literature33. High subsidies 
to encourage recycling and exploit the learning effect are a relevant 
strategy, but the results depend strongly on the presence of a suf-
ficient learning effect. Thus, a subsidy programme could benefit 
from establishing performance targets that verify the continuous 
improvement of recycling processes, which ensures that recycling 
costs do not return to original levels once subsidies stop.

Economic benefits of a higher material recovery
Recycling profitability could be increased through research and 
development in technologies that enable the recovery of more 
valuable materials—such as silver, copper and silicon—from EOL 
modules. High-recovery mechanical processes can enable a higher 
material recovery, up to 97% of the total mass using the FRELP 
process26; however, in contrast with thermal recycling processes, 

such mechanical processes typically recover lower-quality mate-
rials with less value and usefulness than they had in the original 
module3. Figure 3a shows shares of modules in each EOL pathway 
and recycler net income assuming materials recovery fractions 
from the FRELP process26 and an initial recycling cost of US $18 
per module30. FRELP recovers 20% more materials per module 
than that in the baseline scenario and substantially increases the 
recovered material value owing to the silver and silicon recovery 
(Supplementary Table 1). This economic benefit is likely to weaken 
in the future, however, as innovation causes silver and silicon to 
constitute progressively smaller mass fractions in c-Si PV modules5; 
our analysis does not consider this trend because of the high associ-
ated uncertainty.

Recycler cumulative net income in 2050 increases from US $296 
million in the simple mechanical process scenario to US $1.6 bil-
lion in the FRELP scenario. Moreover, recycling becomes profitable 
earlier (2032 instead of 2037), with recycler net income reaching 
US $0.42 kg–1 in 2050 (the dip in recycler net income in Fig. 3a (blue 
lines) is due to initially unprofitable recycling). Figure 3b shows the 
synergistic effect on the recovered material value of lower initial 
recycling costs (which spur recycling among PV owners) and higher 
total material recovery fractions. For instance, at an initial recycling 
cost of US $16 per module, a 13% increase from an 80% material 
recovery fraction roughly doubles the recovered material value. The 
synergy between the two factors diminishes as the initial recycling 
costs are very high or very low. Our simulations also show that some 
EOL modules are stored for a short period, which leads to the small, 
relatively constant share of stored modules in Fig. 3a (purple wedge) 
as PV owners and installers wait for cheaper and more accessible 
recycling options or the accumulation of quantities that are more 
economical to ship and recycle26.

Strategies to improve PV module reuse
Improved warranties for used modules could promote secondary 
markets11. The reuse rate increases from 1.2 to 23% (by 2.1 Mt) 
when it is assumed that warranties give PV owners an equiva-
lent attitude towards used and new modules10 (Figs.  1g and  4a). 
However, this assumption also decreases the recycling rate from 
7.7% to less than 1%. Figure 4b shows that a 23% reuse rate (that is, 
the result from Fig. 4a) only covers a small portion of projected PV 
demand. Even with an ambitious 89% reuse rate—set by removing 
all the constraints to reuse except that modules can only be reused 
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once in the ABM—only one-third of PV demand is met with used 
modules, which highlights the reuse strategy’s limitation. This result 
is explained by the projected growth of PV demand and the imper-
fect substitution of used modules for new modules (due to a lower 
power efficiency and lifetime34) (see Supplementary Table 1). Once 
reused, modules still must be managed at the end of their second 
life, so developing other circular pathways, such as recycling or life-
time extension, is critical.

In practice, improved warranties may be insufficient to improve 
PV owner attitudes towards used modules, because other factors, 
such as safety concerns or aesthetic preferences, may intervene. 
Thus, other strategies to promote secondary markets should be con-
sidered. For instance, short-term ‘seeding’—providing free modules 
and installation to some PV owners—has proved to be an effective 
strategy35 that could develop secondary markets for PV through 
the peer effect (Fig. 1h). Such a seeding strategy applied to 5.0% of 
PV owners (that is, at least 5.0% of PV owners have used modules 
each year) enhances the reuse rate from 1.2 to 6.9% but lowers the 
recycling rate from 7.7 to 4.8% (Fig. 1 and Supplementary Fig. 3). 
A similar strategy, in which 10% of PV owners pay a lower initial 
recycling fee (US $18 per module), increases the material recycling 
rate to 21% (Supplementary Fig. 8).

Sensitivity analysis and combined interventions
We used a ML metamodel of the ABM to conduct a variance-based 
sensitivity analysis and explore the ABM parameter space at a higher 
speed. In this approach, the ABM is used to generate both the train-
ing and cross-validation data of the ML metamodel, whereas the 
latter provides expected outputs of the ABM for a given parameter 
combination. Figure 5 presents the first- and total-order Sobol indi-
ces (which measure the main effects and interaction effects, respec-
tively) for some parameters that underlie the techno-economic and 
social interventions presented thus far. Initial recycling costs, landfill 
costs and the learning effect are most important to the module circu-
larity rate, with contributions of 48, 33 and 4% to the total variance in 
results, respectively (Supplementary Table 3). The attitude towards 
used modules has a smaller but notable effect. Although some 
parameters present higher-order effects, the parameters rank simi-
larly. However, the rankings change when examining output metrics 
other than the material circularity rate, such as the reuse rate or soci-
etal costs (Supplementary Table 3 and Supplementary Figs. 9–11).  
Finally, notable second-order interactions exist between the initial 
recycling costs and other parameters (Supplementary Table 4).

Figure  6 presents the interaction effects between the initial 
recycling costs and four other parameters: landfill cost, attitude 
towards used modules, learning parameter and number of recycling  

facilities. Increments of the landfill cost and learning parameter 
boost the effect of decreasing the initial recycling costs on the mate-
rial circularity (Figs.  6a,c, respectively). For instance, with initial 
recycling costs of US $10 per module, raising the landfill cost from 
US $1.38 to 2.76 per module increases the material circularity rate 
from about 60 to 70% (Fig. 6a). As the reuse and recycling pathways 
compete, combining a more positive attitude towards used modules 
with lower recycling costs does not enhance the volume of PV mate-
rials diverted from landfills and storage (Fig.  6b). Transportation 
costs are negligible compared with recycling costs, so having fewer 
facilities increases the material circularity rate slightly owing to an 
enhanced learning effect (Fig.  6d). Finally, as with the sensitivity 
indices (Fig. 5), the results are different when examining other out-
put metrics (Supplementary Figs. 12 and 13).

Figure 6 also highlights that different intervention combinations 
may yield the same results (that is, equifinality). For instance, initial 
recycling costs of US $18 per module combined with landfill costs of 
US $2 per module yield a 45% circularity rate, as do initial recycling 
costs of US $13 per module combined with 48 recycling facilities. 
Using the ML metamodel, we designed an experiment to identify 
the parameter combinations that maximize the circularity rate 
while minimizing societal costs (Supplementary Table 5). Overall, 
combining low recycling costs, high landfill costs and a high learn-
ing effect yields the best result in the ABM, which suggests that 
combining interventions might be the most promising strategy to 
increase PV circularity at the lowest costs.

Discussion
Our results should be understood as estimates of how applying CE 
principles could affect the EOL management of PV modules, and 
not as robust predictions. The ABM uses various sources as inputs, 
which include some outside the PV sector (for example, electronic 
waste literature) owing to the limited availability of primary data. 
For instance, the initial recycling and reuse rates are dated to 2016, 
and more recent estimates could yield slightly different results. 
Moreover, as some data variability is unknown, we approximate 
it using probability distributions, which adds uncertainty to the 
results (Supplementary Table 1). In practice, there are regional geo-
political and demographic differences, which could lead to vari-
ous degrees of adoption of CE practices. Although we use the TPB 
to better represent human decisions related to EOL management, 
factors not included in the theory may affect stakeholder deci-
sions. The parameters of the TPB model were also taken from a 
meta-analysis on recycling behaviours, which may not directly apply 
to the PV context (Supplementary Table  6). In addition, we sim-
plify stakeholders as constituting four broad categories (PV owners,  
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installers, recyclers and manufacturers); in the real world, the deci-
sions of intermediary actors (for example, brokers and insurers) 
may also affect PV circularity.

We limited the number of PV owner agents to one thousand, 
whereas more than one million real-world PV systems are in the 
United States36. Moreover, PV owners are not geographically char-
acterized, albeit related through a social network. Although we use 
distributions to represent some geographical disparity, we distribute 
total installed PV capacity evenly between agents. Combining this 
ABM with a distributed PV model with a better spatial resolution, 
such as the National Renewable Energy Laboratory’s Distributed 
Generation Market Demand model, could yield useful insights 
(for example, regarding geopolitical and demographic regional 
differences)37.

Our study yields several implications for PV circularity. First, 
our results suggest that CE strategies compete, in line with the lit-
erature38. Thus, CE programmes should be based on the adoption 
rates for all circular pathways rather than focus on one CE strat-
egy. Second, for reuse to be effective, the used product supply must 
match demand, and therefore secondary markets must be mature39. 
For example, only when PV owner attitudes towards used modules 
improve (for example, through warranties) does demand grow and 

start to substantially absorb used module supplies. Improving reuse 
is critical from an energy perspective, because recycling destroys 
most of the embedded energy of products40,41. However, owing to the 
growing PV demand as well as the lower efficiency and lifetime of 
used modules, even a 100% reuse rate could not satisfy PV demand, 
so recycling must be developed in concert with reuse initiatives.

Our results also highlight the critical roles of the total recovery 
fraction of materials and the learning effect to achieve profitable 
recycling (Fig.  1b,f, respectively), in line with existing literature30. 
Interestingly, the storage pathway acts as a buffer, which provides 
time for recycling processes to become more economical and ulti-
mately diverts some modules from landfills (Fig. 3a, purple wedge). 
This result suggests that encouraging recycling may be particularly 
critical where storage space is more limited (for example, Japan).

Exploiting the ABM approach, we extended the traditional 
techno-economic analysis to include social factors, such as con-
formity to peers and general attitude towards a specific behaviour. 
Accounting for attitude is especially relevant for PV, because house-
holds and businesses may be inclined to environmental protection 
and thus recycling42,43. Our ABM can also be used to study inter-
connections and dynamics among different factors, as suggested by 
Lapko et al.38.

2.76
a

M
aterial circularity rate

2.07

1.38

0.69

0
0

La
nd

fil
l c

os
ts

 (U
S 

$ 
pe

r m
od

ul
e)

45% 15%

60% 30
%

5.5 11 16.5 22 27.5
Initial recycling costs in 2020 (US $ per module) Initial recycling costs in 2020 (US $ per module)

5%

45%

30%
15

%

60
%

0 5.5 11 16.5 22 27.5
0

0.25

0.5

0.75

1

At
tit

ud
e 

to
w

ar
ds

 u
se

d 
m

od
ul

es

70.0%

60.0%

50.0%

40.0%

30.0%

20.0%

10.0%

Initial recycling costs in 2020 (US $ kg–1)

Initial recycling costs in 2020 (US $ per module)

Initial recycling costs in 2020 (US $ kg–1)

Initial recycling costs in 2020 (US $ per module)

45%
30%

60%

15%

15%45%

30%
60%

0
0

0

5.5 11 16.5 22 27.5

1.170.940.70.470.23

0

0

5.5 11 16.5 22 27.5

1.170.940.70.470.23

1

24

48

72

960.6

0.45

0.3

0.15

Le
ar

ni
ng

 e
ffe

ct
 p

ar
am

et
er

N
um

be
r o

f r
ec

yc
lin

g 
fa

ci
lit

ie
s

b

c d

0 1.170.940.70.470.23
Initial recycling costs in 2020 (US $ kg–1)

0 1.170.940.70.470.23
Initial recycling costs in 2020 (US $ kg–1)

Fig. 6 | Fractions of PV module materials in circular pathways in 2050 as a function of the initial recycling costs. a–d, Landfill costs (a), attitude towards 
used modules (b), learning effect parameter (c) and number of recycling facilities (d).

Nature Energy | VOL 6 | September 2021 | 913–924 | www.nature.com/natureenergy 919

http://www.nature.com/natureenergy


Analysis Nature Energy

Our results confirm the importance of factors such as the learn-
ing effect, research and development to reduce recycling costs, 
and public engagement38. Interestingly, the importance of the fac-
tors changes with the focus on different output metrics. The atti-
tude towards used PV modules, for instance, seems less important 
considering the overall material circularity rate because the num-
ber of reused modules is low compared with the number of overall 
modules. However, this factor is the most influential regarding the 
overall societal cost because reuse retains more value within the 
economy than material recovery through recycling. Thus, ignoring 
social factors (such as attitude) may misrepresent the efficacy of CE 
interventions.

Although there are currently no manufacturers of silicon wafers 
in the United States44, recycling modules in a facility near the manu-
facturing line is a competitive advantage, because it makes manufac-
turing more resilient to supply restrictions and potentially facilitates 
the recycling of manufacturing waste, such as silicon kerf. Recycling 
manufacturing waste is critical to improve the circularity, because 
scrap materials are less contaminated and have compositions that 
are better known, compared with those of postconsumer materi-
als45. Such a strategy is already used by First Solar, a cadmium–tel-
luride PV module manufacturer (Supplementary Fig. 6). The results 
also show that a landfill ban, such as the one in Washington State31, 
could increase PV circularity substantially (Fig.  1a). However, 
legislation alone may be insufficient. Current European legisla-
tion, for instance, encourages mass recycling, but not necessarily 
high-quality multimaterials recycling26.

Finally, our results show that high subsidies for a few years could 
be among the most efficient solutions to encourage recycling. In 
contrast with Deng et al., who found that landfill costs have the 
most potent effect, followed by recycling costs, we found that the 
initial recycling costs have the most substantial effect, followed by 
landfill costs30. This difference may occur for different reasons, for 
instance, because of different data used in the analysis or because 
the proposed model includes social factors, which impact recy-
cling and purchasing behaviours and, thus, the results. Moreover, 
when looking at output metrics other than the material circularity 
rate, the ranking of the most influential factors changes (Fig. 5 and 
Supplementary Figs. 12 and 13).

In summary, this work highlights the importance of considering 
social factors in future CE studies. When such factors are ignored, 
the results may be overestimated or underestimated as they may 
not represent what happens in the real world. Moreover, the key to 
improve PV material circularity and retain maximum value in the 
economy may be in social interventions that aim to improve cus-
tomer attitudes towards used PV modules (for example, with better 
certifications and warranties). Could it be possible to have a sec-
ondary market for used PV as strong as the market for used cars34? 
In future work, the ABM could be used to study other scenarios, 
such as the effect of public information campaigns on recycling 
rates. Moreover, although a design-related intervention is briefly 
presented (Fig. 1e), more scenarios related to the design stage, such 
as modules with different backsheet materials46, could be explored. 
This approach, combining ABM and ML, could also be developed 
further to study the circularity of other technologies, such as con-
sumer electronics, or to include environmental considerations.

Methods
Overview. Our ABM represents the main actors of the US PV sector that are 
involved in the transition to a more circular PV industry. Its objective is to find 
the techno-economic and social conditions that improve materials circularity for 
EOL PV modules. The ABM’s primary outputs are the mass volumes of modules 
that reach each EOL pathway (that is, amounts that are reused, repaired, recycled, 
landfilled or stored), the net revenue and cost for each CE actor, the value from 
recovered materials and the number of years it takes to reach a specific objective. 
The overview, design concepts and details protocol is used to describe the ABM in 
this section47, followed by details on the ML approach used to build a metamodel of 
the ABM and the sensitivity analysis method.

The purpose of the ABM is to study the implementation of CE strategies 
within the PV industry and identify the conditions that improve circularity. Four 
types of agents are defined: PV owners, installers, recyclers and manufacturers. 
Agents of a specific type behave similarly, but have heterogeneous characteristics 
represented by probability distributions (for example, recyclers may have 
different recycling costs). Agents are related to each other according to a social 
network that represents the real-world relationships among the CE actors. In 
the simulation, a time step represents a year. The start of the simulation is 2020, 
with 30 time steps chosen because many installations will reach their EOL 
around 20505.

The ABM builds on several existing models (referred as submodels in 
Supplementary Table 1). At each time step, the submodels are used in coordination 
to generate the output metrics. The ABM starts by modelling the cumulative 
amount of PV modules in use (that is, the stocks), following an approach from 
the literature5. Then, the amount of EOL PV modules is computed from a model 
and data from the same source5. We apply another submodel to represent how 
agents make decisions regarding a particular CE strategy. The modelled CE 
strategies include repair, reuse (of a repaired and/or refurbished product) and 
recycle, and the two other options landfill and storage. Agent decisions are based 
on techno-economic factors—which include technical feasibility, such as whether 
the modules can be repaired, and costs, such as landfill costs—and market factors 
(such as attitudes and social norms). The parameters used in this submodel were 
taken from meta-analyses on recycling and purchasing behaviours, in which it was 
reported that consumers influence each other’s behaviours in addition to being 
influenced by behaviours’ costs48,49.

To compute the material circularity and the societal costs (that is, net costs 
of manufacturers, recyclers and installers), the ABM uses a submodel of PV 
module efficiency growth5, the mass fraction of material in the modules5, the 
different recycling processes’ material recovery fractions26,50 and prices of virgin 
and scrap materials. The recycler learning effect also uses a model and data from 
the literature28. Another submodel estimates the transportation costs related to 
the different EOL pathways (Supplementary Table 1 and Supplementary Fig. 14). 
The resulting volumes of repaired, reused, recycled, landfilled and stored change 
with each time step of the simulation. Supplementary Fig. 1 presents an overview 
of the model, Supplementary Table 1 and the sections below provide more 
methodological details.

Design concept. The ABM is designed in a modular fashion to ensure it can 
be used for different case studies; different types of agents may be defined and 
easily added to the model. Each agent type is defined as a Python module. In 
these modules, agent types are defined as Python classes, and it follows that each 
agent is an instance of the class of its type. A Python model module contains 
all the user-defined inputs, activates the agents and collects the outputs of the 
simulation. This modular structure is per the Mesa Python package51. This 
package is used to facilitate the activation of the agents and set up batch runs 
of simulations. The NetworkX Python package is also used to build the social 
networks relating the agents52.

Interactions between actors of the CE are captured at several levels in the ABM 
(that is, within agents of the same type and between agent types). First, because 
interactions between PV owners may influence their decisions regarding EOL 
management22,48,53, they are accounted for in the model. Second, information flows 
between agents of different types. For instance, PV owners have access to recyclers’ 
recycling costs, and installers access the amount of PV modules being sold by PV 
owners. As another example, manufacturers know the amounts of materials being 
recovered by recyclers and compute the economic benefits of using those materials 
rather than virgin materials.

The model also contains several stochastic elements. First, the Watts–Strogatz 
algorithm, which is widely used to build small-world networks, requires us to 
rewire each edge of a regular graph with a certain probability52,54,55. Small-world 
networks are recognized as representing many real-world networks, which include 
social networks54–57. Second, some of the agents’ characteristics are drawn from 
probability distributions to model their variability or uncertainty (for example, 
recycling or landfill costs may be different across the United States). Finally, the 
system’s overall behaviour emerges from the agents’ interactions and decisions 
during the simulation.

Details. At the beginning of the simulation, the network of agents is created. The 
stocks of PV modules from 2000 to 2020 are reported in the ABM and divided 
among PV owner agents. We chose stocks from 2000 to 2020 to account for the 
existing installed capacity, assuming that, before 2000, the cumulative installed 
capacity was negligible. From there, several submodels are used to represent 
various dynamics of the hypothetical circular PV sector.

The environment of the ABM is the United States. Various interventions 
may be enacted in the environment to see their effects. For instance, scenarios 
that study the implementation of a tax or a ban may be modelled as part of the 
environment agents that evolve within.

Moreover, agents’ interactions are dependent on a social network that 
represents the real-world relationships between the PV industry actors 
(Supplementary Table 1 and Supplementary Fig. 15). In contrast with aggregated 
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models, the ABM enables the modelling of different social network structures 
and provides insights into the social network role in the overall behaviour of 
the system54. Different network structures are adapted to different real-world 
situations. For instance, a fully connected network is more adapted to describing 
small groups and tight communities. For sociotechnical systems, such as the 
power grid or cities, the small-world or scale-free networks are more realistic54,56. 
In the ABM, a small-world network is drawn using a rewiring probability and 
the average number of neighbours of 0.1 and 10, respectively. These parameters 
are close to those of other works and real-world networks such as email 
communications54,58.

Owing to computational limitations, the number of PV owners was restricted 
to 1,000 agents. Although it limits the representativeness of the ABM, this number 
of agents enables the capture of network effects and the existing variability of PV 
owners (for example, regarding landfill costs across the United States or attitudes 
towards CE pathways). The PV owners make two decisions: to purchase a new or 
a used product, and to manage the EOL of their products (Supplementary Table 1 
and Supplementary Fig. 16).

Several processes also occur in the PV owners’ module. First, the amount of 
product purchased each year is determined according to a piecewise function, 
following previous work5, and thus similar results for the projected installed 
capacity are obtained, although we only consider US c-Si PV modules. Values 
for the model’s parameters can be found in Supplementary Information, 
Supplementary Tables 1, 7 and 8. Still following the literature, the efficiency growth 
of PV modules is accounted for with an exponential function5. Next, a Weibull 
function (from which the parameters are based on empirical data5) is used to 
generate the amount of PV modules of agent i that reaches EOL at time t, ELPVt

i  
(equation (1)):

ELPVt
i =

∑

t
RPAt

i ×
(
1 − e−(t/T)α

)

(1)

In the equation, T is the average lifetime of the PV modules, α the shape 
factor (which controls the typical S shape of the Weibull curve) and RPAt

i  is the 
remaining amount of PV modules installed by agent i at time step t. The Weibull 
function is appropriate to model the PV waste generation5.

The TPB59 is used to model the PV owners’ decisions to purchase used or new 
modules and the EOL management of these modules. The TPB stipulates that 
human behaviours are influenced by the attitude A individuals hold towards the 
behaviour (that is, how the behaviour is perceived as favourable or unfavourable), 
the subjective norm SN, which refers to the perceived social pressure to perform 
or not perform the behaviour and the perceived behavioural control (PBC), which 
relates to the perceived ease or difficulty of performing the behaviour (equation 
(2)):

BI = wAA + wSNSN + wPBCPBC (2)

In the equation, BI is the intention to perform the behaviour, and wA, wSN 
and wPBC are the weights of each factor in the overall decision. The TPB is often 
used in ABMs of sociotechnical systems because it explains the process of 
individual decision making straightforwardly21,24,60 and has been applied in many 
waste-management ABMs21,22,24. The theory explains consumers’ decisions49,61 as 
well as decisions within companies13,62–64. In our ABM, a score is attributed to each 
EOL pathway according to the TPB. The attitude level of each agent regarding the 
CE pathways (repairing, reusing and recycling) is normally distributed between 
0 (negative attitude) and 1 (positive attitude). The attitude level towards linear 
pathways (landfilling and storing) is simply assumed to be one minus the attitude 
held for CE pathways. Although this distribution of agents is rather simple when 
compared with that in the literature21, it is deemed sufficient for this exploratory 
analysis. As the parameters of the truncated normal distribution were unknown, 
they were calibrated. Thus, an iterative process was undertaken to find the values 
that reproduce low recycling3,8 and reuse65 rates, as they represent today’s situation. 
The second element of the TPB, the subjective norm SNt

ip of agent i and pathway p 
at t, is defined as per equation (3):

SNt
ip =

∑

n

Pathtnp
N (3)

with Pathtnp being 1 if agent i’s neighbour n has selected path p and zero otherwise, 
and N being the total number of neighbours of agent i. Thus, the subjective norm 
takes values between zero (no peer pressure) and one (maximum peer pressure). 
In the ABM, although neighbours designate nodes that share an edge in the 
small-world network, they may represent various relationships among PV owners 
in the real world (for example, friends, family, co-workers and actual neighbours). 
The third element of the TPB, the perceived behavioural control (that is, the 
perceived economic or cognitive ability to perform the behaviour), PBCt

ip of agent i 
and pathway p at t is given by equation (4):

PBCt
ip = −max

(

0; Costtip
|max

{

Costtip∀ p
}

|

)

(4)

where Costtip is the cost of choosing the pathway p at t for agent i. Finally, the 
behavioural intention BItip of agent i for pathway p at t is defined by equation (5):

BItip = wAAt
ip + wSNSNt

ip + wPBCPBCt
ip (5)

In equation (5), the values for the attitude, subjective norms and perceived 
behavioural control factor coefficients (wA, wSN and wPBC, respectively) are taken 
from an existing meta-analysis on factors that affect EOL management decisions48. 
Given the high uncertainty of the coefficients’ values (Supplementary Table 9), the 
agents could behave differently than described in this work. Supplementary Table 6 
shows the results of a sensitivity analysis on the TPB’s coefficients. Alternatively, 
the coefficients’ values could be calibrated (however, the lack of empirical data on 
current and projected PV EOL management prevents us from conducting such 
extensive calibration). The agent then selects the EOL pathway with the highest 
score (and the amount of EOL modules ELPVt

i  is recorded as following the selected 
pathway for further use by other agents and the output metrics).

The TPB is also used to model the purchase decision, similar to how the EOL 
decision is modelled. Two options are represented in this ABM, the purchase 
of a new or of a used module. Another meta-analysis is used to determine the 
TPB coefficient values for the purchase decision49. The TPB may be interpreted 
in terms of material efficiency potentials. If one defines wA and wSN to be 0, the 
techno-economic potentials of the recycling, repairing and reusing CE strategies 
may be studied on their own. Otherwise, the social factors of the model (the 
subjective norm and attitude) may be added, which enables study of the achievable 
(or market) potential of material efficiency15.

Installers are the second type of agent (Supplementary Table 1 and 
Supplementary Fig. 17). In the PV sector, installers may be in charge of collecting 
the EOL PV modules and eventually sorting them before selling them on the 
secondary market66 (Supplementary Information, Supplementary Table 1 and 
Supplementary Fig. 18). They may also repair failed modules if PV owners opt for 
that EOL pathway. If there is insufficient demand for used modules or if they are 
too damaged or cost too much to be repaired (equations (6) and (7)), installers 
send them to a recycler or landfill, or they store them (for a limited period defined 
in Supplementary Table 1) until another decision is made depending on the 
cheapest decision at the time of the simulation (using equation (4)). Although 
installers’ repairing costs may decrease due to the learning effect, it is assumed that 
handling used PV modules bears the same repair costs (whether the modules are 
repaired directly for PV owners or sold as used products), regardless of the possible 
damage to the EOL modules:

Vt
j =

RR×(
∑

i V
t
i+

∑

k V
t
k)

∑j for i and k such that RCt
i ≤ RPt

j and RCt
k ≤ RPt

j (6)

RAt
j =






Vt
j if

∑

j
Vt
j ≤

∑

i
DUt

i for i such that PUt
i = 1

0 otherwise
(7)

In the equations, Vt
j  is the volume of modules available for sale on the 

secondary market by installer j. Next, RR is the module repair rate, Vt
i  and Vt

k are 
the volume of modules that flow from the PV owner i and recycler k at time t, 
respectively, RCt

i  and RCt
k are the repair costs of modules from PV owner i and 

recycler k at time t, respectively, and RPt
j  is the price at which agent j is selling 

the used modules on the secondary market at time t. Finally, RAt
j  is the amount 

of used modules handled by installer j that is sold on the secondary market at 
time t; it depends on the demand for used modules from PV owners (∑

i
DUt

i). 
In equation (7), PUt

i  is a Boolean that is one when the PV owner i has decided to 
purchase a used module at time t and zero otherwise. Installers also improve their 
repair processes owing to the learning effect, and thus decrease repair costs. The 
learning effect can be characterized by several mechanisms, such as technology 
advancement, increased labour productivity, economies of scale and improved 
material and energy efficiency28. As the volume of EOL PV modules dealt with 
by an installer increases, at least three of these mechanisms may apply: increased 
labour productivity, economies of scale and energy efficiency. In the ABM, the 
learning effect is modelled as a function of the repaired volume, following the 
literature28.

Recycler agents are similar to installers in two ways. First, they may take on the 
responsibility of sorting EOL PV modules that can be sold on secondary markets 
(with those modules then flowing to installers); this behaviour was assessed via 
interviews with a US recycler (RecyclePV, personal communication). Second, 
recyclers improve their recycling processes in the model, which simulates the 
learning effect (Supplementary Table 1 and Supplementary Fig. 19). Another 
recycler role is to recover materials from EOL PV modules. In the ABM, this is 
simply modelled from the material recovery rates of a given recycling process (for 
example, simple mechanical processes or the FRELP process26), the fractions of 
materials that constitute PV modules and the volume of modules being recycled. In 
the ABM, PV owners pay a fee to recycle EOL PV modules, whereas manufacturers 
buy recycled materials at market prices. With the current US recycling processes, 
revenue from the recovered materials is insufficient to cover recycling costs26.
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Manufacturer agents purchase recovered materials from recyclers 
(Supplementary Table 1 and Fig. 20). The avoided costs from using recovered 
rather than virgin materials can be computed within the model based on their 
respective values. For instance, the price of aluminium scrap is often about 60% 
of the price of virgin aluminium67, which brings profits for manufacturers that 
use aluminium. The model does not consider price fluctuation, given the price 
volatility of materials such as silicon and silver.

We applied four validation techniques to ensure the quality of the results 
produced by the model: theory validation, data validation, model output validation 
and face validation68. First, regarding theory validation, only empirically validated 
models were used (for example, TPB). Next, for the baseline scenario, empirical 
data were mostly used; when parameters were unknown, they were calibrated3,5,8,65. 
Given that several parameter combinations could lead to the same results (that 
is, equifinality), we further analysed the impact of different values for the two 
calibrated parameters (that is, the attitude values for the purchase of second-hand 
PV modules and EOL management) on the results (Supplementary Fig. 21). Then, 
the cumulative installed capacity and the mass of EOL PV modules generated 
during the 2020 to 2050 period were validated with the literature5 (Supplementary 
Fig. 5). Finally, the results of the ABM went through an internal revision process 
with ABM and PV experts to ensure the model was behaving in a meaningful way, 
and extreme scenarios were also studied (Supplementary Table 10).

Multilayer perceptron regressor metamodel and sensitivity analysis. The 
combination of ABM and ML has recently gained attention owing to the 
complementarity of the two approaches69. These methods can be combined in 
two ways: ML can generate agent behavioural rules from data35, and an ABM can 
be explored in depth (that is, varying the ABM inputs to examine a wide range 
of possible outputs) by building a ML metamodel that avoids computationally 
intensive simulations and saves time70. The exploratory nature of this work meant 
we used the second approach in this study. Following Vahdati et al., we built a 
ML metamodel of the ABM described above70. Using the Scikit-learn Python 
library71, we constructed different ML models using different combinations of 
hyperparameters. In our study, all the features (input data) and output data are 
known in the dataset generated by the ABM; thus, a supervised ML is used.

In this study, the training dataset is generated with the ABM. To produce 
the dataset that best represents the behaviour space of our model while limiting 
the required number of simulations, we used a quasi-Monte Carlo approach. 
First, we defined the range of each parameter to vary in the quasi-Monte Carlo 
simulations. For some parameters, it is merely their minimum and maximum 
possible values (for example, for ratios). For parameters without theoretical 
bounds, realistic ranges were defined according to the literature. For landfill 
costs, for instance, the minimum value was set to zero and the maximum value 
was set to twice the average value of the baseline scenario; it seems unrealistic 
that landfill costs could be higher than that based on current trends27. A similar 
logic was applied to other parameters (Supplementary Table 5). Next, the 
method from Saltelli was used to generate the Sobol sequences of parameter 
value combinations72. Sobol sequences aim to approximate the model’s behaviour 
within the parameter space by attempting to cover as much of the parameter 
space as possible as quickly (with the fewest samples) as possible. This is one 
of the highest-performing methods (for example, compared with the Latin 
hypercube design) regarding the quality of results obtained as a function of 
computational time, and it is often used to build metamodels73,74. Thus, using the 
SALib Python library75, 2,800 parameter value combinations were generated, to 
which we added the baseline parameter value combination as well as variants of 
the baseline, varying each parameter to its lower and upper bound (to include 
extreme cases in our dataset). In total, 2,810 parameter value combinations were 
run 6 times (this number of replicates was found sufficient to account for the 
model’s stochasticity, based on a stability analysis reported in Supplementary 
Fig. 22), which amounted to 16,860 simulations.

Next, we iterated a tenfold cross-validation, varying the ML algorithm, its 
hyperparameters and the output metric considered in the dataset. We kept the 
multilayer perceptron regressor algorithm, which yields a good compromise 
between computation time and a high coefficient of determination in all the 
output metrics (Supplementary Table 11). Once trained, the metamodel was used 
to predict the outputs of parameter value combinations not run with the ABM. 
The SALib library was finally used to conduct a variance-based (Sobol) sensitivity 
analysis and thus measure the variability of model outputs that can be accounted 
for by changes in the model inputs. We used the Sobol method because of its 
ability to evaluate interaction effects and the low risk that dependencies exist 
between the parameters of our ABM. Moreover, we compared the results from 
the variance-based sensitivity analysis with results from a moment-independent 
sensitivity analysis to confirm the rankings of the parameters (Supplementary 
Table 3). The use of the ML metamodel means results from Figs. 3b, 5 and 6, 
Supplementary Tables 3–5 and Supplementary Figs. 9–13 are approximations of the 
ABM’s results.

Data availability
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Code availability
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