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Role of the social factors in success of solar
photovoltaic reuse and recycle programmes

Julien Walzberg ®'™, Alberta Carpenter' and Garvin A. Heath®'2

By 2050, the cumulative mass of end-of-life photovoltaic (PV) modules may reach 80 Mt globally. The impacts could be miti-
gated by module recycling, repair and reuse; however, previous studies of PV circularity omit the consideration of critical
social factors. Here we used an agent-based model to integrate social aspects with techno-economic factors, which provides
a more realistic assessment of the circularity potential for previously studied interventions that assesses additional interven-
tions that cannot be analysed using techno-economic analysis alone. We also performed a global sensitivity analysis using a
machine-learning metamodel. We show that to exclude social factors underestimates the effect of lower recycling prices on PV
material circularity, which highlights the relevance of considering social factors in future studies. Interventions aimed at chang-
ing customer attitudes about used PV boost the reuse of modules, although used modules can only satisfy one-third of the US
demand during 2020-2050, which suggests that reuse should be complemented by recycling.

mitigate problems related to energy generation, but may

exacerbate other issues. PV manufacturing depletes scarce
resources, such as silver, tellurium and copper'~. For instance, silver
production could peak by 2030, with a risk of demand outstripping
supply around 2075°. Although minerals and metals are essential for
the transition to a low-carbon society, increased use could aggravate
social and ecological problems*. Large-scale PV deployment also
will produce substantial amounts of end-of-life (EOL) PV materials.
By 2050, a cumulative 80 Mt of PV modules are expected to reach
EOL globally, with 10 Mt in the United States alone”.

Outcomes associated with increased PV deployment depend on
the economic approach applied. In today’s predominantly linear
economy, resources are extracted to manufacture goods, which are
later discarded. The alternative circular economy (CE) model could
mitigate resource and ecological challenges® by encouraging dema-
terialization and the recovery and reuse of products and materials®’.
Challenges to a PV CE include low recycling rates*, non-specialized
PV recycling’, which results in low material recovery rates and prof-
its®, difficult separation of module components’ and product reuse
limited by consumer awareness and attitude towards used products
as well as to the current policy™.

Adopting a social viewpoint to complement other perspectives
could increase the effectiveness of circularity-promoting interven-
tions. Social behaviours could play a critical role in developing
secondary PV markets and managing EOL PV, because psychologi-
cal and behavioural traits often undermine the viability of techni-
cal solutions''""“. Sovacool and Griffiths, for instance, report that
culturally rooted driving behaviours influence the adoption of
fuel-efficient vehicles and ride-sharing services'’. However, current
studies of material circularity (that is, the degree to which materials
are recirculated in the economy) are limited to the technical and
economic material efficiency potentials and do not account for con-
sumer behaviour'>'”. This assessment means that major changes in
the way CE is analysed need to be undertaken'>'®".

We help fill this gap by incorporating social considerations into
an exploration of the techno-economic, market and policy condi-
tions that may improve the material circularity of the dominant

S oaring global deployment of solar photovoltaics (PV) could

crystalline-silicon (c-Si) PV module technology. We applied an
agent-based model (ABM) to represent multiple actors involved
with the PV life cycle as well as social factors (attitude and peer
influence) that constrain CE strategies, and built a machine-learning
(ML) metamodel (that is, a model of a model) to conduct a global
sensitivity analysis. An ABM is well-suited to a study of the CE tran-
sition because it considers temporal aspects, adopts a systemic view,
accounts for human decisions and interactions between actors',
and exploits recent advances in behavioural economics and psy-
chology'®'**". ABMs are used to study CE scenarios in relation to
waste management’' >, but no previous model has included sec-
ondary market dynamics that underlie the reuse CE strategy. Many
ABM studies have addressed PV adoption', but the method has not
been used to investigate renewable technologies through EOL. By
integrating social considerations, we not only analyse the factors
that affect PV CE scenarios more comprehensively than previous
studies have, but we also explore types of CE interventions—such
as strengthening warranties for used PV modules and ‘seeding’ used
modules to encourage secondary-market development—that can-
not be assessed using techno-economic analysis alone. The result
is a fuller picture of the options available to promote PV circularity
and a fuller picture of the potential effectiveness of those options
separately and in combination. However, given the exploratory
nature of our work, the results should be viewed as estimates of how
CE principles could affect EOL management of PV modules in the
future, rather than robust predictions.

ABM of PV circularity

In our ABM, four types of agents (PV owners, installers, recy-
clers and manufacturers) and five EOL management options
(repair, reuse, recycling, landfilling and storage) are defined
(Supplementary Fig. 1), with a focus on CE strategies that have
been proposed by stakeholders as likely to contribute most to the
CE in the future”. Landfilling and storage are included because
those options are reported in the United States’>””. Two purchasing
options are also modelled: the purchase of new or of used PV mod-
ules. For each type of agent, behavioural rules are defined to model
the adoption of CE strategies. For instance, for PV owners, the ABM
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Fig. 1| Various interventions could improve material circularity in the PV sector. a-i, Landfill ban (a), high material recovery (96%) and US $18 per
module recycling costs (b), lower recycling costs (US $18 per module) (¢), higher landfill costs (US $2.75 per module) (d), improved learning (from 30
to 60yr in 2050) (e), improved learning effect (learning parameter=0.6) (f), reuse warranties (equal new/used attitude) (g), seeding reuse (5% of
population per year) (h) and baseline (i). Some interventions, which include improved warranties (g) and seeding used modules (h), particularly boost
module repair and reuse. Other interventions, such as lower initial recycling costs (¢) and higher landfill costs (d), boost recycling.

projects the cumulative amount of PV modules in use as well as
the waste generated at their EOL. Then, the PV owner agents make
decisions about whether to comply with a particular CE strategy
according to the theory of planned behaviour (TPB), which is one
of the most influential theories used to explain human behaviour"
and accounts for various factors that affect human decisions, such
as economics and peer influence. Details are presented in Methods
and Supplementary Table 1.

Our ABM simulates the current US conditions, although
changing several rules and other parameters would enable it to
simulate EOL decisions for PV modules anywhere in the world.
The European Union, where PV modules must be recycled at the
EOL based on waste electrical and electronic equipment (WEEE)
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regulations, is the most constrained region because only a few
pathways are allowed. The United States is projected to have the
second-largest amount of EOL modules by 2050°, and landfilling
is considerably cheaper than recycling®. In this challenging envi-
ronment for a PV CE, it is vital to identify the most effective and
cost-efficient strategies or combinations of strategies to improve
material circularity. To do so, we assessed not only the fraction of
EOL mass that avoids being landfilled (and stored), but also soci-
etal costs (that is, the net costs of manufacturers, recyclers and
installers) and recyclers and installers net revenue, because these
metrics are relevant to assuring the sustainability of the CE. The
dynamic factors considered include the PV module failure rate and
the learning effect for module recycling—that is, the decrease in
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Fig. 2 | The influence of recycling costs on the material recycling rate. a, In the baseline scenario, the volume of materials recycled (cumulative total in
2050) quickly increases with falling initial recycling costs until it reaches a plateau. Not accounting for economic factors (costs of recycling for PV owners)
and social factors (attitude and peer influence) misrepresents the effect of lower initial recycling costs on the volume of materials recycled. Recycling is
profitable (provides negative net costs, that is, recycling costs minus value of recovered materials) by 2050 for initial recycling costs of US $21 per module
or less (black dashed line). Shaded areas represent 95% confidence intervals, blue and red lines correspond to the left and right y axes, respectively. b,
Recycling costs (without accounting for the value of recovered materials) decrease with the amount of PV modules being recycled. Shaded areas represent
95% confidence intervals, blue and red lines correspond to the left and right y axes, respectively (see Supplementary Fig. 7 for a y axis in US$ kg™). ¢, High
initial subsidies (initial recycling costs of US $10 per module, yellow) boost recycling and help recyclers be profitable (due to the learning effect) more

quickly than low subsidies do (initial recycling costs of US $18 per module, green), which results in lower overall costs for the subsidy provider (US $16
million per year instead of US $56 million per year to reach a 40% recycling rate).

recycling costs with increasing recycled volumes due to factors such
as economies of scale and technological advancement®. Our ABM
is also stochastic to account for variability in some parameters, such
as landfill costs, and to enable advanced sensitivity and uncertainty
analysis (Supplementary Table 1). We ran 30 simulations for each
scenario from 2020 to 2050 and present the means in this article;
we selected the number of simulations based on a stability analysis
reported in Supplementary Fig. 2. The ABM differs from similar
waste-management models as it includes decisions related to the
demand and supply sides of reuse, accounts for technical factors,
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such as the recycling learning effect, and extends the reported met-
rics’*!. Our approach also differs from current literature on PV
EOL management in that behavioural aspects are captured to better
characterize the CE transition. We start by providing an overview
of CE scenarios, and show that many interventions besides regula-
tions could promote circularity (Fig. 1, Supplementary Table 2 and
Supplementary Figs. 3 and 4). In the subsequent sections, we fur-
ther explore several of the interventions from Fig. 1.

The baseline scenario reflects the current US conditions, cali-
brated to the available evidence (through iterations of full factorial
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Fig. 3 | The effect of the material recovery rate and initial recycling costs on material circularity and recyclers' net income. a, Cumulative materials from EOL
PV modules and recycler net income assuming the use of the FRELP process and an initial recycling cost of US $18 per module; in this scenario, the recycler
cumulative net income reaches US $1.6 billion and the net income is US $0.42 kg™ in 2050. b, Cumulative recovered material value in 2050 as a function of the
material recovery rate and initial recycling costs; high materials recovery and low initial recycling costs have a synergistic effect on value generation.

experiments, the unknown PV owners’ attitudes towards CE
behaviours were set to values that reproduced today’s low recy-
cling and reuse rates®*’). The baseline scenario also reproduces
projected cumulative PV capacity and EOL modules based on the
literature®. In this scenario, 500 GW of PV will be installed in the
United States between 2020 and 2050, which generate 9.1 Mt of
PV waste during the same period (Supplementary Fig. 5). The
average initial recycling costs are US $28 per module, the average
repair costs are US$65 per module, the used module prices are
36% of the new module prices on average and the average landfill
costs are US $1.38 per module (Supplementary Table 1). In this
scenario, most modules are landfilled (83%), with 1.2% reused
and 9.5% recycled (here, the percentages are mass fractions of the
total generated waste). Only 80% of a given module’s materials is
recovered through recycling in the baseline scenario, because the
assumed recycling process entails simple mechanical separation,
which recovers only the aluminium frame and glass sheets from
EOL modules’. Thus, the material recycling rate is 7.7%, equiva-
lent to 0.7 Mt cumulatively through to 2050 (Fig. 1i). In the fol-
lowing, we express all the EOL rates as the mass percentage of
materials and represent cumulative amounts in 2050 unless oth-
erwise specified. In this baseline scenario, recycling is not profit-
able in any year, even when the learning effect and the revenue
from recovered materials is accounted for, so PV owners must pay
a recycling fee (Supplementary Fig. 5).

Techno-economic interventions could improve PV materials cir-
cularity. Research and development in recycling technologies could
yield lower costs (Fig. 1c), better performance or both (Fig. 1b,f).
Research and development to improve module durability would
lower the amount of PV EOL materials generated (Fig. le). Market
interventions, such as better warranties for recovered modules
(Fig. 1g), higher landfill costs (Fig. 1d), ‘seeding’ of used modules
to encourage secondary market development (Fig. 1h) and exist-
ing regulatory policies, such as a landfill ban'' (Fig. 1a) could also
increase circularity. We also examined two existing business models
of PV module manufacturers: extended producer responsibility and
waste-generator responsibility (Supplementary Fig. 6). In Fig. 1,
the reuse of EOL PV modules is limited by customer willingness to
purchase used modules, which explains the circularity rate decline
around 2035 in some scenarios, as EOL PV modules move from
the reuse pathway to other EOL pathways. Although the simulations
start in 2020, the generation of EOL PV modules is assumed to start
from modules installed in 2000.
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Effect of lower recycling costs on the recycling rate

One barrier to recycling EOL PV modules is the lack of profitabil-
ity'"****. Module materials are difficult to separate and, for the most
part, have low values®. For example, silver accounts for half of the
material value but represents less than 1% of the module mass’.
Thus, recycling costs are not offset by revenues from recovered
materials in the current simple mechanical processes of glass and
metal recyclers in the United States, which leads to recycling fees
of US $25-30 per module that PV owners or installers must bear in
the absence of enhanced product responsibility or take-back pro-
grammes™. Some states, such as Maryland and Washington, have
proposed tax incentives to overcome this issue’-*.

Figure 2a (blue line with circles) shows the effect of varying the
initial (year 1) recycling costs in the ABM. The percentage of recy-
cled EOL modules increases steeply with the falling initial recycling
costs before it plateaus and reaches 73% recovery at zero cost. The
plateau is due to several factors: part of the materials from recycled
modules is still landfilled (for example, silicon), for some PV own-
ers storage costs are null, so storage competes with free recycling
and some cliques of agents reinforce each other into non-recycling
behaviours through peer influence (these agents are tightly con-
nected in the social network and therefore strongly influence each
other’s decisions). Owing to the learning effect (Fig. 2b), recycling
is profitable by 2050 for each value of the initial recycling costs
below US$21 per module (Fig. 2a, red line with circle markers).
With the current PV installed capacity and volumes of EOL mod-
ules, module recycling can still be considered in its infancy, and
the learning effect will probably drive recycling costs down during
2020-2050. For instance, at an initial recycling cost of US$18 per
module (similar to the processing costs of high-recovery mechani-
cal processes reported in the literature™) instead of US$28 per
module in the baseline scenario, the recycling rate increases from
7.7 to 44% (or 4.0 Mt) in 2050 (Fig. 1 and Supplementary Fig. 3).
With the learning effect, this initial recycling cost enables recy-
cling to be profitable by 2050 with a net income of US $0.09kg™.
The material recycling rate is also higher when recycling pro-
cesses recover more materials, for example, with the full-recovery
end-of-life photovoltaic (FRELP) process. In this process, 94% of
the silver and 97% of the silicon in c-Si PV modules are recov-
ered”, which greatly enhances the value of the recovered materials
(Fig. 3a, blue lines, and Supplementary Fig. 4).

When costs alone are included in the model, the recycling rate is
always null as long as recycling is more expensive than landfilling
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(that is, when the initial recycling costs are above US $3 per mod-
ule)—see the ‘No social factors’ line in Fig. 2a. However, when social
factors that influence the PV owner decisions, such as peer influ-
ence and attitude towards recycling, are included, the recycling rate
increases with falling recycling costs. When social factors alone are
included (the ‘No costs factors’ line in Fig. 2a), the recycling rate
is overestimated or underestimated. These results demonstrate the
relevance of accounting for social aspects in the techno-economic
analysis, because they may explain how and why a technology or
behaviour is adopted. In our case study, the positive effect of social
factors on circularity when the initial recycling costs are high shows
the potential importance of nurturing early adopters of recycling
behaviours who create a trend for other PV owners to follow.

One strategy to increase recycling is to provide a subsidy until
the recycling rate target is achieved. Our simulations indicate that a
larger initial subsidy can be less costly than a smaller subsidy, because
it engages more PV owners to recycle earlier (Fig. 2c). Moreover, the
learning effect supports recycling behaviours by lowering costs fur-
ther, which leads to more PV owners adopting the recycling path-
way. Overall, if the stream of EOL modules that reaches recyclers
keeps increasing (which is likely), the learning effect could spur
profitable recycling without subsidies. In our simulations, a 20%
recycling target can be reached earlier with an US$18 per module
subsidy (12 years) than with a US $10 per module subsidy (18 years),
which limits the period over which subsidies must be provided. The
simulations show that a yearly recycled volume above 15,000t of
EOL modules could make recycling profitable owing to the learning
effect, a threshold value in line with the literature®. High subsidies
to encourage recycling and exploit the learning effect are a relevant
strategy, but the results depend strongly on the presence of a suf-
ficient learning effect. Thus, a subsidy programme could benefit
from establishing performance targets that verify the continuous
improvement of recycling processes, which ensures that recycling
costs do not return to original levels once subsidies stop.

Economic benefits of a higher material recovery

Recycling profitability could be increased through research and
development in technologies that enable the recovery of more
valuable materials—such as silver, copper and silicon—from EOL
modules. High-recovery mechanical processes can enable a higher
material recovery, up to 97% of the total mass using the FRELP
process®; however, in contrast with thermal recycling processes,
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such mechanical processes typically recover lower-quality mate-
rials with less value and usefulness than they had in the original
module’. Figure 3a shows shares of modules in each EOL pathway
and recycler net income assuming materials recovery fractions
from the FRELP process® and an initial recycling cost of US$18
per module”. FRELP recovers 20% more materials per module
than that in the baseline scenario and substantially increases the
recovered material value owing to the silver and silicon recovery
(Supplementary Table 1). This economic benefit is likely to weaken
in the future, however, as innovation causes silver and silicon to
constitute progressively smaller mass fractions in c-Si PV modules®;
our analysis does not consider this trend because of the high associ-
ated uncertainty.

Recycler cumulative net income in 2050 increases from US $296
million in the simple mechanical process scenario to US$1.6 bil-
lion in the FRELP scenario. Moreover, recycling becomes profitable
earlier (2032 instead of 2037), with recycler net income reaching
US $0.42kg™ in 2050 (the dip in recycler net income in Fig. 3a (blue
lines) is due to initially unprofitable recycling). Figure 3b shows the
synergistic effect on the recovered material value of lower initial
recycling costs (which spur recycling among PV owners) and higher
total material recovery fractions. For instance, at an initial recycling
cost of US$16 per module, a 13% increase from an 80% material
recovery fraction roughly doubles the recovered material value. The
synergy between the two factors diminishes as the initial recycling
costs are very high or very low. Our simulations also show that some
EOL modules are stored for a short period, which leads to the small,
relatively constant share of stored modules in Fig. 3a (purple wedge)
as PV owners and installers wait for cheaper and more accessible
recycling options or the accumulation of quantities that are more
economical to ship and recycle®.

Strategies to improve PV module reuse

Improved warranties for used modules could promote secondary
markets''. The reuse rate increases from 1.2 to 23% (by 2.1 Mt)
when it is assumed that warranties give PV owners an equiva-
lent attitude towards used and new modules (Figs. 1g and 4a).
However, this assumption also decreases the recycling rate from
7.7% to less than 1%. Figure 4b shows that a 23% reuse rate (that is,
the result from Fig. 4a) only covers a small portion of projected PV
demand. Even with an ambitious 89% reuse rate—set by removing
all the constraints to reuse except that modules can only be reused
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once in the ABM—only one-third of PV demand is met with used
modules, which highlights the reuse strategy’s limitation. This result
is explained by the projected growth of PV demand and the imper-
fect substitution of used modules for new modules (due to a lower
power efficiency and lifetime*) (see Supplementary Table 1). Once
reused, modules still must be managed at the end of their second
life, so developing other circular pathways, such as recycling or life-
time extension, is critical.

In practice, improved warranties may be insufficient to improve
PV owner attitudes towards used modules, because other factors,
such as safety concerns or aesthetic preferences, may intervene.
Thus, other strategies to promote secondary markets should be con-
sidered. For instance, short-term ‘seeding’—providing free modules
and installation to some PV owners—has proved to be an effective
strategy” that could develop secondary markets for PV through
the peer effect (Fig. 1h). Such a seeding strategy applied to 5.0% of
PV owners (that is, at least 5.0% of PV owners have used modules
each year) enhances the reuse rate from 1.2 to 6.9% but lowers the
recycling rate from 7.7 to 4.8% (Fig. 1 and Supplementary Fig. 3).
A similar strategy, in which 10% of PV owners pay a lower initial
recycling fee (US$18 per module), increases the material recycling
rate to 21% (Supplementary Fig. 8).

Sensitivity analysis and combined interventions
We used a ML metamodel of the ABM to conduct a variance-based
sensitivity analysis and explore the ABM parameter space at a higher
speed. In this approach, the ABM is used to generate both the train-
ing and cross-validation data of the ML metamodel, whereas the
latter provides expected outputs of the ABM for a given parameter
combination. Figure 5 presents the first- and total-order Sobol indi-
ces (which measure the main effects and interaction effects, respec-
tively) for some parameters that underlie the techno-economic and
social interventions presented thus far. Initial recycling costs, landfill
costs and the learning effect are most important to the module circu-
larity rate, with contributions of 48, 33 and 4% to the total variance in
results, respectively (Supplementary Table 3). The attitude towards
used modules has a smaller but notable effect. Although some
parameters present higher-order effects, the parameters rank simi-
larly. However, the rankings change when examining output metrics
other than the material circularity rate, such as the reuse rate or soci-
etal costs (Supplementary Table 3 and Supplementary Figs. 9-11).
Finally, notable second-order interactions exist between the initial
recycling costs and other parameters (Supplementary Table 4).
Figure 6 presents the interaction effects between the initial
recycling costs and four other parameters: landfill cost, attitude
towards used modules, learning parameter and number of recycling
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facilities. Increments of the landfill cost and learning parameter
boost the effect of decreasing the initial recycling costs on the mate-
rial circularity (Figs. 6a,c, respectively). For instance, with initial
recycling costs of US$10 per module, raising the landfill cost from
US $1.38 to 2.76 per module increases the material circularity rate
from about 60 to 70% (Fig. 6a). As the reuse and recycling pathways
compete, combining a more positive attitude towards used modules
with lower recycling costs does not enhance the volume of PV mate-
rials diverted from landfills and storage (Fig. 6b). Transportation
costs are negligible compared with recycling costs, so having fewer
facilities increases the material circularity rate slightly owing to an
enhanced learning effect (Fig. 6d). Finally, as with the sensitivity
indices (Fig. 5), the results are different when examining other out-
put metrics (Supplementary Figs. 12 and 13).

Figure 6 also highlights that different intervention combinations
may yield the same results (that is, equifinality). For instance, initial
recycling costs of US $18 per module combined with landfill costs of
US $2 per module yield a 45% circularity rate, as do initial recycling
costs of US$13 per module combined with 48 recycling facilities.
Using the ML metamodel, we designed an experiment to identify
the parameter combinations that maximize the circularity rate
while minimizing societal costs (Supplementary Table 5). Overall,
combining low recycling costs, high landfill costs and a high learn-
ing effect yields the best result in the ABM, which suggests that
combining interventions might be the most promising strategy to
increase PV circularity at the lowest costs.

Discussion

Our results should be understood as estimates of how applying CE
principles could affect the EOL management of PV modules, and
not as robust predictions. The ABM uses various sources as inputs,
which include some outside the PV sector (for example, electronic
waste literature) owing to the limited availability of primary data.
For instance, the initial recycling and reuse rates are dated to 2016,
and more recent estimates could yield slightly different results.
Moreover, as some data variability is unknown, we approximate
it using probability distributions, which adds uncertainty to the
results (Supplementary Table 1). In practice, there are regional geo-
political and demographic differences, which could lead to vari-
ous degrees of adoption of CE practices. Although we use the TPB
to better represent human decisions related to EOL management,
factors not included in the theory may affect stakeholder deci-
sions. The parameters of the TPB model were also taken from a
meta-analysis on recycling behaviours, which may not directly apply
to the PV context (Supplementary Table 6). In addition, we sim-
plify stakeholders as constituting four broad categories (PV owners,
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Fig. 6 | Fractions of PV module materials in circular pathways in 2050 as a function of the initial recycling costs. a-d, Landfill costs (a), attitude towards
used modules (b), learning effect parameter (¢) and number of recycling facilities (d).

installers, recyclers and manufacturers); in the real world, the deci-
sions of intermediary actors (for example, brokers and insurers)
may also affect PV circularity.

We limited the number of PV owner agents to one thousand,
whereas more than one million real-world PV systems are in the
United States™. Moreover, PV owners are not geographically char-
acterized, albeit related through a social network. Although we use
distributions to represent some geographical disparity, we distribute
total installed PV capacity evenly between agents. Combining this
ABM with a distributed PV model with a better spatial resolution,
such as the National Renewable Energy Laboratory’s Distributed
Generation Market Demand model, could yield useful insights
(for example, regarding geopolitical and demographic regional
differences)”.

Our study yields several implications for PV circularity. First,
our results suggest that CE strategies compete, in line with the lit-
erature®. Thus, CE programmes should be based on the adoption
rates for all circular pathways rather than focus on one CE strat-
egy. Second, for reuse to be effective, the used product supply must
match demand, and therefore secondary markets must be mature®.
For example, only when PV owner attitudes towards used modules
improve (for example, through warranties) does demand grow and
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start to substantially absorb used module supplies. Improving reuse
is critical from an energy perspective, because recycling destroys
most of the embedded energy of products'>''. However, owing to the
growing PV demand as well as the lower efficiency and lifetime of
used modules, even a 100% reuse rate could not satisfy PV demand,
so recycling must be developed in concert with reuse initiatives.

Our results also highlight the critical roles of the total recovery
fraction of materials and the learning effect to achieve profitable
recycling (Fig. 1b,f, respectively), in line with existing literature®.
Interestingly, the storage pathway acts as a buffer, which provides
time for recycling processes to become more economical and ulti-
mately diverts some modules from landfills (Fig. 3a, purple wedge).
This result suggests that encouraging recycling may be particularly
critical where storage space is more limited (for example, Japan).

Exploiting the ABM approach, we extended the traditional
techno-economic analysis to include social factors, such as con-
formity to peers and general attitude towards a specific behaviour.
Accounting for attitude is especially relevant for PV, because house-
holds and businesses may be inclined to environmental protection
and thus recycling*. Our ABM can also be used to study inter-
connections and dynamics among different factors, as suggested by
Lapko et al.*.
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Our results confirm the importance of factors such as the learn-
ing effect, research and development to reduce recycling costs,
and public engagement™. Interestingly, the importance of the fac-
tors changes with the focus on different output metrics. The atti-
tude towards used PV modules, for instance, seems less important
considering the overall material circularity rate because the num-
ber of reused modules is low compared with the number of overall
modules. However, this factor is the most influential regarding the
overall societal cost because reuse retains more value within the
economy than material recovery through recycling. Thus, ignoring
social factors (such as attitude) may misrepresent the efficacy of CE
interventions.

Although there are currently no manufacturers of silicon wafers
in the United States*, recycling modules in a facility near the manu-
facturing line is a competitive advantage, because it makes manufac-
turing more resilient to supply restrictions and potentially facilitates
the recycling of manufacturing waste, such as silicon kerf. Recycling
manufacturing waste is critical to improve the circularity, because
scrap materials are less contaminated and have compositions that
are better known, compared with those of postconsumer materi-
als*. Such a strategy is already used by First Solar, a cadmium-tel-
luride PV module manufacturer (Supplementary Fig. 6). The results
also show that a landfill ban, such as the one in Washington State®’,
could increase PV circularity substantially (Fig. la). However,
legislation alone may be insufficient. Current European legisla-
tion, for instance, encourages mass recycling, but not necessarily
high-quality multimaterials recycling.

Finally, our results show that high subsidies for a few years could
be among the most efficient solutions to encourage recycling. In
contrast with Deng et al., who found that landfill costs have the
most potent effect, followed by recycling costs, we found that the
initial recycling costs have the most substantial effect, followed by
landfill costs™. This difference may occur for different reasons, for
instance, because of different data used in the analysis or because
the proposed model includes social factors, which impact recy-
cling and purchasing behaviours and, thus, the results. Moreover,
when looking at output metrics other than the material circularity
rate, the ranking of the most influential factors changes (Fig. 5 and
Supplementary Figs. 12 and 13).

In summary, this work highlights the importance of considering
social factors in future CE studies. When such factors are ignored,
the results may be overestimated or underestimated as they may
not represent what happens in the real world. Moreover, the key to
improve PV material circularity and retain maximum value in the
economy may be in social interventions that aim to improve cus-
tomer attitudes towards used PV modules (for example, with better
certifications and warranties). Could it be possible to have a sec-
ondary market for used PV as strong as the market for used cars*?
In future work, the ABM could be used to study other scenarios,
such as the effect of public information campaigns on recycling
rates. Moreover, although a design-related intervention is briefly
presented (Fig. le), more scenarios related to the design stage, such
as modules with different backsheet materials*, could be explored.
This approach, combining ABM and ML, could also be developed
further to study the circularity of other technologies, such as con-
sumer electronics, or to include environmental considerations.

Methods

Overview. Our ABM represents the main actors of the US PV sector that are
involved in the transition to a more circular PV industry. Its objective is to find

the techno-economic and social conditions that improve materials circularity for
EOL PV modules. The ABM’s primary outputs are the mass volumes of modules
that reach each EOL pathway (that is, amounts that are reused, repaired, recycled,
landfilled or stored), the net revenue and cost for each CE actor, the value from
recovered materials and the number of years it takes to reach a specific objective.
The overview, design concepts and details protocol is used to describe the ABM in
this section”, followed by details on the ML approach used to build a metamodel of
the ABM and the sensitivity analysis method.

920

The purpose of the ABM is to study the implementation of CE strategies
within the PV industry and identify the conditions that improve circularity. Four
types of agents are defined: PV owners, installers, recyclers and manufacturers.
Agents of a specific type behave similarly, but have heterogeneous characteristics
represented by probability distributions (for example, recyclers may have
different recycling costs). Agents are related to each other according to a social
network that represents the real-world relationships among the CE actors. In
the simulation, a time step represents a year. The start of the simulation is 2020,
with 30 time steps chosen because many installations will reach their EOL
around 2050°.

The ABM builds on several existing models (referred as submodels in
Supplementary Table 1). At each time step, the submodels are used in coordination
to generate the output metrics. The ABM starts by modelling the cumulative
amount of PV modules in use (that is, the stocks), following an approach from
the literature®. Then, the amount of EOL PV modules is computed from a model
and data from the same source’. We apply another submodel to represent how
agents make decisions regarding a particular CE strategy. The modelled CE
strategies include repair, reuse (of a repaired and/or refurbished product) and
recycle, and the two other options landfill and storage. Agent decisions are based
on techno-economic factors—which include technical feasibility, such as whether
the modules can be repaired, and costs, such as landfill costs—and market factors
(such as attitudes and social norms). The parameters used in this submodel were
taken from meta-analyses on recycling and purchasing behaviours, in which it was
reported that consumers influence each other’s behaviours in addition to being
influenced by behaviours costs**.

To compute the material circularity and the societal costs (that is, net costs
of manufacturers, recyclers and installers), the ABM uses a submodel of PV
module efficiency growth®, the mass fraction of material in the modules®, the
different recycling processes’ material recovery fractions*> and prices of virgin
and scrap materials. The recycler learning effect also uses a model and data from
the literature”. Another submodel estimates the transportation costs related to
the different EOL pathways (Supplementary Table 1 and Supplementary Fig. 14).
The resulting volumes of repaired, reused, recycled, landfilled and stored change
with each time step of the simulation. Supplementary Fig. 1 presents an overview
of the model, Supplementary Table 1 and the sections below provide more
methodological details.

Design concept. The ABM is designed in a modular fashion to ensure it can

be used for different case studies; different types of agents may be defined and
easily added to the model. Each agent type is defined as a Python module. In
these modules, agent types are defined as Python classes, and it follows that each
agent is an instance of the class of its type. A Python model module contains

all the user-defined inputs, activates the agents and collects the outputs of the
simulation. This modular structure is per the Mesa Python package®'. This
package is used to facilitate the activation of the agents and set up batch runs

of simulations. The NetworkX Python package is also used to build the social
networks relating the agents™.

Interactions between actors of the CE are captured at several levels in the ABM
(that is, within agents of the same type and between agent types). First, because
interactions between PV owners may influence their decisions regarding EOL
management”>**, they are accounted for in the model. Second, information flows
between agents of different types. For instance, PV owners have access to recyclers’
recycling costs, and installers access the amount of PV modules being sold by PV
owners. As another example, manufacturers know the amounts of materials being
recovered by recyclers and compute the economic benefits of using those materials
rather than virgin materials.

The model also contains several stochastic elements. First, the Watts—Strogatz
algorithm, which is widely used to build small-world networks, requires us to
rewire each edge of a regular graph with a certain probability*>****. Small-world
networks are recognized as representing many real-world networks, which include
social networks™~"". Second, some of the agents’ characteristics are drawn from
probability distributions to model their variability or uncertainty (for example,
recycling or landfill costs may be different across the United States). Finally, the
system’s overall behaviour emerges from the agents’ interactions and decisions
during the simulation.

Details. At the beginning of the simulation, the network of agents is created. The
stocks of PV modules from 2000 to 2020 are reported in the ABM and divided
among PV owner agents. We chose stocks from 2000 to 2020 to account for the
existing installed capacity, assuming that, before 2000, the cumulative installed
capacity was negligible. From there, several submodels are used to represent
various dynamics of the hypothetical circular PV sector.

The environment of the ABM is the United States. Various interventions
may be enacted in the environment to see their effects. For instance, scenarios
that study the implementation of a tax or a ban may be modelled as part of the
environment agents that evolve within.

Moreover, agents’ interactions are dependent on a social network that
represents the real-world relationships between the PV industry actors
(Supplementary Table 1 and Supplementary Fig. 15). In contrast with aggregated
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models, the ABM enables the modelling of different social network structures
and provides insights into the social network role in the overall behaviour of

the system™. Different network structures are adapted to different real-world
situations. For instance, a fully connected network is more adapted to describing
small groups and tight communities. For sociotechnical systems, such as the
power grid or cities, the small-world or scale-free networks are more realistic™**.
In the ABM, a small-world network is drawn using a rewiring probability and
the average number of neighbours of 0.1 and 10, respectively. These parameters
are close to those of other works and real-world networks such as email
communications™*,

Owing to computational limitations, the number of PV owners was restricted
to 1,000 agents. Although it limits the representativeness of the ABM, this number
of agents enables the capture of network effects and the existing variability of PV
owners (for example, regarding landfill costs across the United States or attitudes
towards CE pathways). The PV owners make two decisions: to purchase a new or
a used product, and to manage the EOL of their products (Supplementary Table 1
and Supplementary Fig. 16).

Several processes also occur in the PV owners’ module. First, the amount of
product purchased each year is determined according to a piecewise function,
following previous work’, and thus similar results for the projected installed
capacity are obtained, although we only consider US ¢-Si PV modules. Values
for the model’s parameters can be found in Supplementary Information,
Supplementary Tables 1, 7 and 8. Still following the literature, the efficiency growth
of PV modules is accounted for with an exponential function’. Next, a Weibull
function (from which the parameters are based on empirical data’) is used to
generate the amount of PV modules of agent i that reaches EOL at time £, ELPV!
(equation (1)):

ELPV! = 3" RPA! x (1 - e—“/T)”) (1)
t

In the equation, T is the average lifetime of the PV modules, a the shape
factor (which controls the typical S shape of the Weibull curve) and RPA! is the
remaining amount of PV modules installed by agent i at time step . The Weibull
function is appropriate to model the PV waste generation®.

The TPB™ is used to model the PV owners’ decisions to purchase used or new
modules and the EOL management of these modules. The TPB stipulates that
human behaviours are influenced by the attitude A individuals hold towards the
behaviour (that is, how the behaviour is perceived as favourable or unfavourable),
the subjective norm SN, which refers to the perceived social pressure to perform
or not perform the behaviour and the perceived behavioural control (PBC), which
relates to the perceived ease or difficulty of performing the behaviour (equation

(2)):
Bl = WAA + WSNSN + WPBCpBC (2)

In the equation, BI is the intention to perform the behaviour, and w,, wgy
and wypy are the weights of each factor in the overall decision. The TPB is often
used in ABMs of sociotechnical systems because it explains the process of
individual decision making straightforwardly*'**** and has been applied in many
waste-management ABMs”"*>**. The theory explains consumers’ decisions**' as
well as decisions within companies'***=**, In our ABM, a score is attributed to each
EOL pathway according to the TPB. The attitude level of each agent regarding the
CE pathways (repairing, reusing and recycling) is normally distributed between
0 (negative attitude) and 1 (positive attitude). The attitude level towards linear
pathways (landfilling and storing) is simply assumed to be one minus the attitude
held for CE pathways. Although this distribution of agents is rather simple when
compared with that in the literature?!, it is deemed sufficient for this exploratory
analysis. As the parameters of the truncated normal distribution were unknown,
they were calibrated. Thus, an iterative process was undertaken to find the values
that reproduce low recycling® and reuse® rates, as they represent today’s situation.
The second element of the TPB, the subjective norm SNfP of agent i and pathway p
at t, is defined as per equation (3):

Path!
np

Spr =X N (3)

with Path!, being 1 if agent i’s neighbour n has selected path p and zero otherwise,
and N being the total number of neighbours of agent i. Thus, the subjective norm
takes values between zero (no peer pressure) and one (maximum peer pressure).
In the ABM, although neighbours designate nodes that share an edge in the
small-world network, they may represent various relationships among PV owners
in the real world (for example, friends, family, co-workers and actual neighbours).
The third element of the TPB, the perceived behavioural control (that is, the
perceived economic or cognitive ability to perform the behaviour), PBCﬁP of agent i
and pathway p at t is given by equation (4):

" Cost;P
PBCj, = —max | 0; ——~—~ (4)

5
\max{LostfPVp} |
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where Costﬁp is the cost of choosing the pathway p at ¢ for agent i. Finally, the
behavioural intention BIﬁp of agent i for pathway p at ¢ is defined by equation (5):

B, = waAl, + wsxSN, + wescPBC!, (5)

In equation (5), the values for the attitude, subjective norms and perceived
behavioural control factor coefficients (w,, wgy and wpy, respectively) are taken
from an existing meta-analysis on factors that affect EOL management decisions*.
Given the high uncertainty of the coefficients’ values (Supplementary Table 9), the
agents could behave differently than described in this work. Supplementary Table 6
shows the results of a sensitivity analysis on the TPB’s coefficients. Alternatively,
the coefficients’ values could be calibrated (however, the lack of empirical data on
current and projected PV EOL management prevents us from conducting such
extensive calibration). The agent then selects the EOL pathway with the highest
score (and the amount of EOL modules ELPV? is recorded as following the selected
pathway for further use by other agents and the output metrics).

The TPB is also used to model the purchase decision, similar to how the EOL
decision is modelled. Two options are represented in this ABM, the purchase
of a new or of a used module. Another meta-analysis is used to determine the
TPB coefficient values for the purchase decision”. The TPB may be interpreted
in terms of material efficiency potentials. If one defines w, and wgy to be 0, the
techno-economic potentials of the recycling, repairing and reusing CE strategies
may be studied on their own. Otherwise, the social factors of the model (the
subjective norm and attitude) may be added, which enables study of the achievable
(or market) potential of material efficiency.

Installers are the second type of agent (Supplementary Table 1 and
Supplementary Fig. 17). In the PV sector, installers may be in charge of collecting
the EOL PV modules and eventually sorting them before selling them on the
secondary market® (Supplementary Information, Supplementary Table 1 and
Supplementary Fig. 18). They may also repair failed modules if PV owners opt for
that EOL pathway. If there is insufficient demand for used modules or if they are
too damaged or cost too much to be repaired (equations (6) and (7)), installers
send them to a recycler or landfill, or they store them (for a limited period defined
in Supplementary Table 1) until another decision is made depending on the
cheapest decision at the time of the simulation (using equation (4)). Although
installers’ repairing costs may decrease due to the learning effect, it is assumed that
handling used PV modules bears the same repair costs (whether the modules are
repaired directly for PV owners or sold as used products), regardless of the possible
damage to the EOL modules:

VJ? = %‘lm for iand k such that RC} < RP; and RC} < RP; 6)

Vjif 3 Vi < 3 DU; for i such that PU] = 1
RA)’ = J ! 7)
0 otherwise

In the equations, Vjf is the volume of modules available for sale on the
secondary market by installer j. Next, RR is the module repair rate, V} and V} are
the volume of modules that flow from the PV owner i and recycler k at time ¢,
respectively, RC! and RC}, are the repair costs of modules from PV owner i and
recycler k at time £, respectively, and RP! is the price at which agent j is selling
the used modules on the secondary market at time ¢. Finally, RA! is the amount
of used modules handled by installer j that is sold on the secondary market at
time t; it depends on the demand for used modules from PV owners (Z DU:).

In equation (7), PU! is a Boolean that is one when the PV owner i has decided to
purchase a used module at time ¢ and zero otherwise. Installers also improve their
repair processes owing to the learning effect, and thus decrease repair costs. The
learning effect can be characterized by several mechanisms, such as technology
advancement, increased labour productivity, economies of scale and improved
material and energy efficiency’. As the volume of EOL PV modules dealt with

by an installer increases, at least three of these mechanisms may apply: increased
labour productivity, economies of scale and energy efficiency. In the ABM, the
learning effect is modelled as a function of the repaired volume, following the
literature®.

Recycler agents are similar to installers in two ways. First, they may take on the
responsibility of sorting EOL PV modules that can be sold on secondary markets
(with those modules then flowing to installers); this behaviour was assessed via
interviews with a US recycler (RecyclePV, personal communication). Second,
recyclers improve their recycling processes in the model, which simulates the
learning effect (Supplementary Table 1 and Supplementary Fig. 19). Another
recycler role is to recover materials from EOL PV modules. In the ABM, this is
simply modelled from the material recovery rates of a given recycling process (for
example, simple mechanical processes or the FRELP process™), the fractions of
materials that constitute PV modules and the volume of modules being recycled. In
the ABM, PV owners pay a fee to recycle EOL PV modules, whereas manufacturers
buy recycled materials at market prices. With the current US recycling processes,
revenue from the recovered materials is insufficient to cover recycling costs®.
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Manufacturer agents purchase recovered materials from recyclers
(Supplementary Table 1 and Fig. 20). The avoided costs from using recovered
rather than virgin materials can be computed within the model based on their
respective values. For instance, the price of aluminium scrap is often about 60%
of the price of virgin aluminium®, which brings profits for manufacturers that
use aluminium. The model does not consider price fluctuation, given the price
volatility of materials such as silicon and silver.

We applied four validation techniques to ensure the quality of the results
produced by the model: theory validation, data validation, model output validation
and face validation®. First, regarding theory validation, only empirically validated
models were used (for example, TPB). Next, for the baseline scenario, empirical
data were mostly used; when parameters were unknown, they were calibrated>>**°.
Given that several parameter combinations could lead to the same results (that
is, equifinality), we further analysed the impact of different values for the two
calibrated parameters (that is, the attitude values for the purchase of second-hand
PV modules and EOL management) on the results (Supplementary Fig. 21). Then,
the cumulative installed capacity and the mass of EOL PV modules generated
during the 2020 to 2050 period were validated with the literature® (Supplementary
Fig. 5). Finally, the results of the ABM went through an internal revision process
with ABM and PV experts to ensure the model was behaving in a meaningful way,
and extreme scenarios were also studied (Supplementary Table 10).

Multilayer perceptron regressor metamodel and sensitivity analysis. The
combination of ABM and ML has recently gained attention owing to the
complementarity of the two approaches®. These methods can be combined in
two ways: ML can generate agent behavioural rules from data®, and an ABM can
be explored in depth (that is, varying the ABM inputs to examine a wide range
of possible outputs) by building a ML metamodel that avoids computationally
intensive simulations and saves time™. The exploratory nature of this work meant
we used the second approach in this study. Following Vahdati et al., we built a
ML metamodel of the ABM described above”. Using the Scikit-learn Python
library”', we constructed different ML models using different combinations of
hyperparameters. In our study, all the features (input data) and output data are
known in the dataset generated by the ABM; thus, a supervised ML is used.

In this study, the training dataset is generated with the ABM. To produce
the dataset that best represents the behaviour space of our model while limiting
the required number of simulations, we used a quasi-Monte Carlo approach.
First, we defined the range of each parameter to vary in the quasi-Monte Carlo
simulations. For some parameters, it is merely their minimum and maximum
possible values (for example, for ratios). For parameters without theoretical
bounds, realistic ranges were defined according to the literature. For landfill
costs, for instance, the minimum value was set to zero and the maximum value
was set to twice the average value of the baseline scenario; it seems unrealistic
that landfill costs could be higher than that based on current trends”. A similar
logic was applied to other parameters (Supplementary Table 5). Next, the
method from Saltelli was used to generate the Sobol sequences of parameter
value combinations’. Sobol sequences aim to approximate the model’s behaviour
within the parameter space by attempting to cover as much of the parameter
space as possible as quickly (with the fewest samples) as possible. This is one
of the highest-performing methods (for example, compared with the Latin
hypercube design) regarding the quality of results obtained as a function of
computational time, and it is often used to build metamodels™,”*. Thus, using the
SALib Python library”™, 2,800 parameter value combinations were generated, to
which we added the baseline parameter value combination as well as variants of
the baseline, varying each parameter to its lower and upper bound (to include
extreme cases in our dataset). In total, 2,810 parameter value combinations were
run 6 times (this number of replicates was found sufficient to account for the
model’s stochasticity, based on a stability analysis reported in Supplementary
Fig. 22), which amounted to 16,860 simulations.

Next, we iterated a tenfold cross-validation, varying the ML algorithm, its
hyperparameters and the output metric considered in the dataset. We kept the
multilayer perceptron regressor algorithm, which yields a good compromise
between computation time and a high coefficient of determination in all the
output metrics (Supplementary Table 11). Once trained, the metamodel was used
to predict the outputs of parameter value combinations not run with the ABM.
The SALIb library was finally used to conduct a variance-based (Sobol) sensitivity
analysis and thus measure the variability of model outputs that can be accounted
for by changes in the model inputs. We used the Sobol method because of its
ability to evaluate interaction effects and the low risk that dependencies exist
between the parameters of our ABM. Moreover, we compared the results from
the variance-based sensitivity analysis with results from a moment-independent
sensitivity analysis to confirm the rankings of the parameters (Supplementary
Table 3). The use of the ML metamodel means results from Figs. 3b, 5 and 6,
Supplementary Tables 3-5 and Supplementary Figs. 9-13 are approximations of the
ABM’s results.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its Supplementary Information.
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Code availability
The source code for the model developed in this study can be accessed at https://
github.com/NREL/ABSiCE.
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