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Home storage systems play animportant role in the integration of
residential photovoltaic systems and have recently experienced strong
market growth worldwide. However, standardized methods for quantifying
capacity fade during field operation are lacking, and therefore the European
batteries regulation demands the development of reliable and transparent

state of health estimations. Here we present real-world data from 21
privately operated lithium-ion systems in Germany, based on up to 8 years
of high-resolution field measurements. We develop a scalable capacity
estimation method based on the operational data and validate it through
regular field capacity tests. The results show that systems lose about two
to three percentage points of usable capacity per year on average. Our
contributionincludes the publication of an impactful dataset comprising
approximately 106 system years, 14 billion data points and 146 gigabytes,
aiming to address the shortage of public datasets in this field.

The market for home storage systems has been growing strongly over
the past years'. To make the investment of around 10,000 € per system*
more appealing, manufacturers give warranty periods of 10 years. How-
ever, theindustry lacks standardized state of health (SOH) evaluations?,
and customers have to rely on the given values of battery management
systems (BMSs), which have unknown calculation schemes? and inac-
curacies’. To establish transparency, the batteries regulation of the
European Union requires reliable and transparent SOH estimations®*.
Therefore, methods to determine the SOH of battery storage systems
infield operation are urgently needed.

In the laboratory, methods to determine the SOH are defined
to a large extent. Laboratory measurements are based on moni-
toring individual cells in a controlled environment, which are aged

by either cycling®* or storing them®*'>'° at specific conditions. The

ageing within these tests is tracked via regular capacity measure-
ments, and results vary depending on the investigated chemistry and
testing conditions”. However, these tests are time-consuming’®, and
real-world operation is always subject to unpredictable changes™,
which is why simulations of field operation are applied in the
laboratory**%,

Field capacity tests can be found for grid storage®**, photovol-
taic (PV) integration'**”, telecommunication and electric vehicles
(EVs)*?°. While most of these use on-site capacity tests to monitor
battery ageing'***~2%%%, others remove the battery for laboratory meas-
urements**?? Such capacity tests require a certain system downtime,
leading to increasing work time and decreasing revenue.
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Table 1| Aggregated overview of the measured HSSs

Nomenclature Nominal Inverter Nominal Numberof Aggregated
and chemistry energy power voltage systems number of
inkWh  inkW inV of one systems
product
‘Smallyyo’ of ‘Siwe’ 2.2 2 1467 6 6
with LMO/NMC
blend battery
('LMO)
8.6 25 504 1
. 8.7 3 481 2
‘Mediumyyc’ or
‘Mye' WithNMC 8.8 3 46.8 2 7
batt
attery 98 5 518 1
1.5 25 50.4 1
8.1 3 51.2 4
‘Medium,g,’ or 9.2 33 46 2
‘M’ With LFP 8
batteries 10.0 3 512 1
13.8 35 46 1

About 106 system years represented by 14 billion data points totalling 146 GB were analysed.

Operational data analysis is a promising way to overcome the
shortcomings of conducted field capacity tests***, The capacity-based
SOH estimation is widely used to track the decreasing capacity’. Cou-
lomb counting is an established approach for this but comes with
several challenges, such as the required knowledge of an initial state
of charge (SOC) and its sensitivity to error accumulation®’. Therefore,
different methods have been developed to estimate the SOH, which
can be categorized into model-based and data-driven approaches*.
Model-based methods* use either equivalent circuit models***+* ¢
or electrochemical models describing the internal electrochemical
processes of the battery*’>°. Model-based SOH estimators are mainly
limited by their high computational costs, and their accuracy depends
highly on the parameterization®. Machine learning methods do not
model the internal working principles of the battery®.. Instead, they
map ageing-related input features of the battery to its SOH***', using
algorithms such as Gaussian process regression®*?, support vector
machines®* and different types of neural network approach¢%,

The lack of publicly available field measurement datasets is a
problem that many studies face or explicitly identify as a general
shortcoming today>**°. For example, thematical close publications
of Dubarry et al.®>*' analyse synthetical home storage system (HSS)
battery data derived from measuredirradiance to develop diagnostic
methods using machine learning and incremental capacity analysis.
The developed methods show promising results and could be validated
with the dataset of this paper. Several battery datasets are accessible
tothe public, originating from laboratory measurements or synthetic
cellsimulations. Constant cycling data for varying battery chemistries
and conditions canbe foundinrefs. 11-14,62-66. Specific discharging
conditions are used in refs. 67-71, where driving cycles are used to
simulate the usage of the tested batteriesin EV applications. Synthetic
datasets simulating many degradation paths and corresponding bat-
tery data can be found in refs. 72,73. Real-world EV operational data
with lithium-ion batteries was recently published*” with valuable
datasets””. Lead-acid solar home batteries in Africa are evaluated
in ref. 76. Nevertheless, if such large field datasets are published in
rare cases, there are usually no reference measurements to validate
the developed algorithms. A detailed overview of public datasets is
giveninref. 59,

On the basis of the conducted literature research, we conclude
that first, most research focuses on EVs*”*””"** and not on stationary
storage systems>*°’°, Second, the measurement periods are usually
limited to 1-2 years of operation*’*75 58 mostly without conducted

validation measurements, and the datasets are typically not shared.
Third, the internal resistance is regularly chosen®’® as a health metric,
as the capacity’is difficult to examine during field operation and the
exact origins of the stated BMS values are unknown®*, However, the
capacity is the most important metric for the battery lifetime and is
subject to given warranties.

To contribute to battery research, this paper analyses field data
of 21 privately operated HSSs of the first product generation over
up to 8 years. The main scientific contributions of this paper are the
development of a method to estimate the usable battery capacity of
home storage systems and the publication of the large dataset. The
key findings are that the measured HSSs in field operation lose about
2-3 percentage points (pp) of capacity per year. Compared with other
publications, the long measurement period and periodic field capac-
ity tests allow for method validation. Alongside the paper, we publish
the dataset consisting of 106 system years, 14 billion data points and
146 gigabytesin 1,270 monthly files. To the best of our knowledge, no
comparable public dataset for various lithium-ion batteries of HSSs
has been used to date (year 2024) for scientific capacity estimation.
We expect the dataset to enable researchers worldwide to develop new
SOH estimation methods.

Dataset of 21 home storage systems over 8 years
The ISEA/CARL of RWTH Aachen University measured 21 private HSSs
in Germany over up to 8 years from 2015 to 2022. All these HSSs are
combined with residential PV systems to increase self-consumption.
The measured quantities relevant to this paper are system-level
battery current, voltage, power, battery pack housing temperature
and room temperature, while the sample rate is 1 second. Table 1
contains an overview of the measured HSS batteries and their main
parameters, and Supplementary Note 1gives detailed information on
the measurements in general and the high-resolution measurement
systems used.

The operational behaviour of the systems is determined by two
main parameters, which are the system design and the used cell chemis-
try. While some metrics such as the current rate (C-rate) or the number
of equivalent full cycles (EFCs) depend on the system design and the
ratio of battery energy to inverter power, the cell chemistries have
different open circuit voltage (OCV) curves and specific ageing char-
acteristics. Supplementary Tables 1 and 2 give more information on
the system-specific quantities and the used measurement hardware.
Figure 1ashowsthe C-rate and the cell voltage for anexemplary HSS and
summer day, whileFig. 1b,c presents an overview of data availability and
datagaps, whichis explained in more detail in Supplementary Note 2.

The different cathode materials are lithium nickel manganese
cobalt oxide (NMC), a blend of lithium manganese oxide (LMO) and
NMC (simply referred to as ‘LMO’ in this paper), and lithiumiron phos-
phate (LFP). Within the NMC systems, there are differences in cell
chemistry. Two of the NMC systems have a high nickel share.

To account for system design and cell chemistry, the system
nomenclature gives information on both parameters to interpret the
results. Therefore, this paper refers to‘Small, o’ (01 ‘S; o), ‘Mediumyy
(or ‘Mywc) and ‘Medium, " (or ‘M, ;") HSSs. As there are already HSSs
in the energy range above 15 kWh on the market, none of the systems
are classified as large. S, o and Myyc systems share similar battery
chemistries, but their system design is not comparable. While the
M, ;p and the Myy,c Systems show a similar system design, their battery
chemistries are not comparable.

The 1,270 monthly CSV files can be downloaded from a public
repository® (https://doi.org/10.5281/zenod0.12091223).

Field operation of home storage systems

The large dataset allows the information extraction on actual home
storage operation (Supplementary Notes 3-5). In the following, the
most important findings for method development are presented.
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Fig.1|Dataset overview. a, Voltage and C-rate over one exemplary day. b, Data availability. ¢, Data gap analysis. d, Voltage distribution. e, Current distribution.
f, Battery housing temperature. g, EFCs per year. h, DOD distribution with a bin width of 5 pp and depicted at the midpoint DOD, so DODs close to 0% and 100% are not

shown, although they occur. i, Mean voltage seasonality.

The HSSs are often fully charged or fully discharged. This can be
seen by the wider parts of the violin plots at the top and the bottom of
thevoltage distribution of the S, o and My, systemsinFig.1d. The S, ;o
systems have aclear end of charge (EOC) voltage of around 4.15 V. Their
end of discharge (EOD) voltage shows two peaks, asthe BMS decreases
it over the lifetime to compensate for ageing. The distribution of the
Muwmc Systems shows three peaks each, representing the different EOD
and EOC voltages of specific systems with different NMC types and BMS
settings. The M, distribution does not show the characteristic EOD
and EOD peaks owingto the flat OCV of LFP.

The C-ratedistributionsin Fig. leindicate that systems are charged
at higher C-rates (positive values) than discharged (negative values).
Charging often occurs at higher C-rates owing to the relatively high
PV power compared with the battery inverter. By contrast, discharge
occurslargely during the night, inwhich household standby consump-
tion is also met with a few hundred watts, resulting in low discharge
rates. The maximum C-rate of an HSSis typically limited by the system
design. As the S, systems have the highest relative inverter power,
their C-rates are higher. However, being a ‘small’ systemis not ageneral
feature of LMO chemistry. There was simply one manufacturer that
offered these smallbattery systems and used LMO batteries by chance.

Itisimportant to note that the parameter distributions of identi-
cal systems vary between households as the HSS operation is highly

dependent onthe PV generationand the electrical house consumption.
Inaddition, the systems show different operational strategies (Supple-
mentary Fig. 1) and different temperature distributionsin dependence
ontheroomand the system (Fig. 1f and Supplementary Fig. 2).

Over ayear, around 200 EFCs occur for the measured Myyc and
M,;p systems, while S, systems show yearly values of around 250
EFCs (Fig.1g). The cycles show clear seasonality with regular full cycles
during spring and fall, fewer full cycles during summer and barely any
full cycles during winter (Supplementary Figs. 3 and 4). Inthe summer,
some systems are not discharged frequently, and in the winter, some
systems do not get fully charged. Figure 1h shows the depth of discharge
(DOD) distribution calculated via the rainflow method® for the whole
operational period. Most DODs are relatively small, with values below
20%. In addition to the small DODs, there are increased values at the
upper end of the distribution, with DODs near 100%.

When analysing field data, operational strategies and software
updates need tobe takenintoaccount.Some of these changes are shown
inSupplementary Fig. 5, where the derating behaviour is changed, and
the EOD voltage is decreased to counteract battery ageing.

Field capacity tests for method validation
Regular field capacity tests were conducted during the whole meas-
urement period. For this, the HSSs were first fully charged and then
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fully discharged. The discharge was conducted at full power to have
areproducible test scheme in the field. The capacity tests performed
have great value. In relation to the research, they validate developed
methods such as these within this paper. Such validationis not straight-
forwardly possible in other studies. In addition, the sheer amount of
timerequired is worth emphasizing. The test preparation, conduction
and follow-up take about 2 days on average. The 60 successfully con-
ducted capacity tests alone correspond to a working time of around
120 days.

Figure 2 shows the development of the SOH. based on the usable
capacity over (a) systemage, (b) EFCs and (c) both system age and EFCs.
Each point corresponds to amanual capacity test. Figure 2d depicts the
test current for exemplary HSSs, normalized to its maximum value. It
shows the difference between the HSSs’ control strategies. While some
HSSs have aconstant current discharge, others apply aconstant power
discharge, leading to arising current. Towards the end of discharge,
control strategies from a sharp drop in current to a steady decrease
exist, which varies from product to product and even changes with
software updates.

The usable capacity decreases over the years. While S, ,o HSSs
show anaverage capacity decrease of 2.1 pp per year (a™), Myyc systems
show an average decrease of 3.2 pp a™!, and M, systems of 2.2 pp a™
based on the capacity tests. After 7 years, the first end of life (EOL)
cases canbeidentified following the test results, although some tests
show slightly lower values than 80% after already 4.5 years. However,
the EOL shownin Fig. 2 does not define a warranty case, as datasheets
often contain an ageing reserve in their stated value to meet the
warranty (Supplementary Note 6).

TheEFCsincrease approximately linearly over time for the differ-
entHSS classifications. The S, systems show the most cycles, followed
by the medium systems. Nevertheless, one M, i, system reaches asimilar

number of EFCs as the S,,,, systems after more than 7 years (Fig. 2c).
Regarding ageing, a capacity fade can be observed for all HSSs. The
SOH_ values depend on the specific HSS within a system type. Especially
for the older S, ,, systems, varying SOH. results can be observed at a
similar age.Inaddition, the ageing behaviour differs among the system
types. The S, systems do not show lower SOH. values compared with
the Myyc systems despite more EFCs at acomparable age.

Supplementary Note 6 provides all the necessary information to
understand the conducted capacity tests and warranty conditions.
Supplementary Fig. 6 explains the capacity reserves that manufactur-
ersapply to meet warranty conditions. Thereserves areimplemented
by stating less capacity on the datasheet than the HSSs have. Supple-
mentary Fig. 7 shows the capacity test scheme, and Supplementary
Fig.8 shows the influence of the ageing reserve and the normalization
quantity on the warranty condition.

Capacity estimation based on operational data
HSSs regularly reach EOC and EOD voltage, and full cycles occur.
The developed method uses this behaviour to estimate the capacity
(Methods and Supplementary Methods). First, it identifies relaxation
phases around the EOC and EOD voltages. Second, it estimates the
relaxation OCV using a second-order equivalent circuit model with a
two-step fitting procedure. Third, it estimates the capacity using an
offset-current-corrected coulomb counting between a fully charged
(EOC voltage) and a fully discharged (EOD voltage) state.

Figure 3 shows the storage operation of two exemplary days. Dur-
ing this period, the HSS shows a full cycle: It isempty at the beginning
of day 1, gets fully charged until noon, stays at a high SOC during the
dayandis fully discharged overnight. The next day, it gets fully charged
again. On the basis of this storage operation, four integration pos-
sibilities exist to estimate the capacity while integrating the current
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(BOL) defined as100%, and EOL defined as 80% of the nominal capacity.

from empty-to-empty (E2E), full-to-full (F2F), empty-to-full (E2F) and
full-to-empty (F2E).

Whenintegrating full cyclesinthe form of E2E and F2F operations,
itbecomes apparent that the integrated currentis not exactly equal to
zero. First, the respective start and end points in the form of EOC and
EOD voltage are not identical, as these vary during operation. Second,
the BMSisalso partly supplied by the HSS itself. Next to the BMS power
supply, balancing different cell voltages requires energy as well. There-
fore, the currentis corrected, as presented in Supplementary Methods.
Inaddition, acoulomb-counting SOC estimation thatis recalibrated with
theregularly occurring EOC or EOD relaxation phasesisimplemented.

Figure 4 shows the results of the capacity estimate for three
exemplary HSSs: (a) S, o, (b) Myyc and (c) M, . While the orange dots

represent the manual field capacity tests, the blue dots show the algo-
rithmic capacity estimates. The confidence interval (Cl) in light blue
contains 75% of all estimates.

As this paper does not focus on ageing fitting methods, a linear
fitisapplied tothe values of the algorithmic capacity estimate, and its
gradient is defined as the ageing rate. A linear fit is in line with some
observationsin literature®, although both linear and nonlinear ageing
behaviour are possible®”. However, the so-called knee point®**° cannot
yet be observed clearly for the systems. While the field capacity tests
of the S,y and the My, systems vary around the ageing trend, the
capacity test values of the M, ;, systems are always at the lower end of
the estimates and below the trend. The reason for thisis that the system
does not reduce the current towards the EOD voltage. This results in
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an earlier reach of EOD owing to overvoltage and a smaller capacity
value, because the capacity tests are conducted at maximum C-rate.

Figure 5 provides all ageing rates for the three system typesiden-
tified by the linear fit for the HSSs both for capacity and energy on an
annual basis and per 100 EFCs.

The mean values for the decrease in SOH¢ are 3.1 pp a™ for S0,
1.9 ppa*forMyycand2 ppa™for M. Concerning 100 EFCs, the ageing
ratesare 1.2 pp per 100 EFCs for S, 0, 0.9 pp per 100 EFCs for My, and
0.7 pp per 100 EFCs for M, . The high SOH decrease of S, Systems
can possibly be explained by their higher number of EFCs, higher DODs
and higher C-rates compared with the medium systems. However, for
theyearly values, arange of approximately 2 ppa™ canbe observed for
all system types, showing differences in ageing behaviour between
similar HSSs. Purely from the gradients, the physical EOL can be esti-
mated after 5 years (for 4 pp a™) and after 20 years (for1 ppa™). While
the shorter durations can already be confirmed for some HSSs, linear
extrapolationis notreasonable for the HSSs with low ageing rates based
onthe nonlinear ageing towards the EOL.

TheS, ;o Systems show the lowest mean capacity confidence width
with a value of 4.4 pp, followed by the My, systems with 6.8 pp and
the M, systems with 8.0 pp. The reason for the high accuracy of S,
systems can be explained by their high cycle number and an accurate
identification of EOC and EOD voltage owing to the LMO OCV curve.
The My systems with NMC cells share this voltage characteristic but
show fewer full cycles, leading to fewer estimates and, consequently,
wider confidence ranges. In addition, a higher connection of cells in
parallelleads to higherinaccuracy in OCV estimation for some systems
while others canbe estimated with higher accuracy. LFP hasasubstan-
tially flatter OCV curve than LMO and NMC, leadingto less accurate EOC
and EOD detection. Combined with a medium number of full cycles,
their average usable capacity and energy estimates are worse, although
some systems reach comparably good Cl values below 5%.

The results for the usable energy decrease look similar to the
capacity analysis, leading to the conclusion that the loss of capacity is
the dominant ageing effect. A possible increase in internal resistance
appears secondary. Otherwise, the decrease in energy-related state of
health (SOH;) would be significantly higher owing to resistance losses.

Anoffset-corrected coulomb countingis described as an established
method inliterature with knownshortcomingsof erroraccumulationand
unknownstart SOC. Inaddition, manufacturers have already applied the
method. However, we think that the following arguments highlight the
importance of the presented method, which is tailored to HSS opera-
tion. First, the regular and timely close reach of EOD and EOC voltage

of HSSs ensures that error accumulation is limited, and the SOC can be
recalibrated frequently. This focus on regularly occurring full cycles is
not possible for many other applications such as EVs (which typically
do not get fully discharged) or battery storage systems for frequency
restoration (which have amean SOC of around 50%). Further, the applied
current correction makes the errors smaller. Second, the capacity esti-
mation method does not require an initial SOC, as it starts and ends at
fully charged or fully discharged states close to the identified EOD and
EOC voltage. Third, literature describes the method as state-of-the-art.
However, we still see industry field data analyses with inaccurate SOH
estimates not being the exception. Tous, thereis agap between literature
statements and especially smaller manufacturers’implementation state.
Our method shows how to adapt anestablished method to the specifics
of HSS operation, offering an approach that needs to store only the data
of full cycles occurring in normal operation. We consider the method
robust, asit works for system-level field data of three relevant lithium-ion
technologies without knowingall exact battery cells or having manufac-
turer OCV curves. Thus, it canalso be used by external companiesto help
customerswithwarranty claims. The rather simple methodology makes
the method transparent to all partiesinvolved.

Conclusion

Thebatteries regulation of the European Union* requires reliable SOH
estimation based on field data. However, so far, neither standardized
methods nor enough datasets exist to develop these. This paper con-
tributes to both by analysing field measurements of 21 HSSs over a
measurement period of up to 8 years. The dataset is, so far, valuable for
ascientific datasetin terms of measurement duration and sample rate.
It consists of 106 system years represented by 14 billion data points. Its
146 gigabytes cover three important lithium-ion battery technologies:
LFP, NMC and ablend of LMO and NMC.

The developed SOH estimation automatically detects the electro-
chemical processes of overvoltage relaxation at low currents and uses
their characteristics for the parameter estimation of a second-order
equivalent circuit battery model. With these parameters, the exact SOC at
bothfullcharge andfull dischargeis calculated. These values compute the
remaining capacity, energy and SOH while analysing currentand voltage
using coulomb counting and current correction. The analysed storage
systems show average decreasesinusable capacity of around two to three
percentage points per year.Fromatechnical perspective, single systems
withahigher capacity fade reachtheir EOL after 5-7 years, defined as80%
oftheir nominal capacity. Others still show reasonable SOH values after
the same operational period, indicating alonger lifetime. Nevertheless,
the given warranty periods can be reached in most cases by including
ageingreserves. Considering that the measured HSSs were from the first
product generation, this is a positive sign for the industry.

Methods

Battery model and relaxation phase detection
Abatterymodelis needed to estimate the OCV of the battery atidenti-
fied EOC and EOD relaxation phases. The used second-order battery
modelisinspired by literature’®~%, and its parametrizationis described
in Supplementary Methods (Supplementary Figs. 9-11, with Supple-
mentary equations (1)-(5)).

Equation (1) is used for the final fit. The parameters include the
measured battery voltage V.., the open circuit voltage V,,, the voltage
Vi over thefirst resistor-capacitor (RC) element for the fast processes
like charge transfer with the time constant 7;,,, and the voltage V,,, over
thesecond RC element responsible for slow diffusion effects with the
time constant 7,,. The distribution of the relaxation voltages and their
durations canbe seenin Supplementary Fig. 12.

i+ ¢t

Voar(©) = Vocy = Veast X €7t + Vi X € Tstow

@

with Tfast,,,,v,, < Tpast < Tfast,,,ax and Ts]owm,-,, < Tolow < Ts]ow,m,(
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SOC calculation and current correction

The SOC is calculated using equation (2). The reasonably constant
energy supply of the battery to the BMS and regular balancing activities
lead toanerrorinSOC estimation. The reason for this is that the meas-
urementsystemisattached to the DC poles of the whole HSS’s battery.
Thus, theinternal energy supply of the BMS and balancing activities are
not measured directly, possibly leading to offsets. The whole current
correction is explained in Supplementary Methods (Supplementary
Figs. 13 and 14). The parameters include the battery current /,, the
offset current/ . and the usable capacity Cqpe:

to+t
f e (6) — losee ()t

to
Cusable (t) (2)

SOC (¢) = SOC (o) +

SOH calculation

The SOH. serves as an indicator of a battery’s ageing conditions and
limitations set by the BMS. It is derived from the ratio between the
remaining usable capacity C,,p. and its nominal capacity C,qmina @S
represented in equation (3)**:

SOHc(f) - Cusable(t) (3)

nominal

Data availability

The 1,270 monthly CSV files can be downloaded from the follow-
ing repository hosted by Zenodo: https://doi.org/10.5281/zenodo.
12091223 (ref. 84). Source data are provided with this paper.

Code availability

Code to work with the data can be downloaded from the follow-
ing repository hosted by Zenodo: https://doi.org/10.5281/zenodo.
12091223 (ref. 84).
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