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Multi-year field measurements of home 
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estimation
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Felix Hildenbrand1,2,3,4, Christopher Hecht    1,2,3,4, Kai-Philipp Kairies2,3,5, 
Oliver Wessels2,3 & Dirk Uwe Sauer    1,2,3,4,5,6

Home storage systems play an important role in the integration of 
residential photovoltaic systems and have recently experienced strong 
market growth worldwide. However, standardized methods for quantifying 
capacity fade during field operation are lacking, and therefore the European 
batteries regulation demands the development of reliable and transparent 
state of health estimations. Here we present real-world data from 21 
privately operated lithium-ion systems in Germany, based on up to 8 years 
of high-resolution field measurements. We develop a scalable capacity 
estimation method based on the operational data and validate it through 
regular field capacity tests. The results show that systems lose about two 
to three percentage points of usable capacity per year on average. Our 
contribution includes the publication of an impactful dataset comprising 
approximately 106 system years, 14 billion data points and 146 gigabytes, 
aiming to address the shortage of public datasets in this field.

The market for home storage systems has been growing strongly over 
the past years1. To make the investment of around 10,000 € per system1 
more appealing, manufacturers give warranty periods of 10 years. How-
ever, the industry lacks standardized state of health (SOH) evaluations2, 
and customers have to rely on the given values of battery management 
systems (BMSs), which have unknown calculation schemes2 and inac-
curacies3. To establish transparency, the batteries regulation of the 
European Union requires reliable and transparent SOH estimations4. 
Therefore, methods to determine the SOH of battery storage systems 
in field operation are urgently needed.

In the laboratory, methods to determine the SOH are defined 
to a large extent. Laboratory measurements are based on moni-
toring individual cells in a controlled environment, which are aged 

by either cycling5–14 or storing them5,8,15,16 at specific conditions. The 
ageing within these tests is tracked via regular capacity measure-
ments, and results vary depending on the investigated chemistry and 
testing conditions17. However, these tests are time-consuming18, and 
real-world operation is always subject to unpredictable changes19, 
which is why simulations of field operation are applied in the 
laboratory20–22.

Field capacity tests can be found for grid storage23–25, photovol-
taic (PV) integration19,26,27, telecommunication28 and electric vehicles 
(EVs)29,30. While most of these use on-site capacity tests to monitor 
battery ageing19,23–26,28, others remove the battery for laboratory meas-
urements24,27,29. Such capacity tests require a certain system downtime, 
leading to increasing work time and decreasing revenue.
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validation measurements, and the datasets are typically not shared. 
Third, the internal resistance is regularly chosen2,76 as a health metric, 
as the capacity78 is difficult to examine during field operation and the 
exact origins of the stated BMS values are unknown2,3. However, the 
capacity is the most important metric for the battery lifetime and is 
subject to given warranties.

To contribute to battery research, this paper analyses field data 
of 21 privately operated HSSs of the first product generation over 
up to 8 years. The main scientific contributions of this paper are the 
development of a method to estimate the usable battery capacity of 
home storage systems and the publication of the large dataset. The 
key findings are that the measured HSSs in field operation lose about 
2–3 percentage points (pp) of capacity per year. Compared with other 
publications, the long measurement period and periodic field capac-
ity tests allow for method validation. Alongside the paper, we publish 
the dataset consisting of 106 system years, 14 billion data points and 
146 gigabytes in 1,270 monthly files. To the best of our knowledge, no 
comparable public dataset for various lithium-ion batteries of HSSs 
has been used to date (year 2024) for scientific capacity estimation. 
We expect the dataset to enable researchers worldwide to develop new 
SOH estimation methods.

Dataset of 21 home storage systems over 8 years
The ISEA/CARL of RWTH Aachen University measured 21 private HSSs 
in Germany over up to 8 years from 2015 to 2022. All these HSSs are 
combined with residential PV systems to increase self-consumption. 
The measured quantities relevant to this paper are system-level 
battery current, voltage, power, battery pack housing temperature 
and room temperature, while the sample rate is 1 second. Table 1 
contains an overview of the measured HSS batteries and their main 
parameters, and Supplementary Note 1 gives detailed information on 
the measurements in general and the high-resolution measurement 
systems used.

The operational behaviour of the systems is determined by two 
main parameters, which are the system design and the used cell chemis-
try. While some metrics such as the current rate (C-rate) or the number 
of equivalent full cycles (EFCs) depend on the system design and the 
ratio of battery energy to inverter power, the cell chemistries have 
different open circuit voltage (OCV) curves and specific ageing char-
acteristics. Supplementary Tables 1 and 2 give more information on 
the system-specific quantities and the used measurement hardware. 
Figure 1a shows the C-rate and the cell voltage for an exemplary HSS and 
summer day, while Fig. 1b,c presents an overview of data availability and 
data gaps, which is explained in more detail in Supplementary Note 2.

The different cathode materials are lithium nickel manganese 
cobalt oxide (NMC), a blend of lithium manganese oxide (LMO) and 
NMC (simply referred to as ‘LMO’ in this paper), and lithium iron phos-
phate (LFP). Within the NMC systems, there are differences in cell 
chemistry. Two of the NMC systems have a high nickel share.

To account for system design and cell chemistry, the system 
nomenclature gives information on both parameters to interpret the 
results. Therefore, this paper refers to ‘SmallLMO’ (or ‘SLMO’), ‘MediumNMC’ 
(or ‘MNMC’) and ‘MediumLFP’ (or ‘MLFP’) HSSs. As there are already HSSs 
in the energy range above 15 kWh on the market, none of the systems 
are classified as large. SLMO and MNMC systems share similar battery 
chemistries, but their system design is not comparable. While the 
MLFP and the MNMC systems show a similar system design, their battery 
chemistries are not comparable.

The 1,270 monthly CSV files can be downloaded from a public 
repository84 (https://doi.org/10.5281/zenodo.12091223).

Field operation of home storage systems
The large dataset allows the information extraction on actual home 
storage operation (Supplementary Notes 3–5). In the following, the 
most important findings for method development are presented.

Operational data analysis is a promising way to overcome the 
shortcomings of conducted field capacity tests30–38. The capacity-based 
SOH estimation is widely used to track the decreasing capacity39. Cou-
lomb counting is an established approach for this but comes with 
several challenges, such as the required knowledge of an initial state 
of charge (SOC) and its sensitivity to error accumulation40. Therefore, 
different methods have been developed to estimate the SOH, which 
can be categorized into model-based and data-driven approaches41. 
Model-based methods42 use either equivalent circuit models40,43–46 
or electrochemical models describing the internal electrochemical 
processes of the battery47–50. Model-based SOH estimators are mainly 
limited by their high computational costs, and their accuracy depends 
highly on the parameterization39. Machine learning methods do not 
model the internal working principles of the battery51. Instead, they 
map ageing-related input features of the battery to its SOH42,51, using 
algorithms such as Gaussian process regression52,53, support vector 
machines54,55 and different types of neural network approach39,56–58.

The lack of publicly available field measurement datasets is a 
problem that many studies face or explicitly identify as a general 
shortcoming today2,59,60. For example, thematical close publications 
of Dubarry et al.60,61 analyse synthetical home storage system (HSS) 
battery data derived from measured irradiance to develop diagnostic 
methods using machine learning and incremental capacity analysis. 
The developed methods show promising results and could be validated 
with the dataset of this paper. Several battery datasets are accessible 
to the public, originating from laboratory measurements or synthetic 
cell simulations. Constant cycling data for varying battery chemistries 
and conditions can be found in refs. 11–14,62–66. Specific discharging 
conditions are used in refs. 67–71, where driving cycles are used to 
simulate the usage of the tested batteries in EV applications. Synthetic 
datasets simulating many degradation paths and corresponding bat-
tery data can be found in refs. 72,73. Real-world EV operational data 
with lithium-ion batteries was recently published2,74 with valuable 
datasets71,75. Lead-acid solar home batteries in Africa are evaluated 
in ref. 76. Nevertheless, if such large field datasets are published in 
rare cases, there are usually no reference measurements to validate 
the developed algorithms. A detailed overview of public datasets is 
given in ref. 59.

On the basis of the conducted literature research, we conclude 
that first, most research focuses on EVs2,74,77–83 and not on stationary 
storage systems3,60,76. Second, the measurement periods are usually 
limited to 1–2 years of operation2,74,78–81,83, mostly without conducted 

Table 1 | Aggregated overview of the measured HSSs

Nomenclature 
and chemistry

Nominal 
energy 
in kWh

Inverter 
power 
in kW

Nominal 
voltage 
in V

Number of 
systems 
of one 
product

Aggregated 
number of 
systems

‘SmallLMO’ or ‘SLMO’ 
with LMO/NMC 
blend battery 
(‘LMO’)

2.2 2 146.7 6 6

‘MediumNMC’ or 
‘MNMC’ with NMC 
battery

8.6 2.5 50.4 1

7

8.7 3 48.1 2

8.8 3 46.8 2

9.8 5 51.8 1

11.5 2.5 50.4 1

‘MediumLFP’ or 
‘MLFP’ with LFP 
batteries

8.1 3 51.2 4

8
9.2 3.3 46 2

10.0 3 51.2 1

13.8 3.5 46 1

About 106 system years represented by 14 billion data points totalling 146 GB were analysed.
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The HSSs are often fully charged or fully discharged. This can be 
seen by the wider parts of the violin plots at the top and the bottom of 
the voltage distribution of the SLMO and MNMC systems in Fig. 1d. The SLMO 
systems have a clear end of charge (EOC) voltage of around 4.15 V. Their 
end of discharge (EOD) voltage shows two peaks, as the BMS decreases 
it over the lifetime to compensate for ageing. The distribution of the 
MNMC systems shows three peaks each, representing the different EOD 
and EOC voltages of specific systems with different NMC types and BMS 
settings. The MLFP distribution does not show the characteristic EOD 
and EOD peaks owing to the flat OCV of LFP.

The C-rate distributions in Fig. 1e indicate that systems are charged 
at higher C-rates (positive values) than discharged (negative values). 
Charging often occurs at higher C-rates owing to the relatively high 
PV power compared with the battery inverter. By contrast, discharge 
occurs largely during the night, in which household standby consump-
tion is also met with a few hundred watts, resulting in low discharge 
rates. The maximum C-rate of an HSS is typically limited by the system 
design. As the SLMO systems have the highest relative inverter power, 
their C-rates are higher. However, being a ‘small’ system is not a general 
feature of LMO chemistry. There was simply one manufacturer that 
offered these small battery systems and used LMO batteries by chance.

It is important to note that the parameter distributions of identi-
cal systems vary between households as the HSS operation is highly 

dependent on the PV generation and the electrical house consumption. 
In addition, the systems show different operational strategies (Supple-
mentary Fig. 1) and different temperature distributions in dependence 
on the room and the system (Fig. 1f and Supplementary Fig. 2).

Over a year, around 200 EFCs occur for the measured MNMC and 
MLFP systems, while SLMO systems show yearly values of around 250 
EFCs (Fig. 1g). The cycles show clear seasonality with regular full cycles 
during spring and fall, fewer full cycles during summer and barely any 
full cycles during winter (Supplementary Figs. 3 and 4). In the summer, 
some systems are not discharged frequently, and in the winter, some 
systems do not get fully charged. Figure 1h shows the depth of discharge 
(DOD) distribution calculated via the rainflow method85 for the whole 
operational period. Most DODs are relatively small, with values below 
20%. In addition to the small DODs, there are increased values at the 
upper end of the distribution, with DODs near 100%.

When analysing field data, operational strategies and software 
updates need to be taken into account. Some of these changes are shown 
in Supplementary Fig. 5, where the derating behaviour is changed, and 
the EOD voltage is decreased to counteract battery ageing.

Field capacity tests for method validation
Regular field capacity tests were conducted during the whole meas-
urement period. For this, the HSSs were first fully charged and then 
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fully discharged. The discharge was conducted at full power to have 
a reproducible test scheme in the field. The capacity tests performed 
have great value. In relation to the research, they validate developed 
methods such as these within this paper. Such validation is not straight-
forwardly possible in other studies. In addition, the sheer amount of 
time required is worth emphasizing. The test preparation, conduction 
and follow-up take about 2 days on average. The 60 successfully con-
ducted capacity tests alone correspond to a working time of around 
120 days.

Figure 2 shows the development of the SOHC based on the usable 
capacity over (a) system age, (b) EFCs and (c) both system age and EFCs. 
Each point corresponds to a manual capacity test. Figure 2d depicts the 
test current for exemplary HSSs, normalized to its maximum value. It 
shows the difference between the HSSs’ control strategies. While some 
HSSs have a constant current discharge, others apply a constant power 
discharge, leading to a rising current. Towards the end of discharge, 
control strategies from a sharp drop in current to a steady decrease 
exist, which varies from product to product and even changes with 
software updates.

The usable capacity decreases over the years. While SLMO HSSs 
show an average capacity decrease of 2.1 pp per year (a−1), MNMC systems 
show an average decrease of 3.2 pp a−1, and MLFP systems of 2.2 pp a−1 
based on the capacity tests. After 7 years, the first end of life (EOL) 
cases can be identified following the test results, although some tests 
show slightly lower values than 80% after already 4.5 years. However, 
the EOL shown in Fig. 2 does not define a warranty case, as datasheets 
often contain an ageing reserve in their stated value to meet the  
warranty (Supplementary Note 6).

The EFCs increase approximately linearly over time for the differ-
ent HSS classifications. The SLMO systems show the most cycles, followed 
by the medium systems. Nevertheless, one MLFP system reaches a similar 

number of EFCs as the SLMO systems after more than 7 years (Fig. 2c). 
Regarding ageing, a capacity fade can be observed for all HSSs. The 
SOHC values depend on the specific HSS within a system type. Especially 
for the older SLMO systems, varying SOHC results can be observed at a 
similar age. In addition, the ageing behaviour differs among the system 
types. The SLMO systems do not show lower SOHC values compared with 
the MNMC systems despite more EFCs at a comparable age.

Supplementary Note 6 provides all the necessary information to 
understand the conducted capacity tests and warranty conditions. 
Supplementary Fig. 6 explains the capacity reserves that manufactur-
ers apply to meet warranty conditions. The reserves are implemented 
by stating less capacity on the datasheet than the HSSs have. Supple-
mentary Fig. 7 shows the capacity test scheme, and Supplementary 
Fig. 8 shows the influence of the ageing reserve and the normalization 
quantity on the warranty condition.

Capacity estimation based on operational data
HSSs regularly reach EOC and EOD voltage, and full cycles occur. 
The developed method uses this behaviour to estimate the capacity 
(Methods and Supplementary Methods). First, it identifies relaxation 
phases around the EOC and EOD voltages. Second, it estimates the 
relaxation OCV using a second-order equivalent circuit model with a 
two-step fitting procedure. Third, it estimates the capacity using an 
offset-current-corrected coulomb counting between a fully charged 
(EOC voltage) and a fully discharged (EOD voltage) state.

Figure 3 shows the storage operation of two exemplary days. Dur-
ing this period, the HSS shows a full cycle: It is empty at the beginning 
of day 1, gets fully charged until noon, stays at a high SOC during the 
day and is fully discharged overnight. The next day, it gets fully charged 
again. On the basis of this storage operation, four integration pos-
sibilities exist to estimate the capacity while integrating the current 
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from empty-to-empty (E2E), full-to-full (F2F), empty-to-full (E2F) and 
full-to-empty (F2E).

When integrating full cycles in the form of E2E and F2F operations, 
it becomes apparent that the integrated current is not exactly equal to 
zero. First, the respective start and end points in the form of EOC and 
EOD voltage are not identical, as these vary during operation. Second, 
the BMS is also partly supplied by the HSS itself. Next to the BMS power 
supply, balancing different cell voltages requires energy as well. There-
fore, the current is corrected, as presented in Supplementary Methods. 
In addition, a coulomb-counting SOC estimation that is recalibrated with 
the regularly occurring EOC or EOD relaxation phases is implemented.

Figure 4 shows the results of the capacity estimate for three 
exemplary HSSs: (a) SLMO, (b) MNMC and (c) MLFP. While the orange dots 

represent the manual field capacity tests, the blue dots show the algo-
rithmic capacity estimates. The confidence interval (CI) in light blue 
contains 75% of all estimates.

As this paper does not focus on ageing fitting methods, a linear 
fit is applied to the values of the algorithmic capacity estimate, and its 
gradient is defined as the ageing rate. A linear fit is in line with some 
observations in literature86, although both linear and nonlinear ageing 
behaviour are possible87. However, the so-called knee point88,89 cannot 
yet be observed clearly for the systems. While the field capacity tests 
of the SLMO and the MNMC systems vary around the ageing trend, the 
capacity test values of the MLFP systems are always at the lower end of 
the estimates and below the trend. The reason for this is that the system 
does not reduce the current towards the EOD voltage. This results in 
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an earlier reach of EOD owing to overvoltage and a smaller capacity 
value, because the capacity tests are conducted at maximum C-rate.

Figure 5 provides all ageing rates for the three system types iden-
tified by the linear fit for the HSSs both for capacity and energy on an 
annual basis and per 100 EFCs.

The mean values for the decrease in SOHC are 3.1 pp a−1 for SLMO, 
1.9 pp a−1 for MNMC and 2 pp a−1 for MLFP. Concerning 100 EFCs, the ageing 
rates are 1.2 pp per 100 EFCs for SLMO, 0.9 pp per 100 EFCs for MNMC and 
0.7 pp per 100 EFCs for MLFP. The high SOHC decrease of SLMO systems 
can possibly be explained by their higher number of EFCs, higher DODs 
and higher C-rates compared with the medium systems. However, for 
the yearly values, a range of approximately 2 pp a−1 can be observed for  
all system types, showing differences in ageing behaviour between 
similar HSSs. Purely from the gradients, the physical EOL can be esti-
mated after 5 years (for 4 pp a−1) and after 20 years (for 1 pp a−1). While 
the shorter durations can already be confirmed for some HSSs, linear 
extrapolation is not reasonable for the HSSs with low ageing rates based 
on the nonlinear ageing towards the EOL.

The SLMO systems show the lowest mean capacity confidence width 
with a value of 4.4 pp, followed by the MNMC systems with 6.8 pp and 
the MLFP systems with 8.0 pp. The reason for the high accuracy of SLMO 
systems can be explained by their high cycle number and an accurate 
identification of EOC and EOD voltage owing to the LMO OCV curve. 
The MNMC systems with NMC cells share this voltage characteristic but 
show fewer full cycles, leading to fewer estimates and, consequently, 
wider confidence ranges. In addition, a higher connection of cells in 
parallel leads to higher inaccuracy in OCV estimation for some systems 
while others can be estimated with higher accuracy. LFP has a substan-
tially flatter OCV curve than LMO and NMC, leading to less accurate EOC 
and EOD detection. Combined with a medium number of full cycles, 
their average usable capacity and energy estimates are worse, although 
some systems reach comparably good CI values below 5%.

The results for the usable energy decrease look similar to the 
capacity analysis, leading to the conclusion that the loss of capacity is 
the dominant ageing effect. A possible increase in internal resistance 
appears secondary. Otherwise, the decrease in energy-related state of 
health (SOHE) would be significantly higher owing to resistance losses.

An offset-corrected coulomb counting is described as an established 
method in literature with known shortcomings of error accumulation and 
unknown start SOC. In addition, manufacturers have already applied the 
method. However, we think that the following arguments highlight the 
importance of the presented method, which is tailored to HSS opera-
tion. First, the regular and timely close reach of EOD and EOC voltage 

of HSSs ensures that error accumulation is limited, and the SOC can be 
recalibrated frequently. This focus on regularly occurring full cycles is 
not possible for many other applications such as EVs (which typically 
do not get fully discharged) or battery storage systems for frequency 
restoration (which have a mean SOC of around 50%). Further, the applied 
current correction makes the errors smaller. Second, the capacity esti-
mation method does not require an initial SOC, as it starts and ends at 
fully charged or fully discharged states close to the identified EOD and 
EOC voltage. Third, literature describes the method as state-of-the-art. 
However, we still see industry field data analyses with inaccurate SOH 
estimates not being the exception. To us, there is a gap between literature 
statements and especially smaller manufacturers’ implementation state. 
Our method shows how to adapt an established method to the specifics 
of HSS operation, offering an approach that needs to store only the data 
of full cycles occurring in normal operation. We consider the method 
robust, as it works for system-level field data of three relevant lithium-ion 
technologies without knowing all exact battery cells or having manufac-
turer OCV curves. Thus, it can also be used by external companies to help 
customers with warranty claims. The rather simple methodology makes 
the method transparent to all parties involved.

Conclusion
The batteries regulation of the European Union4 requires reliable SOH 
estimation based on field data. However, so far, neither standardized 
methods nor enough datasets exist to develop these. This paper con-
tributes to both by analysing field measurements of 21 HSSs over a 
measurement period of up to 8 years. The dataset is, so far, valuable for 
a scientific dataset in terms of measurement duration and sample rate. 
It consists of 106 system years represented by 14 billion data points. Its 
146 gigabytes cover three important lithium-ion battery technologies: 
LFP, NMC and a blend of LMO and NMC.

The developed SOH estimation automatically detects the electro-
chemical processes of overvoltage relaxation at low currents and uses 
their characteristics for the parameter estimation of a second-order 
equivalent circuit battery model. With these parameters, the exact SOC at 
both full charge and full discharge is calculated. These values compute the 
remaining capacity, energy and SOH while analysing current and voltage 
using coulomb counting and current correction. The analysed storage 
systems show average decreases in usable capacity of around two to three 
percentage points per year. From a technical perspective, single systems 
with a higher capacity fade reach their EOL after 5–7 years, defined as 80% 
of their nominal capacity. Others still show reasonable SOH values after 
the same operational period, indicating a longer lifetime. Nevertheless, 
the given warranty periods can be reached in most cases by including 
ageing reserves. Considering that the measured HSSs were from the first 
product generation, this is a positive sign for the industry.

Methods
Battery model and relaxation phase detection
A battery model is needed to estimate the OCV of the battery at identi-
fied EOC and EOD relaxation phases. The used second-order battery 
model is inspired by literature90–93, and its parametrization is described 
in Supplementary Methods (Supplementary Figs. 9–11, with Supple-
mentary equations (1)–(5)).

Equation (1) is used for the final fit. The parameters include the 
measured battery voltage Vbat, the open circuit voltage VOCV, the voltage 
Vfast over the first resistor-capacitor (RC) element for the fast processes 
like charge transfer with the time constant τfast, and the voltage Vslow over 
the second RC element responsible for slow diffusion effects with the 
time constant τslow. The distribution of the relaxation voltages and their 
durations can be seen in Supplementary Fig. 12.

Vbat(t) − VOCV = Vfast × e
−t+

τfast + Vslow × e
−t+

τslow

with τfastmin ≤ τfast ≤ τfastmax and τslowmin ≤ τslow ≤ τslowmax

(1)

Box edges: assumed 25th and 75th percentiles by MATLAB
Whiskers: ≤1.5 times box length
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Fig. 5 | Ageing trends of all 21 systems. Decrease in SOHC (usable capacity 
decrease (CD)) and SOHE (usable energy decrease (ED)) per year and per 100 
EFCs. The box plot contains the gradient of the linear ageing fit from Fig. 4. Each 
circle is one system. One MLFP system has too many data outages to estimate 
the EFCs, which is why there are only seven systems depicted. Box plots are 
calculated by ‘box plot’ function of MATLAB, where boxes contain 50% of all 
values of the assumed distribution.
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SOC calculation and current correction
The SOC is calculated using equation (2). The reasonably constant 
energy supply of the battery to the BMS and regular balancing activities 
lead to an error in SOC estimation. The reason for this is that the meas-
urement system is attached to the DC poles of the whole HSS’s battery. 
Thus, the internal energy supply of the BMS and balancing activities are 
not measured directly, possibly leading to offsets. The whole current 
correction is explained in Supplementary Methods (Supplementary 
Figs. 13 and 14). The parameters include the battery current Ibat, the 
offset current Ioffset and the usable capacity Cusable:

SOC (t) = SOC (t0) +
∫

t0+t

t0
(Ibat (t) − Ioffset(t))dt

Cusable(t)
(2)

SOH calculation
The SOHC serves as an indicator of a battery’s ageing conditions and 
limitations set by the BMS. It is derived from the ratio between the 
remaining usable capacity Cusable and its nominal capacity Cnominal, as 
represented in equation (3)94:

SOHC(t) =
Cusable(t)
Cnominal

(3)

Data availability
The 1,270 monthly CSV files can be downloaded from the follow-
ing repository hosted by Zenodo: https://doi.org/10.5281/zenodo. 
12091223 (ref. 84). Source data are provided with this paper.

Code availability
Code to work with the data can be downloaded from the follow-
ing repository hosted by Zenodo: https://doi.org/10.5281/zenodo. 
12091223 (ref. 84).
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