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The Pacific Walker circulation and the closely connected El Nifio/Southern
Oscillationinfluence the climate and weather of the tropical Indo-Pacific
region. They specifically exert a strong control on the regional occurrence
of weather extremes, such as heatwaves, heavy precipitation and prolonged
dry spells, which are becoming increasingly frequent and severe. However,
climate models struggle to accurately simulate large-scale circulation
changesin the tropics and thus their consequences for regional weather and
future climate. Here we use high-resolution ERA5 reanalysis data from 1940
to 2022 to study the occurrence trends of weather patterns in the tropical
Indo-Pacific region. We find that new large-scale synoptic situations that
were rarely present before the 1990s have emerged in the Indo-Pacific, while
some others that were prominent have disappeared. Those new synoptic
situations are associated with an unusual proportion of heatwaves and
extreme precipitation in the region. These weather patterns are physically
consistent with a trend towards a stronger Pacific Walker circulation,

wetter and warmer conditions in Southeast Asia and drier conditionsin

the equatorial Pacific. These changes cannot be fully explained by EI Nifio/
Southern Oscillation and other relevant modes of interannual variability,
and other factors such as global warming, aerosol forcing, external forcing
mechanisms and nonlinear mode interactions may be contributing.

Earth’s climateis changingrapidly under the effect of global warming,
leading to more frequent and severe extreme weather events in many
regions’. The latter, in turn, exert heavy socioeconomic and environ-
mental tolls>”. A hotspot for changes in extreme eventsiis the tropical
Indo-Pacific, home to alarge portion of the world’s population and
unique and vulnerable ecosystems. In this region, floods®, heatwaves’
and other extreme weather events®are becoming increasingly frequent
and severe, leading to acute climate-change-induced distress’ ™.
Disentangling the mechanisms behind this increased frequency
requires understanding the role of dynamical changes in regional
weather patterns. Weather patterns can be understood as recurring
spatial atmospheric configurations. Changes in these patterns are

often harbingers of more frequent—and intense—extreme weather*
and can amplify the effects of long-term thermodynamic trends'>".

Diagnosing robust changesin weather patterns and atmospheric
dynamics under climate change is a long-standing challenge. At the
regionallevel, numerical models can present biases and show discrep-
ancies with observations, and the signalin the observational record is
often overshadowed by natural variability”. The Indo-Pacific presents
additional, unique challenges in this context due to unexplained trends
in the Pacific Walker circulation (PWC), the most prominent driver of
weather and climate in the region'*™®,

The PWC is a zonal atmospheric circulation over the tropi-
cal Pacific. It consists of rising air motion over Southeast Asia and
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its surrounding oceans—the eastern Indian Ocean and the western
Pacific—and descending air motion over the eastern Pacific. The PWC
is modulated by the El Nifio/Southern Oscillation (ENSO) and has a
pronounced effect on global weather. Observations point to PWC
strengthening in recent decades”*°. However, most models in the
Coupled Model Intercomparison Project phases 5 and 6 are unable
to capture this observed strengthening'®'®*°?, possibly because of
a cold-tongue bias in the Pacific?’. This hinders understanding the
observed changes inregional weather and extremes, and fuels uncer-
tainty in their future projections® >, Therefore, achieving a more
comprehensive understanding of the changes in weather patterns in
the tropical Indo-Pacific region over the past few decades, and their
implications for weather extremes, is of crucial importance.

In this study, we analyse changes in atmospheric weather pat-
ternsinthe tropical Indo-Pacific through the lens of newly developed
approaches for studying recurrent weather patterns and their occur-
rence trends (Methods)'>?°. These methods are commonly applied in
the study of mid-latitude circulation but are rarely used in the study
of atmospheric circulation in tropical regions”. We use 83 years of
the state-of-the-art high-resolution ERAS (fifth-generation European
Centre for Medium-Range Weather Forecasts atmospheric reanalysis)
reanalysis data?® for the main analysis and identify similar patterns with
significant occurrence trends in other reanalysis datasets—JRA55%,
NCEP*°, ERA-20C* and 20CR*—thereby demonstrating the robustness
of our study. We find that, in recent years, certain weather patterns are
emerging, and certain others are disappearing. The emerging patterns
lead to highly coherent anomalies exhibiting a stronger PWC, more
prevalent wet conditionsin Southeast Asiaand drier conditionsinthe
equatorial Pacific. In addition, we find that these emerging weather
patterns are considerably exacerbating extreme precipitation and
heatwaves in the tropical Indo-Pacific, with a spatial footprint resem-
bling, to a certain extent, that of La Nifia (also referred to as the cold
phase of ENSO). In agreement with recent studies, we find that the
occurrence trends in weather patterns are not fully attributable to
ENSO-driven variability®, or to other relevant modes of variability,
namely, Indian Ocean dipole (I0D)**, Pacific decadal oscillation (PDO)*
and Atlantic multidecadal oscillation (AMO)>¢, although we are not
ableto conclusively attribute them to global warming trends or other
external forcing mechanisms.

Emerging and disappearing weather patterns

The literature has commonly focused on the shifting mean state of
regional weather patterns®>¥, namely, sets of similar synoptic circula-
tions. Changes insuch patterns can be used to diagnose low-frequency
atmospheric changes. In this study, we instead identify analogues (sets
of weather patterns similar to each other) and use them to quantify the
occurrence trends of allindividual weather patterns. Thatis, we obtain
an occurrence trend for the spatial atmospheric pattern of each data
timestep (day) we analyse in the Indo-Pacific region (50° E-120° W,
20°S-20° N)". This means identifying the weather patterns that are
closestto eachotherunder Euclidean distance (analogues) in 83 years
of ERA5 data (1940-2022%). We then divide the dataset into nine peri-
ods of equal duration and calculate the number of analogues for each
period.Ifthe number of analogues of agiven weather patternisincreas-
ing (decreasing) over time beyond a certain confidence interval, the
weather pattern is emerging (disappearing). Emerging patterns can
be seen as weather patterns that were rare in the distant past and that
are now appearing more frequently, with the opposite applying to
disappearing patterns. We focus on a relatively narrow tropical band
since analogues-based methods may not perform as wellif the region
under study is too broad and encompasses too many climate systems.
However, we conducted a sensitivity analysis on the studied domain,
and as shown in Supplementary Fig. 3, it yielded consistent results
despite identifying fewer patterns with trends. Full details are provided
in Methods.

We define analogues using total column water vapour (TCWV)
asthe observed variable. TCWV is a key component of the water cycle
in tropical regions®® and contains information on both atmospheric
dynamics (associated with atmospheric circulation) and thermody-
namics (associated with temperature), including convection. TCWV
further correlates directly to extremes such as heavy precipitation and
prolonged dry conditions. We additionally analyse variables account-
ing for different atmospheric processesinthe tropics (Extended Data
Tablel).

Using TCWYV, we identified 280 (0.92%) patterns with increasing
occurrence trend (also referred to as emerging patterns) and 6,226
(20.54%) with decreasing occurrence trend (also referred to as dis-
appearing patterns), out of a total of 30,316 possible weather states
(number of timesteps in the dataset).

The detrended and deseasonalized composite anomaly maps for
the days associated with emerging or disappearing patterns (Fig. 1a-h)
show coherent regional anomalies with generally mirrored signs in
TCWYV, 850 hPa streamfunction (also referred to as 850 hPa-S), hori-
zontal wind, total precipitation and 2 m temperature. The emerging
weather patterns display increased precipitation and hotter weather
over Southeast Asia and parts of Northern Australia, and less water
vapour, decreased precipitation and colder weather over the equato-
rial Central Pacific (Fig. 1a,b,e-h). We also find stronger trade winds
and astronger PWC (Fig.1c,d). The oppositeis observed for the disap-
pearing patterns.

The emerging patterns are clustered within the past 20-30 years
of data. They exhibit adistinct seasonality, with the majority appearing
between October andJanuary (Fig. 1i). Disappearing patterns, instead,
occur throughout the year and are clustered in the period 1940-1970,
although some occur sporadically in recent decades (Fig. 1j). The
emerging patterns exhibit an increasing trend of 11 analogues per
decade (Fig. 1k), while the disappearing patterns exhibit a decreasing
trend of 15 analogues per decade (Fig. 1I). This means that weather
patterns that were once extremely rare have emerged in the past two
decades, whereas those that previously accounted for a substantial
proportion have become exceptionally rare. More importantly, these
patterns are not random but exhibit highly coherent anomalies. The
results in Fig. 1 are robust to the observable chosen (Extended Data
Figs.2 and 3), to the choice of periods used for computing the trends
(Extended Data Fig. 4), to the duration of the dataset used (Extended
Data Fig. 7), to the reanalysis dataset adopted (Extended Data Figs. 5
and 6 and Supplementary Figs.1and 2) and to the domain used (Sup-
plementary Fig. 3), substantiating the results found.

The spatially coherent anomaly maps of emerging and disap-
pearing weather patterns shownin Fig. 1 highlight astronger PWC and
resemble, to a certain extent, La Nina-like conditions (Extended Data
Fig.1). This suggests spatially coherent changes in the tropical dynam-
ics that can impact weather extremes. Indeed, if we take a dynamical
viewpoint, and consider the 850 hPa and 200 hPa streamfunctions
as the observables (Extended Data Figs. 2 and 3; computed using the
method in ref. 39), the composite anomalies show consistent results
with TCWV anomalies, which also highlight a stronger PWC.

Impact on weather extremes

Whether and how the changes in tropical dynamics just presented
impact extreme weather remains an open question. We focus on three
high-impact extremesinthe region: heatwaves, extreme precipitation
and consecutive dry days (see Methods for more details on how these
are identified). We restrict our analysis to the period 1979-2022 and
focus on Southeast Asia (including Papua New Guinea, Solomon Islands
and Vanuatu), Northern Australiaand SouthernIndia. Thisregionis one
ofthe most densely populatedin the world (with an approximate total
population of 1 billion people), and it is at the intersection of crucial
shipping routes, factors that underscore its importance. In addition,
we choose ashorter period (1979-2022) as opposed to the entire time
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Fig.1| Composite anomalies for patterns with significant occurrence trends k1, The count of analogues for emerging and disappearing patterns,
and associated analogues using TCWV as observable. a,c,e,g, Composite respectively, in each period (each violin plot). The ends of the boxes represent
anomalies for emerging weather patterns. b,d,f,h, Composite anomalies for the 25th and 75th percentiles, with the whiskers extending to 1.5 times the
disappearing weather patterns. Diagonal black lines indicate regions with interquartile range beyond the box. The white dot in each box shows the median

changes that are statistically significant at the one-sided 5% level, computed with (n=280 for emerging patterns; n = 6,226 for disappearing patterns). The dashed
abootstrap sample size of 500. i,j, The number per year and seasonal distribution  linesindicate the trend of the average count of analogues. CI, confidence interval.
of patterns with increasing and decreasing occurrence trends, respectively.

history availablein the ERAS dataset (1940-2022) astherearenoemerg-  identified and the frequency of extremes appearingin climatology in
ing patternsin previous decades. the period 1979-2022 (see Methods for more details). Values greater

Figure 2 shows the frequency ratio of weather extremes linked thanlindicateincreased frequency compared with climatology. Values
to the emerging (Fig. 2a,c,e) and disappearing (Fig. 2b,d,f) weather  smallerthanlindicate decreased frequency. For example, avalue of 2
patternsidentified in this study for the December-January-February indicatesthatanextreme striking during the emerging patternsistwice
(DJF)) season. The frequency ratio is computed as the ratio between  as likely compared with climatology. In the Supplementary Informa-
the frequency of extremes appearing during the emerging patterns  tion, we provide the same analysis for the other three seasons as well
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Fig.2|Weather extremes associated with emerging and disappearing
weather patterns in DJF. a-f, Frequency ratio maps for heatwaves (a,b), extreme
precipitation (c,d) and consecutive dry days (e,f) (Methods) as associated with
emerging (a,c,e) and disappearing (b,d,f) weather patterns in DJF. Diagonal black

linesindicate regions with changes that are statistically significant at the one-
sided 5% level, computed with a bootstrap sample size of 500. Vertical bars on the
bottom left corner show the average frequency of climatology (grey bar) versus
emerging and disappearing patterns (coloured bars).

aswhole-yearresults without separation into seasons (Supplementary
Figs. 4-7). In the Supplementary Information, we also provide two
tables (Supplementary Tables1and 2) that detail the frequency across
the four seasons considered and for ocean only, for land only and for
eight different land regions.

We find that heatwaves and extreme precipitation exhibit an
increased frequency when associated with the emerging weather
patterns identified, with specific coherent spatial patterns, for
the DJF season. For example, several regions in Indonesia (includ-
ing Central Sumatra, West Borneo and Sulawesi), South Myanmar
and South India, as well as the Bay of Bengal and the western Pacific,
exhibit markedly increased frequency of heatwaves compared with
climatology (Fig. 2a). The South China Sea and its surrounding areas
(including Vietnam and the Philippines), the Malay Peninsula, the tip
of South India and a portion of the Indian Ocean off the coast of Aus-
tralia exhibit considerably increased frequency of extreme precipita-
tion, while an increased frequency is observed in other portions of
Southeast Asia and the tropical Western Pacific (Fig. 2c). For consecu-
tive dry days, there is an overall decrease for the emerging patterns
compared with climatology, albeit some regions, including Central
Indochina and Central Sumatra, experience an increased frequency

(Fig. 2e). The results for disappearing weather patterns (Fig. 2b,d,f)
mirror those obtained for emerging weather patterns, corroborating
the findings.

To complement the analysis, we link the results obtained on
weather extremes to flooding events recorded in the Emergency Events
Database (EM-DAT)** for the DJF season (Fig. 3a,b). The use of EM-DAT
comes withsome obvious caveats: only events with high socialimpact
are recorded in the database, and reporting may suffer from both
spatial and temporal inaccuracy, particularly in the early part of the
dataset" and data-scarce regions such as Southeast Asia. We note that
asimilar analyses were not possible for heatwaves and consecutive dry
daysasthereare notenoughrecorded eventsin EM-DAT for the region
of interest. We observe that the emerging patterns are strongly associ-
ated with floods (77/130 = 59.2%) compared with the overall frequency
of flooding days (886/3,971=22.3%). More specifically, countries with
ahigher frequencyratio of flooding days (including Vietnam, Thailand,
Malaysia, Sri Lanka and the Philippines) exhibit a higher frequency ratio
of extreme precipitation days in Fig. 2g. Results for the other three
seasons are reported in Supplementary Figs. 8-10. Despite potential
inaccuracies and insufficient historical data, EM-DAT corroborates the
results obtained using reanalysis data.
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Fig.3|Impact of emerging weather patterns over the tropical Indo-Pacific
region according to floods recorded in the EM-DAT database. a, The ratio

of DJF flood days recorded under emerging weather patterns, compared with
climatology. The sizes of the pie charts represent the total floods per country
from 1979 to 2022, with red slices representing floods linked to emerging weather

patterns and orange slices for those not assigned. TH, Thailand; PH, Philippines;
VN, Vietnam; LK, Sri Lanka; MY, Malaysia; ID, Indonesia; IN, India; PG, Papua New
Guinea; KH, Cambodia; MM, Myanmar; LA, Laos. b, The total number of flooding
days within the DJF season for each country, the flood days associated with
emerging weather patterns and the respective frequency ratios.

Role ofinterannual variability

Inthe previous sections, we have shown thatin the tropical Indo-Pacific
region, a set of weather patterns is appearing more frequently and
seem to favour specific weather extremes, while a set of weather pat-
terns less favourable to weather extremes is gradually disappearing.
Yetgiven that ENSO is the main driver modulating weather patternsin
theregion, theinterplay between theidentified long-term occurrence
trends and ENSO, and more broadly, the contribution of interannual
variability remain unclear.

Inthis section, we adopt a surrogate data strategy to understand
the potential role of various interannual variabilities. To achieve this,
we randomly shuffled the original daily ERAS reanalysis data while
maintaining intact the phases (positive, negative and neutral) of differ-
ent modes of variability as illustrated in Extended Data Fig. 8a (Meth-
ods). This allows us to create scenarios where the long-term trend in
ERAS does not exist, while retaining the modulation by interannual
variability.

The results indicate that the trend and coherent anomalies of
TCWV over Southeast Asia and Nifio 4 region (red and blue bounding
boxes in Extended Data Fig. 8e) presented in Fig. 1 are robust with
respect to surrogate data. Specifically, we cannot reproduce the num-
ber of emerging/disappearing patterns along with similar coherent
anomaly as obtained on ERA5 (Extended Data Fig. 8c-f). For AMO and
PDO, only afew patterns exhibiting trends canbe identified, and their
similar zero-centred anomaly distributions suggest these patterns
appear toberandom, indicating aweak modulation of the occurrence
trend of weather patterns in this region by the AMO and PDO. Yet the
surrogate data that retain ENSO and 10D variability exhibit more emerg-
ing and disappearing patterns than the other two modes of variability.
However, they both yield mean anomalies that are opposite to those
of the ERAS data, suggesting that the trends identified in this study
cannot be fully attributed to ENSO and 10D.

Theseresults collectively indicate that the trends we observe can-
not be fully explained by interannual variability alone. We note that
the studied region also encompasses two important climate systems:
the Madden-Julian Oscillation and the Asian monsoon system. These
systems have been observed to exhibit long-term variations over the
past few decades****, which may also impact the weather patterns we
have identified. However, due to their relatively higher frequency
and complex coupling with interannual variability***, our study is
currently unable to assess the association between these systems and
the observed trends in our analysis, and such an evaluation is beyond
the scope of this study.

Besides modulating the occurrence trends of weather patterns,
itis widely recognized that interannual variability such as ENSO also
contributes substantially to weather extremesin the studied region*®.
Given the rarity of emerging weather patterns, it is still uncertain
whether they can explain extremes to an extent comparable tointeran-
nual variability, or whether their contribution is negligible. To address
this point, we assess the relative contributions of emerging weather
patterns and ENSO to the three different types of weather extremes
inthe studied region.

We focus on the period 2001-2022, which contains the majority
of the emerging patterns. We categorize all days within this period
into six categories on the basis of their occurrence during ENSO (posi-
tive or negative phase) only, emerging patterns only, ENSO (positive
or negative phase) in conjunction with emerging patterns, or they
do not occur in any of the previous five cases (see the lower panel in
Fig. 4). Similarly, we classify extreme events into six categories fol-
lowing the same definitions (see the upper panels in Fig. 4). By defi-
nition, the lower pie chart depicts the distribution of all days across
the six categories considered, whereas the upper pie charts show the
distribution of extreme weather days within the same categories.
Hence, by comparingthe lower and upper pie charts, weimmediately
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Fig. 4 | Comparative analysis of extreme weather across ENSO phases and
emerging patternsin DJF. The percentages depicted in the upper pie charts
are for heatwaves (left), extreme precipitation (centre) and consecutive dry
days (right). More specifically, the upper pie charts show the percentages of
extreme weather days for each category considered, namely ENSO positive
(red), ENSO negative (blue), emerging patterns (yellow), emerging patterns and

Extreme precipitation (EP)
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Dry-day event (CDD)
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ENSO positive (yellow with red hatching), emerging patterns and ENSO negative
(yellow with blue hatching) and none of the previous five categories (white), with
respect to the total number of extreme weather days. The lower pie chart displays
the percentages of days belonging to each of the six categories with respect to
the total number of days in the period considered.

observe how the percentage of emerging patterns associated with
weather extremes is notably larger than the overall percentage of
emerging patterns for heatwaves (Fig. 4, top left panel) and extreme
precipitation (Fig. 4, top centre panel). This shows that the emerging
patterns identified are strongly linked to heatwaves and extreme
precipitation in the region, and known ENSO-driven variability can
only partially explain these weather extremes. If we look at how
heatwaves and extreme precipitation are distributed with respect
to ENSO variability, we note that heatwaves are explained largely
by EI Nifio (red portion of the pie chart in the top left panel of Fig. 4)
and extreme precipitation by La Nifia (blue portion of the pie chart
in the top centre panel of Fig. 4). Yet the emerging patterns explain
adisproportionately large percentage of both categories of weather
extremes. Remarkably, emerging patterns during La Nifa phases are
associated with a relatively large percentage of heatwaves, ~ 5.6%,
accounting for32.7% (5.6%/(5.6 +11.5)%) of heatwaves during La Nifa,
despite accounting for only 15.2%(4.2%/(4.2 + 23.4)%) of the total
LaNina days.

For consecutive dry-day events, the emerging patterns are not
associated with any event at all, which is consistent with our finding
that the emerging weather patterns are bringing wetter conditions.

We perform the same analysis just outlined for three other
relevant modes of variability—10D, PDO and AMO (Extended Data
Fig. 9)—finding similar conclusions as the ones obtained for ENSO;
these modes of variability show even weaker modulation of weather
extremes than ENSO. We present the results for the other three seasons
in the Supplementary Information Section 3. We additionally show
the distribution of emerging and disappearing patterns with respect
to the phases of each mode of variability, along with frequency maps
of weather extremes conditioned to different phases of each mode of
variability in the Supplementary Information Sections 4 and 5, respec-
tively. These results further corroborate that the modes of variability
considered cannot reproduce the higher frequency and spatial dis-
tribution of extremes obtained for the emerging patterns identified
in this work.

The preceding results show that the long-term trends identified
for specific weather patterns provide a substantial contribution to the
occurrence of weather extremes in the Indo-Pacific region.

A changing tropical Indo-Pacific
In this study, we provide an analogue-based methodology to under-
stand spatio-temporal weather changes in the tropical Indo-Pacific
and link them to regional occurrences of extreme events. We identify
marked ongoing changes that manifest as aset of increasingly frequent
weather patterns. These lead to spatially coherent anomalies across
several atmospheric variables, which manifestin astronger PWC, wet-
ter and warmer conditions in Southeast Asia and drier conditions in
the equatorial Pacific. Despite these emerging weather patterns being
relatively rare (3.2% of days for DJF), they are associated with a large
number of regional extremes, notably heavy precipitation and heat-
waves. Therobustlong-term trend of these emerging patterns does not
seem linked to known natural ENSO-driven variability or to the other
three relevant modes of variability, the IOD, the PDO and the AMO.
The study presented relies on reanalysis datasets. These datasets
have a certain number of limitations, namely, relatively short time
series as well as time-varying data assimilation strategies and obser-
vations. To address these points, we run an extensive sensitivity study
that is presented in Supplementary Information Section 1, where we
show that theresults are consistent across reanalysis datasets and data
assimilation strategies. However, the relatively short period spanned
by the reanalyses prevents analysing modes of variability that have
alonger period than the available reanalysis data. Notwithstanding
these limitations, the results presented in this work capture changes
in weather patterns in the tropical Indo-Pacific, which are aggravat-
ing regional weather extremes, using state-of-the-art reanalysis data.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41561-024-01537-8.

References

1. IPCC: Summary for Policymakers. In: Climate Change 2021: The
Physical Science Basis (eds Masson-Delmotte V. et al.) (Cambridge
Univ. Press, 2021).

Nature Geoscience | Volume 17 | October 2024 | 979-986

984


http://www.nature.com/naturegeoscience
https://doi.org/10.1038/s41561-024-01537-8

Article

https://doi.org/10.1038/s41561-024-01537-8

10.

n

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Armstrong McKay, D. I. et al. Exceeding 1.5°C global warming
could trigger multiple climate tipping points. Science 377,
eabn7950 (2022).

Coronese, M., Lamperti, F., Keller, K., Chiaromonte, F. &

Roventini, A. Evidence for sharp increase in the economic
damages of extreme natural disasters. Proc. Natl Acad. Sci. USA
116, 21450-21455 (2019).

Hsiang, S. M., Meng, K. C. & Cane, M. A. Civil conflicts are
associated with the global climate. Nature 476, 438-441(2011).
Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change
and ocean acidification. Science 318, 1737-1742 (2007).

Yusuf, A. A. & Francisco, H. Climate Change Vulnerability Mapping
for Southeast Asia (Economy and Environment Program for
Southeast Asia, Singapore, 2009).

Li, X.-X., Yuan, C. & Hang, J. Heat wave trends in Southeast Asia:
comparison of results from observation and reanalysis data.
Geophys. Res. Lett. 49, e2021GL097151 (2022).

Zhang, L., Chen, Z. & Zhou, T. Human influence on the increasing
drought risk over Southeast Asian monsoon region. Geophys. Res.
Lett. 48, e2021GL0O93777 (2021).

Phan-Van, T. et al. Drought over Southeast Asia and its association
with large-scale drivers. J. Clim. 35, 4959-4978 (2022).

Dong, Z. et al. Heatwaves in Southeast Asia and their changesin a
warmer world. Earths Future 9, e2021EF001992 (2021).

Caesar, J. et al. Changes in temperature and precipitation
extremes over the Indo-Pacific region from 1971 to 2005. Int. J.
Climatol. 31, 791-801 (2011).

Faranda, D., Messori, G., Jezequel, A., Vrac, M. & Yiou, P.
Atmospheric circulation compounds anthropogenic warming and
impacts of climate extremes in Europe. Proc. Natl Acad. Sci. USA
120, 2214525120 (2023).

Vautard, R. et al. Heat extremes in western Europe increasing
faster than simulated due to atmospheric circulation trends. Nat.
Commun. 14, 6803 (2023).

Collins, M. et al. Challenges and opportunities for improved
understanding of regional climate dynamics. Nat. Clim. Change 8,
101-108 (2018).

Bonfils, C. J. et al. Relative contributions of mean-state shifts and
ENSO-driven variability to precipitation changes in a warming
climate. J. Clim. 28, 9997-10013 (2015).

Chung, E.-S. et al. Reconciling opposing walker circulation trends
in observations and model projections. Nat. Clim. Change 9,
405-412 (2019).

L'Heureux, M. L., Lee, S. & Lyon, B. Recent multidecadal
strengthening of the Walker circulation across the tropical Pacific.
Nat. Clim. Change 3, 571-576 (2013).

Power, S. et al. Decadal climate variability in the tropical Pacific:
characteristics, causes, predictability, and prospects. Science
374, eaay9165 (2021).

England, M. H. et al. Recent intensification of wind-driven
circulation in the Pacific and the ongoing warming hiatus. Nat.
Clim. Change 4, 222-227 (2014).

Ma, S. & Zhou, T. Robust strengthening and westward shift

of the tropical Pacific Walker circulation during 1979-2012: a
comparison of 7 sets of reanalysis data and 26 CMIP5 models. J.
Clim. 29, 3097-3118 (2016).

Kociuba, G. & Power, S. B. Inability of CMIP5 models to simulate
recent strengthening of the Walker circulation: implications for
projections. J. Clim. 28, 20-35 (2015).

Seager, R. et al. Strengthening tropical Pacific zonal sea surface
temperature gradient consistent with rising greenhouse gases.
Nat. Clim. Change 9, 517-522 (2019).

Callahan, C. W. et al. Robust decrease in El Nifo/Southern
Oscillation amplitude under long-term warming. Nat. Clim.
Change 1, 752-757 (2021).

24. Sobel, A. H. et al. Near-term tropical cyclone risk and coupled
Earth system model biases. Proc. Natl Acad. Sci. USA 120,
€2209631120 (2023).

25. Tangang, F. et al. Multi-model projections of precipitation
extremes in Southeast Asia based on CORDEX-Southeast Asia
simulations. Environ. Res. 184, 109350 (2020).

26. Faranda, D., Messori, G. & Yiou, P. Dynamical proxies of North
Atlantic predictability and extremes. Sci. Rep. 7, 41278 (2017).

27. Falasca, F. & Bracco, A. Exploring the tropical Pacific manifold in
models and observations. Phys. Rev. X 12, 021054 (2022).

28. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol.
Soc. 146, 1999-2049 (2020).

29. Kobayashi, S. et al. The JRA-55 reanalysis: general specifications
and basic characteristics. J. Meteorol. Soc. Jpn 11 93, 5-48
(2015).

30. Saha, S. et al. The NCEP climate forecast system reanalysis. Bull.
Am. Meteorol. Soc. 91, 1015-1058 (2010).

31. Poli, P. et al. ERA-20c: an atmospheric reanalysis of the twentieth
century. J. Clim. 29, 4083-4097 (2016).

32. Compo, G. P. et al. The twentieth century reanalysis project. Q. J.
R. Meteorol. Soc. 137, 1-28 (2011).

33. Feba, F., Ashok, K. & Ravichandran, M. Role of changed
Indo-Pacific atmospheric circulation in the recent disconnect
between the Indian summer monsoon and ENSO. Clim. Dyn. 52,
1461-1470 (2019).

34. Saji, N. & Yamagata, T. Possible impacts of Indian Ocean dipole
mode events on global climate. Clim. Res. 25, 151-169 (2003).

35. Mantua, N. J. & Hare, S. R. The Pacific decadal oscillation. J.
Oceanogr. 58, 35-44 (2002).

36. Knight, J.R., Folland, C. K. & Scaife, A. A. Climate impacts of
the Atlantic multidecadal oscillation. Geophys. Res. Lett. 33,17
(2006).

37. Sohn, B., Yeh, S.-W., Schmetz, J. & Song, H.-J. Observational
evidences of Walker circulation change over the last 30 years
contrasting with GCM results. Clim. Dyn. 40, 1721-1732
(2013).

38. Held, I. M. & Soden, B. J. Robust responses of the hydrological
cycle to global warming. J. Clim. 19, 5686-5699 (2006).

39. Li, Z., Chao, Y. & McWilliams, J. C. Computation of the
streamfunction and velocity potential for limited and irregular
domains. Mon. Weather Rev. 134, 3384-3394 (2006).

40. Delforge, D. et al. EM-DAT: The Emergency Events Database.
Preprint https://doi.org/10.21203/rs.3.rs-3807553/v1 (2023).

41. Gall, M., Borden, K. A. & Cutter, S. L. When do losses count? Six
fallacies of natural hazards loss data. Bull. Am. Meteorol. Soc. 90,
799-810 (2009).

42. Roxy, M. et al. Twofold expansion of the Indo-Pacific warm pool
warps the MJO life cycle. Nature 575, 647-651(2019).

43. Turner, A. G. & Annamalai, H. Climate change and the South Asian
summer monsoon. Nat. Clim. Change 2, 587-595 (2012).

44. Tang, Y. & Yu, B. MJO and its relationship to ENSO. J. Geophys. Res.
Atmos. 113, D14 (2008).

45. Ju, J. &Slingo, J. The Asian summer monsoon and ENSO. Q. J. R.
Meteorol. Soc. 121, 1133-1168 (1995).

46. Villafuerte, M. Q. & Matsumoto, J. Significant influences of global
mean temperature and ENSO on extreme rainfall in Southeast
Asia. J. Clim. 28, 1905-1919 (2015).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional
affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and

Nature Geoscience | Volume 17 | October 2024 | 979-986

985


http://www.nature.com/naturegeoscience
https://doi.org/10.21203/rs.3.rs-3807553/v1

Article https://doi.org/10.1038/s41561-024-01537-8

reproduction in any medium or format, as long as you give appropriate  line to the material. If material is not included in the article’s Creative

credit to the original author(s) and the source, provide a link to the Commons licence and your intended use is not permitted by statutory
Creative Commons licence, and indicate if you modified the licensed regulation or exceeds the permitted use, you will need to obtain
material. You do not have permission under this licence to share permission directly from the copyright holder. To view a copy of this
adapted material derived from this article or parts of it. The images licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

or other third party material in this article are included in the article’s

Creative Commons licence, unless indicated otherwise in a credit © The Author(s) 2024

'College of Design and Engineering, National University of Singapore, Singapore, Singapore. 2Laboratoire des Sciences du Climat et de 'Environnement,
UMR8212 CEA-CNRS-UVSQ, IPSL and University Paris Saclay, Gif-sur-Yvette, France. *Department of Earth Sciences, Uppsala University, Uppsala, Sweden.
“Swedish Centre for Impacts of Climate Extremes (climes), Uppsala University, Uppsala, Sweden. *Department of Meteorology and Bolin Centre for
Climate Research, Stockholm University, Stockholm, Sweden. ®Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Cambridge,
UK. "Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy. ®Laboratoire de Météorologie Dynamique - IPSL, ENS, PSL Research University, Ecole
Polytechnique, Institut Polytechnique de Paris, Sorbonne Université, CNRS, Paris, France. °Lamont-Doherty Earth Observatory, Columbia University,
Palisades, NY, USA. °The Abdus Salam International Center for Theoretical Physics, Trieste, Italy. "World Meteorological Organization (WMO), Geneva,
Switzerland. *European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK. *Centre for Climate Research Singapore (CCRS),
Singapore, Singapore. “London Mathematical Laboratory, London, UK. [<e-mail: mpegim@nus.edu.sg

Nature Geoscience | Volume 17 | October 2024 | 979-986 986


http://www.nature.com/naturegeoscience
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mpegim@nus.edu.sg

Article

https://doi.org/10.1038/s41561-024-01537-8

Methods
Occurrence trend analysis for weather patterns
The computation of trendsin tropical atmospheric pattern analogues
(alsoreferred toas’occurrence trends’) is obtained using as observable
the daily TCWV datafrom the ERAS reanalysis over the period 1January
1940 to 31 December 2022 (30,316 days). Other observables have also
been used to corroborate the results found. The data adopted have
horizontal resolution of 0.25° x 0.25°, and the analysis is restricted to
120° W-50° Eand 20° S-20° N. This corresponds to the tropical region,
spanning from eastern Africa to the western coast of North America,
with asize of 381 (longitude) x 81 (latitude) = 30,861 grid points.

The underlying methodology adopted to compute occurrence
trends closely follows refs. 12,26, and the six steps required are reported
here for the readers’ convenience.

(1) Thefirststepis to select daily longitude-latitude maps of our
observables (for example, TCWV), which we deem important
for tropical atmospheric dynamics and thermodynamics.

(2) Thesecond step consists of computing the Euclidean distance
between daily maps, where we take each map as a reference
state and compute its distance from all other maps in the data-
set. Here we use Euclidean distance as the evaluation metric be-
cause it has been proved to be an effective measure of similarity
between atmospheric weather maps in previous research®.

We then define a high-quantile g to select the atmospheric
pattern analogues. We chose g = 0.98, meaning that we take as
analogues the 2% closest fields to the target. We describe in the
following how the sensitivity to the choice of g is tested.

(3) Thethird step consists of dividing the time interval of 83 years
into periods. We then count how many analogues N fall in each
period 7, obtaining N(t) where 7 is the period chosen. For this
analysis, we chose 9 periods of approximately 9 years. Further
analyses have shown that shortening these periods will not
change our results qualitatively.

(4) Thefourthstepis to perform alinear fit of N(r) of the type at + b.
Using a cubic fit does not qualitatively affect the results (not
shown here).

(5) Thefifth stepis to estimate the upper and lower 95% confidence
intervals (Cls) of the a parameter of the fit using the Wald
method”. If the lower and the upper bounds of the Cl for a are
positive (negative), we interpret this as a significant positive
(negative) trend for the selected daily observable map and
quantile g. If the confidence interval contains zero, the trend is
non-significant.

(6) The ssixth step consists of repeating the preceding five steps for
g=0.99 and g = 0.995. We retain as daily maps with significant
increasing (decreasing) occurrence trends only those having
consistent (same sign and significant) occurrence trends for all
three quantiles. These are the robust weather patterns that are
analysed in this paper. We additionally verify that the quality
(distance) of analogues for these patterns is comparable to that
for all other days in our dataset.

We adopted 95% Cls as boundaries for statistical significance,
which means a 5% probability of the actual trend lying outside the CI
range. Given that Cls are symmetric intervals, this implies that the
likelihood of the ‘true’ trend having an opposite direction is <2.5%. In
practice, since we select only for weather patterns that exhibit signifi-
canttrends for three different quantiles g simultaneously, the chance
of selecting inappropriate patterns is negligible.

The methodology just described is used to identify the emerg-
ing and disappearing patterns depicted in Fig. 1. In particular, the
trends mentioned for emerging and disappearing patterns are shown
inFig.1k,l, respectively, where we display the distribution of analogues
foreachperiod.Figure 1i,j shows the temporal distribution of emerging
and disappearing patterns (vertical bars), respectively, as well as their

seasonality (pie chart). The remaining Fig. 1a-h depicts the composite
anomalies for the emerging and disappearing weather patterns, which
arefurther described later in the ‘Computation of composite anomalies
maps’ section of Methods.

Computation of composite anomalies maps

We produce composite anomalies for the days displaying significant
occurrence trends for several daily variables: TCWV, 850 hPa stream-
function and wind, daily total precipitation and 2 mtemperature. The
datawere processed toremove agrid-point by grid-pointlinear trend
for the whole analysis period. This ensures that the composite anomaly
maps are not affected by the occurrence time of those weather patterns.
The data were further deseasonalized using a mean seasonal cycle
computed by averaging over the same calendar days. Geographical
anomalies’ significance is assessed through a bootstrap procedure
(samplesize of 500) thatinvolves randomly selecting anumber of days
equaltothedaysineach composite fromtheentire dataset, regardless
of their trend. Anomalies are considered significant if they fall below
the fifth percentile or above the 95th percentile of the bootstrap dis-
tribution for each grid point.

Surrogate data generated by random shuffling

Since the emerging patterns in our study are rare and resembling,
to a certain extent, La Nifia-like patterns, we investigate whether the
identified trends are driven by internal variability. To this end, we
use surrogate data, generated by maintaining the internal variability
within the dataset while eliminating the trends. To achieve this, we
perform random shuffling conditioned to the phase of each mode
of variability considered, as shown in Extended Data Fig. 8a. In par-
ticular, we first classify all weather patterns into three phases of a
given internal mode of variability on the basis of thresholds set at
the 25th and 75th percentiles of the associated climate index. Then
we randomly shuffle the weather patterns within each phase to cre-
ate one surrogate dataset. For each internal variability considered
in our study, including ENSO, 10D, PDO and AMO, we generate 2,000
surrogate datasets. Finally, we apply the occurrence trend analysis
to all reshuffled datasets and identify weather patterns exhibiting
significant occurrence trends. The results are shown in Extended
DataFig. 8b-f.

Extracting extreme events from reanalysis dataset

Inthis study, we focus on three prominent types of weather extremes
in the tropical Indo-Pacific: heatwaves, extreme precipitation and
consecutive dry days. Those extremes are extracted on eachindividual
grid point from the ERAS reanalysis data from 1979 to 2022, using the
following definitions.

(1) Heatwave: we adopt TX90pct as arelative threshold to define
heatwaves in our study*®. The threshold for one day at one grid
point s the calendar-day 90th percentile of the daily maximum
temperature, based on a centred 15 day window. A heatwave
is defined as three or more consecutive days exceeding this
threshold, and all days belonging to this heatwave are consid-
ered as heatwave days for that grid point.

(2) Extreme precipitation: we define extreme precipitation as days
with daily precipitation exceeding the 95th percentile on wet
days with daily precipitation greater than 1 mm (ref. 49).

(3) Consecutive dry days: consecutive dry-day events are defined
as a period of five or more consecutive days with daily precipi-
tation less than 1 mm. All days belonging to this consecutive
dry-day event are considered as consecutive dry days®.

When defining extremes, we remove a grid-point by grid-point
long-term trend from the the data. This is because we want to maintain
arelatively uniform distribution of extremes in the studied period.
Using data with trends leads to the identification of more frequent
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heatwaves and extreme precipitation in recent decades, where our
emerging patterns cluster. This might raise the question of whether
the extremes associated with emerging weather patterns are polluted
by the underlying climate trend. Thus, removing the long-term trend
effectively prevents overestimation of our results, although it probably
underestimates theimpact brought by these emerging patterns, given
that heatwaves and extreme precipitation in the region are reported
to be more frequent and intense’.

Toinvestigate and compare the contribution of emerging weather
patterns and various modes of variability to weather extremes, we
further define extreme events as days on which a minimum number
of grid points are identified as extremes. Specifically, extreme events
are identified as days when the number of grid points classified as
extreme exceeds thetop 10th percentile. We further apply this method
of defining extremes to smaller regions using regional land masks
(Supplementary Tables 1and 2). The computation of the overall spa-
tial frequency effectively excludes point-wise patches, increasing
the robustness of the results. After identifying these daily extreme
events, we classified them into six categories on the basis of their
Nifno3.4 index (>75th percentile of Nifi03.4, <25th percentile of Nifi0o3.4,
25th to 75th percentile of Nifio3.4) and whether they are associated
with emerging weather patterns: La Nifia only, El Nifio only, emerg-
ing patterns only, emerging patterns belonging to La Nifia, emerging
patterns belonging to El Nifio, and not assigned to ENSO or emerg-
ing patterns. In our study, the phases of other modes of variability
are defined using the same threshold criteria applied to each mode’s
respective index.

Frequency ratio maps

Inthis study, the frequency ratio maps are presented to show whether
ouridentified weather patterns are more/less favouring the occurrence
of extremes. First, we calculate the frequency of extreme events across
the overall period for each season. More specifically, this iscomputed
counting the number of extreme days divided by the total number of
daysonagrid-point by grid-point basis. Then we assess the frequency
of extremes occurring during emerging/disappearing weather patterns
withinthe corresponding season. Thisis calculated as the ratiobetween
the number of extremes occurring during emerging patterns and the
total number of emerging patterns (also in this case on a grid-point
by grid-point basis). These steps produce two frequency maps. The
frequency ratio map is then derived by dividing the frequency map of
extremes under emerging and disappearing weather patterns by the
frequency map of extremes not conditioned by emerging and disap-
pearing patterns.

Impacts of floods associated with emerging patterns
We take floods from the EM-DAT*°. We focus on events over Southeast
Asia, India and Sri Lanka, excluding those floods where no start and/
or end day was provided, and dates included in several events were
counted only once. We consider only floods that occurred between1979
and 2022 here, which matches the period used for reanalysis data, as
this helps maintain consistency in the study and avoids the periods for
which EM-DAT lacks comprehensive records. For floods lasting more
than10 days, only the first 10 days are considered as flooding days since
for prolonged floods, their mechanisms may be more complex and
cannot be attributed simply to specific weather patterns. Following
these criteria, from 1,189 floods recorded in the region of interest, we
identified 2,843 flooding days over 698 floods. We further divide these
flooding days by season and country and calculate their frequency
ratio of flooding days in different countries during different seasons,
specifically DJF (Fig. 3), March-April-May (Supplementary Fig. 8),
June-July-August (Supplementary Fig. 9) and September-October-
November (Supplementary Fig. 10).

To determine whether a given flood is associated with emerg-
ing weather patterns, we check whether the fraction of days with

emerging weather patterns within the event is higher than the occur-
rence frequency of emerging weather patterns in climatology. If so,
itis then considered as one of the associated events. We claim that
this is likely to underestimate the impact of emerging weather pat-
terns since flooding might exhibit a certain delay relative to extreme
precipitation, depending on many factors such as topography, soil
saturation, drainage systems and more. Following the preceding defi-
nition, Fig. 3 and Supplementary Figs. 8, 9 and 10 collectively show
the number of floods that are associated with emerging weather
patterns in different seasons. These figures also detail the spe-
cific distributions of those identified floods across different coun-
tries, along with the number of people affected and the economic
lossesincurred.

Data availability

The ERAS reanalysis data used in this study are available at https://cds.
climate.copernicus.eu/#!/search?text=ERA5&type=dataset. The NCEP
reanalysis dataare from https://psl.noaa.gov/data/gridded/data.ncep.
reanalysis.html. The JRA55, 20CR and ERA-20C are from the Climate
Data Guide (https://climatedataguide.ucar.edu/). The climateindices
for ENSO, 10D, AMO and PDO are publicly available at climate explorer
(http://climexp.knmi.nl/). The impact data for flooding events are
available from https://www.emdat.be/.

Code availability
The code used for the analysis and visualization s available at https://
doi.org/10.5281/zenodo.13172443 (ref. 50).
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for occurrence trend analysis is the 850hPa streamfunction instead of TCWV.
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The ends of the boxes represent the 25th and 75th percentiles, with the whiskers
extending up to 1.5 times the interquartile range beyond the box. The white
dotineach box shows the medians (n=353 for emerging patterns, n=1278 for
disappearing patterns).
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Extended Data Fig. 4 | Composite anomalies (a-h), for patterns with boxes represent the 25th and 75th percentiles, with the whiskers extending up to
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Extended Data Fig. 7| Composite anomalies (a-h), for patterns with
significant occurrence trends (i,j), and associated analogues (k,I), using
TCWV as observable, and the last 48 years. As in Fig. 1, but for the last 48

years (from 1975 to 2022) to verify the sensitivity with respect to the satellite
observation era. The number of time periods used for occurrence trend analysis
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in this shorter time history is equal to 8. The ends of the boxes represent the 25th
and 75th percentiles, with the whiskers extending up to 1.5 times the interquartile
range beyond the box. The white dot in each box shows the medians (n=21for
emerging patterns, n=17532 for disappearing patterns).
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Extended Data Table 1| Occurrence trends analysis for different observables

Occurrence Trend

Observable Positive Negative

TCWV 280 (0.92%) 6226 (20.53%)

850hPa-S 353 (1.16%) 1278 (4.22%)

200hPa-S 978 (3.23%) 1323 (4.36%)

SLP 749 (2.47%) 1213 (4.00%)
2m-T 5690 (18.77%) 8351 (27.55%)
500hPa-W 0 (0.00%) 8993 (29.66%)
TP 0 (0.00%) 17909 (59.07%)

TCC 1219 (4.02%) 1201 (3.96%)

OLR 1004 (3.31%) 1982 (6.54%)

Number of weather patterns (and associated percentage with respect to the total number of days in the dataset) with positive and negative occurrence trends identified for different
observables, using the ERA5 reanalysis dataset in the period 1940-2022.
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