
Nature Geoscience | Volume 17 | October 2024 | 979–986 979

nature geoscience

https://doi.org/10.1038/s41561-024-01537-8Article

Indo-Pacific regional extremes aggravated 
by changes in tropical weather patterns

Chenyu Dong1, Robin Noyelle2, Gabriele Messori    3,4,5, Adriano Gualandi    6,7, 
Lucas Fery2, Pascal Yiou    2, Mathieu Vrac    2, Fabio D’Andrea8, 
Suzana J. Camargo    9, Erika Coppola    10, Gianpaolo Balsamo    11,12, 
Chen Chen    13, Davide Faranda    2,14 & Gianmarco Mengaldo    1 

The Pacific Walker circulation and the closely connected El Niño/Southern 
Oscillation influence the climate and weather of the tropical Indo-Pacific 
region. They specifically exert a strong control on the regional occurrence 
of weather extremes, such as heatwaves, heavy precipitation and prolonged 
dry spells, which are becoming increasingly frequent and severe. However, 
climate models struggle to accurately simulate large-scale circulation 
changes in the tropics and thus their consequences for regional weather and 
future climate. Here we use high-resolution ERA5 reanalysis data from 1940 
to 2022 to study the occurrence trends of weather patterns in the tropical 
Indo-Pacific region. We find that new large-scale synoptic situations that 
were rarely present before the 1990s have emerged in the Indo-Pacific, while 
some others that were prominent have disappeared. Those new synoptic 
situations are associated with an unusual proportion of heatwaves and 
extreme precipitation in the region. These weather patterns are physically 
consistent with a trend towards a stronger Pacific Walker circulation, 
wetter and warmer conditions in Southeast Asia and drier conditions in 
the equatorial Pacific. These changes cannot be fully explained by El Niño/
Southern Oscillation and other relevant modes of interannual variability, 
and other factors such as global warming, aerosol forcing, external forcing 
mechanisms and nonlinear mode interactions may be contributing.

Earth’s climate is changing rapidly under the effect of global warming, 
leading to more frequent and severe extreme weather events in many 
regions1. The latter, in turn, exert heavy socioeconomic and environ-
mental tolls2–5. A hotspot for changes in extreme events is the tropical 
Indo-Pacific, home to a large portion of the world’s population and 
unique and vulnerable ecosystems. In this region, floods6, heatwaves7 
and other extreme weather events8 are becoming increasingly frequent 
and severe, leading to acute climate-change-induced distress9–11.

Disentangling the mechanisms behind this increased frequency 
requires understanding the role of dynamical changes in regional 
weather patterns. Weather patterns can be understood as recurring 
spatial atmospheric configurations. Changes in these patterns are 

often harbingers of more frequent—and intense—extreme weather1 
and can amplify the effects of long-term thermodynamic trends12,13.

Diagnosing robust changes in weather patterns and atmospheric 
dynamics under climate change is a long-standing challenge14. At the 
regional level, numerical models can present biases and show discrep-
ancies with observations, and the signal in the observational record is 
often overshadowed by natural variability15. The Indo-Pacific presents 
additional, unique challenges in this context due to unexplained trends 
in the Pacific Walker circulation (PWC), the most prominent driver of 
weather and climate in the region16–18.

The PWC is a zonal atmospheric circulation over the tropi-
cal Pacific. It consists of rising air motion over Southeast Asia and 
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We define analogues using total column water vapour (TCWV) 
as the observed variable. TCWV is a key component of the water cycle 
in tropical regions38 and contains information on both atmospheric 
dynamics (associated with atmospheric circulation) and thermody-
namics (associated with temperature), including convection. TCWV 
further correlates directly to extremes such as heavy precipitation and 
prolonged dry conditions. We additionally analyse variables account-
ing for different atmospheric processes in the tropics (Extended Data 
Table 1).

Using TCWV, we identified 280 (0.92%) patterns with increasing 
occurrence trend (also referred to as emerging patterns) and 6,226 
(20.54%) with decreasing occurrence trend (also referred to as dis-
appearing patterns), out of a total of 30,316 possible weather states 
(number of timesteps in the dataset).

The detrended and deseasonalized composite anomaly maps for 
the days associated with emerging or disappearing patterns (Fig. 1a–h) 
show coherent regional anomalies with generally mirrored signs in 
TCWV, 850 hPa streamfunction (also referred to as 850 hPa-S), hori-
zontal wind, total precipitation and 2 m temperature. The emerging 
weather patterns display increased precipitation and hotter weather 
over Southeast Asia and parts of Northern Australia, and less water 
vapour, decreased precipitation and colder weather over the equato-
rial Central Pacific (Fig. 1a,b,e–h). We also find stronger trade winds 
and a stronger PWC (Fig. 1c,d). The opposite is observed for the disap-
pearing patterns.

The emerging patterns are clustered within the past 20–30 years 
of data. They exhibit a distinct seasonality, with the majority appearing 
between October and January (Fig. 1i). Disappearing patterns, instead, 
occur throughout the year and are clustered in the period 1940–1970, 
although some occur sporadically in recent decades (Fig. 1j). The 
emerging patterns exhibit an increasing trend of 11 analogues per 
decade (Fig. 1k), while the disappearing patterns exhibit a decreasing 
trend of 15 analogues per decade (Fig. 1l). This means that weather 
patterns that were once extremely rare have emerged in the past two 
decades, whereas those that previously accounted for a substantial 
proportion have become exceptionally rare. More importantly, these 
patterns are not random but exhibit highly coherent anomalies. The 
results in Fig. 1 are robust to the observable chosen (Extended Data 
Figs. 2 and 3), to the choice of periods used for computing the trends 
(Extended Data Fig. 4), to the duration of the dataset used (Extended 
Data Fig. 7), to the reanalysis dataset adopted (Extended Data Figs. 5 
and 6 and Supplementary Figs. 1 and 2) and to the domain used (Sup-
plementary Fig. 3), substantiating the results found.

The spatially coherent anomaly maps of emerging and disap-
pearing weather patterns shown in Fig. 1 highlight a stronger PWC and 
resemble, to a certain extent, La Niña-like conditions (Extended Data 
Fig. 1). This suggests spatially coherent changes in the tropical dynam-
ics that can impact weather extremes. Indeed, if we take a dynamical 
viewpoint, and consider the 850 hPa and 200 hPa streamfunctions 
as the observables (Extended Data Figs. 2 and 3; computed using the 
method in ref. 39), the composite anomalies show consistent results 
with TCWV anomalies, which also highlight a stronger PWC.

Impact on weather extremes
Whether and how the changes in tropical dynamics just presented 
impact extreme weather remains an open question. We focus on three 
high-impact extremes in the region: heatwaves, extreme precipitation 
and consecutive dry days (see Methods for more details on how these 
are identified). We restrict our analysis to the period 1979–2022 and 
focus on Southeast Asia (including Papua New Guinea, Solomon Islands 
and Vanuatu), Northern Australia and Southern India. This region is one 
of the most densely populated in the world (with an approximate total 
population of 1 billion people), and it is at the intersection of crucial 
shipping routes, factors that underscore its importance. In addition, 
we choose a shorter period (1979–2022) as opposed to the entire time 

its surrounding oceans—the eastern Indian Ocean and the western 
Pacific—and descending air motion over the eastern Pacific. The PWC 
is modulated by the El Niño/Southern Oscillation (ENSO) and has a 
pronounced effect on global weather. Observations point to PWC 
strengthening in recent decades17–20. However, most models in the 
Coupled Model Intercomparison Project phases 5 and 6 are unable 
to capture this observed strengthening16,18,20,21, possibly because of 
a cold-tongue bias in the Pacific22. This hinders understanding the 
observed changes in regional weather and extremes, and fuels uncer-
tainty in their future projections23–25. Therefore, achieving a more 
comprehensive understanding of the changes in weather patterns in 
the tropical Indo-Pacific region over the past few decades, and their 
implications for weather extremes, is of crucial importance.

In this study, we analyse changes in atmospheric weather pat-
terns in the tropical Indo-Pacific through the lens of newly developed 
approaches for studying recurrent weather patterns and their occur-
rence trends (Methods)12,26. These methods are commonly applied in 
the study of mid-latitude circulation but are rarely used in the study 
of atmospheric circulation in tropical regions27. We use 83 years of 
the state-of-the-art high-resolution ERA5 (fifth-generation European 
Centre for Medium-Range Weather Forecasts atmospheric reanalysis) 
reanalysis data28 for the main analysis and identify similar patterns with 
significant occurrence trends in other reanalysis datasets—JRA5529, 
NCEP30, ERA-20C31 and 20CR32—thereby demonstrating the robustness 
of our study. We find that, in recent years, certain weather patterns are 
emerging, and certain others are disappearing. The emerging patterns 
lead to highly coherent anomalies exhibiting a stronger PWC, more 
prevalent wet conditions in Southeast Asia and drier conditions in the 
equatorial Pacific. In addition, we find that these emerging weather 
patterns are considerably exacerbating extreme precipitation and 
heatwaves in the tropical Indo-Pacific, with a spatial footprint resem-
bling, to a certain extent, that of La Niña (also referred to as the cold 
phase of ENSO). In agreement with recent studies, we find that the 
occurrence trends in weather patterns are not fully attributable to 
ENSO-driven variability33, or to other relevant modes of variability, 
namely, Indian Ocean dipole (IOD)34, Pacific decadal oscillation (PDO)35 
and Atlantic multidecadal oscillation (AMO)36, although we are not 
able to conclusively attribute them to global warming trends or other 
external forcing mechanisms.

Emerging and disappearing weather patterns
The literature has commonly focused on the shifting mean state of 
regional weather patterns20,37, namely, sets of similar synoptic circula-
tions. Changes in such patterns can be used to diagnose low-frequency 
atmospheric changes. In this study, we instead identify analogues (sets 
of weather patterns similar to each other) and use them to quantify the 
occurrence trends of all individual weather patterns. That is, we obtain 
an occurrence trend for the spatial atmospheric pattern of each data 
timestep (day) we analyse in the Indo-Pacific region (50° E–120° W, 
20° S–20° N)12. This means identifying the weather patterns that are 
closest to each other under Euclidean distance (analogues) in 83 years 
of ERA5 data (1940–202228). We then divide the dataset into nine peri-
ods of equal duration and calculate the number of analogues for each 
period. If the number of analogues of a given weather pattern is increas-
ing (decreasing) over time beyond a certain confidence interval, the 
weather pattern is emerging (disappearing). Emerging patterns can 
be seen as weather patterns that were rare in the distant past and that 
are now appearing more frequently, with the opposite applying to 
disappearing patterns. We focus on a relatively narrow tropical band 
since analogues-based methods may not perform as well if the region 
under study is too broad and encompasses too many climate systems. 
However, we conducted a sensitivity analysis on the studied domain, 
and as shown in Supplementary Fig. 3, it yielded consistent results 
despite identifying fewer patterns with trends. Full details are provided 
in Methods.

http://www.nature.com/naturegeoscience


Nature Geoscience | Volume 17 | October 2024 | 979–986 981

Article https://doi.org/10.1038/s41561-024-01537-8

history available in the ERA5 dataset (1940–2022) as there are no emerg-
ing patterns in previous decades.

Figure 2 shows the frequency ratio of weather extremes linked 
to the emerging (Fig. 2a,c,e) and disappearing (Fig. 2b,d,f) weather 
patterns identified in this study for the December–January–February 
(DJF)) season. The frequency ratio is computed as the ratio between 
the frequency of extremes appearing during the emerging patterns 

identified and the frequency of extremes appearing in climatology in 
the period 1979–2022 (see Methods for more details). Values greater 
than 1 indicate increased frequency compared with climatology. Values 
smaller than 1 indicate decreased frequency. For example, a value of 2 
indicates that an extreme striking during the emerging patterns is twice 
as likely compared with climatology. In the Supplementary Informa-
tion, we provide the same analysis for the other three seasons as well 
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Fig. 1 | Composite anomalies for patterns with significant occurrence trends 
and associated analogues using TCWV as observable. a,c,e,g, Composite 
anomalies for emerging weather patterns. b,d,f,h, Composite anomalies for 
disappearing weather patterns. Diagonal black lines indicate regions with 
changes that are statistically significant at the one-sided 5% level, computed with 
a bootstrap sample size of 500. i,j, The number per year and seasonal distribution 
of patterns with increasing and decreasing occurrence trends, respectively.  

k,l, The count of analogues for emerging and disappearing patterns, 
respectively, in each period (each violin plot). The ends of the boxes represent 
the 25th and 75th percentiles, with the whiskers extending to 1.5 times the 
interquartile range beyond the box. The white dot in each box shows the median 
(n = 280 for emerging patterns; n = 6,226 for disappearing patterns). The dashed 
lines indicate the trend of the average count of analogues. CI, confidence interval.
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as whole-year results without separation into seasons (Supplementary 
Figs. 4–7). In the Supplementary Information, we also provide two 
tables (Supplementary Tables 1 and 2) that detail the frequency across 
the four seasons considered and for ocean only, for land only and for 
eight different land regions.

We find that heatwaves and extreme precipitation exhibit an 
increased frequency when associated with the emerging weather 
patterns identified, with specific coherent spatial patterns, for 
the DJF season. For example, several regions in Indonesia (includ-
ing Central Sumatra, West Borneo and Sulawesi), South Myanmar 
and South India, as well as the Bay of Bengal and the western Pacific, 
exhibit markedly increased frequency of heatwaves compared with 
climatology (Fig. 2a). The South China Sea and its surrounding areas 
(including Vietnam and the Philippines), the Malay Peninsula, the tip 
of South India and a portion of the Indian Ocean off the coast of Aus-
tralia exhibit considerably increased frequency of extreme precipita-
tion, while an increased frequency is observed in other portions of 
Southeast Asia and the tropical Western Pacific (Fig. 2c). For consecu-
tive dry days, there is an overall decrease for the emerging patterns 
compared with climatology, albeit some regions, including Central 
Indochina and Central Sumatra, experience an increased frequency 

(Fig. 2e). The results for disappearing weather patterns (Fig. 2b,d,f) 
mirror those obtained for emerging weather patterns, corroborating  
the findings.

To complement the analysis, we link the results obtained on 
weather extremes to flooding events recorded in the Emergency Events 
Database (EM-DAT)40 for the DJF season (Fig. 3a,b). The use of EM-DAT 
comes with some obvious caveats: only events with high social impact 
are recorded in the database, and reporting may suffer from both 
spatial and temporal inaccuracy, particularly in the early part of the 
dataset41 and data-scarce regions such as Southeast Asia. We note that 
a similar analyses were not possible for heatwaves and consecutive dry 
days as there are not enough recorded events in EM-DAT for the region 
of interest. We observe that the emerging patterns are strongly associ-
ated with floods (77/130 = 59.2%) compared with the overall frequency 
of flooding days (886/3,971 = 22.3%). More specifically, countries with 
a higher frequency ratio of flooding days (including Vietnam, Thailand, 
Malaysia, Sri Lanka and the Philippines) exhibit a higher frequency ratio 
of extreme precipitation days in Fig. 2g. Results for the other three 
seasons are reported in Supplementary Figs. 8–10. Despite potential 
inaccuracies and insufficient historical data, EM-DAT corroborates the 
results obtained using reanalysis data.
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Fig. 2 | Weather extremes associated with emerging and disappearing 
weather patterns in DJF. a–f, Frequency ratio maps for heatwaves (a,b), extreme 
precipitation (c,d) and consecutive dry days (e,f) (Methods) as associated with 
emerging (a,c,e) and disappearing (b,d,f) weather patterns in DJF. Diagonal black 

lines indicate regions with changes that are statistically significant at the one-
sided 5% level, computed with a bootstrap sample size of 500. Vertical bars on the 
bottom left corner show the average frequency of climatology (grey bar) versus 
emerging and disappearing patterns (coloured bars).
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Role of interannual variability
In the previous sections, we have shown that in the tropical Indo-Pacific 
region, a set of weather patterns is appearing more frequently and 
seem to favour specific weather extremes, while a set of weather pat-
terns less favourable to weather extremes is gradually disappearing. 
Yet given that ENSO is the main driver modulating weather patterns in 
the region, the interplay between the identified long-term occurrence 
trends and ENSO, and more broadly, the contribution of interannual 
variability remain unclear.

In this section, we adopt a surrogate data strategy to understand 
the potential role of various interannual variabilities. To achieve this, 
we randomly shuffled the original daily ERA5 reanalysis data while 
maintaining intact the phases (positive, negative and neutral) of differ-
ent modes of variability as illustrated in Extended Data Fig. 8a (Meth-
ods). This allows us to create scenarios where the long-term trend in 
ERA5 does not exist, while retaining the modulation by interannual 
variability.

The results indicate that the trend and coherent anomalies of 
TCWV over Southeast Asia and Niño 4 region (red and blue bounding 
boxes in Extended Data Fig. 8e) presented in Fig. 1 are robust with 
respect to surrogate data. Specifically, we cannot reproduce the num-
ber of emerging/disappearing patterns along with similar coherent 
anomaly as obtained on ERA5 (Extended Data Fig. 8c–f). For AMO and 
PDO, only a few patterns exhibiting trends can be identified, and their 
similar zero-centred anomaly distributions suggest these patterns 
appear to be random, indicating a weak modulation of the occurrence 
trend of weather patterns in this region by the AMO and PDO. Yet the 
surrogate data that retain ENSO and IOD variability exhibit more emerg-
ing and disappearing patterns than the other two modes of variability. 
However, they both yield mean anomalies that are opposite to those 
of the ERA5 data, suggesting that the trends identified in this study 
cannot be fully attributed to ENSO and IOD.

These results collectively indicate that the trends we observe can-
not be fully explained by interannual variability alone. We note that 
the studied region also encompasses two important climate systems: 
the Madden–Julian Oscillation and the Asian monsoon system. These 
systems have been observed to exhibit long-term variations over the 
past few decades42,43, which may also impact the weather patterns we 
have identified. However, due to their relatively higher frequency 
and complex coupling with interannual variability44,45, our study is 
currently unable to assess the association between these systems and 
the observed trends in our analysis, and such an evaluation is beyond 
the scope of this study.

Besides modulating the occurrence trends of weather patterns, 
it is widely recognized that interannual variability such as ENSO also 
contributes substantially to weather extremes in the studied region46. 
Given the rarity of emerging weather patterns, it is still uncertain 
whether they can explain extremes to an extent comparable to interan-
nual variability, or whether their contribution is negligible. To address 
this point, we assess the relative contributions of emerging weather 
patterns and ENSO to the three different types of weather extremes 
in the studied region.

We focus on the period 2001–2022, which contains the majority 
of the emerging patterns. We categorize all days within this period 
into six categories on the basis of their occurrence during ENSO (posi-
tive or negative phase) only, emerging patterns only, ENSO (positive 
or negative phase) in conjunction with emerging patterns, or they 
do not occur in any of the previous five cases (see the lower panel in 
Fig. 4). Similarly, we classify extreme events into six categories fol-
lowing the same definitions (see the upper panels in Fig. 4). By defi-
nition, the lower pie chart depicts the distribution of all days across 
the six categories considered, whereas the upper pie charts show the 
distribution of extreme weather days within the same categories. 
Hence, by comparing the lower and upper pie charts, we immediately 
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observe how the percentage of emerging patterns associated with 
weather extremes is notably larger than the overall percentage of 
emerging patterns for heatwaves (Fig. 4, top left panel) and extreme 
precipitation (Fig. 4, top centre panel). This shows that the emerging 
patterns identified are strongly linked to heatwaves and extreme 
precipitation in the region, and known ENSO-driven variability can 
only partially explain these weather extremes. If we look at how 
heatwaves and extreme precipitation are distributed with respect 
to ENSO variability, we note that heatwaves are explained largely 
by El Niño (red portion of the pie chart in the top left panel of Fig. 4) 
and extreme precipitation by La Niña (blue portion of the pie chart 
in the top centre panel of Fig. 4). Yet the emerging patterns explain 
a disproportionately large percentage of both categories of weather 
extremes. Remarkably, emerging patterns during La Niña phases are 
associated with a relatively large percentage of heatwaves, ~ 5.6%, 
accounting for 32.7% (5.6%/(5.6 + 11.5)%) of heatwaves during La Niña, 
despite accounting for only 15.2%(4.2%/(4.2 + 23.4)%) of the total  
La Niña days.

For consecutive dry-day events, the emerging patterns are not 
associated with any event at all, which is consistent with our finding 
that the emerging weather patterns are bringing wetter conditions.

We perform the same analysis just outlined for three other 
relevant modes of variability—IOD, PDO and AMO (Extended Data 
Fig. 9)—finding similar conclusions as the ones obtained for ENSO; 
these modes of variability show even weaker modulation of weather 
extremes than ENSO. We present the results for the other three seasons 
in the Supplementary Information Section 3. We additionally show 
the distribution of emerging and disappearing patterns with respect 
to the phases of each mode of variability, along with frequency maps 
of weather extremes conditioned to different phases of each mode of 
variability in the Supplementary Information Sections 4 and 5, respec-
tively. These results further corroborate that the modes of variability 
considered cannot reproduce the higher frequency and spatial dis-
tribution of extremes obtained for the emerging patterns identified  
in this work.

The preceding results show that the long-term trends identified 
for specific weather patterns provide a substantial contribution to the 
occurrence of weather extremes in the Indo-Pacific region.

A changing tropical Indo-Pacific
In this study, we provide an analogue-based methodology to under-
stand spatio-temporal weather changes in the tropical Indo-Pacific 
and link them to regional occurrences of extreme events. We identify 
marked ongoing changes that manifest as a set of increasingly frequent 
weather patterns. These lead to spatially coherent anomalies across 
several atmospheric variables, which manifest in a stronger PWC, wet-
ter and warmer conditions in Southeast Asia and drier conditions in 
the equatorial Pacific. Despite these emerging weather patterns being 
relatively rare (3.2% of days for DJF), they are associated with a large 
number of regional extremes, notably heavy precipitation and heat-
waves. The robust long-term trend of these emerging patterns does not 
seem linked to known natural ENSO-driven variability or to the other 
three relevant modes of variability, the IOD, the PDO and the AMO.

The study presented relies on reanalysis datasets. These datasets 
have a certain number of limitations, namely, relatively short time 
series as well as time-varying data assimilation strategies and obser-
vations. To address these points, we run an extensive sensitivity study 
that is presented in Supplementary Information Section 1, where we 
show that the results are consistent across reanalysis datasets and data 
assimilation strategies. However, the relatively short period spanned 
by the reanalyses prevents analysing modes of variability that have 
a longer period than the available reanalysis data. Notwithstanding 
these limitations, the results presented in this work capture changes 
in weather patterns in the tropical Indo-Pacific, which are aggravat-
ing regional weather extremes, using state-of-the-art reanalysis data.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41561-024-01537-8.
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Methods
Occurrence trend analysis for weather patterns
The computation of trends in tropical atmospheric pattern analogues 
(also referred to as ’occurrence trends’) is obtained using as observable 
the daily TCWV data from the ERA5 reanalysis over the period 1 January 
1940 to 31 December 2022 (30,316 days). Other observables have also 
been used to corroborate the results found. The data adopted have 
horizontal resolution of 0.25° × 0.25°, and the analysis is restricted to 
120° W–50° E and 20° S–20° N. This corresponds to the tropical region, 
spanning from eastern Africa to the western coast of North America, 
with a size of 381 (longitude) × 81 (latitude) = 30,861 grid points.

The underlying methodology adopted to compute occurrence 
trends closely follows refs. 12,26, and the six steps required are reported 
here for the readers’ convenience.

	(1)	 The first step is to select daily longitude–latitude maps of our 
observables (for example, TCWV), which we deem important 
for tropical atmospheric dynamics and thermodynamics.

	(2)	 The second step consists of computing the Euclidean distance 
between daily maps, where we take each map as a reference 
state and compute its distance from all other maps in the data-
set. Here we use Euclidean distance as the evaluation metric be-
cause it has been proved to be an effective measure of similarity 
between atmospheric weather maps in previous research26. 
We then define a high-quantile q to select the atmospheric 
pattern analogues. We chose q = 0.98, meaning that we take as 
analogues the 2% closest fields to the target. We describe in the 
following how the sensitivity to the choice of q is tested.

	(3)	 The third step consists of dividing the time interval of 83 years 
into periods. We then count how many analogues N fall in each 
period τ, obtaining N(τ) where τ is the period chosen. For this 
analysis, we chose 9 periods of approximately 9 years. Further 
analyses have shown that shortening these periods will not 
change our results qualitatively.

	(4)	 The fourth step is to perform a linear fit of N(τ) of the type aτ + b.  
Using a cubic fit does not qualitatively affect the results (not 
shown here).

	(5)	 The fifth step is to estimate the upper and lower 95% confidence 
intervals (CIs) of the a parameter of the fit using the Wald 
method47. If the lower and the upper bounds of the CI for a are 
positive (negative), we interpret this as a significant positive 
(negative) trend for the selected daily observable map and 
quantile q. If the confidence interval contains zero, the trend is 
non-significant.

	(6)	 The sixth step consists of repeating the preceding five steps for 
q = 0.99 and q = 0.995. We retain as daily maps with significant 
increasing (decreasing) occurrence trends only those having 
consistent (same sign and significant) occurrence trends for all 
three quantiles. These are the robust weather patterns that are 
analysed in this paper. We additionally verify that the quality 
(distance) of analogues for these patterns is comparable to that 
for all other days in our dataset.

We adopted 95% CIs as boundaries for statistical significance, 
which means a 5% probability of the actual trend lying outside the CI 
range. Given that CIs are symmetric intervals, this implies that the 
likelihood of the ‘true’ trend having an opposite direction is ≤2.5%. In 
practice, since we select only for weather patterns that exhibit signifi-
cant trends for three different quantiles q simultaneously, the chance 
of selecting inappropriate patterns is negligible.

The methodology just described is used to identify the emerg-
ing and disappearing patterns depicted in Fig. 1. In particular, the 
trends mentioned for emerging and disappearing patterns are shown 
in Fig. 1k,l, respectively, where we display the distribution of analogues 
for each period. Figure 1i,j shows the temporal distribution of emerging 
and disappearing patterns (vertical bars), respectively, as well as their 

seasonality (pie chart). The remaining Fig. 1a–h depicts the composite 
anomalies for the emerging and disappearing weather patterns, which 
are further described later in the ‘Computation of composite anomalies 
maps’ section of Methods.

Computation of composite anomalies maps
We produce composite anomalies for the days displaying significant 
occurrence trends for several daily variables: TCWV, 850 hPa stream-
function and wind, daily total precipitation and 2 m temperature. The 
data were processed to remove a grid-point by grid-point linear trend 
for the whole analysis period. This ensures that the composite anomaly 
maps are not affected by the occurrence time of those weather patterns. 
The data were further deseasonalized using a mean seasonal cycle 
computed by averaging over the same calendar days. Geographical 
anomalies’ significance is assessed through a bootstrap procedure 
(sample size of 500) that involves randomly selecting a number of days 
equal to the days in each composite from the entire dataset, regardless 
of their trend. Anomalies are considered significant if they fall below 
the fifth percentile or above the 95th percentile of the bootstrap dis-
tribution for each grid point.

Surrogate data generated by random shuffling
Since the emerging patterns in our study are rare and resembling, 
to a certain extent, La Niña-like patterns, we investigate whether the 
identified trends are driven by internal variability. To this end, we 
use surrogate data, generated by maintaining the internal variability 
within the dataset while eliminating the trends. To achieve this, we 
perform random shuffling conditioned to the phase of each mode 
of variability considered, as shown in Extended Data Fig. 8a. In par-
ticular, we first classify all weather patterns into three phases of a 
given internal mode of variability on the basis of thresholds set at 
the 25th and 75th percentiles of the associated climate index. Then 
we randomly shuffle the weather patterns within each phase to cre-
ate one surrogate dataset. For each internal variability considered 
in our study, including ENSO, IOD, PDO and AMO, we generate 2,000 
surrogate datasets. Finally, we apply the occurrence trend analysis 
to all reshuffled datasets and identify weather patterns exhibiting 
significant occurrence trends. The results are shown in Extended  
Data Fig. 8b–f.

Extracting extreme events from reanalysis dataset
In this study, we focus on three prominent types of weather extremes 
in the tropical Indo-Pacific: heatwaves, extreme precipitation and 
consecutive dry days. Those extremes are extracted on each individual 
grid point from the ERA5 reanalysis data from 1979 to 2022, using the 
following definitions.

	(1)	 Heatwave: we adopt TX90pct as a relative threshold to define 
heatwaves in our study48. The threshold for one day at one grid 
point is the calendar-day 90th percentile of the daily maximum 
temperature, based on a centred 15 day window. A heatwave 
is defined as three or more consecutive days exceeding this 
threshold, and all days belonging to this heatwave are consid-
ered as heatwave days for that grid point.

	(2)	 Extreme precipitation: we define extreme precipitation as days 
with daily precipitation exceeding the 95th percentile on wet 
days with daily precipitation greater than 1 mm (ref. 49).

	(3)	 Consecutive dry days: consecutive dry-day events are defined 
as a period of five or more consecutive days with daily precipi-
tation less than 1 mm. All days belonging to this consecutive 
dry-day event are considered as consecutive dry days49.

When defining extremes, we remove a grid-point by grid-point 
long-term trend from the the data. This is because we want to maintain 
a relatively uniform distribution of extremes in the studied period. 
Using data with trends leads to the identification of more frequent 
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heatwaves and extreme precipitation in recent decades, where our 
emerging patterns cluster. This might raise the question of whether 
the extremes associated with emerging weather patterns are polluted 
by the underlying climate trend. Thus, removing the long-term trend 
effectively prevents overestimation of our results, although it probably 
underestimates the impact brought by these emerging patterns, given 
that heatwaves and extreme precipitation in the region are reported 
to be more frequent and intense7.

To investigate and compare the contribution of emerging weather 
patterns and various modes of variability to weather extremes, we 
further define extreme events as days on which a minimum number 
of grid points are identified as extremes. Specifically, extreme events 
are identified as days when the number of grid points classified as 
extreme exceeds the top 10th percentile. We further apply this method 
of defining extremes to smaller regions using regional land masks 
(Supplementary Tables 1 and 2). The computation of the overall spa-
tial frequency effectively excludes point-wise patches, increasing 
the robustness of the results. After identifying these daily extreme 
events, we classified them into six categories on the basis of their 
Niño3.4 index (≥75th percentile of Niño3.4, ≤25th percentile of Niño3.4, 
25th to 75th percentile of Niño3.4) and whether they are associated 
with emerging weather patterns: La Niña only, El Niño only, emerg-
ing patterns only, emerging patterns belonging to La Niña, emerging 
patterns belonging to El Niño, and not assigned to ENSO or emerg-
ing patterns. In our study, the phases of other modes of variability 
are defined using the same threshold criteria applied to each mode’s  
respective index.

Frequency ratio maps
In this study, the frequency ratio maps are presented to show whether 
our identified weather patterns are more/less favouring the occurrence 
of extremes. First, we calculate the frequency of extreme events across 
the overall period for each season. More specifically, this is computed 
counting the number of extreme days divided by the total number of 
days on a grid-point by grid-point basis. Then we assess the frequency 
of extremes occurring during emerging/disappearing weather patterns 
within the corresponding season. This is calculated as the ratio between 
the number of extremes occurring during emerging patterns and the 
total number of emerging patterns (also in this case on a grid-point 
by grid-point basis). These steps produce two frequency maps. The 
frequency ratio map is then derived by dividing the frequency map of 
extremes under emerging and disappearing weather patterns by the 
frequency map of extremes not conditioned by emerging and disap-
pearing patterns.

Impacts of floods associated with emerging patterns
We take floods from the EM-DAT40. We focus on events over Southeast 
Asia, India and Sri Lanka, excluding those floods where no start and/
or end day was provided, and dates included in several events were 
counted only once. We consider only floods that occurred between 1979 
and 2022 here, which matches the period used for reanalysis data, as 
this helps maintain consistency in the study and avoids the periods for 
which EM-DAT lacks comprehensive records. For floods lasting more 
than 10 days, only the first 10 days are considered as flooding days since 
for prolonged floods, their mechanisms may be more complex and 
cannot be attributed simply to specific weather patterns. Following 
these criteria, from 1,189 floods recorded in the region of interest, we 
identified 2,843 flooding days over 698 floods. We further divide these 
flooding days by season and country and calculate their frequency 
ratio of flooding days in different countries during different seasons, 
specifically DJF (Fig. 3), March–April–May (Supplementary Fig. 8), 
June–July–August (Supplementary Fig. 9) and September–October–
November (Supplementary Fig. 10).

To determine whether a given flood is associated with emerg-
ing weather patterns, we check whether the fraction of days with 

emerging weather patterns within the event is higher than the occur-
rence frequency of emerging weather patterns in climatology. If so, 
it is then considered as one of the associated events. We claim that 
this is likely to underestimate the impact of emerging weather pat-
terns since flooding might exhibit a certain delay relative to extreme 
precipitation, depending on many factors such as topography, soil 
saturation, drainage systems and more. Following the preceding defi-
nition, Fig. 3 and Supplementary Figs. 8, 9 and 10 collectively show 
the number of floods that are associated with emerging weather 
patterns in different seasons. These figures also detail the spe-
cific distributions of those identified floods across different coun-
tries, along with the number of people affected and the economic  
losses incurred.

Data availability
The ERA5 reanalysis data used in this study are available at https://cds.
climate.copernicus.eu/#!/search?text=ERA5&type=dataset. The NCEP 
reanalysis data are from https://psl.noaa.gov/data/gridded/data.ncep.
reanalysis.html. The JRA55, 20CR and ERA-20C are from the Climate 
Data Guide (https://climatedataguide.ucar.edu/). The climate indices 
for ENSO, IOD, AMO and PDO are publicly available at climate explorer 
(http://climexp.knmi.nl/). The impact data for flooding events are 
available from https://www.emdat.be/.

Code availability
The code used for the analysis and visualization is available at https://
doi.org/10.5281/zenodo.13172443 (ref. 50).
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Extended Data Fig. 1 | Composite anomalies conditioned by the Niño3.4 index. The left column (a,c,e,g) depicts composite anomalies of La Niña, obtained using 
data with Niño3.4 index less than -1.5. The right column (b,d,f,h) depicts composite anomalies of El Niño, obtained using data with Niño3.4 index greater than 1.5.

http://www.nature.com/naturegeoscience


Nature Geoscience

Article https://doi.org/10.1038/s41561-024-01537-8

Extended Data Fig. 2 | Composite anomalies (a–h), for patterns with 
significant occurrence trends (i,j), and associated analogues (k,l), using the 
850hPa streamfunction as observable. As in Fig. 1, but the observable used 
for occurrence trend analysis is the 850hPa streamfunction instead of TCWV. 

The ends of the boxes represent the 25th and 75th percentiles, with the whiskers 
extending up to 1.5 times the interquartile range beyond the box. The white 
dot in each box shows the medians (n=353 for emerging patterns, n=1278 for 
disappearing patterns).
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Extended Data Fig. 3 | Composite anomalies (a–h), for patterns with 
significant occurrence trends (i,j), and associated analogues (k,l), using the 
200hPa streamfunction as observable. As in Fig. 1, but the observable used 
for occurrence trend analysis is the 200hPa streamfunction instead of TCWV. 

The ends of the boxes represent the 25th and 75th percentiles, with the whiskers 
extending up to 1.5 times the interquartile range beyond the box. The white 
dot in each box shows the medians (n=978 for emerging patterns, n=1323 for 
disappearing patterns).
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Extended Data Fig. 4 | Composite anomalies (a–h), for patterns with 
significant occurrence trends (i,j), and associated analogues (k,l), using 
TCWV as observable, and 16 time periods. As in Fig. 1, but the number of time 
periods used for occurrence trend analysis is 16 instead of 9. The ends of the 

boxes represent the 25th and 75th percentiles, with the whiskers extending up to 
1.5 times the interquartile range beyond the box. The white dot in each box shows 
the medians (n=310 for emerging patterns, n=7287 for disappearing patterns).
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Extended Data Fig. 5 | Composite anomalies (a–h), for patterns with 
significant occurrence trends (i,j), and associated analogues (k,l). As in Fig. 1,  
but for the NCEP reanalysis dataset. The ends of the boxes represent the 25th and 

75th percentiles, with the whiskers extending up to 1.5 times the interquartile 
range beyond the box. The white dot in each box shows the medians (n=1814 for 
emerging patterns, n=9939 for disappearing patterns).
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Extended Data Fig. 6 | Composite anomalies (a–h), for patterns with 
significant occurrence trends (i,j), and associated analogues (k,l), using 
TCWV as observable. As in Fig. 1, but for the ERA-20C reanalysis dataset. The 
ends of the boxes represent the 25th and 75th percentiles, with the whiskers 

extending up to 1.5 times the interquartile range beyond the box. The white 
dot in each box shows the medians (n=1027 for emerging patterns, n=3419 for 
disappearing patterns).
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Extended Data Fig. 7 | Composite anomalies (a–h), for patterns with 
significant occurrence trends (i,j), and associated analogues (k,l), using 
TCWV as observable, and the last 48 years. As in Fig. 1, but for the last 48 
years (from 1975 to 2022) to verify the sensitivity with respect to the satellite 
observation era. The number of time periods used for occurrence trend analysis 

in this shorter time history is equal to 8. The ends of the boxes represent the 25th 
and 75th percentiles, with the whiskers extending up to 1.5 times the interquartile 
range beyond the box. The white dot in each box shows the medians (n=21 for 
emerging patterns, n=17532 for disappearing patterns).
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Extended Data Fig. 8 | Surrogate data study of the trend analysis. Plot (a) 
depicts a schematic representation of the framework for generating surrogate 
data through random shuffling of data applied within each phase (positive, 
neutral, negative) of each mode of variability considered in this study, that is, 
ENSO, IOD, AMO and PDO. The three colors of the Earth correspond to three 
different phases of a mode of variability, that is, red being positive, white neutral, 
and blue negative. The scatter plots (c,d,e,f) display results obtained from 
surrogate data for emerging patterns (c,e) and disappearing patterns (d,f), for 

the four modes of variability considered, and the result obtained on the original 
non-reshuffled data, red star. In (c) and (d), the average total column water vapor 
anomaly is computed within the red bounding box (90E-140E, 20N–20S) shown 
in (b), while for (e) and (f), it is derived from the blue bounding box (160E-150W, 
5N–5S). Figure (b) displays composite anomalies of emerging patterns obtained 
from the ERA5 reanalysis dataset, identical to Fig. 1(a), with the bounding boxes 
used for calculating the TCWV anomaly.
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Extended Data Fig. 9 | Percentages of extreme weather events during positive (red) and negative (blue) phases of internal variability, and during emerging 
patterns (yellow), for DJF. As in Fig. 4, but for the IOD (a), PDO (b), and AMO (c).
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Extended Data Table 1 | Occurrence trends analysis for different observables

Observable Positive Negative
TCWV 280 (0.92%) 6226 (20.53%)

850hPa-S 353 (1.16%) 1278 (4.22%)
200hPa-S 978 (3.23%) 1323 (4.36%)

SLP 749 (2.47%) 1213 (4.00%)
2m-T 5690 (18.77%) 8351 (27.55%)

500hPa-W 0 (0.00%) 8993 (29.66%)
TP 0 (0.00%) 17909 (59.07%)

TCC 1219 (4.02%) 1201 (3.96%)
OLR 1004 (3.31%) 1982 (6.54%)

Occurrence Trend

Number of weather patterns (and associated percentage with respect to the total number of days in the dataset) with positive and negative occurrence trends identified for different 
observables, using the ERA5 reanalysis dataset in the period 1940-2022.
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