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In 2022, Europe faced an extensive summer drought with severe

socioeconomic consequences. Quantifying the influence of human-induced
climate change on such an extreme event can help prepare for future
droughts. Here, by combining observations and climate model outputs

with hydrological and land-surface simulations, we show that Central and
Southern Europe experienced the highest observed total water storage
deficit since satellite observations beganin 2002, probably representing
the highest and most widespread soil moisture deficit in the past six
decades. While precipitation deficits primarily drove the soil moisture
drought, human-induced global warming contributed to over 30% of the
droughtintensity and its spatial extent via enhanced evaporation. We
identify that 14-41% of the climate change contribution was mediated by the
warming-driven drying of the soil that occurred before the hydrological year
0f 2022, indicating the importance of considering lagged climate change
effects to avoid underestimating associated risks. Human-induced climate
change had qualitatively similar effects on the extremely low observed river
discharges. These results highlight that global warming effects on droughts
are already underway, widespread and long lasting, and that drought risk
may escalate with further human-induced warming in the future.

During the 2022 summer, Central and Southern Europe experienced an
extreme drought characterized by very low soil moisture and river water
levels, severely impacting multiple sectors across many countries.
Impactsincluded limited municipal water supply, reduced crop yields,
extensive wildfires, decreased hydropower generation, navigation
restrictionsinriversand compromised stability of dykes'*. For example,
inlItaly, half of the population faced water restrictions’, whilein France,
60% of the regions were on the highest drought alert with over 100
municipalities receiving drinking water via trucks'*. Beyond restricting
domestic water consumption, the drought diminished water reserves
forirrigation, exacerbating soil dryness and impacting agriculture.

Grain maize, sunflower and soybean yields across Europe dropped by
an average of 15% compared with the past 5 years, with the strongest
impacts in France, Italy, Germany, Slovenia, Hungary and Romania*’.
For instance, Italy’s Po River basin saw a 30% decrease in rice yields,
while suffering amplified agriculturalimpacts fromarecord-breaking
40 km inland saltwater intrusion due to reduced river discharge®*.
Furthermore, vegetation impacts’ were magnified by the high fire risk
that resulted in the second-largest burnt area in Europe since 2000
(ref. 6), affecting especially Italy, Slovenia, France and Romania®.
Originally driven by a strong precipitation deficit, the meteorologi-
cal drought ultimately transitioned into low river discharges with
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Fig.1| The 2022 European soil moisture drought. a, The anomaly of the
simulated JJA 2022 average soil moisture in units of s.d. of the JJA1960-2021
distribution. The stippling indicates locations where 2022 was drier than any
simulated summer in1960-2021. b, The anomaly of the European total (over the
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boxina)]JA average soil moisture relative to 1960-2021 (Methods). ¢, The land
area of Europe under severe drought, that is, under JJA average soil moisture
anomaly below two s.d. of the 1960-2021 distribution. Simulations are based on
themHM.

extensive impacts. Reduced river water levels along the river Rhine
disrupted shipping, impacting coal and oil transport in Germany and
the Netherlands'’. This exacerbated the energy strainamid increased
air conditioning demand and reduced energy production owing to
diminished river levels. In fact, the low river levels affected the cool-
ing systems in nuclear power plants, leading to reduced electricity
generation and reactor shutdowns on the Belgium-France border?®.
Moreover, diminished reservoir water levels due to low river flow
reduced hydropower generation, as exemplified by Portugal storing
less than half the average hydroelectric energy' and Italian power plants
generating 40-50% less electricity, temporarily shutting down one
plantin Piacenza’.

The widespread societal repercussions of the event highlighted
water management as a crucial priority for stakeholders and empha-
sized the need for a deep understanding of the drought drivers,
including the contribution of human-induced climate change to the
event. In turn, the scientific community started providing impor-
tant information on the event'”. Schumacher et al.?, by focusing on
West-Central Europe, which represents only a part of the affected
area, identified that climate change has probably made common
soil moisture droughts more probable, but they could not rule out a
null or even opposite effect. On the basis of reanalyses weather data,
Faranda et al.’ showed that the meteorological conditions during
the drought were associated with a persistent anti-cyclonicanomaly,
whose underlying hot-dry atmospheric conditions have probably
been enhanced by human-induced global warming. However, they
indicated that climate model simulations are required to disentan-
gle the effects of human-induced climate change®'. By considering
a drought index capturing only recent weather dynamics, Faranda
etal.’ may have neglected lagged effects on the drought, that is, effects
from human-induced warming and precipitation trends before the
hydrological year of 2022. Such effects may have exacerbated the
drought by soil drying before 2022 via long-term warming, but so far
therelevance of this effect remains unclear. Furthermore, the spatially
compounding nature of the drought”, which encompassed multiple
countries simultaneously with potentially compounding impacts,
raises questions with respect to the extremeness of the drought’s
spatial extent and the influence of human-induced climate change
on this extent.

Notwithstanding the findings from earlier studies®?, it is unclear
how weather anomalies before the event contributed to the 2022 sum-
mer drought and how human-induced climate change affected the
drought through changes in precipitation and temperature across
different seasons before the event. Here, we combine hydrological
andland-surface models withasuite of precipitation and temperature
data from observations and 23 climate models to disentangle the
direct and lagged effects of weather anomalies and human-induced
climate change on the drought. We take a ‘storyline approach’?, thatis,

given the meteorological conditions driving the drought, we assess
how human-induced climate change affected drought intensity and
spatial extent. We derive soil moisture, river discharge and total water
storage via hydrological simulations of the mesoscale Hydrological
Model (mHM)"*™" driven by observed precipitation and temperature
from the E-OBS dataset' (hereinafter, mnHM-E-OBS), which shows good
agreement with observations (Extended DataFig.1). Given the known
uncertaintiesin modelling soil water dynamics via different hydrologi-
cal and land-surface models"'®, we confirm the results’ robustness for
soil moisture and total water storage via simulations from the Commu-
nity Land Model (CLM)"*, a land-surface model, driven by the ERAS
reanalysis” (CLM-ERAS) (Methods).

One of the most extreme soil moisture droughts
in60 years

Satellite observations and hydrological simulations indicate that
the 2022 drought was one of the most extreme of the last decades
in Central and Southern Europe. Hydrological simulations based on
the mHM-E-OBS setup startingin1960 reveal that the 2 m soil mois-
ture deficits in June-August (JJA) 2022 were the highest on record
in many regions in Europe (Fig. 1a, stippling) and, accordingly, the
total soil moisture deficit in Central and Southern Europe (Fig. 1a,
hereinafter, Europe), which was ~280 km?® (equivalent to 120 million
Olympic swimming pools), was the most extreme (Fig. 1b). Inline with
documented widespread drought impacts'? the simulations reveal
that the spatial extent of the soil moisture drought (here defined
as the area with soil moisture anomalies below two s.d. from the
1960-2021 average) was also the largest since 1960 (29% of Europe
inFig. 1c; similarly for one and four s.d., but the event ranked as the
second for three s.d.; Extended Data Fig. 2). These results about
the extremeness of the soil moisture deficit are mirrored by total
water storage anomalies from the Gravity Recovery and Climate
Experiment (GRACE) satellite observations and hydrological sim-
ulations, which rank the JJA total water storage across Europe, as
well as Central and Southern Europe individually, as the driest since
observations started in 2002 (Extended Data Fig. 1b-d, circled dot
in the bottom left corner), again emphasizing the large extent of
the event (Extended Data Fig. 1g,h). We also note that simulations
based onthe CLM-ERAS5 setup rank the total soil moisture deficitin
the summer of 2022 as the second-lowest since 1960. However, the
performance of CLM-ERAS is not as good as mHM-E-OBS, in captur-
ing both the ranking 0f2022’s European total water storage drought
and the spatial pattern of the event (Supplementary Information).
Owing to these discrepancies, it is well possible that 2022 was the
most extreme soil moisture drought since 1960, and hereinafter
we focus on the results from mHM-E-OBS, but further consider the
results from CLM-ERAS in the final section, Implications and chal-
lenges for drought dynamics and risks.
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Fig.2|Seasonal weather anomalies before and during the summer drought.
a, The anomaly derived from E-OBS data in mean precipitation (P) of DJF 2021~
2022 relative to mean seasonal precipitation in 1981-2010, computed as a ratio
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average daily temperature (T), computed as the difference (>0 indicates warmer
than average) for DJF 2021-2022 (d), MAM 2022 (e) and JJA 2022 (f). g-i, The same
asa-c, but for the anomaly in the daily temperature range (7,,,,.) (>lindicatesa
higher daily temperature range than average) for DJF 2021-2022 (g), MAM 2022
(h) andJJA 2022 (i).

Weather anomalies during and before the
drought

Given that lack of precipitation and warm conditions that enhance
evaporation can lead to droughts’®, we inspect the weather during
and before the 2022 JJA drought event to understand the drivers of the
summer drought. The 2022 summer was characterized and preceded
by substantial weather anomalies (Fig. 2) associated with persistent
high-pressure conditions over France’. In particular, JJA displayed a
widespread lack of rainfall (-30% of the 1981-2010 average in median
over Europe; Fig. 2¢) with the exception of Greece and the south of
Italy, where, accordingly, no soil moisture drought occurred in sum-
mer (Fig. 1a). At the same time, several heatwaves broke temperature
records across many European countries?, contributing to an excep-
tionally warm summer (Fig. 2f), with the highest average temperature
in Europe since 1960 (1.9 °C above the 1981-2010 average). The daily
temperature range, which is a proxy for downwelling radiation and
thereforeisrelated to evaporation?, was also high over most of Europe
(Fig. 2i). Notably, precipitation and temperature anomalies during the
previous spring (March-May (MAM); Fig. 2b,e,h) and winter (Decem-
ber-February (DJF); Fig. 2a,d,g) were also substantial, and may have
preconditioned the summer drought. Forinstance, the lack of rainfall
in spring (Fig. 2b) affected most of Europe except for southern Spain,

in particular its eastern coast, where no soil moisture drought was
recorded. Thisindicates that precipitation anomalies across multiple
seasons have probably contributed to the low summer soil moisture.

Influence of weather anomalies on summer soil
moisture

Through soil moisture simulations® (Methods), we disentangle the
influence of weather anomalies on summer soil moisture, finding that
both precipitation and temperature were important (Fig. 3, note that
here we combined the contribution from anomaly in mean temperature
and daily temperature range together). In particular, the compound-
ing effect of hot-dry summer conditions reduced soil moisture over
most of Europe (Fig. 3c,f). On average, the lack of rainfall contributed
to—0.43s.d.in summer soil moisture from the mean conditions, while
hightemperatures contributed -0.24 s.d., highlighting arelevant role
of temperature anomalies in shaping the drought.

Theweather anomalies in spring and winter were alsorelevant. The
lack of rainfallin spring (Fig. 3b) largely reduced summer soil moisture
in Europe, by —0.39 s.d. on average. Nevertheless, in southern Spain,
the abundantrainfallin spring (Fig. 2b) counteracted the hot-dry sum-
mer, averting asoil moisture drought in the following summer (Fig. 1a).
Winter anomalies had asmallerimpact (-0.09 s.d. for precipitation and
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Fig.3| Contribution of weather anomalies to the JJA 2022 soil moisture
drought. a, The anomaly in the JJA 2022 average soil moisture owing to the
anomaly in precipitation during DJF 2021-2022, in units of s.d. of the JJA1960~
2021 distribution. The number on the top right shows the spatially weighted
average across Europe (Fig. 1a). b,c, The same as a, but for the contribution to the

JJA 2022 soil moisture drought from anomalies in precipitation of MAM 2022 (b)
and]JJA 2022 (c).d-f, The same as a-c, but for the contribution to the drought
from combined anomalies in average daily temperature and daily temperature
range for DJF 2021-2022 (d), MAM 2022 (e) and JJA 2022 (f). Simulations are based
onthemHM.

-0.04 s.d. for temperature). However, regional precipitation effects
were still substantial, particularly over the Iberian Peninsula, where
the dry winter limited water accumulation for the subsequent sum-
mer (Fig. 3a). Notably, positive winter temperature anomalies in our
analysis region do not markedly affect summer soil moisture (Fig. 3d),
inline with expected low (or even negligible) evaporation in winter.

Overall, consistent with the relevance of lagged effects for the
build-up of soil moisture droughts®, the above demonstrates that
weather anomalies that occurred months before the soil moisture
drought contributed substantially to its intensity. Altogether, the
average influence of the winter-to-summer precipitation anomalies on
summer soil moisture (-0.30 s.d.; Fig. 3a—c) and that of temperature
(-0.13s.d.; Fig. 3d-f) indicates that precipitation deficits were the key
driver of the drought, while temperature anomalies exacerbated the
event®*°, Finally, we note that the 2018-2020 (ref. 31) drought probably
contributed to the droughtin 2022 as soil moisture had not completely
recovered in various regions by 2021°.

Contribution of human-induced climate change
to soil moisture

Weather anomalies affected the soil moisture drought, butitis unclear
whether they arose merely from internal climate variability' or were
substantially modulated by human-induced climate change. Climate
models of the Coupled Model Intercomparison Project Phase 6 (CMIP6)
indicate potentially relevant changesin precipitation and temperature
from human-induced climate change, but such changes vary widely
across Europe and seasons (Extended Data Fig. 3), making direct con-
nections to the drought challenging. In particular, climate models
indicate that precipitation changes may have dried the soil in summer
and wettened it during the preceding spring and winter on average in
Europe (Fig.4a), raising the question of how these opposing effects may
have played out. Yet precipitation changes remain uncertain owing to
differences across climate models and internal climate variability'***~
and are particularly heterogeneous inspace, withatendency towards
wetteninginNorthernEurope and dryingin Southern Europe (Extended
Data Fig. 3). However, the latest Intergovernmental Panel on Climate
Change assessment concluded that evapotranspiration changes were a

driver for drying under human-induced climate changeinsomeregions,
independently of changes of precipitation’®. In the case of the 2022
summer drought event, temperaturesin the year leading to the drought
were substantially amplified by global warming (Fig. 4b), probably
enhancing evaporation®. Changes in daily temperature ranges, which
arerelated toevaporation, appear instead generally small and uncertain
across models (Fig. 4c).

To quantify the net climate change influence on the drought from
suchintricate changes in meteorological drivers across space and time,
we again conducted soil moisture simulations. Specifically, we quanti-
fied how human-induced climate change in seasonal precipitation and
temperature affected the 2022 soil moisture by comparing simulated
soil moisture under observed weather against simulated soil moisture
obtained when removing the human-induced climate change trendsin
precipitationand temperature (Methods). We find that human-induced
climate change has substantially intensified the drought across nearly
the entire European region (Fig. 5a; results based on CLM-ERAS simula-
tions are consistent, see discussionin the final section, Implications and
challenges for drought dynamics and risks). Specifically, simulations
show that, in 2022, many areas experienced the lowest summer soil
moisture since 1960 because of human-induced climate change (Fig. 5a,
stippling). That is, in the absence of human-induced climate change,
theland areaexperiencing the lowest soil moisture since 1960 (Fig. 1a)
would have been halfthe size compared with what was observed. The
intensification of the drought was largely due to the warming (Fig. 5b)
and the associated increase in evaporation. Note that changes in daily
temperature ranges had little influence on such temperature-driven
drought changes (Extended Data Fig. 4). Conversely, precipitation
changesintensified the warming-driven drying over Southern Europe
and dampeneditelsewhere (Fig. 5¢). Notably, theincreased precipita-
tionevenreversed the warming-drivensoil drying around northeastern
Poland and Lithuania (Fig. 5a), consistent with the spatial pattern of
precipitation changes®® (Extended Data Fig. 3a-d).

Atthe continental scale, we identify that~31% (8-51%, interquartile
range based on the trends from different climate models) of Europe’s
total soil moisture deficit was caused by human-induced climate
change (Fig. 63, first pair of bar plots). In line with Fig. 5, most of the
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Fig. 4 |Human-induced change in precipitation and temperature for the
four seasons preceding the 2022 drought. a, The change in mean precipitation
(P) relative to pre-industrial conditions in 1851-1900 (computed as a ratio) in
SON 2021, DJF 2021-2022, MAM 2022 and JJA 2022. The median across Europe
(Fig.1a) of the change derived from 23 CMIP6 climate models is depicted—the

information from individual models is synthesised via abox plot that shows

the interquartile range and the median across models. The grey lines connect
changes across seasons from the same climate model. b, The same as a, but for
the change in the average daily temperature (T), computed as a difference. ¢, The
same as a, but for the change in the daily temperature range (7,,g.)-
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Fig. 5| Contribution of human-induced climate change to the JJA 2022

soil moisture drought. a, Anomaly in the JJA 2022 average soil moisture

due to human-induced climate change, that is, combined changes in mean
precipitation, average daily temperature and daily temperature range, in units
of s.d. of theJJA1960-2021 distribution. b,c, The same as a, but for the individual

contribution to the drought from temperature (combined daily average and
daily range) changes (b) and precipitation changes (c). The stippling indicates
locations where climate change contributions made JJA 2022 average soil
moisture the driest relative to observed 1960-2021 summers. Simulations are
based onthe mHM.

human-induced climate change effect on the aggregated European soil
moisture deficit arose from ongoing warming (Fig. 6a, second pair of
bar plots), with opposing contributions from precipitation trends bal-
ancing outat the continental scale. The limited regional contribution
from precipitation trends implies that the effect of decreasing sum-
mertime precipitationis compensated by the increasing precipitation
inspringand winter (Fig. 4a), underscoring theimportance of consid-
ering precipitation trends across multiple seasons to assess climate
change impacts on summer soil moisture droughts comprehensively.

Lagged climate change effects and the spatial
extent of soil moisture drought

While the soil moisture drought responded to the cumulative effect
of past weather, human-induced climate change has shaped weather
continuously over the past years. This raises the question of whether
part of the climate change contribution to the drought stems from
past climate change effects on weather, particularly from warming and
precipitation trends preceding the hydrological year of2022, whichin
Europe started on1November 2021. We therefore decompose the total
climate change impact on the drought into a lagged effect due to the
climate change impact on weather before 1November2021and adirect
effect dueto climate change after 1 November 2021 (Fig. 6a, third pair of
bar plots and Extended Data Fig. 5a). This breakdown reveals that 41%
(37-52%, interquartile range) of the climate change-induced drying of
the European-aggregated soil moisture was from lagged effects. At the

continental scale, where warming dominates the climate change effect,
thisimplies that climate change-driven effects were already underway
before November 2021 through enhancing temperature-driven evapo-
ration and soil drying.

In addition to shaping the temporal dynamics of the drought, we
find that, by enhancing the soil moisture deficit over many areas (Fig. 5a),
human-induced climate change substantially increased the drought’s
spatial extent (Fig. 6b). For instance, climate change expanded the
European area experiencing soil moisture anomalies below two s.d.
fromthe average, enlargingit fromabout1.03 to 1.64 million square kilo-
metres, thatis, climate change contributed to 38% (11-58%, interquartile
range) of the spatial extent. Similar to the results of the aggregated
water deficit at the continental scale (Fig. 6a), such an effect can be
largely explained by temperature trends (Fig. 6b, compare orange and
red lines), while precipitation trends* dominate the uncertainties®.

Drivers and climate change effect on the
hydrological drought

In2022, asis common for many soil moisture droughts, the event tran-
sitioned into a hydrological drought, causing a widespread reduc-
tioninriver discharges (Extended Data Fig. 6 and model evaluationin
Extended Data Fig. 7). Simulations indicate that 51% of the European
river surface experienced discharge anomalies below one s.d. from
average, which was the most extensive event since 1960 (Extended Data
Fig. 6¢). Precipitation anomalies in spring and summer were the main
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European total (Fig. 1a) JJA 2022 average soil moisture relative to 1960-2021
(Methods). The second bar shows the total contribution of human-induced
climate change to the JJA 2022 drought. The third and fourth bars show

the contributions of human-induced climate change to the drought from
temperature (temp.) (combined daily average and daily range) and precipitation
(precip.) changes, respectively. The fifth and sixth bar plots show the climate
change contributions mediated by weather before (lagged effect) and during
(direct effect) the 2022 hydrological year (starting in November 2021),
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respectively. The contributions show the mean of the hydrological simulations
driven by changes from 23 CMIP6 climate models, and the error bars show the
interquartile range of the simulations. b, The land area of Europe underJJA
average soil moisture anomaly below x (x axis) s.d. of the 1960-2021 distribution
(brownline); and the area under drought when assuming no climate change
(yellow line) and no temperature trends from climate change (red line) (derived
as the median of hydrological simulations driven by changes from 23 CMIP6
climate models), plus the interquartile range from climate models (shading).
Simulations are based on the mHM.

drivers of the summer drought, contributingto-0.2s.d.and -0.27s.d.
deviation fromthe meandischarge on averagein Europe, respectively
(Extended Data Fig. 8). Similarly to the soil moisture drought, climate
change enhanced the hydrological drought strongly (Extended Data
Fig.9), contributing to 19% (9-30%, interquartile range) of the river
surface under drought (defined viadischarge below one s.d. from the
mean). While lagged effects from climate change were less pronounced
thanfor the soil moisture drought, they were stillimportant (Extended
DataFig. 5b).

Implications and challenges for drought
dynamics and risks

Combining observations and a range of model simulations, we dem-
onstrated that, via enhancing evaporation, human-induced climate
change contributed to 31% (8-51%) of the total European soil water
losses of one of the most extreme droughts of the past six decades.
The 31% estimate is confirmed by the CLM-ERAS5 model setup (Sup-
plementary Figs. 1and 2), which also broadly confirms the contribu-
tions of meteorological anomalies (Supplementary Figs. 3 and 4a-f).
Giventhe uncertaintiesin modelling soil water dynamics via different
hydrological and land-surface models™®, such aremarkable agreement
increases the confidence in the robustness of the results. Furthermore,
our findings align with the recent human-induced atmosphericdrying
across Europe, which is unprecedented in the past 400 years™. Still,
we note that more extreme droughts may have occurred in the past
in the absence of human-induced climate change®. Our results mean
that given the large-scale conditions causing the drought, such as the
atmospheric circulation driving rainfall deficits, human-induced warm-
ing intensified the drought™. Human-induced climate change may
further affect the probability that the large-scale conditions causing
thedroughtoccur, butsuch changes are more challenging to discern®*.
Inline with previous studies, these results reflect theimpact of climate
variability and change on the drought, without accounting for anthro-
pogenic groundwater pumping. While irrigation practices in Europe
are substantially weaker compared with regions such as Asia*°, our
modelling framework may overestimate soil moisture drought sever-
ity at the surface in locations with intensive groundwater pumping*.

Despite the agreement between ahydrologicaland aland-surface
model, climate change contributionsin attribution studies may depend
on methodological choices’ and alternative approaches for creating
counterfactuals, eachwithitsownadvantagesandlimitations, exist™**,
Here, in contrast to nudged simulations that constrain atmospheric cir-
culation, which are typically based on asingle Earth system model***¢,
our approach could account for uncertainties from different climate
and hydrological/land-surface models. While using climate models
is standard for attribution studies, models may have biases’. The
debate on whether climate models underestimate human-induced
warming in Europe*”*® means that the impact of human-induced cli-
mate change on the drought may be underestimated. Despite known
uncertainties in the magnitude of human-induced climate change
trends (Fig. 4) and inevitable methodological choices, our findings
are consistent with previous research on hydrological trends'®*’ and
are rooted in fundamental physical principles and thus advance our
understanding of long-lasting climate change effects on droughts’.
Thatis, human-induced warming, arobust feature of climate models®,
increases evaporation, building up soil water deficits over time.

Thefact thatasubstantial portion of the climate change contribu-
tion was mediated by the warming experienced before the hydrological
year of2022 has broad implications for droughts and underscores how
climate change-enhanced evaporationsilently contributestoanaccu-
mulation of soil moisture deficits. One of the implications is that, for
acold-wet year to offset the climate change effects fully, the weather
must counterbalance not only the climate change-enhanced evapora-
tion during the ongoing hydrological year but also that of the years
before. We ran simulations to assess differences in hydrological and
land-surface models, which also reflect differences in the representa-
tion of evaporation. The CLM-ERAS land-surface model setup, which
is less accurate than the mHM-E-OBS hydrological model, suggests a
smaller lagged effect contribution to the total climate change impact on
thetotal European soil moisture deficit, that is14% compared with 41%
inmHM-E-OBS (Supplementary Fig.2a and Extended DataFig. 5¢). Such
differences may be linked to different representations of low-frequency
variability in state-of-the-art hydrological and land-surface models>’
and different representations of evaporation, a matter that deserves
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further investigation as it may severely affect uncertainties in their
future drought projections. The analysis of soil moisture memory
has a long history®**!, but the impact of the interaction between soil
moisture memory and long-term human-induced climate change on
droughts has been largely overlooked so far. Underestimating lagged
effects would mean incompletely representing the climate change
impact on water resources, an issue that may emerge prominently
with rising temperatures leading to more pronounced lagged effects.
Similarly, common drought indices that integrate water balance over
a few months may provide not only incomplete information on the
droughtdynamics, butalso on human-induced climate change effects.

The results underscore that climate change effects on droughts
arealready underway and, according to future projections'®, will prob-
ably increase in the future®. Such effects are particularly challenging
for Europe, where about 66% of the population relies on groundwater
forits water-related needs, and groundwater is overexploited in many
cities>*. The potential for agrowthin the drought spatial extents, which
can escalate continent-wide aggregated impacts® ™, is particularly
concerning. Spatially compounding, widespread droughts across
multiple countries™ may yield greater impacts than localized events,
evenifthey have equivalent continent-wide water deficits. Thisis due
to the threshold behaviour of many impacts, where local impacts
increase minimally beyond a minimum water availability, as shown by
tree mortality®® and the shutdown of hydro and nuclear plants in 2022
when water in rivers crossed critical levels. Furthermore, through
spatially compounding effects"”, simultaneous impacts across multiple
countries can put high pressure on emergency response actions* of
the European civil protection mechanism, calamity funds, insurance
schemes and transnational risk reduction®**°. Our results and the
widespread impacts of the summer of 2022 highlight the importance
of creating a cost-effective® pan-European approach to drought risk
management” toimprove drought preparedness.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
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Methods

Data

To conduct hydrological simulations with the mHM"™*? and quantify
weather anomalies associated with the drought, we used daily precipi-
tation, daily average temperature and the daily range of temperature
fromthe E-OBS dataset (v.25.0¢) for the period 1950-2022 (ref.16). The
daily range of temperature was derived from the difference between
maximum and minimum daily temperature (insomerare instances, the
minimum temperature can exceed the maximum temperature in the
E-OBS dataset due to the combination of theinterpolation method and
the sparse station network®, therefore we set the daily range to zero®).
E-OBS datawereregridded from the original 0.1° resolutiontoa 0.125°
spatial resolution, whichis the resolution required by the hydrological
model, using the nearest neighbour approach. To run land-surface
model simulations via the CLM"?°, we employed ERAS reanalyses
(CLM-ERAS setup) as detailed in Supplementary Information.

For the mHM model, to derive the climate change signals in
drought drivers, we used monthly means of precipitation, tempera-
ture and daily range of temperature (the latter was derived from daily
maximum/minimum values) from CMIP6 models containing these vari-
ables. While CMIP6 models are routinely used in attribution studies’®,
employing regional climate models could have allowed for better
distilling of local-scale heterogeneity in climate change signals. Here,
CMIP6 models were preferred to regional climate models because (1)
local-scale details are not expected to be critical for acontinental-scale
droughtinfluenced by monthly to annual weather and (2) most regional
climate models substantially underestimate European warming, poten-
tially distorting extreme event attribution analyses (this primarily
occurs because these models do not account for time-evolving aero-
sols, leading to an underestimation of increased downward shortwave
radiation)*®. We used the models (r1ilp1fl for all models unless indi-
cated differently) ACCESS-CM2, ACCESS-ESM1-5 (r10i1p1f1), AWI-CM-
1-1-MR, CanESM5 (r10i1p1f1), CMCC-ESM2, CNRM-CM6-1-HR (rlilpif2),
CNRM-CM6-1(rlilp1f2), EC-Earth3, EC-Earth3-Veg-LR, EC-Earth3-Veg,
FGOALS-g3, GFDL-CM4, GFDL-ESM4, INM-CM4-8, INM-CM5-0,
IPSL-CM6A-LR (r14i1p1f1), MIROC6 (r10i1p1fl), MIROC-ES2L (r10i1pif2),
MPI-ESM1-2-HR, MPI-ESM1-2-LR (r10i1p1f1), MRI-ESM2-0, NorESM2-MM
and TaiESML. Following Schumacher et al.?, we used data from the
historical scenario (1851-2014) combined with the Shared Socioeco-
nomic Pathways SSP5-8.5 from 2015 onward (note that the historical
natural ‘hist-nat’ scenario data are not available up to 2022, but at best
up to 2020 for some models, making the use of ‘hist-nat’ not possible
for this study). As afirst step in the analyses involving climate models,
we regridded the data of each climate model to the final grid of E-OBS
using the nearest neighbour approach (before, we replaced sea grid
points with the nearest land points to avoid mislocations of the land-
sea gradient in the warming). Furthermore, in Extended Data Fig. 10,
we employed 50 ensemble members of the climate model MIROC6 to
provide insights into the contribution of internal climate variability
to the uncertainties in precipitation and temperature trends'**2, We
followed a similar procedure for CLM simulations as described in
Supplementary Information.

Historical hydrological and land-surface simulations

We simulated 2 m soil moisture and river discharge (as well as total
water storage anomaly for the model evaluation in Extended Data
Fig. 1) at a horizontal resolution of 0.125° x 0.125° employing the
mHM, using the E-OBS data introduced above as input climatic forc-
ing (MHM-E-OBS setup). The temperature-based Hargreaves-Samani
method” was used to estimate daily potential evapotranspiration from
daily average temperature and range of temperature. This is the most
sophisticated method that canbe implemented based on E-OBS data.
We tested that historical simulations of soil moisture and total water
storage anomalies are robust to different formulations of potential
evapotranspiration by comparing mHM simulations forced with ERAS

reanalyses” based on potential evapotranspiration (1) estimated via the
Hargreaves-Samani method and (2) readily available from the Euro-
pean Centre for Medium-Range Weather Forecasts”. The model further
employs physiographicinformation suchasadigital elevation model,
soil texture at various depths, hydrogeological formations and the his-
toricalland cover evolution. The mHM modelis agrid-based hydrologic
model that accounts for dominant hydrologic processes consisting
of interception, root-zone soil moisture dynamics, evapotranspira-
tion, run-off generation, groundwater recharge and discharge routing
through the surface river network. The model uses soil layering of
SoilGrids®*, which provides harmonized soil characteristics globally up
tothe depths of 2 m. Accordingly, we analysed 2 m soil moisture®%°¢,
whichisrelevant for plant root zones, hydrological processes, drought
resilience and long-term drought effects. For example, many crops
and vegetation types have root systems that extend to depths up to or
around 2 m (ref. 67). The model mHM uses a state-of-the-art multi-scale
parameter regionalizationtechnique to derive aseamless set of model
parameters based on hyper-resolution land-surface properties and
upscaling approaches™*®, This particular scaling technique makes this
model applicable across scales. We disregarded the first 10 years of
simulations (1950-1959) in line with the typical spin-up time required
by this model®. For the full model setup and configuration, we refer
to the data repository in ref. 70. Details on the simulations based on
the CLM land-surface model (CLM-ERAS setup) are provided in the
Supplementary Information, which alsoincludes information onsup-
plementalmHM simulations (presented in Supplementary Information
only) forced with ERAS reanalysis (mHM-ERAS setup).

We derivedriver discharge based on the mHM model, which uses
amulti-scale routing model”. Based on the digital elevation model of
the domain of interest and derived properties called flow direction and
accumulation maps, the multi-scale routing mode was used to set up
therouting network automatically at the model resolution. We consid-
ered onlyrivers with abasin arealarger than1,000 km? Note that for the
river discharge, we inspected the average of the standardized anomaly
in river discharge across Europe (Extended Data Fig. 6b), rather than
the anomaly in the aggregated discharge as similarly done for soil
moisture (Fig. 1b). This was done to avoid giving too much weight to
the largest rivers. Accordingly, we did not present the counterpart
of Fig. 6a for river discharge. Computing the absolute river surface
under drought is unfeasible as it would require very high-resolution
river network data; therefore, we quantified the drought spatial extent
onlyin percentage, as the total area of grid points associated with dry
river conditions divided by the total area of grid points associated with
rivers. For all hydrological simulations, we restricted the output only
to areas unaffected by missing E-OBS data.

Evaluation of soil moisture and river discharge simulations
The mHM model has been thoroughly evaluated and tested for soil
moisture, evapotranspiration, run-offand total water storage anomaly
across Europe” . Accordingly, the model is currently the core of the
German Drought Monitor” and one of the Copernicus Climate Change
Service models for seasonal predictions of soil moisture at a global
scale. We further tested the performance of the mHM model against
monthly satellite data of terrestrial total water storage (TWS) anomaly
from GRACE’"” (note that no satellite observations exist for 2 m soil
moisture and TWSisits closest observed proxy). We employed correla-
tions, inspected the spatial pattern of the 2022 drought and assessed
biases in TWS anomalies aggregated over large regions (Extended
Data Fig. 1). For the evaluation, we disregarded months that are not
available in the GRACE dataset from the simulations and regridded
simulated TWS simulations to the coarse resolution of GRACE. We
evaluated the simulations based on the CLM-ERAS setup in the same
way (Supplementary Fig. 6).

For mHM simulations, we further evaluated the river discharge
simulations against observed station datafrom the Global Runoff Data
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Centre (GRDC, https://www.bafg.de/GRDC), using similar metrics
employed for TWS evaluation and the Nash-Sutcliffe efficiency
coefficient’® (Extended Data Fig. 7). For the evaluation, strongly
human-modified basins were excluded. GRDC stations were selected
by first matching them with the nearest mHM grid cells and then retain-
ing stations and grid cells whose catchment areas differ by less than
10%; furthermore, we use stations with datain at least 20 years within
the period 1960-2022. For the evaluation, for each station, we first
disregarded days unavailable inthe GRDC dataset from the simulations
and then used daily data during the whole year or JJA averages for both
GRDC and simulations.

Counterfactual experiments to quantify meteorological
contributions

To quantify the contribution of seasonal weather anomalies to the
2022 summer soil moisture drought (Fig. 3), we conducted hydro-
logical (mHM-E-OBS) and land-surface (CLM-ERAS5) simulations?.
In the following, we provide information regarding the mMH-E-OBS
simulations. An analogous approach was employed for CLM-ERA5
simulations, though tailored to accommodate the different variables
considered in the CLM-ERAS5 setup (Supplementary Information). To
quantify the contribution of precipitation anomaly during DJF 2021~
2022, we computed the difference between the average soil moisture
inJJA2022 (SM,;,) intwo simulations: (1) the baseline simulationdriven
by observed daily precipitation, daily average temperature and daily
temperature range and (2) asimulation where we maintained observed
daily precipitationand temperature but adjusted the field of daily pre-
cipitation during DJF 2021-2022 to matchits climatology. We adjusted
thefield of precipitation daily time series during DJF 2021-2022 with a
multiplicative factor (theinverse of the field shownin Fig.2a) equal to
the ratio of the DJF climatological mean precipitation (1981-2010) to
the mean precipitation during DJF 2021-2022 (if the ratio is not defined
duetozeromean precipitationduring DJF 2021-2022, the adjusted field
issettothe value of the climatology). The contribution of precipitation
anomalies in other seasons and anomalies of average temperature
and daily temperature range were assessed similarly. However, for
the contribution of average temperature, we adjusted the field of daily
average temperature during, for example, DJF 2021-2022, with an
additive (rather than multiplicative) factor (the opposite of the field
showninFig.2d) equal to the difference between the DJF climatological
mean daily average temperature (1981-2010) and the mean daily
average during DJF 2021-2022. To assess the combined contribution
of anomalies of average temperature and daily temperature range
(referred to as temperature contribution in the main text; Fig. 3d-f), we
adjusted bothvariablesin the season of interestin the same simulation.

Counterfactual experiments for human-induced climate
change

We take a ‘storyline approach’ for climate change attribution, that is,
given the meteorological conditions driving the drought, we quantify
the human-induced climate change effect on the drought and the
contribution of changes in drought drivers to the overall effect'>. Note
that this differs from a ‘probabilistic approach’, which focuses on the
human-induced climate change effect on the probability of events
similar to the event in question’””. We quantify the total contribution
of climate change-driven seasonal precipitation and temperature
changes to the 2022 summer drought (Fig. 5a) via computing the
difference between SMy;, from (1) the baseline simulation and (2) a
simulation driven by daily precipitation and temperature from which
seasonal-dependent human-induced climate change trends were
removed.

For (2), removing the observed trend would not suffice because
the observed trend arises from a combination of human-induced cli-
mate change and an often relatively large trend from internal climate
variability’>**%, Similarly to observations, trends inindividual climate

model simulations arise from human-induced climate change and
spurious trends from internal climate variability. However, here, the
multi-model mean can allow for isolating human-induced climate
change by averaging out spurious trends due to internal climate vari-
ability across simulations'®?*°, Thus, building on previous work**%°,
including typical approaches employed in climate projections's?,
we removed the trends extracted from multiple climate models from
observed time series, whereby the multi-model meanisrepresentative
of the human-induced climate change trend (for mHM-E-OBS simula-
tions, the spread across models provides information on uncertain-
ties related to model differences and internal climate variability**).
In the following, we provide information regarding the mMH-E-OBS
simulations, while ananalogous approachis employed for CLM-ERAS5
simulations as described in the Supplementary Information. We ran
a simulation driven by daily precipitation and temperature from
which—via what is sometimes referred to as a delta approach**50-8—
the seasonal- and year-dependent trends derived from individual
CMIP6 models were removed. For each season and year Y between
1960 and 2022, we adjusted the field of precipitation daily time series
using a multiplicative factor field equal to the ratio of seasonal mean
precipitationinthe pre-industrial period (1851-1900) to the seasonal
mean precipitation over a 15 year window centred on the year Y. The
daily average temperature and daily temperature range were adjusted
similarly, but for daily average temperature, we adjusted the field by
using an additive factor field equal to the difference between seasonal
mean temperature in the pre-industrial period to the seasonal mean
temperature over al5 year window centred on the year Y. Using awin-
dow lengthlonger than15 yearsyields similar multi-model mean results
inallfactors. The factor fields (their inverse for precipitation and daily
average temperature, and their opposite for daily average tempera-
ture) are shown in Extended Data Fig. 3 for the last four considered
seasons (their median across Europe is shown in Fig. 4 for summary
proposesonly).

To disentangle the individual contribution of trends in precipi-
tation (Fig. 5¢), we computed the difference between SMy,, from the
baseline simulation and a simulation where we removed CMIP6 model
trends only for precipitation. To assess the total contribution of trends
in average temperature and the daily temperature range (referred to
as temperature contribution in the main text; Fig. 5b), we removed
CMIP6 model trends from both variables. The contribution of daily
temperature range trends (Extended Data Fig. 4) was quantified asthe
difference between the total contribution of temperature trends and
the contribution of daily average temperature trends.

InFig. 6aand Extended DataFig. 5, we decompose the total climate
change contribution into two parts: the climate change contribution
mediated by weather (1) during the 2022 hydrological year (startingin
November2021), thatis, adirect effect, and (2) before the 2022 hydro-
logicalyear, thatis, alagged effect. (1) The climate change contribution
mediated by weather during the 2022 hydrological year was quantified
as the difference between SM;, from the baseline simulation and a
simulation driven by observed daily precipitation and temperature up
to1November2021and detrended (removing CMIP6 model trends as
described above) afterwards. (2) The contribution mediated by weather
before the 2022 hydrological year was then computed as the difference
between the total climate change contribution and the contribution
mediated by weather during the 2022 hydrological year.

Our approach for creating counterfactuals, combined with the
computationally efficient yet performant hydrological mHM model,
allows for integrating climate change signals from 23 climate models
and assess uncertainties on attribution statements of soil moisture and
hydrological droughts at the European scale based on the mHM-E-OBS
setup (Fig. 6). To this end, we ran hydrological simulations individu-
ally based on multiplicative/additive factors from individual CMIP6
models. However, to optimize computational efficiency, we ran asingle
commonsimulation up to 2005 based on the multi-model meanfactors.
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Wetested for asingle climate model with strong trends (EC-Earth3-Veg)
thatthis choice does not affect the attribution statements. In particular,
the difference between the climate change driven change in SM;, based
onmultiplicative/additive factors from (1) the EC-Earth3-Veg model for
the period 1960-2022 and (2) the multi-model mean up to 2005 and
the EC-Earth3-Veg model thereafter, ranges (5-95th percentile over
Europe) from —0.005 X 10301969-5021 t0 3 X 1073019602021, WHETE 0602021
isthe standard deviation of the distribution of the 1960-2021JJA aver-
age soil moisture, while the European mean of the absolute difference
is 0.9 X 10720y940-2021- Finally, note that structural model differences
have a relevant contribution to the resulting uncertainties®. Accord-
ingly, the overall uncertainty in precipitation and average temperature
trends illustrated by the interquartile range in Fig. 4a,b is, apart from
September-November (SON), larger than the uncertainty due to
internal climate variability (Extended DataFig. 10).

On the basis of the mHM-E-OBS setup, we tested that running
simulations for 1960-2022, and therefore neglecting trends before
1960, is justified as trends up to 1990 have virtually no impact on the
2022 drought. Finally, we note that, for studying a continental drought
developing over multiple years, we considered forced changesin mean
seasonal conditions of drought drivers as representative of changes
duringanomalous seasons. This approach for removing climate change
trends may provide a conservative estimate of the climate change
effect if extremely dry seasons, such as the summer of 2022, warm
and dry more than average summers with climate change. However,
this choice is consistent with limited variability changes compared
with mean changes at the monthly scale in some CMIP5 models® and
with the fact that we did not find evidence for such an effect in the
CMIP6 model ensemble (similarly, no clear evidence was found for
daily temperature extremes®). That is, for the 2022 summer, we found
that the European-averaged CMIP6-based multi-model mean change
inmean precipitation/temperature is about equal to the multi-model
mean change of summers that are ranked as dry as the 2022 summer
on a scale from one to five in terms of aggregated precipitation over
Europe land masses. Nudged simulations that constrain atmospheric
circulation****¢ could examine this choice further.

Aggregated statistics

Allthesstatistics, such as mean, median and percentage of land masses,
were weighted by grid point surfaces, employing the R packages
wCorr® and spatstat®®. The anomaly in the European total soil mois-
ture (Figs. 1b and 6a) was computed as the spatially weighted sum
of the yearly anomaly in the volume of the JJA average soil moisture
relative to the1960-2021]JA average. In the text, summary statistics
concerning CMIP6 models are calculated as the multi-model mean
of the final values of the statistics associated with different models.
As an exception, the change in the spatial extent of soil moisture
and hydrological droughts is based on the multi-model median (as
depicted in Fig. 6b) due to the skewed distribution of the spatial
extents for extreme droughts. For similar reasons, Extended Data
Fig. 5a,b displays the multi-model median, and the statistic related
to the land area that would have experienced a record-breaking soil
moisture drought in the absence of climate change is based on the
counterfactual soil moisture spatial map derived, in a first step, as
the multi-model mean.

Data availability

E-OBS daily data (v.25.0e) at resolution 0.1° over Europe lands are avail-
able at https://www.ecad.eu/download/ensembles/download.php.
CMIP6 data can be retrieved at https://esgf-data.dkrz.de/projects/
esgf-dkrz/. GRACE data are available at https://podaac.jpl.nasa.gov/
dataset/TELLUS_GRAC_L3_CSR RLO6_LND v04. The mHM model
routed run-offis available from the UFZ data portal’®. ERAS reanalyses
areavailable at https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-single-levels.

Code availability

All custom codes are direct implementations of standard methods
andtechniques, described in detailin Methods. Allmaps were obtained
by using the oce R package®. The mHM model is available under the
repository https://git.ufz.de/mhm/mhm. Data pre-processing, includ-
ing the computation of the multiplicative and additive factors, was
carried out with standard Climate Data Operators functions®,
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Extended Data Fig. 1| Evaluation of the mHM model (forced with E-OBS).

a-d, Simulated (mHM) against observed (GRACE) regionally averaged total water
storage anomaly (TWS) during 2002-2022 for IPCC regions, that is (a) Northern
Europe, (b) Central Europe, and (c) Southern Europe/the Mediterranean (these
three regions are displayed in panel h), and (d) Europe (box in Fig. 1a). Orange
small and purple large dots show monthly and June-August (JJA) average values,

* Monthly data (cor=0.88)
® JJAaverage (cor=0.76)
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respectively (the circled large purple dot indicates the year 2022). e, Grid-point
correlation between simulated and observed monthly average values of total
water storage anomaly. f, The same as (e), but for JJA average values. g-h, The
ranking of the (g) observed and (h) simulated average values of total water
storage duringJJA 2022 relative to JJA values of 2002-2022.
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Extended Data Fig. 2| The area under drought for different definitions of local drought. a,b,d, The same as Fig. 1c, but obtained defining a drought via (a) four
standard deviations, (b) three standard deviations, and (d) one standard deviation. ¢, The same as Fig. 1c (based on two standard deviations).

Nature Geoscience


http://www.nature.com/naturegeoscience

Article https://doi.org/10.1038/s41561-024-01559-2

(a) Change in Precipitation, SON (b) Change in Precipitation, DJF (c) Change in Precipitation, MAM (d) Change in Precipitation, JJA
k4 T " 7 7

070 080 09 100 110 120 130 070 080 090 100 110 120 130 070 080 090 100 110 120 130 070 080 090 100 110 120 1.30
Ppresent / P1gs1-1900 Ppresent / P1gs1-1900 Popresent / P1gs1-1900 Ppresent / P18s1-1900

(e) Change in average Temperature, SON (f) Change in average Temperature, DJF (g) Change in average Temperature, MAM (h) Change in average Temperature, JJA
T

% B3

-30 -20 _-10 0.0 1.0o 2.0 30 -30 -20 _-10 0.0 1.0o 20 30 -30 -20 _-10 0.0 1.9 2.0 30 -30 -20 _-10 0.0 1.9 2.0 3.0
Toresent - T1851-1000 (°C) Toresent - T18s1-1900 (°C) Toresent - T1gs1-1900 (°C) Tpresent - T1gs1-1900 (°C)
(i) Change in daily Temp. range, SON (j) Change in daily Temp. range, DJF (k) Change in daily Temp. range, MAM () Change in daily Temp. range, JJA
B ,

0.80 0.90 1.00 1.10 1.20 0.80 0.90 1.00 1.10 1.20 0.80 0.90 1.00 1.10 1.20 0.80 0.90 1.00 1.10 1.20
Trangepresent / Trangesgsi-1900 Trangepresent / Trangesgsi-1900 Trangepresent / Trangesgsi-1900 Trangepresent / Trangesgsi-1900
Extended DataFig. 3| Human-induced change in precipitation and (computed as aratio; >1indicates higher precipitation). e-h, The same as (a-d), but
temperature for the four seasons preceding the 2022 drought. a-d, Multimodel  for changein average daily temperature (computed as a difference; > O indicates

mean change of mean precipitationin (a) September-November (SON) 2021, warming). i-I, The same as (a-d), but for change in the daily temperature range

(b) December 2021-February 2022 (DJF 2021-2022), (c) March-May (MAM) 2022, (>1indicates anincrease in the daily temperature range).
and (d) June-August (JJA) 2022 relative to preindustrial conditions in 1851-1900
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Extended Data Fig. 4 | Contribution of climate change-driven trends in of stippling indicates that there are no locations where climate change-driven
the daily temperature range to the June-August (JJA) 2022 soil moisture trends in the daily temperature range made JJA 2022 the driest relative to 1960-
drought. Anomaly in the JJA 2022 average soil moisture due to changes in daily 2021. Simulations are based on the mesoscale Hydrological Model (mHM).

temperature range, in units of s.d. of the JJA1960-2021 distribution. The absence
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(a) Lagged effect's contribution (mHM)

(b) Lagged effect's contribution (mHM)
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Extended DataFig. 5| Contribution of climate change lagged effect to the
soil moisture and hydrological droughts. a, Fraction of the climate change
contribution to the soil moisture drought from lagged effects, computed as the
multimodel median of the ratio of the anomaly in the June-August 2022 average
soil moisture due to the climate change effect mediated by weather before the
2022 hydrological year (starting in November 2021) to the total climate change
effect. The number on the top-right shows the spatially-weighted average
across Europe (box in Fig. 1a). Magenta indicates locations where the total

(c) Lagged effect's contribution (CLM-ERAS)

80

50 60 70

climate change effect (based on the multimodel mean as in Fig. 5a) is positive.
Simulations are based on the mesoscale Hydrological Model (mHM). b, The same
as (a), but forriver discharge. ¢, Similar to (a), but for soil moisture derived from
CLM-ERAS simulations - this is based on a single simulation (rather than on the
multimodel median of multiple simulation as in panel a) based on combined

climate change factors derived from the multiple CMIP6 models; the setup is
described in the Supplementary Information (section 2)).
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(b) Average River discharge anomaly
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Extended DataFig. 6 | The 2022 European hydrological drought. The same as spatial extent of the river surface in Europe (box in panel a) that experienced
Fig.1, but for river discharge and with the exception that (b) shows the average discharge anomalies below one s.d. from average, expressed in percentage
ofthe standardised anomaly in river discharge across Europe, and (c) shows the (Methods).
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Extended Data Fig. 7 | Evaluation of the mHM model (forced with E-OBS).

a-d, Simulated (mHM) against observed (GRDC) regionally averaged rank (from

Oindicating dryness, tolindicating wetness) of the June-August (JJA) average

river discharge values relative to the period of data availability in GRDC for IPCC
regions, thatis (a) Northern Europe, (b) Central Europe, and (c) Southern Europe/

the Mediterranean (these three regions are displayed in Extended Data Fig. 1h),

and (d) Europe (box in Fig. 1a). The circled large dot indicates the year 2022 (note

that 2020-2022 datais not available for Southern Europe/Mediterranean after

processing the GRDC stations). e, Grid-point correlation between simulated and
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observed daily river discharge. f, The same as (e), but for JJA average values.
g, Nash-Sutcliffe Efficiency coefficient computed based on simulated and
observed daily river discharge (NSE has values ranging from negative infinite

t0 1.0, with values above 0.5 generally
simulations’). h, The same as (g), but

deemed satisfactory for discharge
forJJA average values. i-k, The ranking of

the (i) observed and (j) simulated average values of river discharge during JJA

2022relative to the period of dataava

ilability in GRDC, and (k) the scatterplot of

such ranking across stations. Note that the data availability period in GRDC varies

depending on the station.
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(a) Contribution of Precipitation, DJF (b) Contribution of Precipitation, MAM (c) Contribution of Precipitation, JJA
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Extended Data Fig. 8 | Contribution of weather anomalies to the June-August 2022 hydrological drought. a-f, The same as Fig. 3a-f, but for river discharge
instead of soil moisture.
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(a) Climate change contribution (b) Contribution Temp. trends (c) Contribution Precip. trends
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Extended Data Fig. 9 | Contribution of climate change to the June-August 2022 hydrological drought. a-c, The same as Fig. 5a-c, but for river discharge instead of
soil moisture.
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(a) Change in Precip. (MIROCS6) (b) Change in aver. Temp. (MIROCS6)
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Extended Data Fig.10 | Uncertainties due to internal climate variability in precipitation and temperature changes for the four seasons preceding the 2022
drought. a,b, The same as Fig. 4a,b, but based on fifty ensemble members of the climate model MIROC6. Boxplots show the interquartile range and the median across
the ensemble members.
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