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The Great Atlantic Sargassum Belt first appeared in 2011 and quickly
became thelargestinterconnected floating biome on Earth. Inrecent

years, Sargassum stranding events have caused substantial ecological and
socio-economic impacts in coastal communities. Sargassum requires both
phosphorus (P) and nitrogen (N) for growth, yet the primary sources of
these nutrients fuelling the extensive Sargassum blooms remain unclear.
Here we use coral-bound Nisotopes to reconstruct N, fixation, the ultimate
source of the ocean’s bioavailable N, across the Caribbean over the past 120
years. Our dataindicate that changes in N, fixation were primarily controlled
by multidecadal and interannual changes in equatorial Atlantic upwelling
of ‘excess P’, that is, P in stoichiometric excess relative to fixed N. We show

that the supply of excess P from equatorial upwelling and N fromthe N,
fixation response can account for the majority of Sargassum variability
since 2011. Sargassum dynamics are best explained by their symbiosis with
N,-fixing epiphytes, which render the macroalgae highly competitive during
strong equatorial upwelling of excess P. Thus, the future of Sargassumin

the tropical Atlantic will depend on how global warming affects equatorial
Atlantic upwelling and the climatic modes that control it.

The Great Atlantic Sargassum Belt (GASB)* acts as a floating ecosys-
tem for marine life, providing essential food and shelter forimportant
species, such as tuna, marlin, turtles and birds>*. However, at high-
est abundances, its stranding events burden coastal ecosystems and
impair the well-being of coastal communities. During major GASB years,
tons of Sargassumwash ashore, affect community health and tourism,
and require costly management and removal efforts. Decomposing

Sargassum emits hydrogen sulfide gas, thereby posing widespread
healthrisks that are exacerbated by plastic debris caughtin the algae
asittravels to the Caribbean*. Thus, the GASB has strong and complex
effects on wildlife and coastal populations.

Historical reports place large quantities of Sargassum in the Gulf
of Mexico and the Sargasso Sea. In 2010, exceptionally strong westerly
windsinthe North Atlantic are hypothesized to have caused the export

A full list of affiliations appears at the end of the paper.

e-mail: jonathan.jung@mpic.de; a.martinez-garcia@mpic.de

Nature Geoscience | Volume 18 | December 2025 | 1259-1265

1259


http://www.nature.com/naturegeoscience
https://doi.org/10.1038/s41561-025-01812-2
http://orcid.org/0000-0002-2739-9926
http://orcid.org/0000-0002-1109-0772
http://orcid.org/0000-0002-5082-5786
http://orcid.org/0000-0002-3291-7484
http://orcid.org/0000-0002-3509-8082
http://orcid.org/0000-0002-7102-4726
http://orcid.org/0000-0002-1774-4749
http://orcid.org/0000-0002-2591-6301
http://orcid.org/0000-0003-3413-6662
http://orcid.org/0000-0002-4437-0877
http://orcid.org/0000-0001-9271-4083
http://orcid.org/0000-0001-9697-5520
http://orcid.org/0000-0002-3202-1194
http://orcid.org/0000-0002-4243-9869
http://orcid.org/0000-0002-0055-8915
http://orcid.org/0000-0003-3949-6560
http://orcid.org/0000-0003-0056-3500
http://orcid.org/0000-0003-2440-6104
http://orcid.org/0000-0001-6958-425X
http://orcid.org/0000-0001-6307-3846
http://orcid.org/0000-0003-1412-3557
http://orcid.org/0000-0002-0897-8244
http://orcid.org/0000-0002-7923-1973
http://orcid.org/0000-0002-7206-5079
http://crossmark.crossref.org/dialog/?doi=10.1038/s41561-025-01812-2&domain=pdf
mailto:jonathan.jung@mpic.de
mailto:a.martinez-garcia@mpic.de

Article

https://doi.org/10.1038/s41561-025-01812-2

Coral core
locations

40°N

20°N

(°%) ydep W 00T 18 (I1€ SA) Ng,Q

20°8S ¢ 10

80°W 60°W 40°W 20°W
Fig.1| Coral core and water sample locations in the wider Caribbean region.
a,The coral core locations are indicated by large triangles with black outlines,
and water samples are denoted by large circles with black outlines. The small
circles correspond to previous measurements taken fromref. 40. The colour
scale for all symbols shows the nitrate 8°N (expressed in %o, with respect to air) at
200 mdepth. Coral core sample locations are Hog Reef, Bermuda (Bm:32.4469°
N, 64.8252° W), Cayo Santa Maria, Cuba (Cu:22.6677°N, 79.0997° W), Puerto
Morelos National Marine Park, Mexico (Mx: 20.8900° N, 86.8100° W), Turneffe
Atoll, Belize (Bz:17.4027° N, 87.8905° W), Caye d’Olbian, Martinique (Mq:
14.4669° N, 61.0164° W), Little Tobago Island, Trinidad and Tobago (Tb: 11.2986°

N, 60.5083° W) and Cahuita, CostaRica (Cr:9.7514° N, 82.8192° W).
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b, Water-column excess P (in pM; expressed as P*, which equals PO, - NO,7/16)
at200 m depth, based on the GLODAPv2.2022 dataset’. Newly measured nitrate
6N and P* values from an east-west transect at 13° N were obtained on the sailing
yacht Eugen Seibold during the expedition of December-March 2022/2023, and
data from north-south transects were obtained on the GO-SHIP A20 (16 March to
16 April 2021) and A22 (20 April to 16 May 2021) sections. New data are indicated
aslarge circles with black outlines, and these are plotted on the same scale as the
global dataset. Both panels include the prevailing surface currents (black arrows)
and the extent of the GASB (brown shaded area). Basemaps created with Ocean

Data View v.5.6.3 (https://odv.awi.de).

of Sargassum fromthe Sargasso Sea to the tropical Atlantic, where it has
since beenseasonally aggregated by the intertropical convergence zone
(ITCZ)°.Since then, anoticeable increase in Sargassumblooms has been
observedintheequatorial Atlantic, leading to more frequent stranding
eventsacross Caribbeanislands’. The magnitude of Sargassumblooms
ismodulated interannually by various physical oceanic processes, with
record-high biomasses observedin2015,2018,2021and 202275, There
isageneral consensus that shiftsin nutrient availability govern therecent
surge in Sargassum blooms*'°. However, the origin and dynamics of
the nutrient sources that drive the episodic nature of the GASB and the
relative importance of the different nutrients are yet to be resolved’ "

The tropical North Atlantic is widely recognized as conducive
to dinitrogen (N,) fixation™"*, both with regard to its warm, sunlit,
well-stratified surface layer™' and the supply of nutrients. Equatorial
Atlantic upwelling and the northwestward flow of the South Equato-
rial Current carry excess P into the tropical North Atlantic and the
Caribbean region (Fig. 1). Whereas aeolian dust fluxes are limited in
the southern equatorial Atlantic, high fluxes of dust from the Sahara
and Sahel region supply abundant iron to the surface and subsurface
waters of the (sub)tropical North Atlantic, even reaching the far western
Atlantic Ocean and Caribbean Sea'®. In the context of high iron avail-
ability, the supply of excess P appears to drive much of the N, fixation
inthe Caribbean region today"*, and geochemical evidence suggests
that excess P supply has similarly controlled N, fixation in this region
over the past160,000 years™.

The growth of Sargassumin the Caribbean region requires the sup-
ply of the macronutrients Nand P**'°%*, To maintain high growthrates,
Sargassum utilizes P, for example, to produce ribosomal RNA*%, In gen-
eral, photosynthetic autotrophsin the low-latitude oceanrely largely
ononeofthree Nsources: (1) nitrate transported from the subsurface,
(2) Nthatisrecycled (largely asammonium) from heterotrophic metab-
olismat the surface and (3) autotrophic ‘N, fixation’, the conversion of
N, toammonium. The®N-to-"*Nisotope ratios of Sargassumin the Sar-
gasso Seaare remarkably similar to those of prokaryotic phytoplankton
that rely predominantly on recycled N**. However, the ®N-to-"*N ratio
of newly fixed N falls within the same range (Extended DataFig.1), and

Sargassum is known to maintain anassociation with epiphytic N,-fixing
bacteria, which transfer newly fixed N directly to Sargassum, possibly
in exchange for P'>***°, Thus, Sargassum probably acquires N through
bothrecycled Nandepiphytic N, fixation, with the latter representing
a potential competitive advantage over non-fixing phytoplankton in
P-bearing, N-poor environments (that is, in the presence of excess P,
thatis, positive P*, where P*=P0O,*> - NO,/16)"**. Such a special strat-
egy is particularly pertinent to seaweeds such as Sargassum, which
have a higher N:P ratio than phytoplankton®°. Thus, the mutualistic
relationship of Sargassum with epiphytic N, fixing cyanobacteria may
allow Sargassumto occupy the same niche ascommon phytoplanktonic
N, fixers found across the Atlantic Ocean. However, little information
isknown about ongoing variationsin N, fixationin the region, its rela-
tionship to other nutrients or its relevance to recent GASB blooms.

In this Article we use the N isotopic composition of coral-bound
organic matter to reconstruct recent changes in Caribbean N, fixa-
tion. We measured the ®N-to-*N ratio of coral-bound organic matter
(expressed as CB-8"N = [(°N/*N)gmpie/ (*N/*N),;, = 1] X 1,000%0) from
continuous coral cores spanning the period 1900-2021, with subannual
toannualresolution fromsix locations across the Caribbean Sea (Cuba,
Belize, Martinique, Mexico, Tobago and Costa Rica). We interpret these
datainthe context of tropical Atlantic pycnocline P*values, whichboth
influence and are altered by N, fixation (Fig. 1). We find a close coupling
betweenreconstructed N, fixation, the supply of excess P to the tropical
North Atlantic/Caribbean, and Sargassumblooms over recent decades.

Coral-bound nitrogenisotopes as a tracer

of N, fixation

The production and remineralization of plankton organic matter gener-
allyresults in an oceanic dissolved N:P ratio of ~16:1, also known as the
Redfield ratio®’. Deviations from the stoichiometric Redfield ratio can
bedrivenby netinputsandlosses of N through N, fixation and denitri-
fication, respectively'>*. N, fixation increases the bioavailability of N
relative to P (N:P >16)"**, whereas sedimentary and water-column deni-
trificationreduce the bioavailability of Nrelative toP (N:P <16). Assuch,
denitrification generates excess P, whichin turn favours diazotrophic
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Fig. 2| CB-8"N master record and comparison to the AMO. a, The normalized
master CB-6"N record (zscores) with the propagated error (+1s.d., shaded
region) is based on four coral cores (Belize, Cuba, Martinique and Mexico from
1900 t02021) from the wider Caribbean region and is closely related to Caribbean
nitrate §°N. Higher normalized CB-6"N values correspond to lower rates of N,
fixation, whereas lower normalized CB-6"N values are indicative of higher N,
fixation rates. b, Compared with ais the AMO index derived from Trenberth and
Shea* (black line) and the locally estimated scatterplot smoothing (LOESS) of

2020

depth-integrated P* values of the equatorial North Atlantic (-10 to 30°N, 20 to
60° W) from the GLODAPv2.2022 dataset for the period 0f1981-2020 (orange
line). The mean LOESS-smoothed P* values show congruent variability with

the AMO. Positive AMO phases (red bars) represent awarmer North Atlantic
compared with the South Atlantic, whereas negative AMO phases (blue bars)
represent a colder North Atlantic compared with the South Atlantic. The positive
AMO states correspond to a northward displacement of the ITCZ; negative AMO
states indicate asouthward displacement of the ITCZ.

growth when sufficient iron is available, ultimately replacing lost N”.
This response of N, fixation to N losses due to denitrificationisimpor-
tant in maintaining the marine global N inventory and couplesitto P
on adequately long timescales™>***?, whereas spatial aspects of this
coupling are influenced by iron availability?* 22,

The stable isotopes of N record changes in the global marine N
cycle’?8. N, fixation introduces fixed Ninto the ocean with a §*Nvalue
of around -1%. (ref. 39), which is lower than that of mean global pycno-
clinenitrate (-6.2%. (ref. 40)), thereby enabling the identification®, rate
estimation® and reconstruction’® of N, fixation. The isotopic impact
of denitrification depends on whether it occurs in the water column
or in seafloor sediments'*2, Water-column denitrification occurs
in the oxygen-deficient zones of the ocean and selectively removes
“N-nitrate, thereby increasing the 8°N of the ocean nitrate pool relative
to the 8°N of newly fixed N***°, By contrast, sedimentary denitrifica-
tion consumes most of the nitrate diffusing into sediment pore waters,
minimizing the escape of ®°N-enriched residual nitrate into the overly-
ing water column*. As aresult, sedimentary denitrification lowers the
N:P ratio of ocean waters with little isotopic effect**.

The CB-8"N of symbiont-bearing corals is sensitive to the §°N of
the fixed N supplied to the typically nutrient-poor, oligotrophic reef
environments inwhich they live*>*¢, Inareas with high N-fixation rates,
such as the western tropical North Atlantic, newly fixed N lowers the
85N of the fixed N pool**?, which can be tracked via CB-6"N (Fig.1a)"".
CB-8"Nis largely protected from post-depositional alteration, making
itareliable tool for assessing processes in the marine N cycle*®, evenin
fossil Palaeozoic corals*.

The CB-6"N values of our Caribbean records range from 1.87%o to
6.68%o (Extended Data Fig. 2). The lowest average values obtained are

from Cuba (2.85 + 0.41%.), and the highest average values are found in
Costa Rica (5.09 + 0.55%o). The average CB-6"N from Cuba, Martinique
(3.01+ 0.25%o), Belize (3.33 + 0.36%0) and Mexico (3.67 + 0.23%o) agree
with the measured mean Caribbean nitrate 8°N (3.28 + 0.76%.). The
average CB-6"Nvalues at Tobago (4.60 + 0.31%0) and Costa Ricaare above
the mean Caribbean nitrate 8°N. The relatively high CB-6"N at Tobago
is consistent with its southeastward location, in the path of the Brazil
Current that carries higher 8°N nitrate and organic N northwestwards
from the equatorial Atlantic into the Caribbean (Fig. 1a), with much of
the tropical North Atlantic N, fixation occurring downstream of this®.
The high CB-6"N from the Costa Rican margin is probably due to local
coastal processes, including possible anthropogenic influences (Sup-
plementary Discussion). The CB-8"N time series from Belize, Cuba,
Martinique and Mexico may also be influenced by local processes during
some periods, but they show remarkable similaritiesintheir multidecadal
variability when normalized (Extended Data Fig. 3). We analysed the
underlying shared natural variability of those four records by normalizing
and smoothing them with a Gaussian filter (Methods). The normalized
records are then combined into a master chronology to evaluate the vari-
ability of N, fixationin the Caribbean region from1900 to 2021 (Fig. 2).

Multidecadal modulation of N, fixation

The normalized master CB-8"N record shows multidecadal vari-
ability, with dominant 16-, 32- and 64-year cycles that are charac-
teristic of the Atlantic Multidecadal Oscillation (AMO) (Fig. 2 and
Extended Data Fig. 4). The AMO index represents multidecadal sea
surface temperature (SST) variability in the North Atlantic™?, whereas
the Atlantic Meridional Mode (AMM) index traces the higher-frequency
mode of SST variability*>**. Atlantic SST variability is linked to changes
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Fig. 3| Seasonal CB-8"N values from Martinique compared with Sargassum
biomass and environmental parameters. a, CB-6"°N values (versus air) of the
coral core collected in Martinique from 2000 to 2021 compared with the biomass
of Sargassum spp (plotted in alogarithmic scale). b, Inverted AMM index based
on Chiang and Vimont®’ for the 2000-2024 period compared with the biomass

of Sargassum spp (plotted in alogarithmic scale). More negative AMM states
correspond to asouthward displacement of the ITCZ, stronger easterlies,
enhanced equatorial upwelling and a weakened NECC, whichresultin greater

Year

supply of excess P to the Caribbean. ¢, Area-weighted Atlantic (10 to 20°N, 20 to
60° W) total dust deposition and total black carbon (BC) deposition calculated
using the ECHAMS/MESSy Atmospheric Chemistry (EMAC) model. d, Monthly
discharge for the Amazon River measured at the Obidos gauge station (1.92°S,
55.67° W) and for the Orinoco River measured at the Ciudad Bolivar gauge station
(8.15°N, 63.54° W) obtained from SO-HYBAM material-transport datasets. In

all panels, the vertical grey bars mark the Sargassum spp. peak seasons (April to
September) since 2011.

in atmospheric and oceanic circulation, the position of the ITCZ and
the corresponding location and strength of surface winds over the
Atlantic®. Multidecadal variability has been reconstructed with SST
proxiesin coral cores®*”, speleothems*® and sediment cores*’ through-
out the Caribbean, demonstrating a connection between basin-scale
variability and local climate conditions, but its potential influence on
N, fixation has not been investigated.

Anomalous cold North Atlanticand warm South Atlantic SSTs, which
correspond, respectively, to a negative AMO/AMM index and a strength-
ened Hadley cell in the Southern Hemisphere, result in a southward dis-
placementoftheITCZ**°', Under these conditions, trade winds (easterlies)
are maximal and enhance equatorial upwelling, the strength of the South
Equatorial Currentand the Caribbean Current (Extended DataFig. 5)""'5*.
By contrast, positive AMO/AMM phases are characterized by anorthward
displacementofthe ITCZ®, weaker easterlies, reduced equatorial upwelling
and an enhanced North Equatorial Counter Current (NECC)®.

Upwelled waters in the equatorial North Atlantic tend to be
depleted in nitrate compared with phosphate due to their origins in
the Southern Ocean and Indo-Pacific'’, and thus contain higher excess
P than Caribbean water masses™* (Fig. 1 and Extended Data Fig. 6).
Measurements of excess P over the past decades are spatially scarce and
temporally discontinuous. Nevertheless, acompilation of the available
data from multiple oceanographic cruises shows that the concentra-
tion of excess Pinthe equatorial North Atlanticis closely coupled with
multidecadal variability, with negative AMO states corresponding to
enhanced supply of excess P (Fig. 2b).

Variationsin our master CB-8"N record show asignificant positive
correlationwiththe AMO index for the period between1900 and 1972
(adjusted r*=0.33, P< 0.01) and a higher correlation from 1972 t0 2021
(adjusted r*=0.60, P< 0.01), when the AMO and AMM are in phase
(Fig.2and Extended DataFig. 7), consistent with an anthropogenically
forced AMO-like signal in the modern era®*. Negative CB-6"N anoma-
lies, which are indicative of enhanced N, fixation, align with negative
AMO phases when a southward displacement of the ITCZ leads to
enhanced equatorial upwelling. Strengthened easterlies and the Carib-
bean Current, inturn, would allow upwelled waters to penetrateinto the
Caribbean Basin more effectively. The correlation between our CB-8°N
and the AMO indicates that the supply of excess P has controlled N,
fixationin the Caribbean over the past 120 years.

Aremarkable aspect of our findings is their consistency with previ-
ous findings regarding Caribbean N,-fixation changes on the vastly dif-
ferent timescales of the Earth’s orbital cycles®. As with AMO, precession
drives cycles in equatorial Atlantic upwelling®, and the phases of more
vigorous upwelling are associated with maximain N, fixation**. Fromthe
perspective of the -22,000-year precession cycle, Caribbean N, fixationis
currently near maximal rates, with AMO further modulating N, fixation.

Linking excess phosphorus supply, N, fixation and
Sargassumblooms

Thebiomass of floating Sargassum has been continuously mapped and
quantified since 2000 (Fig. 3a,b)*. Changes in macro- and micro-nutrient
availability have been suggested as driving recentincreasesin Sargassum
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biomass"*'°. However, there is disagreement as to the sources and mecha-
nisms behind the post-2011 GASB. Proposals have included nutrient
inputs from atmospheric deposition, rivers and oceanic changes'’.

Our high-resolution CB-8"N record of N, fixation from Martinique
shows a positive correlation with the reconstructed log-transformed
Sargassum biomass from 2011 to 2021 (adjusted r* = 0.51, P< 0.01). In
addition, the first two extreme Sargassum blooms in 2015 and 2018
coincide with the highest rates of N, fixation of the past 120 years
(Figs. 2 and 3a). The interannual coupling between N, fixation and
Sargassum blooms appears to be modulated by the AMM (Fig. 3a,b).
The AMM is correlated with changes in log-transformed Sargassum
biomass (adjusted r* = 0.30, P < 0.01) and N, fixation (adjusted = 0.32,
P <0.01) since the first appearance of the GASB in 2011. The negative
phase of the AMM is associated with negative SST anomalies near 10°
N, corresponding to asouthward displacement of the ITCZ thatleads to
unusually strong trade winds near 5° N***”. The AMM typically reaches
aminimumintheboreal spring when the GASB starts to bloom. During
negative AMM states, the seasonal development of the NECC along
5-10°Ninthe second half of the year connects Sargassumto the shal-
lower mixed layer around the Guinea Dome during late autumn®*%’¢%,
potentially also explaining the emergence of long Sargassum bands
during the second half of the year (Extended Data Fig. 8).

Theevidencethatanincreased supply of excess P (negative AMM)
both enhances N, fixation and encourages Sargassumblooms indicates
amechanism linking the two. The average N retained in Sargassum
biomass (0.91 pmol N m™) is much smaller than the surface particulate
N pool suspended in the mixed layer (~30 mmol N m™), such that the
supply of recycled N to the surface mixed layer is far in excess of that
required for Sargassum growth. This implies that Sargassum is not a
major competitor for recycled N in surface waters. Accordingly, the
increased supply of recycled N that accompanies periods of rapid
N, fixation cannot explain Sargassum blooms. Rather, the explosive
growth of Sargassum is probably driven by the N, fixation of its epi-
phytes, which can channel their newly fixed N directly to their host. That
is, Sargassum appears to occupy the same niche as other diazotrophs
in the tropical North Atlantic'****°, acting de facto as an N, fixer itself.
This perspective also explains why Sargassum accumulations are much
stronger in the equatorial North Atlantic compared with previous
blooms in the Sargasso Sea. N, fixation in the modern Sargasso Sea is
currently occurringatavery limited rate’>*, potentially due to alower
excess P supply". Thus, Sargassum, with its limited capacity to com-
pete with phytoplankton for recycled N, was unable to reach biomass
accumulationsin the Sargasso Sea that are comparable to the GASB.

High rates of N, fixation in the Caribbean region are also evident
during negative phases of the AMO before 2011 (Figs. 2 and 3b), which
indicates that Sargassum was only governed by these dynamics once
itreached the equatorial North Atlantic. Before thisimport, thereisno
evidence of comparable Sargassumblooms in the area. Thus, we sug-
gest that the arrival of Sargassumin the equatorial North Atlantic trig-
gered the GASB, by making it more proximal to equatorial upwelling,
giving Sargassum greater access to the excess P supply.

Other environmental parameters and Sargassum
Other proposed drivers of Sargassum since 2011 include Amazon-Ori-
noco discharge, black carbon deposition, Saharan dust, atmospheric
N and warmer SSTs"*"'. However, their variability is largely seasonal,
with negligible interannual fluctuations, and thus cannot explain the
observed interannual biomass trends and amplitudes.

There is no interannual relationship between Sargassum biomass
and Amazon (adjusted = 0.06, P> 0.05) or Orinoco (adjusted = 0.01,
P>0.10) water/nutrient discharge’ (Fig. 3d), perhaps because these dis-
charges arerestricted to coastal regions whereas most of the Sargassum
biomass is found in open waters. During the Sargassum blooms in 2011
and 2012, satellite observations indicate that Sargassum accumulated
near theriver outflows and was thenexported to the equatorial regionand

the Caribbean’. Thus, excess P from the Amazonas may have stimulated
N, fixation and Sargassum in 2011 and 2012°°, analogous to the blooms
of the diatom Richelia intracellularis—with N,-fixing endosymbionts—
found in the North Brazil margin’’. Atmospheric N deposition is highest
near continents™, but it is four orders of magnitude lower than naturally
occurringopen-ocean N, fixation’*’*and appears not tobeaviable driver
of Sargassumblooms (Extended DataFig. 9). Previous studies have attrib-
uted the variability in N:P ratios in Sargassum biomass over the past dec-
adesto anthropogenic N or Pinputs®®”>, However, Sargassum N:P ratios
align closely with the N:P ratio of upwelled water, with a positive offset
(Extended DataFig.10). Furthermore, the higher N:Pratios in Sargassum’'
suggest thatits relationship with N,-fixing symbiontsis central to fulfilling
its N requirements, especially in environments of high excess P.

We find only a weak correlation of Sargassum biomass with the
modelled area-weighted deposition of wet dust (adjusted = 0.04,
P>0.05), dry dust (adjusted r>=0.04, P< 0.01), wet black carbon
(adjusted r*=0.08, P> 0.05) or dry black carbon (adjusted r*=0.14,
P<0.01). Although dry dust and dry black carbon deposition are cor-
related to Sargassumbiomass, therelationship is negative, inconsistent
with an important role for nutrients from these sources™. Regarding
the potential role of SST and sea surface salinity (SSS)", in situ experi-
ments show optimal Sargassum growth at high temperatures (from ~23
t028 °C) and salinities above 34 PSU (practical salinity units)"”. In the
equatorial North Atlantic, SST and SSS are in this range and show no
correlation with Sargassumbiomass (SST: adjusted r* = 0.06, P < 0.01;
SSS:adjusted r*=0.07, P < 0.05) (Supplementary Fig.1).

Using an Akaike information criterion (AIC), we find that CB-8"N
and AMM can explain 56% of Sargassum biomass from 2011 to 2021
(Supplementary Table1). Adding any alternative nutrient sources did
not improve the AIC, underscoring excess-P-driven N, fixation as the
dominantdriver of Sargassumblooms.

Implications for future Sargassumblooms

In the tropical Atlantic, wind-driven equatorial upwelling and north-
ward transport of excess P, in the context of a high aeolianiron supply,
enhances N, fixation. Theresultingincreasein the supply of both P and
N has allowed Sargassum to expand since 2011, when the macroalgae
wereimported from the Sargasso Sea. Since then, negative AMM states
have aligned with periods of high Sargassum biomass. Thus, the AMM
can be used to better predict the annual extent of Sargassum blooms
inthe future, supporting efforts to mitigate the impacts of Sargassum
blooms on Caribbean reef ecosystems and coastal communities.
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Methods

Coral samples

Coral drill cores were collected between 1997 and 2021 from living
colonies of massive corals at multiple locations across the Carib-
bean by different research groups. An overview of the metadata is
givenin Supplementary Table 2, and includes coral species, location,
depth at which the coral core was sampled, sampling resolution, age
model method and the length of the record. Cores were sliced into
longitudinal slabs and rinsed with deionized water and sent to the
Martinez-Garcia Laboratory at the Max Planck Institute for Chemistry
(MPIC) in Mainz for analysis.

Analysis of coral-bound nitrogen isotopes

The CB-8"N measurements were performed in the Martinez-Garcia
Laboratory (MPIC). We used the persulfate oxidation-denitrifier
method*”, applied to corals by Wang et al.**”*, with modifications
described by Morettietal.”.

A drilling path was drawn based on ultraviolet scans and subse-
quent pairs of high- and low-density bands on previously bleached
and rinsed coral slabs. Sample material was then carefully extracted
perpendicular to the main growth axis using a millimetre drill bit
attached to a Dremel hand tool. The milled material was vacuumed
and the powder was splitinto fine (5-63 um) and coarse (>63 um) size
fractions. Aliquots of fine powder and coarse powder were further used
for the analysis of oxygenisotope (6'*0) and 8N analyses, respectively.

Coarse powder (6 + 1 mg) was weighed into a4 ml VWR borosilicate
glass vial, which was filled with sodium hypochlorite (4.25 ml) and left
on a shaker at 120 revolutions per min for at least 24 h. The sodium
hypochlorite was removed the next day with a pre-combusted glass
pipette attached toavacuum line set at 500 mbar. Samples were then
rinsed three times with Milli-Q water (4 ml;18.2 MQ cm™at 25 °C) and
left todry at 60 °C overnight.

Once fully dried, the coarse powder (6 + 0.2 mg) was weighed
inside an in-house clean room to minimize contamination. Thereaf-
ter, skeletal-bound organic matter was released by dissolving the final
amount of material with 4 N hydrochloric acid (45 pl). Concurrently, a
persulfate oxidative reactant solution was prepared inside the cleanroom
using 6.25 N sodium hydroxide (a4 mlspike) to reach high pH. Persulfate
oxidative reactant solution (1 ml) was added to each dissolved sample
and at least ten empty cleaned vials (blanks), and the batch of vials was
placed in a custom-built sample rack that was tightly sealed with a pol-
ytetrafluoroethylene sheet before being autoclaved at 121 °C for 65 min.

Almlvolume of concentrated denitrifying bacteria (Pseudomonas
chlororaphis) was injected into growth medium (800 ml) and left for
4-6 dtogrowinthe darkatroom temperature on ashaking rack. Once
the bacteria had grown sufficiently, the medium was transferred to
autoclaved polyethylene bottles and centrifuged at ~8,800 x g for
10 min. The supernatant was then discarded and the remaining bacteria
pellet was resuspended in a buffered (pH 6.3) resuspension medium.
Fromthis, 3 mlaliquots were pipetted into separate muffled glass vials
(20 ml), each of which was capped with a septum and tightly sealed
before being placed upside-down on a needle rack with a small addi-
tional needle for venting. The needle rack supplies a continuous flow
of N, for at least 3 h to replace the internal atmosphere and dissolved
gases with pure N,. The bacteria vials were removed fromthe rack, and
the oxidized sample (-0.5 ml) was injected into each bacteria vial. Once
injected, the bacteriavialswerekeptinthe dark for2-3 htoensure the
quantitative transformation of nitrate (NO;") to nitrous oxide (N,O)
before being frozen at -21°C.

On the day of analysis, the bacteria were thawed, lysed with sev-
eral drops of 10 N sodium hydroxide and placed on a mass spectrom-
eter for isotope analysis. The 6N value of the N,0 was determined
using a custom-built inlet system automated for extraction and puri-
fication coupled to a Thermo MAT253 Plus stable isotope ratio mass
spectrometer®®®!, Long-term precision was determined by analysing

internal coral standards with each sample batch, which yielded an
average carbonate standard reproducibility of +0.2%..

Coral oxygenisotopes

Oxygenisotopes were measured on coral cores from Martinique, Belize
and CostaRica (Supplementary Fig. 2). For eachrun, 55 coral carbonate
samples 0of100-200 pg were analysed for §®0in the inorganicstable iso-
topelaboratory at the MPIC in Mainz. One International Atomic Energy
Agency carbonate standard (IAEA-603) (n=10) and one Virje University
Internal Carbonate Standard (VICS) (n =11) were used to calibrate the
analyses to the Vienna PeeDee Belemnite (VPDB) scale. Samples were
measured using anisotope ratio mass spectrometer (DeltaV Advantage,
Thermo Scientific) which is connected to a GasBench Il unit (Thermo
Scientific). Each sample was placed in a 12 ml Exetainer vial (part no.
9RK8W; Labco). Samples and standards were then putinto a hot block
heated to 70 °C.First, the vials are flushed with helium to remove atmos-
pheric CO,. Then, >99% H,P0O, (5-10 drops) was added and the sample
was lefttodissolve for 1.5 h. Finally, the sample was transferred in helium
carrier gasto the GasBench Il unit, where water and contaminant gases
were removed before subsequent isotope analysis using the isotope
ratio mass spectrometer. The average analytical precision, based on
the reproducibility of IAEA-603, was 0.11%. (1s.d., n = 42) for oxygen
isotopes and 0.09%o. (1s.d., n = 42) for carbonisotopes.

Age model

The 6®0 data for samples from Martinique, Belize and CostaRicawere
calibrated against their respective Olv2SST dataset (taken from https://
climexp.knmi.nl/start.cgi). The highest 80 values were anchored to
the lowest SST, which translates to February at Caye d’Olbian, Marti-
nique and at Turneffe Atoll, Belize, and January at Cahuita, CostaRica,
whereas the lowest 80 values were anchored to the highest SST, which
served as the basis of our age model. The 80 and SST yield a nega-
tive correlation with SST of —0.15%. per °C (> = 0.65) for Martinique,
-0.18%o per °C (r* = 0.56) for Belize and —0.28%o per °C (r* = 0.46) for
Costa Rica (Supplementary Fig. 3). Age models for annually resolved
records had already been established for samples from Bermuda®’,
Cuba® and Tobago®, whereas X-ray density bands were used for the
coral core from Mexico.

Analysis of seawater nutrient concentrations

Water samples were collected between December 2022 and March
2023 using arosette water sampler equipped with five five-litre bottles
according to the protocol detailed in Schiebel et al.**. The sampling
was conducted along an east-west transect across the Atlantic at 13°
N and across the Caribbean Sea at 11° N during a cruise aboard the
research sailing yacht Eugen Seibold (https://www.mpic.de/4224334/
sy-eugen-seibold). All water samples were frozen on collection and
kept frozen at —21 °C until analysis.

Analyses for NO,", nitrite (NO,") and phosphate (PO,*") were con-
ducted atthe MPIC. Concentrations of NO, and NO,” were first deter-
mined according to Braman and Hendrix® using a nitrogen oxides
analyser (T200, Teledyne API) with a detection limit of 0.01 uM and a
precision (z1s.d., n =55) of 0.55%. The PO,> concentrations were deter-
mined using a continuous flow autoanalyser (QuAAtro, Seal Analytical)
with adetection limit of 0.01 uM and a precision (+1s.d., n = 55) of 0.5%.
Forthe GO-SHIP A20 (EXPOCODE:325020210316) and A22 (EXPOCODE:
325020210420) samples, the concentration datawere generated as part
ofthe GO-SHIP programme and accessed viathe CCHDO Hydrographic
Data Office (US San Diego Library Digital Collections; CCHDO Hydro-
graphic Data Archive, 2023, https://doi.org/10.6075/JOCCHAMS).

Analysis of seawater nitrogen isotopes

The 8N values of NO,”+ NO, and NO, -only were measured using the
denitrifier method’””* in the Martinez-Garcia Laboratory (MPIC; for
the Seibold samples) and at Princeton University (for the GO-SHIP A20
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and A22samples), following the protocols of ref. 81. NO;™+ NO, or NO;~
(2-20 nmol N depending on concentration) was quantitatively converted
toN,O gasbyastrain of denitrifying bacteria (Pseudomonas aureofaciens)
thatlacksactive N,O reductase enzymes. The 5°N of N,O was determined
using the previously described purpose-built inlet system coupled to
the Thermo MAT253 Plus stable isotope ratio mass spectrometer’”%%%,

Excess phosphorus data

Excess P, expressed as P*=P0O,”” — NO, /16 (ref. 19), was calculated
from nutrient measurements compiled in the GLODAPv2.2022 (Global
Ocean Data Analysis Project version 2.2022) dataset between 1983
and 2020. These data were based on cruises that have reliably meas-
ured NO, and PO,* in the North Atlantic (-10 to 30° N, 20 to 60° W).
To avoid seasonal biases, only years with sufficient data through-
out the year and covering the whole latitudinal range were included
(Supplementary Fig. 4). Values were depth-integrated until reaching
the pycnocline. The pycnocline depth was calculated based on the
POAMA/PEODAS analysis z20 dataset taken from the Climate Explorer
website (https://climexp.knmi.nl).

Sargassumbiomass estimation

The methods for estimating Sargassum biomass from satellite observa-
tions since 2000 have been detailed in Wang et al.* and Huand et al.”’.
Briefly, satellite images were analysed to examine the image features
(that is, spatial anomalies), and these image features were deline-
ated using a computer deep-learning model (Hu et al.¥’). The spectral
shapes of these delineated image features, relative to the surrounding
seawater, were examined to determine the presence of Sargassum.
The amount of Sargassum within eachimage pixel was first estimated
as a percentage cover, and then converted to wet biomass using a
field-determined calibration constant®. Finally, many satellite images
withinamonthwere used to remove data gaps (due to clouds and other
factors) and to calculate the average biomass at a given location.

Dust and black carbon model

The EMAC (ECHAMS5/MESSy2 Atmospheric Chemistry)® was used to
calculate wet and dry depositions of mineral dust and black carbon
over the equatorial North Atlantic (0 to 20° N, 20 to 60° W) for the
period 2003-2019. The EMAC model describes tropospheric and mid-
dle atmosphere processes, and their interactions with the land and
oceans. For this work, we used the DDEP (Dry DEPosition) submodel®
to estimate dry deposition, whereas the SCAV (SCAVenging) submodel
was used to simulate wet deposition®. A detailed description and
evaluation regarding the EMAC configuration and the submodels used
in this study can be found inHolanda etal.”’, inwhich the black carbon
calculations are also evaluated against observations. A detailed evalu-
ation of the model performancesinreproducing dust transport canbe
foundin Abdelkader et al.”.

Caribbean CB-6"N stack
Amaster CB-8"Nrecord was constructed using the records within the
mean Caribbean nitrate 8°N (Extended Data Fig. 3), which includes
Cuba, Martinique, Belize and Mexico. This ensured that the variabil-
ity within each record was probably driven by natural processes and
reduced the inclusion of local anthropogenic effects, for example,
terrestrial runoff. Nevertheless, it is worth indicating that the record
from Mexico showed a disagreement with the other selected records
around the 1980s; this coincides with a period of very sudden and rapid
developmentinthe areathat may have temporarily affected the record.
The master record was constructed from normalized CB-8"N time
series (normalized CB-8"N = [(CB-8"N - average CB-6"N)/(standard
deviation of CB-6"N)]) and then smoothed with a Gaussian filter using
the SciPy package (v.1.11.2).

Cuba—the dataset with the longest continuous record (1900-
2015)—was selected as the base time series, to which the other three

records were sequentially integrated. Where overlaps occurred, data
points were averaged to mitigate any abrupt transitions. This averag-
ing was weighted by the confidence levels of the original data that
were provided by each source. For example, data points with a confi-
dencelevel of 95% will contribute more to the average than those with
a confidence level of 75%. When calculating the overall confidence
level, error propagation was applied by considering the individual
CB-6"N record confidence levels and then taking the square root of
thesum ofthe squaredindividual errors. The final composite (master
CB-8"N) time series was analysed to identify significant temporal
trends and anomalies.

Statistical analysis

CB-8"N valueswereimported to a Python3Jupyter Notebook (v.5.7.4)
using the Pandas software library. Data were plotted with Seaborn/
Matplotlib and reprocessed for wavelet analysis according to the waipy
script (https://github.com/mabelcalim/waipy). The continuous wavelet
transform significance test was based on Torrence and Compo?, and
cross wavelet analysis was based on Maraun and Kurths®*. LOESS of
isopycnic P* values was conducted in the Python3 Jupyter Notebook
(v.5.7.4) with>1,000 bootstraps to provide abetter characterization of
the uncertainty in the estimates. Linear and multiple regressions and
AlC analyses to understand the relationship between abiotic environ-
mental conditions and Sargassum blooms were all conducted using
RStudio (v.4.3.0). Correlations are expressed as adjusted r-squares.
Unlike r-squared, adjusted r-squared increases only if the new predic-
tor enhances the model more than would be expected by chance. It can
alsodecreaseifapredictorimproves the model by less than expected
by chance. Standard deviations are given as +1s.d.

Ethics and inclusion statement

This study was conducted ensuring fairness, respect, care and honesty
throughout the research process. Local collaborators were engaged
as equal partners in the design, execution and interpretation of the
study, with co-authorship offered in recognition of substantive con-
tributions. Fieldwork was carried out with the appropriate research
permits and in close collaboration with local institutions and stake-
holders. Training and mentorship opportunities were provided to
early-career scientists and students, with particular emphasis on
capacity building in the regions where data were collected. All data
and findings will be shared transparently with local partners and
relevant authorities to support both scientific knowledge and local
conservation efforts. We are committed to equitable knowledge
exchange, avoiding exploitation of local resources or communities
and ensuring that the benefits of this research extend to the regions
inwhich it was conducted.

Data availability
All data are publicly available via Dryad at https://doi.org/10.5061/
dryad.jmé63xsjkq (ref. 95).

Code availability

Codes used for the figures and data analyses are available via
GitHub at https://github.com/marinejon/Equatorial-upwelling-
of-phosphorus-drives-Atlantic-N2-fixation-and-Sargassum-blooms
and via Dryad at https://doi.org/10.5061/dryad.jm63xsjkq (ref. 95).
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Caribbean nitrate 8°N (3.28 + 0.76%o) as indicated by the horizontal shaded
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mean Caribbean nitrate 5“Nindicate regions that are suspected to be influenced
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upper bound box to the largest value within 1.5 times the inter-quartile range
(IQR) from the hinge, while the lower whisker extends from the lower bound box
to the smallest value within 1.5 times the IQR from the hinge. Values beyond the
whiskers are considered outliers and are plotted individually.
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and negative (bottom) AMO/Atlantic Meridional Mode (AMM) phases. Positive
AMO/AMM phases correspond to a northward displacement of the ITCZ, a
predominance of the Saharan dust plume over the subtropical North Atlantic and
Caribbean, reduced easterly wind strength, and an enhanced North Equatorial
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displacement of the ITCZ, a predominance of Saharan dust over the equatorial
North Atlantic and Amazon basin, and stronger easterlies that enhance
equatorial upwelling. Also, during negative AMO/AMM phases the North
Equatorial Current (NEC), the South Equatorial Current (SEC) and the Caribbean
Current (CC) are stronger and transport more Atlantic water with excess P into
the Caribbean, ultimately enhancing N2 fixation. Base map: ‘Blue Marble’ global
mosaic. Credit: NASA’s Goddard Space Flight Center.
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Extended Data Fig. 8| Monthly Sargassum spp. extents for the years 2011, 2012, 2015, 2018, 2021, and 2022. Based on remote sensing data, the main growth season
starts during April concomitant with the yearly minimum AMM state. Extensive growth bands are evident starting in April and lasting until late September, witha
tendency toincreasing Sargassum extents trends over time.
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Extended DataFig. 9 | Martinique CB-8"°N record and alternative
environmental parameters used to explain Sargassum blooms. a, CB-515N
values (in %o vs. air) of the coral core taken from Martinique in relation to the
logarithmic Sargassum spp. biomass of the equatorial Atlantic and Caribbean
(0-20°N, 40-90°W). b, Area weighed (10-20°N, 20-60°W) dry dust and dry black
carbon deposition (ng m-3s-1), calculated with the EMAC model. ¢, Area weighed

(10-20°N, 20-60°W) wet dust and wet black carbon deposition (ng m-3s-1), also
based onthe EMAC model.d, Average modelled N2 fixation variability (in Tg N
yr-1)in the Amazonas plume as taken from Hérri et al. 2024. e, Equatorial North
Atlantic (0 to 20°N, 20°W to 60°W) SST (°C) is based on the OIv2SST dataset and
SSS (PSU) is taken from https://climexp.knmi.nl/.
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Extended Data Fig. 10 | Depth integrated (to pycnocline) N:P ratios in availability in waters of the equatorial North Atlantic when including Sargassum
Sargassum biomass and in waters of the equatorial North Atlantic. Previous biomass N:P data from McGillicuddy et al., 2023. Note that N:P in Sargassum is

studies attributing changes in N:P ratios in Sargassum biomass to anthropogenic twice as high as the water.
N-enrichment by Lapointe et al., 2021 appear to follow mostly natural nutrient
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