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Early morning university classes are 
associated with impaired sleep and academic 
performance

Sing Chen Yeo    1, Clin K. Y. Lai    2, Jacinda Tan    1, Samantha Lim    1, 
Yuvan Chandramoghan1, Teck Kiang Tan    2 & Joshua J. Gooley    1,2 

Attending classes and sleeping well are important for students’ academic 
success. Here, we tested whether early morning classes are associated with 
lower attendance, shorter sleep and poorer academic achievement by 
analysing university students’ digital traces. Wi-Fi connection logs in 23,391 
students revealed that lecture attendance was about ten percentage points 
lower for classes at 08:00 compared with later start times. Diurnal patterns 
of Learning Management System logins in 39,458 students and actigraphy 
data in 181 students demonstrated that nocturnal sleep was an hour shorter 
for early classes because students woke up earlier than usual. Analyses of 
grades in 33,818 students showed that the number of days per week they had 
morning classes was negatively correlated with grade point average. These 
findings suggest concerning associations between early morning classes 
and learning outcomes.

University students who regularly attend classes and sleep well are 
more likely to get good grades1–4. Attending classes increases students’ 
interactions with instructors and classmates and provides structured 
time for covering key learning points. Sleeping well is also important for 
optimizing cognitive performance and readiness to learn. Inadequate 
sleep impairs attention and memory processes3,5–7, which may prevent 
students from reaching their full learning potential in class (that is, pres-
enteeism). Moreover, feeling tired and oversleeping are frequently cited 
as reasons why university students skip classes8–11. Effects of absentee-
ism and presenteeism on grades may have long-term consequences on 
students’ employment opportunities12, job performance ratings13 and 
salary14. Therefore, universities should adopt practices that improve 
students’ attendance rates and sleep behaviour to position them to 
succeed in the classroom and workforce.

Growing evidence indicates that early class start times can be 
detrimental for students’ sleep and daytime functioning. During ado-
lescence and early adulthood, environmental and biological factors 
result in a delay in the preferred timing of sleep15,16. Hence, students who 
go to bed late and must wake up early for class have shorter nocturnal 
sleep17. The circadian drive for sleep may also reach its peak close to the 

time that students are expected to attend early morning classes. The 
combined effects of short sleep and circadian misalignment can lead 
to daytime sleepiness and impaired cognitive performance18. Delaying 
the start time of high schools has been shown to increase sleep duration 
and decrease sleepiness by allowing adolescents to sleep in longer19–23. 
However, there are mixed findings regarding the benefits of starting 
school later on absenteeism and academic outcomes. Meta-analyses 
and critical reviews have not found consistent evidence of improved 
attendance or grades20,22,24. Results were also shown to differ between 
schools after a district-wide delay in school start time25. Differences 
across studies and schools could be related to school characteristics, 
sampling bias or methods for evaluating attendance and academic 
achievement. Nonetheless, the large body of correlational and inter-
ventional work on school start times and sleep health in adolescents 
has led many school districts to delay their start times26.

Studies of school start times in adolescents may not be generaliz-
able to university students who face environmental pressures that are 
markedly different compared with high school. The transition from 
high school to university is characterized by changes in students’ social 
and learning environments that can influence their sleep and learning 
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activity, students’ interactions with the LMS represent a form of wake 
signal that can potentially be used to determine when sleep is likely 
to occur32. If LMS data can be shown to provide a reliable estimate of 
sleep timing, universities can use this information for measuring the 
aggregate impact of class start times on sleep behaviour of the entire 
student body.

The objective of our study was to test associations between 
class start times and attendance, sleep behaviour and academic per-
formance at a large university. We developed scalable approaches 
for assessing students’ behaviour by analysing their digital traces 
in university-archived datasets. Wi-Fi connection data were used 
to estimate students’ lecture attendance rates and LMS data were 
used to estimate sleep opportunities. In parallel, an actigraphy study 
was conducted to validate and extend the findings. First, we tested 
the hypothesis that early morning classes are associated with lower 
Wi-Fi-confirmed attendance rates. Actigraphy data were used to deter-
mine whether students slept instead of attending early classes. Second, 
we tested the hypothesis that early morning classes are associated with 
earlier wake-up times and shorter sleep. This was assessed using LMS 
and actigraphy data sorted by students’ first class of the day. Third, we 
tested the hypothesis that morning classes are associated with lower 
course grades, and that students who have morning classes more days 
of the week have a lower grade point average.

Results
Class start times and students’ attendance
Students’ class attendance rates were estimated using time and loca-
tion data from their Wi-Fi connection logs (Supplementary Table 1 and 
Extended Data Fig. 1). First, we showed that there was a strong linear cor-
relation between instructor-reported attendance and Wi-Fi-confirmed 
attendance (53 class sessions; Pearson’s r(51) = 0.98, 95% confidence 
intervals (CI) = 0.97 to 0.99, P < 0.001), indicating that Wi-Fi connection 
data can be used as a relative indicator of class attendance (Fig. 1a). Next, 
this method was used to measure Wi-Fi-confirmed attendance rates 
for 23,391 unique students enroled across 337 large lecture courses 
(≥100 students enroled per course) with class start times ranging from 
08:00 to 16:00 (Fig. 1b and Extended Data Fig. 1). The Wi-Fi-confirmed 
attendance rate for lecture classes at 08:00 was about ten percentage 
points lower compared with lecture classes that started at 10:00 or 
later, adjusting for course-level effects and demographic variables 
(difference in attendance rate relative to 08:00, Tukey’s test: 09:00, 
7.6%, 95% CI = −1.9% to 17.1%, P = 0.64; 10:00, 11.1%, 95% CI = 3.9% to 18.3%, 
P = 0.032; 12:00, 11.0%, 95% CI = 3.6% to 18.4%, P = 0.043; 14:00, 10.8%, 
95% CI = 3.5% to 18.2%, P = 0.047; 16:00, 11.3%, 95% CI = 4.0% to 18.7%, 
P = 0.032) (Supplementary Table 2a). In within-student comparisons 
of Wi-Fi-confirmed attendance rates, there was a medium effect size 
of starting class at 08:00 relative to other class start times (start time, 
Cohen’s d: 09:00, 0.53, 95% CI = 0.38 to 0.68; 10:00, 0.48, 95% CI = 0.42 
to 0.53; 12:00, 0.48, 95% CI = 0.42 to 0.54; 14:00, 0.45, 95% CI = 0.39 to 
0.51; 16:00, 0.52, 95% CI = 0.45 to 0.59) (Fig. 1c).

Next, we examined whether students were absent from early morn-
ing classes because they were sleeping. Sleep behaviour was assessed 
in 181 students who took part in a 6-week actigraphy study during the 
school semester (Fig. 2a). Data for 6,546 sleep offset times were sorted 
by students’ first class of the day for individuals who provided informa-
tion on their daily commute time to school (n = 174) (Fig. 2b). We then 
assessed the frequency of instances whereby students woke up after 
the start of their first class, or woke up before class but could not have 
reached class on time based on their self-reported travel time. The 
frequencies of sleeping past the start of class (Fig. 2c) and waking up 
too late to reach class on time (Fig. 2d) increased with earlier start times 
(two-sided chi-squared test: χ2(6) = 394.4, P < 0.001, Cramer’s V = 0.33, 
95% CI = 0.31 to 0.37 and χ2(6) = 487.5, P < 0.001, Cramer’s V = 0.37, 
95% CI = 0.35 to 0.40, respectively). Students did not wake up in time 
for nearly one-third of classes that took place at 08:00, whereas they 

behaviour. Many university students are living away from home for the 
first time and encounter new social contexts, demanding coursework 
and opportunities for late-night socializing27. The increased autonomy 
in how university students spend their time may lead to later bedtimes 
on school nights compared with when they were in high school28. Uni-
versity students also have a less-structured timetable in which the 
timing of their first class of the day can vary across the school week. 
This could lead to larger day-to-day changes in wake-up times and 
nocturnal sleep duration compared with high school students who 
usually have a fixed school start time29. Class attendance is also rarely 
monitored for lectures or seminars at universities, whereas attend-
ance is compulsory and tracked in high schools. University students 
therefore have the freedom to skip classes and may decide, for example, 
to sleep instead of going to early morning classes. This, in turn, could 
impact students’ grades30–34.

Universities need scalable methods for evaluating the potential 
impact of class start times on students’ behaviour. Class scheduling 
practices are unlikely to change without university-wide evidence of 
a problem. Most studies on class start times and attendance in univer-
sities have been limited to convenience samples with small numbers 
of courses or students. Instructor-reported attendance was generally 
lower for earlier classes, but the underlying reasons (for example, 
oversleeping) were not evaluated35–38. Class attendance can be tracked 
on a much larger scale using mobile digital technologies that detect 
when students are present in the classroom. The Copenhagen Networks 
Study utilized smartphone sensors (Bluetooth and GPS signals) to 
estimate class attendance in about 1,000 university students over a 
2-year period2, and a study at Tsinghua University used Wi-Fi connec-
tions and mobile application data to track class attendance in about 
700 students over a 9-week period39. We also recently used Wi-Fi con-
nection data to perform university-wide tracking of 24,000 students 
across different locations on campus including lecture halls and class-
rooms40. In contrast to previous studies, students were not required 
to use a study-specific software application on their smartphone, and 
our sample included all students who connected to the university Wi-Fi 
network. Given that nearly all students carry a Wi-Fi enabled device 
(for example, smartphone, laptop or tablet), Wi-Fi connection data 
could be used across the entire university to estimate class attendance 
without the need for active participation by students or instructors.

Earlier survey studies suggest that university students obtain more 
sleep when their morning classes start later (about 20 min more sleep 
when class starts 1 h later)29,41. However, objective evidence is lack-
ing and traditional methods of collecting sleep–wake data (surveys 
and actigraphy) usually capture only a small fraction of the student 
population. The relationship between class start times and sleep–wake 
behaviour can potentially be determined at large scale by analysing uni-
versity students’ diurnal pattern of digital traces. Students frequently 
interact with social media, smartphone and university digital learning 
platforms. Sustained periods of inactivity during the night indicate 
times when users are more likely to be sleeping. Consistent with the 
observation that sleep behaviour usually shifts later on free days com-
pared with work/school days, a large-scale analysis of tweets across 
more than 1,500 US counties showed that the nocturnal period of low 
Twitter activity occurred later on weekends, public holidays and school 
holidays42. Other studies have shown that smartphone interactions (for 
example, touchscreen events) can be used to estimate sleep onset and 
offset because users often interact with their phone shortly before and 
after their nocturnal sleep43,44. However, these studies have not linked 
students’ diurnal pattern of digital traces to their school start times or 
learning outcomes. Recently, it was shown that students’ time-stamped 
logins on the university’s Learning Management System (LMS) can 
be used to profile their diurnal learning-directed behaviour32. Many 
universities use a LMS as the primary online platform for students to 
download course materials, submit assignments, complete quizzes and 
participate in class discussions. Similar to social media or smartphone 
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rarely slept past the start of classes that began at noon or later. Next, we 
assessed whether students were more likely to take naps on days with 
early morning classes by analysing 336 actigraphy-verified naps. The 
frequency of napping was associated with class start time (two-sided 
chi-squared test: χ2(6) = 34.7, Cramer’s V = 0.10, 95% CI = 0.079 to 0.13, 
P < 0.001) and was highest when students’ first class of the day was in 
the morning (proportion of school days with naps by class start time: 
08:00, 10.9%; 09:00, 10.3%; 10:00, 11.3%; 11:00, 10.3%; 12:00, 6.6%; 
14:00, 3.5%; 16:00, 4.7%).

Class start times and students’ sleep opportunities
Students’ opportunities for nocturnal sleep were investigated for 
different class start times by aggregating their LMS login data over 
five semesters (Supplementary Table 1). Given that students must be 

awake to log in to the LMS, we used this ‘wake signal’ to estimate when 
nocturnal sleep occurred. Diurnal time courses of LMS logins were 
constructed by compiling 17.4 million time-stamped logins from 39,458 
students (Fig. 3a and Extended Data Fig. 2). LMS login data on school 
days were sorted by students’ first class of the day and compared with 
data on non-school days (Fig. 3a). The diurnal pattern of login activity 
on school days comprised a 24-h component with higher activity dur-
ing the daytime and hourly peaks that corresponded to the timing of 
classes. The time courses of LMS logins for different class start times 
were highly reproducible across semesters (Extended Data Fig. 2). For 
each semester and class start time, the offset and onset of the aggre-
gated LMS login rhythm were determined using a threshold crossing 
method (Methods and Extended Data Fig. 3) and the duration and mid-
point of the LMS inactive period were measured between LMS offset 
and onset (Supplementary Table 3).

Next, we quantified associations of class start time (08:00, 09:00, 
10:00, 11:00, 12:00, 14:00, 16:00 and non-school days) with LMS login 
behaviour. Relative to days with no classes, the LMS login offset occurred 
slightly earlier but did not vary much for different class start times  
(difference in LMS login offset relative to days with no classes, Tukey’s 
test: 08:00, −0.43 h, 95% CI = −0.52 h to −0.35 h, P < 0.001; 09:00, 
−0.32 h, 95% CI = −0.40 h to −0.23 h, P < 0.001; 10:00, −0.22 h, 95% 
CI = −0.30 h to −0.13 h, P = 0.001; 11:00, −0.25 h, 95% CI = −0.33 h to 
−0.17 h, P < 0.001; 12:00, −0.18 h, 95% CI = −0.27 h to −0.10 h, P = 0.009; 
14:00, −0.28 h, 95% CI = −0.37 h to −0.21 h, P < 0.001; 16:00, −0.28 h, 95% 
CI = −0.37 h to −0.21 h, P < 0.001) (Fig. 3b,c and Supplementary Table 2b).  
By contrast, the LMS login onset tracked closely the start time of 
morning classes, with activity starting more than an hour earlier for 
classes at 08:00 relative to non-school days (difference in LMS login 
onset relative to days with no classes, Tukey’s test: 08:00, −1.37 h, 95% 
CI = −1.46 h to −1.27 h, P < 0.001; 09:00, −0.87 h, 95% CI = −0.96 h to 
−0.77 h, P < 0.001; 10:00, −0.58 h, 95% CI = −0.68 to −0.49, P = 0.001; 
11:00, −0.17 h, 95% CI = −0.26 h to −0.07 h, P = 0.058; 12:00, −0.10 h, 
95% CI = −0.19 h to −0.01 h, P = 0.55; 14:00, 0.05 h, 95% CI = −0.04 h 
to 0.14 h, P = 0.97; 16:00, 0.12 h, 95% CI = 0.02 h to 0.21 h, P = 0.36)  
(Fig. 3b,c and Supplementary Table 2c). Multiple comparison tests also 
showed that the LMS login onset was earlier for 08:00 classes compared 
with all other start times (difference in LMS login onset, Tukey’s test: 
09:00, −0.50 h, 95% CI = −0.67 h to −0.33 h, P < 0.001; 10:00, −0.78 h, 
95% CI = −0.95 h to −0.61 h, P < 0.001; 11:00, −1.20 h, 95% CI = −1.37 h to 
−1.03 h, P < 0.001; 12:00, −1.27 h, 95% CI = −1.44 h to −1.10 h, P < 0.001; 
14:00, −1.42 h, 95% CI = −1.59 h to −1.25 h, P < 0.001; 16:00, −1.48 h, 95% 
CI = −1.65 h to −1.31 h, P < 0.001).

The LMS inactive period was about 1 h shorter when classes started 
at 08:00 compared with non-school days (difference in LMS inactive 
period relative to days with no classes, Tukey’s test: 08:00, −0.93 h, 95% 
CI = −1.05 h to −0.82 h, P < 0.001; 09:00, −0.55 h, 95% CI = −0.67 h to 
−0.43 h, P < 0.001; 10:00, −0.37 h, 95% CI = −0.48 to −0.25 h, P < 0.001; 
11:00, 0.08 h, 95% CI = −0.03 h to 0.20 h, P = 0.90; 12:00, 0.08 h, 95% 
CI = −0.03 h to 0.20 h, P = 0.90; 14:00, 0.33 h, 95% CI = 0.22 h to 0.45 h, 
P < 0.001; 16:00, 0.40 h, 95% CI = 0.28 h to 0.52 h, P < 0.001) (Fig. 3b,c 
and Supplementary Table 2d). The LMS inactive period was also sig-
nificantly shorter for 08:00 classes compared with all other start times 
(difference in LMS inactive period, Tukey’s test: 09:00, −0.38 h, 95% 
CI = −0.60 h to −0.17 h, P < 0.001; 10:00, −0.57 h, 95% CI = −0.78 h to 
−0.35 h, P < 0.001; 11:00, −1.02 h, 95% CI = −1.23 h to −0.80 h, P < 0.001; 
12:00, −1.02 h, 95% CI = −1.23 h to −0.80 h, P < 0.001; 14:00, −1.27 h, 
95% CI = −1.48 h to −1.05 h, P < 0.001; 16:00, −1.33 h, 95% CI = −1.55 h to 
−1.12 h, P < 0.001). The midpoint of the LMS inactive period occurred 
earlier for morning classes, with an advance of nearly 1 h on days when 
students had a class at 08:00 compared with non-school days (differ-
ence in midpoint of LMS inactive period relative to days with no classes, 
Tukey’s test: 08:00, −0.90 h, 95% CI = −0.96 h to −0.84 h, P < 0.001; 
09:00, −0.59 h, 95% CI = −0.66 h to −0.53 h, P < 0.001; 10:00, −0.40 h, 
95% CI = −0.46 h to −0.34 h, P < 0.001; 11:00, −0.21 h, 95% CI = −0.27 h to 
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Fig. 1 | Wi-Fi-confirmed lecture attendance was lower for early morning 
classes. a, Instructor-reported attendance was strongly correlated with 
Wi-Fi-confirmed attendance (Pearson’s correlation analysis, two-tailed test: 
r(51) = 0.98, 95% CI = 0.97 to 0.99, P < 0.001). Each circle shows attendance data 
for an individual class session (53 class sessions across 13 different courses). The 
black trace shows the best-fit linear regression line and the red dashed trace 
is the unity line. b, Box plots show the distribution of individually determined 
Wi-Fi-confirmed attendance rates for different class start times in 23,391 unique 
students. Boxes show the median and interquartile range. Whiskers show the 
10th and 90th percentiles. Sample sizes for each class start time are displayed 
at the top of each bar. c, Effect sizes (Cohen’s d) are shown for within-student 
comparisons of Wi-Fi-confirmed attendance rates. Effect sizes were determined 
for each class start time relative to 08:00. The number of students in each 
comparison is indicated at the top of the plot. The paired mean difference 
for each comparison is shown with 95% CI values and the bootstrap sampling 
distribution. Ref, reference category (08:00 class start time).
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−0.14 h, P < 0.001; 12:00, −0.14 h, 95% CI = −0.21 h to −0.08 h, P = 0.010; 
14:00, −0.12 h, 95% CI = −0.18 h to −0.05 h, P = 0.051; 16:00, −0.08 h, 95% 
CI = −0.15 h to −0.02 h, P = 0.31) (Fig. 3b,c and Supplementary Table 2e).

We validated findings for LMS login behaviour with actigraphy 
data collected from 181 undergraduates (Fig. 4 and Supplementary 
Table 4). The diurnal time courses of activity counts (wrist movements) 
closely resembled findings for the LMS login rhythm (Fig. 4a). Relative 
to non-school days, sleep onset occurred slightly earlier for classes 
that started at 08:00 or 09:00 but there was little variation across 
class start times, adjusting for demographic variables (difference 
in sleep onset relative to days with no classes, Tukey’s test: 08:00, 
−0.38 h, 95% CI = −0.49 h to −0.28 h, P < 0.001; 09:00, −0.22 h, 95% 
CI = −0.36 h to −0.09 h, P = 0.025; 10:00, −0.12 h, 95% CI = −0.22 h to 
−0.03 h, P = 0.19; 11:00, −0.18 h, 95% CI = −0.38 h to 0.03 h, P = 0.68; 
12:00, −0.14 h, 95% CI = −0.25 h to −0.03 h, P = 0.22; 14:00, −0.07 h, 
95% CI = −0.21 h to 0.07 h, P = 0.97; 16:00, −0.23 h, 95% CI = −0.43 h to 
−0.03 h, P = 0.32) (Fig. 4b,c, Extended Data Fig. 4a and Supplementary 
Table 2f). By contrast, sleep offset tracked the timing of students’ 
first class of the day, with larger advances for earlier morning classes 
(Cohen’s d, range = −1.29 to −0.75 for classes starting from 08:00 to 
11:00; Supplementary Table 5). Students whose first class took place at 
08:00 advanced their sleep offset by about 1.7 h relative to non-school 

days (difference in sleep offset relative to days with no classes, Tukey’s 
test: 08:00, −1.67 h, 95% CI = −1.78 h to −1.54 h, P < 0.001; 09:00, −1.05 h, 
95% CI = −1.19 h to −0.90 h, P < 0.001; 10:00, −0.83 h, 95% CI = −0.94 h to 
−0.73 h, P < 0.001; 11:00, −0.59 h, 95% CI = −0.81 h to −0.36 h, P < 0.001; 
12:00, −0.40 h, 95% CI = −0.52 h to −0.28 h, P < 0.001; 14:00, −0.23 h, 
95% CI = −0.38 h to −0.07 h, P = 0.072; 16:00, −0.10 h, 95% CI = −0.32 h 
to 0.13 h, P = 0.99) (Fig. 4b,c, Extended Data Fig. 4b and Supplementary 
Table 2g). In addition, sleep offset was earlier for 08:00 classes com-
pared with all other start times (difference in sleep offset, Tukey’s test: 
09:00, −0.62 h, 95% CI = −0.89 h to −0.34 h, P < 0.001; 10:00, −0.83 h, 
95% CI = −1.05 h to −0.61 h, P < 0.001; 11:00, −1.07 h, 95% CI = −1.45 h to 
−0.70 h, P < 0.001; 12:00, −1.26 h, 95% CI = −1.50 h to −1.02 h, P < 0.001; 
14:00, −1.44 h, 95% CI = −1.71 h to −1.16 h, P < 0.001; 16:00, −1.57 h, 95% 
CI = −1.94 h to −1.19 h, P < 0.001).

Both nocturnal total sleep time and time in bed for sleep decreased 
with earlier class start times (Cohen’s d, range = −1.14 to −0.48 for 
classes starting from 08:00 to 11:00) (Supplementary Tables 4 and 5).  
Sleep was more than 1 h shorter in students with classes at 08:00  
relative to non-school days, adjusting for covariates (difference in 
nocturnal total sleep time relative to days with no classes, Tukey’s test: 
08:00, −1.16 h, 95% CI = −1.28 h to −1.05 h, P < 0.001; 09:00, −0.78 h, 95% 
CI = −0.93 h to −0.64 h, P < 0.001; 10:00, −0.65 h, 95% CI = −0.75 h to 
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Fig. 2 | Students frequently slept past the start of morning classes. a, Sleep 
periods and scheduled classes are shown in a representative student who took 
part in a 6-week actigraphy study. b, Sleep offsets from 174 students are sorted by 
their first class of the day. Each circle corresponds to an individually determined 
sleep offset value. Open circles show instances when students woke up after 
the start of their class. Black circles show instances when students did not wake 

up early enough to reach class on time when their self-reported travel time was 
taken into account. c,d, The frequencies of (c) waking up after the start of class 
and (d) waking up too late to reach class on time were associated with class start 
times (two-sided chi-squared test: χ2(6) = 394.4, P < 0.001, Cramer’s V = 0.33, 95% 
CI = 0.31 to 0.37 and χ2(6) = 487.5, P < 0.001, Cramer’s V = 0.37, 95% CI = 0.35 to 
0.40, respectively).
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−0.54 h, P < 0.001; 11:00, −0.40 h, 95% CI = −0.62 h to −0.18 h, P = 0.010; 
12:00, −0.23 h, 95% CI = −0.35 h to −0.10 h, P = 0.006; 14:00, −0.12 h, 95% 
CI = −0.27 h to 0.03 h, P = 0.76; 16:00, 0.11 h, 95% CI = −0.11 h to 0.33 h, 

P = 0.98) (Fig. 4b,c, Extended Data Fig. 4c and Supplementary Table 
2h,i). The nocturnal sleep duration before 08:00 classes was shorter 
compared with all other start times (difference in nocturnal total 
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Fig. 3 | Earlier class start times were associated with shorter sleep 
opportunities. a, Diurnal time courses of LMS logins are shown in students 
whose data were sorted by their first class of the day. LMS logins were compiled 
from 39,458 unique students. Coloured traces show data for school days and 
grey traces show data for non-school days in the same group of students. The 
vertical dotted line in each plot shows the start time of students’ first class. The 
grey boxes show LMS inactive periods on school nights when login activity fell 
below threshold (Methods). b, LMS login offset and onset values are shown for 
different class start times (coloured bars) and compared with data for non-school 
days (grey bars). LMS parameters were determined separately for five different 
semesters and the mean ± 95% CI is shown for each set of five values. The average 

duration of the LMS inactive period is indicated in each bar. LMS parameters 
(offset, onset, inactive period, midpoint of inactive period) for each semester 
and school start time are provided in Supplementary Table 3. c, Changes in LMS 
login behaviour are shown for different class start times relative to non-school 
days. The paired mean differences were calculated separately for each semester 
and the 95% CIs are shown for each set of five values. Grey traces show results 
for individual semesters. Linear mixed-effects models were used to test for 
differences in LMS login parameters for each class start time relative to non-
school days (two-tailed t-tests; Supplementary Table 2). Multiple comparisons 
were performed using Tukey’s test and asterisks show pairwise comparisons that 
reached statistical significance (P < 0.05).
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sleep time for 08:00 classes relative to other start times, Tukey’s test: 
09:00, −0.37 h, 95% CI = −0.64 h to −0.11 h, P < 0.001; 10:00, −0.51 h, 
95% CI = −0.73 h to −0.30 h, P < 0.001; 11:00, −0.77 h, 95% CI = −1.13 h to 
−0.40 h, P < 0.001; 12:00, −0.94 h, 95% CI = −1.17 h to −0.70 h, P < 0.001; 
14:00, −1.04 h, 95% CI = −1.31 h to −0.77 h, P < 0.001; 16:00, −1.27 h, 
95% CI = −1.64 h to −0.90 h, P < 0.001). In addition, early class start 
times were associated with a greater advance in the midpoint of sleep 

(suggesting greater social jet lag) relative to non-school days (Cohen’s 
d, range = −0.89 to −0.40 for classes starting from 08:00 to 11:00) (Sup-
plementary Table 5). Students’ midpoint of sleep occurred about 1 h 
earlier when they had a class at 08:00 on the following day, compared 
with days with no classes (difference in midpoint of sleep relative to 
days with no classes, Tukey’s test: 08:00, −1.02 h, 95% CI = −1.11 h to 
−0.93 h, P < 0.001; 09:00, −0.64 h, 95% CI = −0.75 h to −0.52 h, P < 0.001; 
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Fig. 4 | Earlier class start times were associated with shorter sleep. a, The 
averaged diurnal time courses of actigraphy-determined activity counts are 
shown in students (n = 181) whose data are sorted by their first class of the day. 
Coloured traces show data for school days and grey traces show data for non-
school days in the same group of participants. The vertical dotted line in each 
plot shows the start time of students’ first class. The grey boxes show the average 
nocturnal sleep periods on days with classes. b, Sleep onset and sleep offset 
values (mean ± 95% CI) are shown for different class start times (coloured bars) 
and compared with data in the same students for non-school days (grey bars). 
The average nocturnal total sleep time is indicated in each bar. The distribution 
of individual values for sleep onset, sleep offset and nocturnal total sleep time 

are shown in Extended Data Fig. 4 (number of independent students for each 
class start time: 08:00, n = 103; 09:00, n = 61; 10:00, n = 123; 11:00, n = 35; 12:00, 
n = 107; 14:00, n = 71; 16:00, n = 44). c, In the same groups of students, changes in 
sleep behaviour are shown for different class start times relative to non-school 
days. The paired mean differences are shown with 95% CIs. Linear mixed-effects 
models were used to test for differences in sleep parameters for each class start 
time relative to non-school days (two-tailed t-tests; Supplementary Table 2). 
Multiple comparisons were performed using Tukey’s test and asterisks show 
pairwise comparisons that reached statistical significance (P < 0.05). TIB, time in 
bed for sleep; TST, total sleep time.
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10:00, −0.48 h, 95% CI = −0.56 h to −0.40 h, P < 0.001; 11:00, −0.39 h, 
95% CI = −0.56 h to −0.21 h, P < 0.001; 12:00, −0.27 h, 95% CI = −0.37 h to 
−0.17 h, P < 0.001; 14:00, −0.15 h, 95% CI = −0.27 h to −0.03 h, P = 0.23; 
16:00, −0.17 h, 95% CI = −0.34 h to 0.01 h, P = 0.58) (Fig. 4b,c and Sup-
plementary Table 2j).

Next, we quantified the degree to which LMS login parameters 
predicted sleep behaviour of the average student across different class 
start times by calculating Pearson’s correlation coefficient (r) and pre-
diction error of the best-fit linear regression (root mean square error 
(r.m.s.e.)) (Extended Data Fig. 5a). As expected, there was no statisti-
cally significant correlation between LMS login offset and sleep onset 
because these parameters did not vary much across different class start 
times (r(6) = 0.38, 95% CI = −0.44 to 0.86, P = 0.35, r.m.s.e. = 15 min). 
However, the LMS login onset closely approximated the sleep offset 
and these measures were highly correlated (r(6) = 0.98, 95% CI = 0.91 
to 1.00, P < 0.001, r.m.s.e. = 7 min). Strong correlations were also 
observed between the LMS inactive period and nocturnal total sleep 
time (r(6) = 0.86, 95% CI 0.39 to 0.97, P < 0.001, r.m.s.e. = 14 min), the 
LMS inactive period and nocturnal time in bed for sleep (r(6) = 0.90, 
95% CI = 0.52 to 0.98, P < 0.001, r.m.s.e. = 16 min) and the midpoint 
of the LMS inactive period and the midpoint of sleep (r(6) = 0.91, 95% 
CI = 0.58 to 0.98, P = 0.002, r.m.s.e. = 9 min). Changes in the timing and 
duration of LMS and actigraphy parameters on school days relative 
to non-school days were also closely related (Extended Data Fig. 5b).

Class start times and grades
The relationship between class start time and grades was analysed in 
33,818 students taking the same number of course credits (that is, equiv-
alent workload expressed in time units) (Supplementary Table 1). Owing 
to heterogeneity in the timing of classes within courses (for example, a 
lecture and tutorial scheduled at different times for the same course), 
we categorized courses as occurring exclusively in the morning, exclu-
sively in the afternoon or in both the morning and afternoon (Fig. 5a). 
Course grades were marginally higher for afternoon-only courses, but 
not mixed morning/afternoon courses, compared with morning-only 
courses (difference in grade point relative to morning-only courses, 
Tukey’s test: afternoon-only courses, 0.016, 95% CI = 0.006 to 0.026, 
P = 0.0042; mixed morning/afternoon courses, −0.001, 95% CI = −0.011 
to 0.009, P = 0.80) (Supplementary Table 2k).

Next, we tested whether students with morning classes on more 
days of the week had a lower grade point average (for example, due 
to cumulative effects of lower attendance or shorter sleep on overall 
performance). Students with no morning classes had a higher grade 

point average than all other groups, adjusting for covariates (differ-
ence in grade point average relative to having no days with morning 
classes, Tukey’s test: 1 day per week, −0.069, 95% CI = −0.094 to −0.044, 
P < 0.001; 2 days per week, −0.103, 95% CI = −0.126 to −0.079, P < 0.001; 
3 days per week, −0.117, 95% CI = −0.141 to –0.093, P < 0.001; 4 days 
per week, −0.141, 95% CI = −0.165 to −0.116, P < 0.001; 5 days per week, 
−0.146, 95% CI = −0.173 to −0.119, P < 0.001) (Fig. 5b and Supplementary 
Table 2l). Relative to students with no morning classes, having morn-
ing classes on one or two days of the week was associated with a small 
effect size for grade point average (Cohen’s d = −0.20, 95% CI = −0.25 
to −0.14 and −0.32, 95% CI = −0.37 to −0.27, respectively), and having 
morning classes on three to five days of the week was associated with 
a medium effect size for grade point average (Cohen’s d = −0.37, 95% 
CI = −0.42 to −0.32 (three days), −0.42, 95% CI = −0.46 to −0.37 (four 
days) and −0.40, 95% CI = −0.46 to −0.35 (five days)) (Fig. 5b).

Discussion
Our study showed that sleep behaviour and learning-related outcomes 
were associated with the time of day that university students had their 
first class. Many students may be forced to make one of two undesirable 
choices when faced with early class start times: sleep longer instead 
of attending class or wake up earlier to attend class. Wi-Fi-confirmed 
attendance rates were about ten percentage points lower in students 
taking classes at 08:00 compared with later class start times. Even 
though students frequently slept past the start of classes at 08:00, 
they still lost about 1 h of sleep on average compared with days with 
only afternoon classes or no classes. This was shown using LMS-derived 
sleep opportunities and confirmed by actigraphy. Students who had 
more days of morning classes in a week also had a lower grade point 
average. Our findings suggest that there might be cumulative negative 
effects of morning classes on absenteeism and presenteeism that lead 
to poorer academic achievement.

Our findings for Wi-Fi-confirmed attendance extend previous 
studies in university students demonstrating that instructor-reported 
attendance was generally lower earlier in the day35–38. Previous studies 
assessed attendance for only a few courses, whereas analysing students’ 
Wi-Fi digital traces made it possible to estimate class attendance at large 
scale; that is, across hundreds of courses with different start times. A 
previous study also used Wi-Fi connection data to track class attendance 
in several hundred university students, but their method of counting stu-
dents was not verified by instructor-reported attendance and the sample 
was restricted to volunteers who were using the university’s mobile 
application software (Android users only). By combining students’ Wi-Fi 

30,000 5

4

3

0

25,000

20,000

15,000

10,000

5,000

Fr
eq

ue
nc

y

G
ra

de
 p

oi
nt

 a
ve

ra
ge

C
ohen’s d

Individual course grade Days per week with
morning classes

0

1,897 5,783 12,170 15,185 11,876 5,336 0.4

0.2

0

–0.2

–0.4

–0.6

–0.8
1 2 3 4 5 1 2 3 4 5

Days with morning classes
versus no morning classes

0
0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

PM
120,609

MIX
103,029

AM
51,554

a b

Fig. 5 | Students with morning classes on more days of the week had a lower 
grade point average. a, The distributions of grades are shown for courses with 
class sessions that took place exclusively in the morning (starting before 12:00), 
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connection logs with their course timetables, we were able to derive 
estimates of class attendance in more than 23,000 students without 
requiring their active participation. This method was used to show that 
lecture attendance was lowest for classes that started at 08:00. More
over, we provided objective evidence that students often slept instead 
of going to early morning classes. Actigraphy data showed that students 
overslept for nearly one-third of lecture classes that started at 08:00. 
These results are consistent with survey studies of university students 
in which common reasons for absenteeism included lectures occurring 
too early, lack of sleep, feeling tired and oversleeping8–11.

We showed that students’ population behaviour of diurnal LMS 
login activity can be used to estimate nocturnal sleep opportuni-
ties. Previous studies applied a related approach in which low peri-
ods of Twitter or smartphone activity were used to estimate sleep 
behaviour42,45,46. These studies, which were not restricted to student 
populations, observed a delay in the nocturnal inactive period on 
weekends and holiday periods compared with weekdays, but they 
did not investigate the effects of different school/work start times. 
We sorted students’ LMS login data by their first class of the day and 
verified the results in an actigraphy study with several thousand noc-
turnal sleep recordings. The LMS login onset closely tracked students’ 
wake-up time for morning classes, resulting in a shorter LMS inac-
tive period compared with afternoon start times or non-school days. 
Population-derived LMS login parameters were strongly associated 
with student-averaged actigraphy parameters with low prediction 
errors for wake-up time, total nocturnal sleep duration and midpoint 
of sleep (r.m.s.e. < 16 min for all comparisons). Both the LMS login 
offset and sleep onset showed little variation for different class start 
times. Together, these results showed that LMS login behaviour and 
sleep–wake behaviour covaried with students’ first class of the day.

We provided evidence that early morning classes may contribute 
to a university-wide sleep debt and circadian misalignment. Students 
went to bed at around the same time but woke up earlier to attend 
morning classes. Consequently, nocturnal sleep duration was shorter 
only on nights that preceded morning classes. Our results for objec-
tive sleep behaviour extend earlier work in undergraduates demonst 
rating that self-reported sleep duration was shorter when students’ first 
class of the day was earlier in the morning29,41. The midpoint of sleep 
also occurred earlier for morning classes, suggesting greater social jet 
lag. Similar to our results, a previous study found that undergraduates 
with classes only in the morning (07:00–12:00) had shorter sleep on 
weekdays and extended their sleep duration on weekends, whereas 
students with classes only in the afternoon (14:00–18:00) did not 
show a difference in sleep duration between weekdays and weekends47. 
Comparable results were obtained in adolescents attending schools 
with morning and afternoon/evening shifts, in which students with 
later class schedules obtained more sleep on school days and were 
less likely to extend their sleep on weekends48–54. We also found that 
the frequency of daytime naps was higher when students had morning 
classes, suggesting that students were sleepier compared with days 
with later class start times. Compensatory napping may contribute 
to reduced daytime light exposure and circadian desynchrony. These 
findings for sleep behaviour are consistent with models that predict 
early start times should be avoided for optimal cognitive performance 
in undergraduates55.

We found that course grades were statistically lower for courses 
held only in the morning versus only in the afternoon. However, the 
difference in grades was very small (one-hundredth of a grade point) 
and probably not meaningful. Previous studies found that grades 
were either lower in the morning compared with the afternoon30–34, 
or there were no differences across time of day56. At the university in 
our study, course grades are usually adjusted to meet a recommended 
grade distribution (that is, graded on a curve). By design, the average 
grade does not differ much between courses and may mask underlying 
performance differences between morning and afternoon courses. 

Students may have also chosen courses and start times that suited 
their personal preferences or schedules. For example, morning-type 
students may have been more likely to enrol in early morning classes, 
whereas late-type students may have been more likely to avoid them. 
Course characteristics (for example, course difficulty, grading criteria 
or teacher performance) may have also differed across the day and 
students’ performance in afternoon courses may have been influenced 
by whether they had classes scheduled earlier in the day34.

We showed that having morning classes on more days of the week 
was associated with poorer academic performance. In contrast to 
individual course grades, this analysis considered when students’ first 
class of the day took place. If morning classes have a cumulative nega-
tive impact on students’ attendance and sleep, performance should 
be lower for classes at other times of day. Consistent with this expec-
tation, grade point average was highest for students with no morning 
classes and decreased when students had more days of morning classes. 
Similar to this result, a previous study found that students who had a 
first period course before 08:00 performed worse in all other courses 
taken on the same day, compared with students who did not have a 
first period course34. In our study, the effect size was comparable in 
magnitude to many student- and teacher-related interventions for 
improving academic achievement, including peer tutoring, integrated 
curriculum programmes, small group learning, computer-assisted 
instruction, intelligent tutoring systems, cooperative learning, gam-
ing/simulations, student-centred teaching and bilingual programmes 
(Cohen’s d ranging from 0.35 to 0.55)57. Hence, future studies should 
assess whether reducing the number of days that university students 
have morning classes leads to meaningful improvements in learning.

In our study, there are limitations associated with using students’ 
digital traces to estimate learning-related behaviours. Although Wi-Fi 
connection data made it possible to estimate attendance rates in large 
numbers of students and courses, this method requires that students 
use a Wi-Fi enabled device that is actively scanning for wireless access 
points. Some students may have disabled Wi-Fi scanning on their 
devices or used a cellular data plan instead. Nonetheless, we found 
that Wi-Fi-confirmed attendance underestimated instructor-reported 
attendance by only a small amount. The main limitation of using LMS 
data for estimating sleep behaviour is that students typically interact 
with the LMS only a few times each day. Consequently, the LMS method 
we used cannot estimate day-to-day changes in sleep behaviour in 
individual students. In addition, students’ interactions with the LMS 
may be influenced by factors unrelated to sleep–wake behaviour; 
for example, personal preferences or social schedules. Our analysis 
approach was similar to a previous study of Twitter activity in which 
the daily time course of tweets on weekdays and weekends was deter-
mined by pooling data across many Twitter users42. By comparison, 
smartphone interactions may be better at estimating daily fluctuations 
in sleep behaviour43,44. Despite limitations associated with using LMS 
data, we showed that LMS logins accumulate in large numbers over 
time and can provide universities with an aggregate view of how their 
class scheduling practices may influence students’ sleep opportunities.

Future studies of university students should test the interventional 
effects of delaying the start of morning classes on sleep and learning 
behaviour. There is a strong theoretical basis for starting school later 
to improve students’ sleep and daytime functioning, but our study was 
observational and did not establish causality. Our findings were consist-
ent with earlier interventional studies performed at high schools where 
delaying start times resulted in longer sleep durations and reduced 
daytime sleepiness7,22,24,25,58. The few studies that randomly allocated 
students to different school start times found that earlier start times 
were associated with shorter sleep and lower grades34,48,59. Similarly, 
university students who were randomly assigned to different class 
start times in courses with multiple sections had lower attendance and 
grades for classes that started at 08:00 or 09:00 compared with later in 
the day30,35. More studies are needed to assess whether starting classes 
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later can result in sustained improvements in sleep behaviour and class 
attendance. Some students may gradually shift their bedtime later, 
hence reducing the benefit of starting classes later. Concurrent inter-
ventions to improve students’ self-regulation skills may be important 
for ensuring that students allocate enough time for sleep and attend 
classes. Such interventions could even be implemented using the LMS 
to provide feedback to students on how to improve their sleep and 
learning behaviour60.

In conclusion, our study suggests that universities should consider 
avoiding mandatory early morning classes. Although early classes 
are often scheduled to maximize use of resources (classroom space 
and faculty time spent on teaching) and to minimize scheduling con-
flicts for students and faculty, our results indicate that there may be 
a trade-off, whereby students are more likely to miss class, get less 
sleep and obtain a lower grade point average. Early classes could be 
scheduled later in the day if classrooms and lecture theatres are not 
being fully utilized, and making classrooms a shared resource across 
departments might open up time slots for more afternoon/evening 
courses to be conducted in parallel. To justify taking such actions, 
universities need scalable methods for assessing the impact of their 
class scheduling practices on students. Our study showed that archived 
digital traces that are routinely collected by universities can be used to 
assess relationships between class start times and students’ behaviour. 
In future studies, these approaches can be used to test the effectiveness 
of interventions for improving students’ class attendance, sleep and 
academic achievement.

Methods
Wi-Fi-confirmed attendance
Students’ Wi-Fi connection metadata were archived on the National 
University of Singapore (NUS) Institute for Applied Learning Sciences 
and Educational Technology (ALSET) Data Lake. Each time that a stu-
dent’s Wi-Fi-enabled device associated with the NUS wireless network, 
the transmission data were logged. Data included the tokenized student 
identity, the anonymized media access control address used to identify 
the Wi-Fi-enabled device, the name and location descriptor of the Wi-Fi 
access point and the start and end time of each Wi-Fi connection. The 
campus wireless network at NUS comprises more than 6,500 Wi-Fi 
access points, including coverage of classrooms and lecture halls40. 
Students’ Wi-Fi connections at these locations were cross-referenced 
with their course timetables. These time and location data made it 
possible to identify students who connected to a Wi-Fi router in their 
classroom during class hours, thereby confirming their attendance.

The method of using Wi-Fi connection data to estimate class 
attendance was validated by collecting attendance data from course 
instructors. Attendance data were obtained for 53 class sessions across 
13 different courses. Instructors who provided attendance data were 
recruited from a convenience sample of faculty involved in educational 
research. In each of the class sessions, we determined the number of 
enroled students with at least one Wi-Fi connection during class. The 
strength of the linear correlation between instructor-reported attend-
ance and Wi-Fi-confirmed attendance was assessed using Pearson’s cor-
relation analysis (two-sided test; SigmaPlot v.14.5, Systat Software, Inc.).

Wi-Fi-confirmed attendance was investigated over three semesters 
(2018/19 semester one, 2018/19 semester two and 2019/20 semester 
one) using all available data on the ALSET Data Lake before the COVID-19  
pandemic. We decided to focus on large lecture courses because we 
expected that students would be more likely to skip these classes com-
pared with other types of courses that are smaller and more interactive. 
Absenteeism is less likely to be noticed or tracked in larger lecture 
courses, and in-class participation is not a key element of most lecture 
courses. Hence, students may be more willing to skip these classes in 
favour of their preferred sleep/wake schedule or personal interests. 
Courses were considered for the analysis if: (1) they were categorized 
as a lecture course according to the NUS timetable, (2) they were held 

once per week, (3) they were held at least seven times over the 13-week 
semester (half-semester courses were excluded), (4) they lasted 2 h 
per session and (5) they had at least 100 students enroled in the course. 
The rationale for these criteria was to ensure that comparable types of 
courses were included in the analyses across different class start times. 
The weekly 2-h format is the most common for lecture courses at the 
university, and setting a cut-off of 100 students per course ensured that 
classes took place in one of the lecture halls. Among the 436 courses 
that met these criteria, 71 were excluded because of missing or incom-
plete Wi-Fi connection data or inconsistencies with the class timetable 
(for example, cancelled or rescheduled classes). The remaining 365 
courses were sorted by their start time, and data were analysed only for 
those start times in which there were at least five courses per semester 
to ensure that we had sufficient data to make meaningful comparisons 
between class start times (08:00, 21 courses; 09:00, 18 courses; 10:00, 
89 courses; 12:00, 67 courses; 14:00, 72 courses; and 16:00, 70 courses). 
The final dataset included 337 courses and 23,391 unique students. 
Demographic characteristics of students are provided in Supplemen-
tary Table 1. The average class size (number of students enroled in the 
course) in the dataset was 193 ± 73 students (mean ± s.d.) and class 
size did not differ between lecture start times (one-way analysis of 
variance: F(5,331) = 0.91, P = 0.476). The Wi-Fi-confirmed attendance 
rate for each student was determined in each of the 337 courses. In a 
given course, this was calculated as the number of lectures in which a 
student was detected by Wi-Fi, divided by the total number of lectures 
held during the semester (Extended Data Fig. 1).

LMS data
Students’ interactions with the university’s LMS were analysed over 
five semesters (2016/17 semester two, 2017/18 semester one, 2017/18 
semester two, 2018/19 semester one, 2018/19 semester two) using all 
available data on the ALSET Data Lake. The diurnal time courses of 
logins were analysed separately in each semester by sorting the data 
according to each student’s first class start time of the day. For a given 
semester and class start time, the total number of logins per 5-min 
bin was summed across all students starting from 19:00 on the previ-
ous evening until 19:00 in the evening of the day on which the class 
took place (288 epochs per day) (Supplementary Methods). Analyses 
were restricted to the most frequent class start times at NUS for which 
we also had sufficient actigraphy data to make comparisons (08:00, 
09:00, 10:00, 11:00, 12:00, 14:00 and 16:00). Data were also analysed 
on non-school days, corresponding to weekends and weekdays with 
no scheduled classes. The aggregated time series data allowed us to 
compare students’ diurnal login behaviour by their first class of the day 
and relative to days with no classes. The dataset comprised 17.4 million 
logins from 39,458 students. Students’ demographic characteristics 
are provided for each semester in Supplementary Table 1.

The time courses of logins in each semester were used to derive the 
offset and onset of LMS login activity. These parameters were deter-
mined using a threshold crossing method. The LMS activity threshold 
was calculated as 50% of the average normalized number of logins 
per bin (1 bin/288 bins × 0.5 = 0.001736 or 0.17%) (Supplementary 
Methods). Therefore, the LMS login offset was defined as the clock 
time when the normalized number of logins dropped and remained 
below the 50% threshold, and the LMS login onset was defined as the 
time point when logins exceeded and stayed above the 50% threshold 
(Extended Data Fig. 3). The LMS inactive period was defined as the 
duration of time from the LMS login offset to the LMS login onset. 
The midpoint of the LMS inactive period was also calculated between  
the LMS login offset and onset.

Actigraphy study
NUS undergraduates aged 18–25 years were recruited to take part in a 
6-week research study of their sleep–wake patterns during the school 
term. Participants were required to be non-smokers in good general 
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health with a body mass index between 18.5 and 27.0 kg m−2. Individuals 
were ineligible if they reported shift work (paid work between 23:00 
and 07:00) or if they planned on travelling across time zones during the 
study. Participants wore an actigraphy watch (Actiwatch Spectrum Plus 
or Actiwatch 2; Philips Respironics Inc.) on their non-dominant hand 
(Supplementary Methods) and made weekly visits to a classroom to 
have their data downloaded and to undergo a set of neurobehavioural 
tests (results not reported here). Among 202 undergraduate students 
who enroled in the study, 13 participants withdrew before the end of 
the data collection period (no longer available, n = 6; personal rea-
sons, n = 5; falling ill, n = 2) and 5 participants were withdrawn from the 
study by the researchers for not complying with study procedures (for 
example, not wearing the actigraphy watch or not showing up on time 
for appointments). In the remaining 184 participants who wore the 
actigraphy watch for 6 weeks, two individuals were excluded because 
of poor quality data and one individual failed to provide his course 
timetable with his class start times. The dataset included 181 student 
participants with 7,329 nocturnal sleep recordings (range, 27–42 d 
per individual). The sample comprised students aged 21.3 ± 1.5 years 
(mean ± s.d.), including 115 women (63.5% female) and 162 Chinese 
(89.5%) enroled across four class years (number of students: first-year, 
n = 57; second-year, n = 59; third-year, n = 29; fourth-year, n = 35; miss-
ing data, n = 1). No statistical methods were used to predetermine the 
sample size for the actigraphy study but our sample size was similar 
to an earlier actigraphy study in high school students that compared 
sleep behaviour between different school start times25.

Actigraphy data were collected in 30-s epochs and analysed using 
Actiware software (v.6.0.9) (Supplementary Methods). The primary 
sleep variables were: (1) sleep onset, (2) sleep offset, (3) nocturnal total 
sleep time, (4) nocturnal time in bed for sleep and (5) midpoint of the 
sleep period. Each student’s actigraphy data were sorted by his/her first 
class of the day, and we restricted our analyses to class times in which 
there were at least 20 individuals whose first class of the day started 
at that time (08:00, n = 103; 09:00, n = 61; 10:00, n = 123; 11:00, n = 35; 
12:00, n = 107; 14:00, n = 71; 16:00, n = 44). The cut-off of at least 20 
students per class start time was chosen to ensure that we had enough 
participants to make meaningful comparisons between groups. The 
dataset comprised 3,701 nocturnal sleep recordings on school nights 
(at least one class occurred on the following day) and 3,129 nocturnal 
sleep recordings on non-school nights (no classes on the following day).

The frequency of instances in which students failed to wake up in 
time for class was evaluated by pooling data across participants for a 
given class start time. Two-sided chi-squared tests (SigmaPlot v.14.5, 
Systat Software, Inc.) were used to test for differences across class start 
times in the frequency of: (1) waking up after the start of class; and (2) 
waking up too late to reach class on time, which took into account travel 
time to reach school. The latter was assessed using the question ‘How 
long does it usually take for you to get from your residence to your 
first class of the day?’. The dataset comprised 6,546 sleep offset values 
from 174 participants who reported their travel time (start time of first 
class, number of sleep offset values: 08:00, 776 values; 09:00, 468 
values; 10:00, 940 values; 11:00, 169 values; 12:00, 631 values; 14:00, 
389 values; 16:00, 164 values; no class, 3,009 values).

The frequency of school days with naps was evaluated by pool-
ing data across participants for different class start times. Naps were 
included in the analysis only if they were documented in a student’s 
daily diary and verified by their actigraphy record. A two-sided 
chi-squared test (SigmaPlot v.14.5, Systat Software, Inc.) was used to 
test for differences across class start times in the frequency of naps. 
The dataset comprised 336 school days with at least one nap (start 
time of first class, number of days with naps, number of days without 
naps: 08:00, 88 nap days, 716 non-nap days; 09:00, 50 nap days, 436 
non-nap days; 10:00, 113 nap days, 889 non-nap days; 11:00, 18 nap 
days, 157 non-nap days; 12:00, 45 nap days, 633 non-nap days; 14:00, 
14 nap days, 388 non-nap days; 16:00, 8 nap days, 162 non-nap days).

We tested whether population-derived LMS login parameters can 
reliably predict sleep behaviour in the average student by performing 
Pearson’s correlation analysis (two-sided test; SigmaPlot v.14.5, Systat 
Software, Inc.). Direct comparisons between individual observations 
were not possible because actigraphy-derived sleep parameters were 
measured in individual students (n = 181), whereas LMS-derived param-
eters were calculated for individual semesters (five consecutive semes-
ters). We therefore computed average values for actigraphy parameters 
(averaged across participants) and LMS parameters (averaged across 
semesters) for each class start time (08:00, 09:00, 10:00, 11:00, 12:00, 
14:00, 16:00 and non-school days) and entered these values into the 
correlation analysis (sleep onset versus LMS login offset; sleep offset 
versus LMS login onset; nocturnal total sleep time versus LMS inactive 
period; nocturnal time in bed for sleep versus LMS inactive period; 
midpoint of sleep versus midpoint of LMS inactive period). Pearson’s 
correlation analysis was also used to test for associations between 
sleep and LMS login behaviour on school days relative to non-school 
days (Δsleep onset versus ΔLMS login offset; Δsleep offset versus 
ΔLMS login onset; Δnocturnal total sleep time versus ΔLMS inactive 
period; Δnocturnal time in bed for sleep versus ΔLMS inactive period; 
Δmidpoint of sleep versus Δmidpoint of LMS inactive period). The 
best-fit linear regression line in each analysis was used to calculate 
the r.m.s.e. (the standard deviation of residuals), which was used to 
assess how well the LMS parameter predicted the corresponding sleep 
parameter.

Academic performance
Students’ course grades were analysed over the six semesters for which 
Wi-Fi connection data and LMS data were available (2016/17 semester 
two, 2017/18 semester one, 2017/18 semester two, 2018/19 semester 
one, 2018/19 semester two, 2019/20 semester one). At NUS, students 
are given a letter grade that is converted to a number for calculating the 
grade point (A+ or A = 5.0, A− = 4.5, B+ = 4.0, B = 3.5, B− = 3.0, C+ = 2.5, 
C = 2.0, D+ = 1.5, D = 1.0, F = 0.0). Students earn course credits based on 
the estimated workload hours per week, and the grade point average 
represents the cumulative performance weighted by the credits earned 
in each course. Because a course can have multiple class start times (for 
example, 10:00 lecture on Monday and 16:00 tutorial on Wednesday), 
we decided to group data by morning and afternoon courses. Morn-
ing courses were defined as having all classes (for example, lectures, 
tutorials and laboratories) start before 12:00, and afternoon courses 
were defined as having all classes start at 12:00 or later. Mixed-timing 
courses were defined as having class meetings in the morning and 
afternoon. In each semester, we restricted our analyses to students 
who earned 20 course credits (the mode of the distribution for course 
credits) to ensure that they had a comparable total workload. This 
usually corresponded to taking four or five courses concurrently. The 
final sample included 33,818 unique students, ranging from 9,201 to 
11,823 students per semester. Students’ demographic information is 
provided in Supplementary Table 1. The dataset comprised 275,192 
individual course grades.

Statistical models
The associations between class start time with Wi-Fi-confirmed attend-
ance, LMS login parameters, actigraphy-derived sleep parameters 
and academic performance were examined using linear mixed-effects 
models (Supplementary Table 2). All models were implemented using 
the ‘lme4’ (v.1.1-29) and ‘lmerTest’ (v.3.1-3) packages with R statistical 
software (v.4.2)61,62. Models were fit by restricted maximum likelihood 
to estimate parameters associated with fixed and random effects. 
Model assumptions including linearity and normality of residuals were 
examined using the supplemental ‘redres’ package (v.0.0.0.9) to lme4. 
Satterthwaite’s method was used to perform two-tailed t-tests for fixed 
effects. In instances in which there was evidence of a statistically sig-
nificant association between class start time and the outcome variable 

http://www.nature.com/nathumbehav


Nature Human Behaviour | Volume 7 | April 2023 | 502–514 512

Article https://doi.org/10.1038/s41562-023-01531-x

(P < 0.05), multiple comparisons between class start times were per-
formed using Tukey’s test using the ‘emmeans’ package (v.1.6.1). Effect 
sizes were calculated with the ‘dabest’ package (v.0.3.0) using Python 
v.3.7.8 and R statistical software63.

The association between class start time (08:00, 09:00, 10:00, 
12:00, 14:00, 16:00) and Wi-Fi-confirmed attendance was tested using 
a cross-classified model. Class start time was entered as a fixed effect 
factor (reference category = 08:00) with course module, school/faculty 
of enrolment and student included as crossed random effect factors. 
Covariates in the model included sex (male, female), age in years,  
ethnicity (Chinese, Indian, Malay, others), country of citizenship  
(Singaporean, Singapore permanent resident, foreigner), type of  
residence (on campus, off campus, mix of living on and off campus), 
students’ class year (Y1, Y2, Y3, Y4, Y5+) and semester (2018/19 semester 
one, 2018/19 semester two, 2019/20 semester one).

The association between class start time (08:00, 09:00, 10:00, 
11:00, 12:00, 14:00, 16:00, no class) and each LMS-derived parameter 
(login offset, login onset, inactive period, midpoint of inactive period) 
was tested in separate linear mixed-effects models. Class start time 
was included as a fixed effect factor (reference category = no class) 
and semester was included as a random effect factor. Our analyses 
did not adjust for student-level characteristics (for example, age, sex, 
ethnicity or class year) or course-level characteristics because LMS 
login parameters were derived on a per-semester basis for each class 
start time using data that was pooled across students (that is, LMS login 
parameters were not determined in individual students or courses).

The association of students’ first class time of the day (08:00, 
09:00, 10:00, 11:00, 12:00, 14:00, 16:00, no class) with each 
actigraphy-derived nocturnal sleep variable (sleep onset, sleep offset, 
total sleep time, time in bed for sleep, midpoint of sleep period) was 
tested in separate linear mixed-effects models. Class start time was 
entered in the model as a fixed effect factor (reference category = no 
class) with student included as a random effect factor. Covariates 
included age, sex, ethnicity, students’ class year and semester. Informa-
tion on students’ citizenship, type of residence, course modules and 
school/faculty of enrolment were not included in the model because 
these data were not collected in the actigraphy study.

The association of grade point (individual course grade) with 
course start times (morning-only, afternoon-only, mix of morning and 
afternoon) was tested using a cross-classified model. Course start time 
was entered as a fixed factor (reference category = morning-only) with 
course module, student’s school/faculty of enrolment and student 
included as crossed random effect factors. Covariates included sex, 
age, ethnicity, citizenship, type of residence, students’ class year, 
semester and the proportion of morning classes that each student 
had during the semester. In a separate analysis, we tested the associa-
tion between grade point average and the number of days per week 
that students had a morning class (0, 1, 2, 3, 4 or 5 d). The grade point 
average was calculated using all grades that a student obtained during 
a given semester, irrespective of the times that classes occurred. The 
cross-classified model included days per week with morning classes as 
a fixed effect factor (reference category = 0 d per week) with school/
faculty of enrolment and student included as random effect factors. 
Covariates included sex, age, ethnicity, citizenship, type of residence, 
students’ class year and semester.
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provided informed consent to the NUS Student Data Protection Policy, 
which explains that their data can be used for research. Analyses of 
university-archived data were exempt from review by the NUS Institu-
tional Review Board (IRB) because they were performed retrospectively 
on data that were de-identified to the researchers. Permission for 
collecting attendance data from course instructors was approved by 
LACE. Research procedures in the actigraphy study were approved by 
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part in the research. Participants were paid $250 in Singapore dollars 
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Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The scored actigraphy data that supported the findings of this study 
are published with this article as Source data. University-archived data 
cannot be shared publicly because of legal and university restrictions 
where the research was conducted. In compliance with the Singapore 
Personal Data Protection Act, data stored on the National University 
of Singapore (NUS) Institute for Applied Learning Sciences and Edu-
cational Technology (ALSET) Data Lake are defined as personal data 
and cannot be shared publicly without student consent. Data can be 
accessed and analysed on the ALSET Data Lake server with approval by 
the NUS Learning and Analytics Committee on Ethics in accordance 
with NUS data management policies. Researchers who wish to access 
the data should contact ALSET at NUS (email: alsbox1@nus.edu.sg). 
Source data are provided with this paper.

Code availability
Custom code used to analyse university-archived data is stored with the 
data on the ALSET Data Lake server and can be accessed by contacting 
ALSET at NUS (email: alsbox1@nus.edu.sg).
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Extended Data Fig. 1 | Method for using Wi-Fi connection data to estimate 
students’ class attendance. a–c, Wi-Fi confirmed attendance data are shown 
for a representative lecture course with a class enrolment of 107 students. The 
class took place weekly from 10:00 to 12:00 over 13 weeks. a, Daily time courses 
are shown for the number of enrolled students who connected to a Wi-Fi access 
point in the lecture hall where the class was conducted. The number of students 
detected by Wi-Fi increased sharply at the start of each class and then dropped at 

the end of class. There was one week when a group of about 20 students remained 
in the lecture hall for several hours after class. b, The binary heat map shows 
individually-determined Wi-Fi confirmed attendance (detected or not detected 
during class hours) across all 13 weeks of the semester. c, Wi-Fi confirmed 
attendance rates are shown for individual students in the course. Each row in 
panels b and c represents the same individual.
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Extended Data Fig. 2 | Daily time courses of Learning Management System 
(LMS) logins. Students’ LMS logins were compiled by time of day in 5-min bins 
over 5 different semesters. Data were sorted by students’ first class of the day (left 
column) and compared with non-school days (right column) in the same group 

of students. LMS logins were compiled from 39,458 unique students. The time 
courses of LMS logins were highly reproducible across semesters and academic 
years.
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Extended Data Fig. 3 | Method of deriving Learning Management System 
(LMS) login parameters. a,b, The diurnal distribution of LMS logins is shown on 
days that students had (a) classes starting at 08:00, and (b) no scheduled classes. 
Login data in both panels were compiled from the same group of students 
(n = 10,950) in the second semester of the 2018/19 academic year. Students’ LMS 
logins were summed by time of day in 5-min bins. The time series was normalized 
by dividing the number of logins in each 5-min bin by the total number of logins 
across all bins. LMS login parameters were derived using a threshold crossing 
method in which the LMS activity threshold was calculated as 50% of the average 

normalized number of logins per bin (1 bin / 288 bins × 0.5 = 0.001736 or 0.17%). 
The LMS login offset was defined as the clock time when the normalized number 
of logins dropped and remained below the threshold, and the LMS login onset 
was defined as the clock time when logins exceeded and stayed above the 
threshold. The blue line in each plot shows the LMS activity threshold, and the 
‘X’ symbols show the downward and upward threshold crossings. The grey box 
indicates the LMS inactive period calculated from the LMS login offset to the LMS 
login onset.
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Extended Data Fig. 4 | Sleep parameters sorted by students’ first class of the 
day. a–c, The distribution of individual values for actigraphically-determined (a) 
sleep onset, (b) sleep offset and (c) total sleep time are shown for different class 
start times (no. of independent students for each class start time: 08:00, n = 103; 
09:00, n = 61; 10:00, n = 123; 11:00, n = 35; 12:00, n = 107; 14:00, n = 71; 16:00, 
n = 44). Circles indicate the median sleep value for an individual student for a 

given class start time. Gray lines connect data for the same individual to illustrate 
within-participant differences for school days versus non-school days. Box plots 
show the distribution of sleep values in each group of students for a given class 
start time. Boxes show the median and interquartile range. Whiskers show the 
10th and 90th percentiles.
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Extended Data Fig. 5 | Correlations between Learning Management 
System (LMS) login parameters and actigraphy parameters. a,b, Scatter 
plots show the relationship between (a) LMS-derived parameters (averaged 
over 5 semesters) and actigraphy-derived sleep parameters (averaged across 
181 students) for different class start times, and (b) changes in the timing 
and duration of these parameters on school days versus non-school days. 
Pearson’s correlation analysis (two-tailed test) was used to test the strength of 
the relationship between pairs of LMS and actigraphy variables (r = Pearson’s 
correlation coefficient; RMSE = root mean square error). Solid lines show the 
best-fit linear regression and dashed lines indicate the unity line. In panel a: sleep 
onset vs. LMS login offset, r(6)=0.38, 95% CI = -0.44 to 0.86, P = 0.35; sleep offset 

vs. LMS login onset, r(6)=0.98, 95% CI = 0.91 to 1.00, P < 0.001; nocturnal TST vs. 
LMS inactive period, r(6)=0.86, 95% CI = 0.39 to 0.97, P < 0.001; nocturnal TIB vs. 
LMS inactive period, r(6)=0.90, 95% CI = 0.52 to 0.98, P < 0.001; midpoint of sleep 
vs. midpoint of LMS inactive period, r(6)=0.91, 95% CI = 0.58 to 0.98, P = 0.002. 
In panel b: Δsleep onset vs. ΔLMS login offset, r(5)=0.57, 95% CI = -0.32 to 0.93, 
P = 0.18; Δsleep offset vs. ΔLMS login onset, r(5)=0.94, 95% CI = 0.64 to 0.99, 
P = 0.002; Δnocturnal TST vs. ΔLMS inactive period, r(5)=0.97, 95% CI = 0.79 to 
1.00, P < 0.001; Δnocturnal TIB vs. ΔLMS inactive period, r(5)=0.98, 95% CI = 0.85 
to 1.00, P < 0.001; Δmidpoint of sleep vs. Δmidpoint of LMS inactive period, 
r(5)=0.93, 95% CI = 0.60 to 0.99, P = 0.002. TIB = time in bed for sleep; TST = total 
sleep time.
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Data collection No software was used to collect data in this study.

Data analysis In the actigraphy study, data were analyzed using Actiware software (version 6.0.9). 
 
Pearson's correlation analysis and chi-squared tests were performed using SigmaPlot software (version 14.5, Systat Software, Inc.). 
 
Linear mixed-effects models were implemented using the "lme4" (version 1.1-29) and "lmerTest" (version 3.1-3) packages in R Statistical 
Software (version 4.2). Model assumptions were examined using the supplemental "redres" package (version 0.0.0.9) to lme4. Multiple 
comparisons were performed using Tukey's test using the "emmeans" package (version 1.6.1). Effect sizes were calculated with the “dabest” 
package (version 0.3.0) using Python 3.7.8 and R statistical software. 
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The actigraphy data that support the findings of this study are available as source data (Supplementary Information) with the published article. University-archived 
data cannot be shared publicly because of legal and university restrictions where the research was conducted. In compliance with the Singapore Personal Data 
Protection Act, data stored on the NUS Institute for Applied Learning Sciences and Educational Technology (ALSET) Data Lake is defined as personal data and cannot 
be shared publicly without student consent. Data can be accessed and analyzed on the ALSET Data Lake server with approval by the NUS Learning Analytics 
Committee on Ethics, in accordance with NUS data management policies. Researchers who wish to access the data should contact ALSET at NUS (email: 
alsbox1@nus.edu.sg).
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Study description The study included (1) retrospective analyses of university-archived student data and (2) analyses of university students’ sleep 
behavior using actigraphy. All data are quantitative.

Research sample The sample comprised undergraduate students enrolled at the National University of Singapore (NUS). University-archived student 
data were representative of students enrolled at NUS (average age of 21 years, 51% female, 87% Chinese) because we used all 
available data of the student population. Actigraphy studies were performed in a smaller sample of students who were recruited 
from the general student population. The sample was representative of students at NUS but included a higher percentage of women 
(average age of 21 years, 64% female, 89% Chinese). The rationale for studying these samples was to test the hypothesis that early 
morning classes result in lower class attendance, shorter sleep, and poorer grades.

Sampling strategy Analyses of students’ university-archived data included Wi-Fi connection logs, Learning Management System logins and grades. No 
sample size calculation was performed because we performed a retrospective analysis of all available student data. 
 
Analyses of actigraphy data were based on a 6-week study of students’ natural sleep behavior during the school semester. The data 
were collected to investigate relationships between students’ sleep behavior and neurobehavioral performance (results not reported 
here). The sample of 181 students was sufficient for comparing sleep behavior between different class start times because each 
student contributed data for multiple class start times. We restricted our analyses to class start times in which there were at least 20 
individuals whose first class of the day started at that time (08:00, n=103; 09:00, n=61, 10:00, n=123, 11:00, n=35, 12:00, n=107; 
14:00, n=71; 16:00, n=44) to ensure that we had enough participants to make meaningful comparisons between groups.  The dataset 
comprised 3,701 nocturnal sleep recordings on school nights and 3,129 nocturnal sleep recordings on non-school nights. Effect sizes 
of class start times for the primary sleep variables (wake-up time and nocturnal sleep duration) were medium-to-large. No statistical 
methods were used to pre-determine the sample size for the actigraphy study. However, the sample size was comparable to prior 
studies conducted in high school students that compared sleep behaviour between different school start times (e.g., Dunster et al., 
Sleepmore in Seattle: Later school start times are associated with more sleep and better performance in high school students. 
Science Advances 4, 2018).

Data collection University-archived datasets were obtained from the National University of Singapore (NUS) Institute for Applied Learning Sciences 
and Educational Technology (ALSET). ALSET stores and links de-identified student data for educational analytics research. University-
archived datasets included students’ demographic information (age, sex, ethnicity, year of matriculation), course enrolment and class 
timetables, Wi-Fi connection data, Learning Management System (LMS) data, and grades. Demographic information, course 
enrolment and class timetables, and grades were provided by the NUS Registrar's Office which is responsible for keeping all student 
records. Wi-Fi connection data and LMS data were provided by NUS Information Technology (IT). The NUS wireless network 
comprises several thousand Wi-Fi access points. Each time that a student's Wi-Fi enabled device associated with the NUS wireless 
network the transmission data were logged. Students' Wi-Fi connection data were added to the ALSET Data Lake by a data pipeline 
managed by NUS IT. Each data point included the tokenized student identity, the anonymised media access control (MAC) address 
used to identify the Wi-Fi enabled device (e.g., smartphone, laptop, or tablet), the name and location descriptor of the Wi-Fi access 
point, and the start and end time of each Wi-Fi connection. LMS login data were extracted from students' logged interactions with 
the NUS Integrated Virtual Learning Environment (IVLE). The IVLE is a LMS designed and built by NUS for administering course 
content. Each data point included the type of student interaction (e.g., login, download, upload, logoff) and timestamp. NUS IT was 
responsible for merging all data with the ALSET Data Lake. The same student-specific tokens were represented across data tables, 
allowing for different types of data to be combined without knowing students' identities. 
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The researchers were not present during collection of university-archived datasets. The data were collected from naturally behaving 
students who were using the university's resources (e.g., Wi-Fi network and LMS) as part of normal student life. During the period of 
data collection the students would have interacted with other individuals on campus, including other students, faculty, full-time 
employees of the university, and visitors. The researchers only had access to student data on the ALSET Data Lake. The researchers 
were not blinded to the experimental conditions (i.e., students' class start time) or study hypothesis when analysing the data.   
 
Actigraphy data were collected from NUS undergraduates who were recruited to take part in a 6-week research study of their sleep-
wake patterns during the school semester. Participants wore an actigraphy watch (Actiwatch Spectrum Plus or Actiwatch 2; Philips 
Respironics Inc., Pittsburgh, PA) on their non-dominant hand and made weekly visits to a classroom to have their data downloaded 
by the researchers. Students submitted their class timetable at the end of the study period. The researchers were not blinded to the 
experimental conditions of the study (i.e., students' class start time) or the study hypothesis. The researchers checked whether 
participants complied with wearing the actigraphy watch, but they did not analyze the data until after all data was collected. 
Actograms were inspected, reviewed, and approved by all members of the research team before analyzing the data to derive sleep 
variables. Subsequently, the sleep data were sorted by students' first class of the day using their class timetable.

Timing University-archived data were analyzed using all available data on the ALSET Data Lake prior to the COVID-19 pandemic: (1) Wi-Fi 
connection data were analyzed from August 2018 to December 2019 (3 semesters), (2) Learning Management System login data 
were analyzed from January 2017 to May 2019 (5 semesters), and (3) grades data were analyzed from January 2017 to December 
2019 (6 semesters).  
 
Actigraphy studies were performed during the following 6-week periods: (1) January 4, 2019 to February 15, 2019, (2) March 1, 2019 
to April 12, 2019, (3) September 27, 2019 to Nov 8, 2019.

Data exclusions In analyses of university-archived student data: 
(1) Wi-confirmed attendance was investigated only for courses that (i) were categorized as a lecture course according to the 
university timetable, (ii) were held once per week, (iii), were held at least 7 times over the 13-week semester, (iv) lasted 2 h per 
session, and (v) had an enrollment of at least 100 undergraduate students. The rationale for these criteria was to ensure that 
comparable types of courses were included in analyses across different class start times. Among the 436 courses that met these 
criteria, 71 were excluded due to missing or incomplete Wi-Fi connection data or inconsistencies with the class timetable (e.g., due 
to cancelled or rescheduled classes). The remaining 365 courses were sorted by their start time, and data were analyzed only for 
those start times in which there were at least 5 courses per semester. This ensured that all class start times included at least 15 
different courses spanning a comparable time period (08:00, 21 courses; 09:00, 18 courses; 10:00, 89 courses; 12:00, 67 courses; 
14:00, 72 courses; 16:00, 70 courses). The final dataset included 337 courses and 23,391 unique students. 
(2) All available Learning Management System (LMS) data were used. There were no exclusionary criteria. 
(3) Grade point average was analyzed in students who earned 20 course credits in a given semester. The rationale for this criterion 
was to ensure that students in our analyses had a comparable total workload. The criterion was determined by taking the mode of 
the distribution for course credits. 
 
In the actigraphy study, data were excluded (i) for 2 individuals because of poor quality data (the researchers could not determine 
the time-in-bed intervals for sleep scoring), and (ii) for 1 individual who failed to provide his course timetable with his class start 
times. The dataset included 181 student participants with 7,329 nocturnal sleep recordings (range, 27-42 days per individual).

Non-participation In analyses of university-archived student data, the issue of non-participation is not applicable. 
 
In the actigraphy study, there were 202 undergraduate students who enrolled in the study. There were 13 participants who withdrew 
before the end of the data collection period (no longer available, n = 6; personal reasons, n = 5; falling ill, n = 2), and 5 participants 
who were withdrawn from the study by the researchers for not complying with study procedures (e.g., not wearing the actigraphy 
watch or not showing up on time for appointments).

Randomization Students were not allocated into experimental groups. Students’ timetables were used to sort their data (attendance, sleep, grades) 
by different class start times.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Human research participants
Policy information about studies involving human research participants

Population characteristics See above

Recruitment Analyses of university-archived student data did not involve participant recruitment. 
 
The method of estimating Wi-Fi confirmed attendance requires that students have a Wi-Fi enabled device that is actively 
scanning for wireless access points. Some students may have disabled Wi-Fi scanning on their devices or used a cellular data 
plan instead. This may have introduced some sample bias; however, Wi-Fi confirmed attendance underestimated instructor-
reported attendance by only a small amount and these variables were strongly correlated. Our analyses focused on large 
lecture courses (>100 enrolled students) because we expected that students would be more likely to skip these classes 
compared with other types of courses that are smaller and more interactive. In our dataset, large lecture courses were more 
likely to be taken by first-year students, and early class start times were more common for students enrolled in science and 
engineering programs. To address these potential sources of bias, our statistical models included students' class year and 
school/faculty of enrollment. Hence, we consider it unlikely that sample bias altered the study results substantially. 
 
We used Learning Management System (LMS) interactions to estimate students' sleep opportunities. Students' interactions 
with the LMS may be influenced by factors unrelated to sleep-wake behaviour, e.g. personal preferences or social schedules. 
Additionally, the LMS may not be required for some types of courses. These factors may have contributed to sample bias. We 
consider it unlikely that this affected the results of the study because most students regularly used the LMS and the findings 
were reproduced in the actigraphy study. 
 
Participants were recruited for the actigraphy study by placing advertisements on student digital platforms (e.g., the student 
portal for jobs and research studies), posting flyers on campus, and in-person recruitment booths at approved locations on 
campus. Students who expressed interest in the study were given a one-page description of the research study. Individuals 
who remained interested were invited to attend an information session (about 1 hour) and to provide written informed 
consent to take part in the research. 
 
Participants in the actigraphy study were required to be non-smokers in good general health with a body mass index 
between 18.5-27.0 kg/m2. Individuals were ineligible if they reported shift work (paid work between 23:00 and 07:00) or if 
they planned on traveling across time zones during the study. Self-selection bias may be present because students had to 
decide whether to participate in the research. However, it is unlikely that self-selection bias had a meaningful impact on the 
results because the actigraphy data supported/verified the findings that were based on university-archived data.

Ethics oversight Analyses of university-archived student data were approved by the NUS Learning Analytics Committee on Ethics (LACE). 
 
Research procedures in the actigraphy study were approved by the NUS Institutional Review Board.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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