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Reinforcement feedback canimprove motor learning, but the underlying

brain mechanisms remain underexplored. In particular, the causal
contribution of specific patterns of oscillatory activity within the human
striatum is unknown. To address this question, we exploited a recently
developed non-invasive deep brain stimulation technique called
transcranial temporal interference stimulation (tTIS) during reinforcement
motor learning with concurrent neuroimaging, inarandomized,
sham-controlled, double-blind study. Striatal tTIS applied at 80 Hz, but not
at20 Hz, abolished the benefits of reinforcement on motor learning. This
effect wasrelated to a selective modulation of neural activity within the
striatum. Moreover, 80 Hz, but not 20 Hz, tTIS increased the neuromodu-
latory influence of the striatum on frontal areas involved in reinforcement
motor learning. These results show that tTIS can non-invasively and
selectively modulate a striatal mechanism involved in reinforcement
learning, expanding our tools for the study of causal relationships between
deep brain structures and human behaviour.

The ability to learn from past outcomes, often referred to as rein-
forcement learning, is fundamental for complex biological systems'.
Reinforcement learning has been classically studied in the context of
decision-making, when agents have to decide among a discrete number
of potential options®. There is increasing recognition that reinforce-
ment learning processes are also at play in other contexts, including
during practice of a new motor skill*>. For instance, the addition of
reinforcement feedback during motor training can improve motor
learning, presumably by boosting the retention of newly acquired
motor memories®’. Interestingly, reinforcement feedback also appears
to be relevant for the rehabilitation of patients suffering from motor
impairments®™, Yet, despite these promising results, there is currently

alimited understanding of the brain mechanisms that are critical to
implement this behaviour.

Aprominent hypothesisin thefieldis that the striatum, astructure
that s particularly active during both reinforcement” and motor learn-
ing'?, may be causally involved in the beneficial effects of reinforcement
onmotor learning. The striatum shares dense connections with dopa-
minergicstructures of the midbrain as well as with prefrontal and motor
cortical regions” and is therefore well positioned to mediate reinforce-
mentmotor learning™®. Thisidea is supported by neuroimaging stud-
ies showing reward-related activation of the striatum during motor
learning'*®. More specifically, within the striatum, oscillatory activity
in specific frequency bands is suggested to be involved in aspects of
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reinforcement processing. Previous rodent studies have shown that
striatal high gamma oscillations (-80 Hz) transiently increase fol-
lowing reward delivery'>*, but not when reward is withheld”. Hence,
dynamic changes of high gamma activity in the striatum'**** and in
other parts of the basal ganglia®®* may encode the outcome of previous
movements (that s, success or failure) and support learning. Consist-
ent with a role of such oscillatory activity in reinforcement learning,
high gamma activity in the striatum shows coherence with frontal
cortex oscillations and is upregulated by dopaminergic agonists”. This
body of work thus suggests that reinforcement-related modulation
of striatal oscillatory activity, especially in the gamma range, may be
crucial for reinforcement learning of motor skills. Conversely, striatal
beta oscillations (20 Hz) have been largely associated with sensori-
motor functions®. For instance, beta oscillations in the striatum are
exacerbated in Parkinson’s disease and associated with the severity
of motor symptoms®~*, Consistently, excessive beta connectivity is
reduced by anti-Parkinsonian treatment in proportion to the related
motor improvement®. Taken together, these elements suggest that
striatal high gamma and beta activity may have different functional
roles preferentially associated with reinforcement and sensorimotor
functions, respectively.

The studies mentioned above provide associative evidence link-
ing the presence of reinforcement with changes of neural activity in
the striatum determined through neuroimaging''®, but they do not
allow us todraw conclusions regardingits causal rolein reinforcement
motor learning in humans. The only causal evidence available to date
comes from animalwork showing modulation of reinforcement-based
decision-making with striatal stimulation®***, A reason for the cur-
rent absence of investigations of the causal role of the striatum in
human behaviour is related to its deep localization in the brain. Cur-
rent non-invasive brain stimulation techniques, such as transcranial
magnetic stimulation and classical transcranial electric stimulation,
do not allow the selective targeting of deep brain regions, because
these techniques exhibit a steep depth-focality trade-off**°, Studies
of patients with striatal lesions**® or invasive deep brain stimulation
of connected nuclei***° have provided insights into the role of the
basal ganglia in reinforcement learning. However, their conclusions
are partially limited by the fact that the studied patients also exhibit
altered network properties resulting from the underlying pathology
(for example, neurodegeneration or lesions) or from the respective
compensatory mechanisms. Here we address these challenges by
exploiting transcranial temporal interference stimulation (tTIS), a
recently introduced non-invasive electric brain stimulationapproach
allowing us to target deep brain regions in a frequency-specific and
focal manner in the physiological state**,

The concept of tTIS was initially proposed and validated on the
hippocampus of rodents* and was then further tested through com-
putational modelling® *” and in first applications on cortical areas
in humans***. tTIS requires two pairs of electrodes to be placed on
the head, each pair delivering a high-frequency alternating current.
One key element is that this frequency has to be high enough (that is,
in the kHz range) to avoid direct neuronal entrainment, owing to the
low-pass-filtering properties of neuronal membranes™. The second key
element is the application of a small difference of frequency between
the two alternating currents. The superposition of the electric fields
creates an envelope oscillating at this low-frequency difference, which
canbesteered towardsindividual deep brain structures (for example,
by optimizingelectrodes’ placement) andisinarange able toinfluence
neuronal activity*~'>, An interesting feature of tTIS is the ability to
stimulate at a particular frequency of interest to preferentially interact
withspecific neuronal processes**2. Despite these exciting opportuni-
ties, current evidence for tTIS-related neuromodulation of deep brain
structures, such as the striatum, remains sparse in humans®>*>,

Here we combine tTIS with electric field modelling for target
localization, behavioural data and functional magnetic resonance

imaging (fMRI) to evaluate the causal role of specific patterns of stri-
atal activity in reinforcement learning of motor skills. On the basis
of the studies mentioned above, we hypothesized that striatal tTIS
at high gamma frequency (tTISg,,,) would disturb the fine-tuning of
high gamma oscillatory activity in the striatum and thereby would
perturb reinforcement motor learning, in contrast to beta (tTIS,yy,)
or sham (tTISs,,,) stimulation. More specifically, we reasoned that
applyingaconstant high gammarhythmin the striatum would disturb
the temporally precise and reinforcement-specific modulation of high
gammaactivity. Moreover, given that the stimulation protocol was not
individualized to endogenous high gamma activity and not synchro-
nized to ongoing activity in other hubs of the reinforcement learning
network (for example, the frontal cortex), we anticipated disruptive
rather than beneficial effects of tTISgqy,,.

Inline with our prediction, wereport that tTISg,, disrupted motor
learning compared with the controls, but only in the presence of rein-
forcement. To evaluate the potential neural correlates of these behav-
ioural effects, we measured blood-oxygen-level-dependent (BOLD)
activity inthe striatum and effective connectivity between the striatum
and frontal cortical areas involved in reinforcement motor learning. We
found that the disruptive effect of tTISg,,, on reinforcement learning
was associated with a specific modulation of BOLD activity in the puta-
men and caudate, but not in the cortex, supporting the ability of tTIS
to selectively modulate striatal activity without affecting overlying
cortical areas. Moreover, tTISg,, alsoincreased the neuromodulatory
influence of the striatumon frontal cortical areasinvolved in reinforce-
ment motor learning. Overall, the present study shows that tTIS can
non-invasively and selectively modulate a striatal mechanisminvolved
inreinforcement learning.

Results

Atotal of 24 healthy participants (15women, 25.3 + 0.1 years old (mean
ts.e.)) performed aforce-tracking task in the MRIscanner with concur-
renttTIS of the striatum. The task required the participants to modulate
the force applied on ahand-grip force sensor to track amoving target
with a cursor with the right, dominant hand*** (Fig.1a).In eachblock,
the participants had tolearn anew pattern of motion of the target (Sup-
plementary Fig. 1a and Methods). In Reinf, blocks, the participants
were provided with online reinforcement feedback during training,
giving themreal-time information about success or failure throughout
the trial, indicated as a green or red target, respectively (please see
Supplementary Video 1for the task). The reinforcement feedback was
delivered according to a closed-loop schedule®, in which the success
criterion to consider aforce sample as successful was updated on the
basis of the median performance over the four previous trials (see
Methods for more details). In Reinf,: blocks, the participants practised
with visually matched random feedback (cyan/magenta). Importantly,
in both types of blocks, training was performed with partial visual
feedback of the cursor, a condition that has been shown to maximize
reinforcement effects in various motor learning paradigms®>*~® and
thatyielded significant effects of reinforcement on motor learning, as
alsodemonstratedinan additional behavioural study testing another
group of healthy participants on the same task (n = 24; Supplementary
Fig. 1b—e). Before and after training, the participants performed pre-
and post-training assessments with full visual feedback, no reinforce-
mentand notTIS, allowing us to evaluate motor learning. To assess the
effect of tTIS onreinforcement-related benefits in motor learning and
the associated neural changes, the participants performed six blocks of
36 trialsin the MRImachine, with concurrent tTIS during training, deliv-
ered witha Afof 20 Hz (tTIS,,,,) or 80 Hz (tTIS,y,) or as asham (t TS, m;
3tTIS;ype X 2 Reinfrype conditions; Fig. 1b,c). The order of the conditions
was balanced among the 24 participants, ensuring that any potential
carry-over effect would have the same impact on each experimental
condition. To determine the best electrode montage to stimulate the
human striatum (putamen, caudate and nucleus accumbens (NAc)
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Fig. 1| Striatal tTIS during reinforcement learning of motor skills in the MRI
machine. a, Motor learning task. The participants were required to squeeze a
hand-grip force sensor (depicted in the upper right corner of the figure) to track
amovingtarget (the larger circle with acrossin the centre) witha cursor (the
smaller black circle)***. Pre- and post-training assessments were performed
with full visual feedback of the cursor and no reinforcement. In Reinf,y and
Reinfy trials, the participants practised the task with or without reinforcement
feedback, respectively. In Reinf,y trials, the colour of the target varied in real
time as a function of the participants’ tracking performance. b, Experimental
procedure. The participants performed the task in the MRI machine with
concomitant tTIS. Blocks of training were composed of 36 trials (4 pre-training,
24 training and 8 post-training trials) interspersed with short resting periods
(represented as plus signsin the figure). The six training types resulted from
the combination of three tTIS;ypes and two Reinfrypgs. €, Concept of tTIS. On the
left, two pairs of electrodes are shown on ahead model, and currents /,and /, are
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applied with frequencies f; and f; + Af. On the right, the interference of the two
electric fields within the brain is represented for two different locations with
highand low envelope modulation. £,(¢) and E,(¢) represent the modulation of
the fields’ magnitude over time. tTIS was delivered with a Afof 20 or 80 Hz or as
asham (aramp-up and immediate ramp-down of high-frequency currents with a
flatenvelope). d, Electric field modelling with the striatal montage. The colours
show the temporalinterference exposure (electric field modulation magnitude).
e, Temporal interference exposure in the striatum and in the overlying cortex.
The violin plots show the tTIS exposure distribution over the voxels in the
striatum and cortex underneath the stimulation electrodes. The magnitude

of the field in the cortex was extracted from the BNA®* regions underneath the
stimulation electrodes (F3-F4 and TP7-TP8). The black bar represents the mean.
Voxels with outlying tTIS exposure (+5s.d. around the mean) were removed from
the plot (21 values from a total of 46,479 considered voxels).

bilaterally), computational modelling with arealistichead model was
conducted with Sim4Life” (Methods). The selected montage (F3-F4
and TP7-TP8) generated a theoretical temporal interference electric
field that was ~-30-40% stronger in the striatum than in the overlying
cortex, reaching magnitudes of 0.5t0 0.6 V m™ (Fig.1d e).

tTISg,y, disrupts reinforcement learning of motor skills
Task performance was evaluated by means of the Error, which was
defined as the absolute difference between the applied and target

force averaged across samples for each trial, as done previously*>**
(Fig. 2a). Across conditions, the post-training Error was lower than
the pre-training Error (single-sample two-sided ¢-test on the normal-
ized post-training data: t,, = -2.69; P= 0.013; Cohen’s d = -0.53; 95%
confidenceinterval (Cl), (-0.99,-0.09)), indicating significant motor
learning during the task (Fig.2b). Suchimprovement was greater when
participants had trained with reinforcement (Reinf;y,; effect in the
linear mixed model (LMM): F; ,o4,, = 5.17; P= 0.023; partial eta-squared
(npz), 0.005; 95% Cl, (0.00, 0.02)), confirming the beneficial effect of
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Fig.2|Behavioural results. a, Motor performance across training. The raw Error
data (expressed in percentage of maximum voluntary contraction (MVC)) from
the 24 participants are presented in the left panel for the different experimental
conditions inbins of four trials. The increase in Error during training is related

to the visual uncertainty (that is, the intermittent disappearance of the cursor)
that was applied to enhance reinforcement effects. The three plots on the right
represent the pre-training normalized Error in the tTISg;,,, tTIS,on, and tTISggy,
blocks. Reinforcement-related benefits represent the improvementin the Error
measured in the Reinf,y and Reinf,; blocks during training (reflecting benefits in
motor performance) or at post-training (reflecting benefits in learning).

b, Averaged learning across conditions. The violin plot shows the Error
distribution at post-training (expressed in percentage of pre-training)

averaged across conditions, as well as individual participant data. A single-
sample two-sided t-test showed that the post-training Error was lower than

the pre-training level, indicating significant learning in the task (P = 0.013;
n=24participants). c, Motor learning. The averaged Error at post-training
(normalized to pre-training) and the corresponding individual data pointsin

the different experimental conditions are shown in the left and right panels,
respectively, for the participants included in the analysis (that s, after outlier
detection; remaining n = 23). The reduction of Error at post-training reflects

true improvement at tracking the target in test conditions (in the absence of
reinforcement, visual uncertainty or tTIS). The LMM run on these datarevealed a
specific effect of tTISg,y,, on reinforcement-related benefits in learning (analysis
of variance (ANOVA) with Satterthwaite approximation followed by two-sided
pairwise comparisons via estimated marginal means with Tukey adjustment).
Learning was disrupted with Reinf,y in the tTISg,,,, condition compared with the
tTIS,o, (P=0.039) and tTISg;,,, (P < 0.001) conditions. d, Motor performance.
The averaged Error during training (normalized to pre-training) and the
corresponding individual data points in the different experimental conditions
areshownintheleft and right panels, respectively, for the participants included
inthe analysis (that is, after outlier detection; n = 23). The Error change during
training reflects the joint contribution of the experimental manipulations
(visual uncertainty, potential reinforcement and tTIS) to motor performance.
The LMM run on these data showed a frequency-dependent effect of tTIS on
motor performance, irrespective of reinforcement (ANOVA with Satterthwaite
approximation followed by two-sided pairwise comparisons via estimated
marginal means with Tukey adjustment). Motor performance was disrupted
irrespective of reinforcement in the tTIS,,, (versus tTISg;,,: P < 0.001) and
tTISgoy, (Versus tTISgy,m: P < 0.001; versus tTIS,qy,: P= 0.031) conditions. The data
arerepresented as mean +s.e.

reinforcement on motor learning””. Crucially, though, this effect
depended on the type of stimulation applied during training (Rein-
frvee X tTIS ype interaction: F, o635 = 2.11; P= 0.034; n,> = 0.006; 95% Cl,
(0.00, 0.02); Fig. 2c). While reinforcement significantly improved
learning when training was performed with tTISg,,, (two-sided
Tukey-corrected pairwise comparison: P=0.036; d =-0.22; 95% Cl,
(-0.46,0.01)) and tTIS,qy, (P= 0.0089;d = -0.27;95% Cl, (-0.51,-0.04)),
this was not the case with tTISg,,, (P=0.43; d = 0.083; 95% Cl, (-0.14,
0.31)). Consistently, direct between-condition comparisons showed
that in the Reinf,,y condition, learning was reduced with tTIS4,,, com-
pared with tTIS,y,, (P=0.039;d = 0.26;95%Cl, (0.02, 0.49)) and tTISq,

(P<0.001;d=0.45;95% Cl, (0.19, 0.72)), while there was no evidence
for a difference between tTIS,,,, and tTISg,, (P=0.15; d = 0.20; 95%
Cl, (-0.04, 0.43)). This disruption of motor learning with tTISg,,,, was
notobservedinthe absence of reinforcement (tTISg,, versus tTIS,qy,:
P=0.59;d=-0.10;95%Cl, (-0.33,0.12); t TISgoy, versus tTISg;,n: P= 0.34;
d=0.15;95%Cl, (-0.08,0.38)). These results point to the fact that high
gammastriatal tTIS specifically disrupts the benefits of reinforcement
for motor learning and not motor learning in general.

Although training with tTIS,,,, did not alter the benefits of rein-
forcement for motor learning, we found that learning without rein-
forcement was significantly impaired in this condition (t TIS,,,, versus
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tTISgpam: P=0.046;d = 0.25;95% Cl, (0.01, 0.49); Fig. 2c). This suggests
thattTIS,,,, may disrupt a qualitatively different mechanisminvolvedin
motor learning from sensory feedback®, in line with the role of striatal
beta oscillations in sensorimotor function®,

Next, we evaluated the effect of tTIS on motor performance during
trainingitself. AsshowninFig.2a, the Error was generally higher during
training thanin test trials due to the presence of visual uncertainty dur-
ingthis phase. The extent of this disruption was reduced inthe presence
of reinforcement (Reinfrype: F 3674 = 339.89; P < 0.001; 17,” = 0.09; 95%
Cl, (0.08, 0.11)), demonstrating the ability of participants to exploit
real-time reinforcement information to improve tracking (Fig. 2d).
Notably, this effect was not modulated by tTIS;ypr (Reinfrype X tTIS ypg:
Fy36s5= 0.91,P=0.40; 1,7 = 6 x 10™), indicating that t TIS did not directly
influence reinforcement gains during tracking. However, striatal stimu-
lation did impact general tracking performance independently of
reinforcement, as indicated by a significant tTIS;yp effect (¢ TIS ype:
Fy 32604 = 42.85; P<0.001; 1,2 = 0.03; 95% Cl, (0.02, 0.04)). This effect
wasduetoanincreaseinthe Error whentTIS,,,, was applied (P < 0.001;
d=0.28;95%Cl, (0.16,0.39) when compared with tTISg;,,,), which was
even larger during tTISgyy, (P < 0.001; d = 0.38;95%Cl, (0.25,0.52) and
P=0.031;d=0.11;95% Cl, (0.02,0.20) when compared with t TIS;,, and
tTIS,op,, respectively). An additional analysis showed that the detrimen-
tal effect of tTIS on motor performance was actually due to animpaired
ability toimprove performance during training (LMM with continuous
fixed effect Trial: tTIS yp X Trial interaction: F, 3300 = 4.46; P=0.012;
n,’ =0.003;95%Cl, (0.00, 0.01); post hoc tests: t TISgy,m Versus tTISp,:
P=0.013; d=-0.02; 95% CI, (-0.03, 0.00); tTISg,, versus tTISg,,:
P=0.068; d=-0.01; 95% ClI, (-0.03, 0.00); tTIS,oy, versus tTISg,,:
P=0.81;d=0.004;95%Cl, (-0.01,0.02); Supplementary Fig. 1f). How-
ever, again, this effect did not depend on the presence of reinforcement
(Reinfrype X tTIS ype X Trial: F, 3500 = 0.51; P= 0.60; 1,2 = 3 x 10™*). We also
found that the detrimental effect of striatal t TIS did not depend on the
availability of visual information on the cursor, but rather that tTIS
had a general effect on motor performance irrespective of visual and
reinforcement feedback (Supplementary Information). This analysis
also confirmed that reinforcement gains in motor performance were
stronger when visual information was not available (Supplementary
Fig.1g), in line with the behavioural data mentioned above (Supple-
mentary Fig.1b) and previous studies®*'. Overall, these results suggest
that striatal tTIS altered motor performancein a frequency-dependent
manner but did not influence the ability to rapidly adjust motor com-
mands on the basis of reinforcement feedback during training. Hence,
tTISg,,, may not disrupt real-time processing of reinforcement feed-
back but may instead impair the beneficial effect of reinforcements on
the retention of motor memories®’.

To further understand this dissociation, we ran additional analy-
ses exploring the relationship between reinforcement gains in the
training (performed with partial visual feedback and Reinf,, or Rein-
fore) and post-training phases (performed with full visual feedback
and no reinforcement). We found consistent positive associations
betweenindividual reinforcement gains at the end of training (T6) and
at the beginning of post-training (Postl) in the tTISg;,, (robust linear
regression: R?=0.45, P < 0.001) and tTIS,,, (R*= 0.36, P= 0.003) con-
ditions and in the additional behavioural dataset (R*= 0.31,P=0.009,
Supplementary Fig. 2). This association was abolished specifically
in the tTISg,, condition (R? = 0.028, P= 0.39): participants who ben-
efited from reinforcement during training did not exhibit gains in
learning at post-training (see Supplementary Information for more
details on this analysis). This suggests that the disruption of reinforce-
ment motor learning with tTIS,,, did not concern all participants
(in this case, we would still have found a correlation but an upward
shift in the intercept) but primarily affected participants who actu-
ally benefited from reinforcement during training, further support-
ing the idea of a specific disruption of reinforcement motor learning
With tTISgg,.

These effects could not be explained by potential differencesinini-
tial performance between conditions (Reinfrypg X tTISypg: F; 51999 = 1.08;
P=0.34;n,>=0.004; 95% ClI, (0.00, 0.02)), by changes in the flashing
properties of the reinforcement feedback (that is, the frequency of
colour change during tracking; Reinfrypg X tTIS ype: Fy 3083 = 0.19; P=0.82;
n,>=1x107) or by differences in success rate in the Reinf,y blocks
(that is, the proportion of success feedback during tracking; tTIS;ypg:
Fa170,=0.17; P=0.84; 1, =2 x10™*). There was also no evidence that
the Reinfryp * tTISype effect on learning was influenced by the order
of the reinforcement conditions (analysis on sub-groups based on
whether participants experienced Reinf,y or Reinf first; no Rein-
Frype X tTIS ype X Groupyypg interaction: 0506 = 1.75; P= 0.17;1,> = 0.003;
95% Cl, (0.00, 0.01); see Supplementary Information for more details
onthese analyses).

Finally, we confirmed that these results were not a consequence of
inefficient blinding. During debriefing after the experiment, only 6/24
participants were able to successfully identify the order of the stimula-
tionapplied (for example, real-real-placebo; chance level, 4/24; Fisher
exactteston proportions, P=0.74). Consistently, the magnitude (Sup-
plementary Fig. 3a) and type (Supplementary Fig. 3b) of tTIS-evoked
sensations evaluated before the experiment were qualitatively similar
across conditions, and tTIS was generally well tolerated in all partici-
pants (no adverse events reported). This suggests that blinding was
successful and is unlikely to explain our findings. More generally, this
indicates that tTIS evokes very limited sensations (for example, only
2/24 and 1/24 participants rated sensations evoked at 2 mA as “strong”
for tTIS,on, and tTISg,,, respectively; Supplementary Fig. 3a) that are
compatible with efficient blinding.

Behavioural effect of tTIS;,, is linked to striatal modulation
Asmentioned above, task-based fMRI was acquired during training with
concomitant tTIS. This allowed us to evaluate the neural effects of t TIS
and their potential relationship to the behavioural effects reported
above. As a first qualitative evaluation of the data, we performed a
whole-brain analysis in the tTISg,,,, condition to assess the network
activated during reinforcement motor learning (Reinf,, condition).
Consistent with previous neuroimaging studies employing similar
tasks®>**, we found prominent BOLD activations in a motor network
including the putamen, thalamus, cerebellum and sensorimotor cortex,
particularly in the left hemisphere, contralateral to the trained hand
(Supplementary Fig. 4 and Supplementary Table 1). However, con-
trasting Reinf,y and Reinf,: conditions did not reveal any significant
cluster at the whole-brain level. This first analysis thus did not reveal
any regionspecifically activated in the presence of reinforcement, but
rather confirms the involvement of a motor network engaged in this
type of task irrespective of the reinforcement feedback.

As asecond step, we evaluated the effect of tTIS on striatal activ-
ity, as a function of the type of reinforcement feedback and focusing
onthe sameregions of interest (ROIs) that were used to optimize tTIS
exposureinthe modelling. We extracted averaged BOLD activity within
the bilateral putamen, caudate and NAc based on the Brainnetome
Atlas (BNA)®*in the different experimental conditions and considered
these six striatal ROIs (ROlg;y) as fixed effects in the LMM. This model
revealed a significant enhancement of striatal activity with Reinf,,
with respect to Reinfope (F 5000 = 13.23; P< 0.001; 17,7 = 0.02; 95% Cl,
(0.00, 0.04)), consistent with previous literature”, but no tTIS;yp¢
effect (F, goo.01 = 0.46; P=0.63; ,>= 0.001;95% Cl, (0.00, 0.01)) and no
interaction (all P> 0.65; Fig. 3a). Despite the absence of effects of tTIS
on averaged striatal activity, we then asked whether the behavioural
effects of tTISgoy, on reinforcement motor learning (that is, tTISg,,,
versus tTIS,,,, and tTISs,,,, with Reinf,y) could be linked to the modu-
lation of activity in core brain regions. To do so, we ran a whole-brain
analysis focusing on the main behavioural effects mentioned above.
Theresultsrevealed that the effect of tTISg,,, (With respect to tTIS,,,,,)
on motor learning in the Reinf,, condition was specifically related to
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Fig. 3 | Striatal activity. a, Striatal BOLD responses. A 3D reconstruction of the
striatal masks used in the current experiment is surrounded by plots showing
averaged BOLD activity for each maskin the different experimental conditions.
AnLMM runon these datashowed higher striatal responses in the Reinf,y than
inthe Reinfy: condition, but no effect of tTIS;y,; and no interaction (n = 24
participants). The data are represented as mean +s.e. b, Whole-brain activity
associated with the behavioural effect of t TISg,,,, on reinforcement motor
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learning. The correlation between tTIS-related modulation of striatal activity
(tTISgou,~tTIS,0,) and learning abilities in the Reinf,y condition (n = 24) is shown.
Significant clusters of correlation were found in the left putamen and bilateral
caudate (¢-contrast; uncorrected P=0.001at the voxel level; corrected cluster-
based false discovery rate, P= 0.05). The lower panel shows individual robust
linear regressions for the three significant regions highlighted in the whole-brain
analysis.

the modulation of activity in two clusters encompassing the left puta-
men and bilateral caudate (Fig. 3b and Supplementary Table 2). The
presence of the high-frequency carrier (kHz) in both stimulation condi-
tions rules out the possibility that the correlation was due to putative

neuromodulatory effects of high-frequency stimulation. No significant
clusters were found for the tTISgg,,,~tTISg,,» contrast or for the control
tTIS 0,1, tTISpam coNtrast, indicating that the reported correlationis not
duetoagenerallink between striatal activity and reinforcement motor
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the reward network (that is, ventro-medial putamen (vmPu), NAc, vmPFC and
ACC) is shown on the left. The plot on the right shows the effective connectivity
from motor striatum to motor cortex in the different experimental conditions
(n=24).ROIs were defined on the basis of the BNA. Inaand b, the outputs of
LMMs were analysed using ANOVA with Satterthwaite approximation followed
by two-sided pairwise comparisons via estimated marginal means with Tukey
adjustment. The data are represented as mean +s.e.

learning. Overall, these results provide evidence that the detrimental
effect of tTISg,, on reinforcement learning of motor skillsis related to
the modulation of neural activity specifically in the striatum.

tTISg,, enhances striatum-to-frontal-cortex connectivity

Interactions between the striatum and frontal cortex are crucial for
avariety of behaviours, including motor and reinforcement learn-
ing®. In particular, reinforcement motor learning requires the use of
information about task success to guide future motor commands?®,
a process in which the striatum may play an integrative role at the
interface between fronto-striatal loops involved in reward process-
ingand motor control™®, Inasubsequent analysis, we asked whether
striatal tTIS modulates striatum-to-frontal-cortex communication
during reinforcement motor learning. More specifically, we computed
effective connectivity (using the generalized psychophysiological
interactions (gPPI) method®) between striatal and frontal regions
classically associated with motor and reward-related functions, and
thought to be involved in reinforcement motor learning®, For the
motor network, we evaluated effective connectivity between motor
parts of the striatum (that is, dorso-lateral putamen and dorsal caudate)
and tworegions strongly implicated in motor learning: the medial part
of the supplementary motor area (SMA) and the part of the primary
motor cortex (M1) associated with upper limb functions (Fig. 4a). For
the reward network, we assessed connectivity between parts of the
striatum classically associated with limbic functions (that is, the NAc,
the ventro-medial putamen and two frontal areas involved in reward
processing: the anterior cingulate cortex (ACC) and the ventro-medial
prefrontal cortex (vmPFC); Fig. 4b)". The LMM run with the fixed effects
Reinfrypg, tTIStype and Network ype sShowed asignificant effect of t TISrype
(Fy3640 = 5-42; P=0.005; ,> = 0.005; 95% Cl, (0.00, 0.01)) that was
due to higher connectivity in the tTISg,,, condition than in tTISg,,m
(Tukey-corrected P=0.004; d = 0.16; 95% Cl, (0.05, 0.28)). There was
no significant difference in connectivity between tTISg,,, and tTIS,,,
(P=0.069;d=0.11;95% ClI, (0.00, 0.22)) or between tTIS,o,, and t TISgp,,
(P=0.58; d=0.051; 95% CI, (-0.05, 0.16)). Hence, tTISg,y,, but not
tTIS,,,, enhanced effective connectivity between the striatum and
frontal cortex during motor training. This increase in effective con-
nectivity with tTISg,, actually led to a connectivity closer to the rest-
ing state (values closer to O; Methods). Put differently, while the task

induced areduction in effective connectivity between striatum and
frontal cortex, tTISg,, disrupted this modulation by bringing con-
nectivity back to the resting state.

The LMM did not reveal any effect of Reinfyypg (Fy 25640 = 0.010;
P=0.92;n,% =5x%107%), NetWorkrype (F 25640 = 3.16; P = 0.076; 1,7 = 0.001;
95% Cl, (0.00, 0.01)) or a double interaction (Reinf;ypr X Networkyypg:
Fim640=3.52;P=0.061;17,>= 0.002; 95% Cl, (0.00, 0.01)). Yet, we did find
asignificant Reinfrypg X tTIS;ype X Networkyyp interaction (F, 55640 = 4.87;
P=0.008;n,2=0.004;95%Cl, (0.00,0.01)). This triple interaction was
related tothe fact that tTISg,, increased connectivity inthe Reinf,, con-
ditioninthe motor network (Reinf,, versus Reinfy: P=0.001;d = 0.33;
95% Cl, (0.11, 0.55); Fig. 4a), while this effect was not observed in the
reward network (P=0.063; d=-0.19; 95% CI, (-0.40, 0.02); Fig. 4b).
There was no evidence for such an increase in either of the two net-
works when either tTISg,,, or tTIS,,,,, was applied (all P> 0.40, all d
[-0.09, -0.02]). Moreover, in the motor network, connectivity in the
Reinfyy condition was higher with tTISg,,, than with tTISg;,,, (P < 0.001;
d=0.42;95% Cl, (0.19, 0.65)). This effect did not reach significance
when contrasting tTISg,,, with tTIS,,,, (P=0.059; d = 0.23; 95% ClI,
(0.02, 0.44); Fig. 4a). These data suggest that tTISg,,, enhanced the
neuromodulatory influence of the striatum on motor cortex during
task performance, but only in the presence of reinforcement. In the
reward network, post hoc tests revealed that connectivity in the Rein-
forr condition was significantly higher with tTISg,, than with tTIS,,,
(P=0.045;d=0.24;95%Cl,(0.03,0.46); Fig.4b), in line with the general
effect of tTIS;yp ON connectivity reported above. This pattern of results
suggests that theincrease of connectivity from striatum to frontal cor-
tex observed with tTISg,,, depends on the presence of reinforcement,
in particular in the motor network. This reinforcement-dependent
increase of connectivity may reflect the preferential effect of tTIS,,,
onstriatalgamma oscillations® in a situation where these oscillations
are already boosted by the presence of reinforcement' (Discussion).

In a subsequent analysis, we verified that these results did not
depend onthe specific frontal ROIs considered in the analysis (ROl;ypg:
M1 and SMA in the motor network and ACC and vmPFC in the reward
network). Importantly, we did not find a tTIS;ype X Reinfrype X ROlyype
interaction in the motor network (F,;;, = 0.83; P= 0.44; n,> = 0.001;
95% Cl, (0.00, 0.01)) or in the reward network (F, ;;;, = 0.61; P= 0.54;
n,’=0.001;95%Cl,(0.00, 0.01)), suggesting that the main connectivity
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results were consistent within a network and were not influenced by
the specific frontal ROl included in the analysis (see Supplementary
Information for more details on this analysis). As an additional control,
we verified that the effects of tTIS;yp ON connectivity could not be
observed in a control network associated with language (as defined
by ref. 70), which was unlikely to be involved in the present task and
did not include the striatum (Methods). As expected, there was no
evidence for amodulation of effective connectivity within the language
network by Reinfrype (F 54, = 0.81; P=0.37; n,> = 0.001; 95% ClI, (0.00,
0.01)) or by tTISype (F547= 0.58; P=0.56; ,> = 0.002; 95% Cl, (0.00,
0.01)) or by Reinfrypg X tTISrype (Fy 547 = 0.45; P=0.64; 17,7 = 0.002; 95% Cl,
(0.00,0.01)). Hence, tTIS-related and reinforcement-related changes
in connectivity were consistent within the considered fronto-striatal
networks and not observedin a control network unrelated to the task.

Contrary to the BOLD results presented above, we did not find
any correlations between the effects of tTISg,,, on connectivity and
motor learning, in either the motor network (robust linear regres-
$i0n: tTISgo,~tTISgpm: R2 = 0.019, P= 0.48; t TISg0,~t TIS, 0, R2 = 0.034,
P=0.54) or the reward network (tTISgo,~tTISsp,m: R = 0.037, P= 0.46;
tTISgou,~tTIS 01,: R2 < 0.001, P= 0.75), suggesting some degree of inde-
pendence between the effect of tTISg,,, on reinforcement motor learn-
ing and that on effective connectivity.

Overall, these results highlight the ability of tTISg,,,, but not
tTIS,q,, to modulate striatum-to-frontal-cortex connectivity, depend-
ing on the presence of reinforcement. However, the absence of a cor-
relation with behaviour suggests that this effect may not be directly
associated with the detrimental effect of tTISg,,, on reinforcement
motor learning or that tTISg,,-related changesin striato-frontal com-
munication were linked to other aspects of reinforcement learning not
captured by our task.

Neural effects of tTISz,,, depend onimpulsivity

Determining individual factors that shape responsiveness to
non-invasive brain stimulation approaches is a crucial step towards
better understanding the mechanisms of action as well as envision-
ing the stratification of patients in future clinical interventions”. A
potential factor that could explain inter-individual differences in
responsiveness to tTISg,,, is the level of impulsivity. Impulsivity has
been associated with changes of gammaoscillatory activity in the stria-
tum of rats’” and with the activity of fast-spiking interneurons in the
striatum’>’, a neuronal population thatis strongly entrained to gamma
rhythms™*"and may therefore be particularly sensitive to tTISg,,,.Ina
subsequent exploratory analysis, we asked whether the neural effects
of tTISgo,, were associated with impulsivity levels, as evaluated by a
well-established independent delay-discounting questionnaire per-
formed at the beginning of the experiment’’®. Awhole-brain analysis
revealed that impulsivity was associated with the effect of tTISg,,, on
BOLD activity (with respect to tTIS,,,) specifically in the left caudate
nucleus (Supplementary Fig. 5a,b and Supplementary Table 3). Moreo-
ver, the effect of tTISg,, on striatum-to-motor-cortex connectivity
reported above was negatively correlated with impulsivity when con-
trasting tTISg,,, with both tTISg,,, (Supplementary Fig. 5c, left) and
tTIS,on, (Supplementary Fig. 5¢, middle). Such correlations were absent
when contrasting tTIS,,,, with tTISg,,., (Supplementary Fig. 5c, right),
aswellaswhen considering the same contrastsin the reward instead of
the motor network (see Supplementary Information for more details).
Taken together, these results suggest that inter-individual variability
inimpulsivity mightinfluence the neural responses to striatal tTISgy,.

19,21

Discussion

In this study, we combined striatal tTIS with electric field modelling,
behavioural and fMRIanalyses to evaluate the causal role of the striatum
inreinforcement learning of motor skills in healthy humans. tTISgy,,
butnot tTIS,q,,, disrupted the ability to learn from reinforcement feed-
back. This behavioural effect was associated with modulation of neural

activity specifically in the striatum. We also show that tTISg,,,, but
not tTIS,yy,, increased the neuromodulatory influence of the striatum
on connected frontal cortical areas involved in reinforcement motor
learning. Finally, inter-individual variability in the neural effects of
tTISg,, could be partially explained by impulsivity, suggesting that this
trait may constitute a determinant of responsiveness to high gamma
striatal tTIS. Overall, the present study shows that striatal tTIS can
non-invasively modulate a striatal mechanism involved in reinforce-
ment learning, expanding our tools for the study of causal relationships
between deep brain structures and human behaviour.

We investigated the causal role of the human striatum in rein-
forcement learning of motor skills in healthy humans, a question that
cannotbe addressed with conventional non-invasive brain stimulation
techniques. In particular, by stimulating at different frequencies, we
aimed to dissociate striatal mechanismsinvolved in reinforcement and
sensorimotor learning. Inline with our main hypothesis, we found that
striatal tTISg,y, altered reinforcement learning of a motor skill. Such
disruption was frequency- and reinforcement-specific: learning was
not altered with striatal tTIS,,, in the presence of reinforcement, or
when striatal tTISg,,, was delivered in the absence of reinforcement.
The rationale to stimulate at high gamma frequency was based on
previous work showing reinforcement-related modulation of gamma
oscillations in the striatum® 2227277 and in the frontal cortex” %,
Several neuronal mechanisms may contribute to the detrimental
effect of tTISg,,,, on reinforcement motor learning. First, as tTISgg,,
consisted of a constant high gamma oscillating field applied on the
striatum, it may have perturbed the encoding of reinforcement infor-
mation into high gamma oscillations' ¥, preventing participants
from learning the motor skill on the basis of different outcomes. Put
differently, tTISq,,,, may specifically saturate high gamma activity
in the striatum, preventing reinforcement-related modulations®.
Moreover, because reinforcement motor learning probably engages
synchronized activity ina network of regions including fronto-striatal
loops, neuromodulation of a single node of the circuit may alter the
synchronization of activity in the network® and the temporal coor-
dination with interacting rhythms?. Finally, because we did not have
accessto electrophysiological recordings of oscillatory activity in the
striatum, the applied stimulation was not personalized, as it did not
take into account the individual high gamma frequency peak associ-
ated withreward processing and the potential heterogeneity of gamma
activity within the striatum®. Hence, tTISg,,, may have resulted in a
frequency mismatch betweenthe endogenous high gammaactivity and
the externally imposed rhythm, which could paradoxically resultin a
reduction of neuronal entrainment, in particular when the frequency
mismatch is relatively low®. Importantly, in contrast to striatal tTISg,,,
we found that tTIS,,,, reduced learning, but only in the absence of
reinforcement. This result fits well with the literature linking striatal
beta oscillations to sensorimotor functions?*?**%3-% Taken together,
an interpretation of these results is that different oscillations in the
striatum support qualitatively distinct motor learning mechanisms,
with beta activity contributing mostly to sensory-based learning and
high gamma activity being particularly important for reinforcement
learning. This beingsaid, itisimportant to note that because we do not
have concurrent electrophysiological recordings in the striatum, we
cannot be sure whether the effects of tTIS,,, and tTIS4,,,, were related
to frequency-specific interactions with beta or high gammarhythms,
respectively, or rather resulted from different broadband responses
when stimulating at these frequencies. Yet, these results still suggest
thatsensory-and reinforcement-based motor learning rely on partially
different neuralmechanisms, in line with previous literature®%°%688657,

Striatal tTIS also impaired tracking performance during train-
ing, irrespective of the presence of reinforcement. This frequency-
dependent reduction of motor performance may be due to altered
neuronal processing in the sensorimotor striatum that may lead to
less fine-tuned motor control abilities®s. Importantly, though, tTIS
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did not modulate the ability of participants to benefit from real-time
reinforcement feedback during motor performance. This suggests that
striatal tTISg,,, altered the beneficial effects of reinforcement on learn-
ing (as evaluated in test conditions at post-training), but not on motor
performance (as evaluated during training). This dissociation between
the effects of striatal t TSy, on reinforcement-related gains in motor
performance and in learning may be explained by the fact that these
two phases of the protocol probe different processes”**%°-%!, While the
improvement of motor performance with reinforcement relies on rapid
feedback corrections based on expected outcomes® > %, reinforce-
mentgainsinlearning (thatis, probed intest conditions without rein-
forcement) may rather reflect the beneficial effect of reinforcement on
the retention of motor memories*”*>?°, Thisidea that the mechanisms
underlying performance changesin training and retention phases are
partially differentis well supported by previous motor learninglitera-
ture®®”. For instance, insensorimotor adaptation paradigms, the pres-
ence of reward boosts motor memory retention but not the adaptation
processitself#¢701%% and M1 transcranial direct current stimulation
modulates the effect of reward on retention but has no effect on the
training phase”. Such dissociation also appears to generalize to other
motor learning tasks'®'°?, including force-tracking paradigms® (see
also Supplementary Fig. 1b). Importantly, while reinforcement gains
in motor performance and learning seem to reflect the operation of
partially dissociable mechanisms, itis no surprise that these processes
arecorrelated at the group level (Supplementary Fig. 2), as they may be
influenced by common individual factors (for example, sensitivity to
reward)'”. In contrast, the absence of correlationin the striatal t IS4,
condition suggests that the stimulation particularly impaired rein-
forcementgainsinlearninginthe participants whoinitially benefited
from reinforcement during training (Supplementary Fig. 2a). Hence,
a potential explanation for the present results is that striatal tTISg,,
did not disrupt rapid motor corrections based on recent outcomes
during training, but may rather have altered the strengthening of the
memory trace based on reinforcements®’. Overall, these results are
compatible with the view that specific patterns of oscillatory activity
inthe striatum are involved in motor control and learning processes™
and can be modulated with electrical stimulation®*°*%,

Tobetter understand the neural effects and frequency specificity
of tTIS, we coupled striatal tTIS and task performance with simultane-
ous fMRI acquisition. The imaging results support the view that the
effect of tTISgy, on reinforcement learning of motor skills was indeed
related to neuromodulation of the striatum. When considering aver-
aged BOLD activity, we found a general increase of striatal activity
when reinforcement was provided", but no effect of tTIS. Crucially,
though, the detrimental effect of tTIS4,,, on reinforcement learning
was related to a specific modulation of activity in the caudate and
putamen, providing evidence that the present behavioural effects
wereindeed driven by focal neuromodulation of the striatum (Fig. 3).
Interestingly, participants with stronger disruption of reinforcement
learning at the behavioural level were also the ones exhibiting stronger
suppression of striatal activity with tTISg,,, (than with tTIS,,,,), suggest-
ing that tTIS-induced reduction of striatal activity is detrimental for
reinforcement motor learning. Further analyses showed that tTISgy,,
but not tTIS,,,, increased the neuromodulatory influence of the stria-
tum on frontal areas known to be important for motor learning and
reinforcement processing®'%*, More specifically, tTISg,,, disrupted
the task-related decrease in connectivity observed with tTISg;,, and
tTIS,,,, bringing connectivity closer to resting-state values. This effect
depended on the type of network considered (reward versus motor)
and on the presence of reinforcement. Striatal tTISg,,, coupled with
reinforcement increased connectivity between the motor striatum
and the motor cortex, while this effect was not observed when con-
sidering the connectivity between limbic parts of the striatum and
prefrontal areasinvolved in reward processing (Fig. 4). This result may
reflect the differential influence of striatal tTIS on distinct subparts of

the striatum, depending on their pattern of activity during the task™.
Arecentstudy innon-human primates showed that transcranial alter-
nating current stimulation can have opposite effects on neuronal
activity depending on the initial entrainment of neurons to the target
frequency®. Hence, the present differential effects of t TISg,, on motor
and reward striato-frontal pathways may be due to different initial pat-
terns of activity in these networks in the presence of reinforcement.
Electrophysiological recordings with higher temporal resolution than
fMRI are required to confirm or infirm this hypothesis. Overall, the
present neuroimaging results support the idea that the behavioural
effects of striatal tTISg,,, on reinforcement learning are associated with
aselective modulation of striatal activity thatinfluences striato-frontal
communication.

The factthat we observedincreased connectivity with tTISg,,,, and
atthe same time a disruption of behaviour may appear contradictory
atfirstglance. Yet, multiple lines of evidence indicate thatincreasesin
connectivity are not necessarily beneficial for behaviour. For instance,
the severity of motor symptoms in Parkinson’s disease is associated
with excessive connectivity in the beta band, and the reduction of
such connectivity with treatment is associated with clinical improve-
ment***, Moreover, there is evidence that excessive functional'®' as
well as structural’®”'%% connectivity in fronto-striatal circuits is associ-
ated withimpulsivity. Hence, theincrease in connectivity observed with
tTISgo,, appears to be compatible with the behavioural findings. This
beingsaid, contrary to the BOLD results, we did not find any correlation
between the effects of tTISg,,, on connectivity and on reinforcement
motor learning, suggesting some degree of independence between
these two effects. Future studies could aim at determining whether
tTISgoy,-related changes in striato-frontal communication are linked
to other aspects of reward processing that are not captured by our
reinforcement motor learning task.

From amethodological point of view, the present results provide
experimental support for theideathat the effects of tTIS arerelated to
amplitude modulation of electric fields deep in the brain and not to the
high-frequency fields themselves, in line with recent work**>°>*>, The
different behavioural and neural effects of striatal t TISgg,,, and tTIS gy,
despite comparable carrier frequencies (centred on 2 kHz) indicate
thattemporalinterference wasindeed the driving force of the present
effects. Moreover, the disruption of reinforcement motor learning with
tTISgo, (relative to tTIS,,,,) was specifically related to neuromodula-
tion of the striatum, where the amplitude of the tTIS field was highest
according to our simulations (see refs. 51,52 for recent validations of
comparable simulations in cadaver experiments). Hence, we believe
thatthe frequency-andreinforcement-dependenttTIS effects reported
here cannot be explained by direct modulation of neural activity by
the high-frequency fields. Yet, disentangling the neural effects of the
low-frequency envelope and the high-frequency carrier appearsto be
animportant nextstep to better characterize the mechanisms underly-
ing tTIS”. We also note that the tTIS field strengths achieved according
to our simulations (in the range of 0.5-0.6 V m™) were sufficient to
induce behavioural and neural effects, in line with recent data®*°>* (see
also ref. 48). Determining the minimum effective dose for tTIS is an
important line of future research given recent simulation results sug-
gesting that stimulation viaamplitude modulation with high-frequency
carrier signals (such as those arising during tTIS) may require higher
dosagesthan conventional electrical stimulation with low frequencies
(suchas during transcranial alternating current stimulation), probably
due to the low-pass-filtering properties of neurons**'*’,

Finally, the strength of the behavioural effects of tTIS can be con-
sidered small to medium'° (d = 0.2-0.5). We note that these effect
sizes are consistent with studies applying other types of non-invasive
brainstimulationin healthy youngadults, in the context of both motor
learning (see ref. 111 for ameta-analysis) and reward tasks (for example,
refs. 112,113), despite the much longer stimulation time used in these
studies (between 3 and 20 times longer). Moreover, when expressed
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relative to the plateau of performance in the task (Supplementary
Fig. 1d), the effect of tTIS4,,, represents a complete disruption of a
~24% reinforcement-related learning gain (Supplementary Fig. 1e).
Overall, although they are moderate, we believe that the present effect
sizes are relevant and consistent with what can be expected from the
non-invasive brain stimulation literature.

Limitations

The present study includes some limitations that we would like to
acknowledge. First, at the imaging level, we did not find a significant
effect of reinforcement at the whole-brain level. This might be due to
the short duration of the task (6 x 40 s), combined with the fact that
we did not couplereinforcement to monetary incentives, amanipula-
tionknown to boost striatal activity in the context of motor learning’®.
Yet, when considering BOLD activity in the striatal ROIs, we did find a
significant effect of reinforcement, suggesting that our experimen-
tal manipulation did increase striatal activity but that the strength of
the effect was insufficient to survive at the whole-brain level. Second,
we did not find any effect of tTIS when considering averaged BOLD
activity. Again, the short duration of the blocks may contribute to
this non-significant effect. Another possible interpretationis that the
effect of tTISon BOLD activity is not uniform across participants, as it
probably depends onindividualanatomy and function of the targeted
brain region, as observed for other non-invasive brain stimulation
techniques™*. Consistently, we found a correlation between levels of
impulsivity and the neural effects of t TISg,,, (both BOLD and connec-
tivity; Supplementary Fig. 5). Importantly, though, when including
learning as a behavioural regressor, we did find significant clusters
of correlation specifically in the striatum (Fig. 3), suggesting that the
behavioural effects were indeed related to modulation of activity in
thetarget region. This result was significant when contrasting tTISgy,,
to the active control (tTIS,,,,,), but not to tTISg, .. Overall, we believe
that the fMRI data do support the idea that the behavioural effects
ofthestimulation wereindeed related to modulation of neural activity
inthe striatum, alsoinline with the present simulations onrealistic head
models (Fig.1) and the connectivity results (Fig. 4). Thisideais alsoin
agreement with another recent study investigating the effects of tTIS
on motor sequence learning®. However, a limitation of the present
datasetis the very short duration of stimulation and imaging for each
experimental condition, which may explain some inconsistencies in
the results. Hence, following this proof-of-concept study showing
robust behavioural effects and related neural changes, future studies
including longer fMRIand stimulation sessions are required to further
confirm these results.

Finally, in the present study, the computational modelling was per-
formed on arealistic, detailed head model (that is, the MIDA model*’;
Methods). One limitation of this approach is that the electric field
simulations do not take individual structural informationinto account.
Suchindividual modelling would require information on brain anisot-
ropy, an aspect thatis likely to significantly influence tTIS exposure**'™.
However, inthe present study, diffusion MRIto evaluate fractional ani-
sotropy was not acquired. Future studies including diffusion MRI data
will allow for personalized modelling, paving the way for individualized
tTIS informed by brain structure®.

Conclusion

The present findings show the ability of non-invasive striatal tTIS to
interfere with reinforcement learning in humans through selective
modulation of striatal activity and support the causal functional role
of the human striatum in reinforcement motor learning. This deep
brain stimulation was well tolerated and compatible with efficient
blinding, suggesting that tTIS provides the option to circumvent the
steep depth-focality trade-off of current non-invasive brain stimulation
approaches in a safe and effective way. Overall, tTIS opens possibili-
ties for the study of causal brain-behaviour relationships and for the

treatment of neuropsychiatric disorders associated with alterations
of deep brain structures.

Methods

Participants

All participants gave their written informed consent in accordance
withthe Declaration of Helsinki and with the approval of the Cantonal
Ethics Committee Vaud, Switzerland (project number 2020-00127).
Atotal of 48 right-handed healthy volunteers participatedin the study.
Of these, 24 participants were enrolled for the main tTIS study (15
women, 25.3 + 0.7 years old (mean + s.e.)). Another group of 24 vol-
unteers participated in the behavioural control experiment (Sup-
plementary Fig. 1b-d; 14 women, 24.2 + 0.5 years old). Handedness
was determined via a shortened version of the Edinburgh Handed-
ness Inventory™® (laterality index, 89.3 + 2.14% for the main study and
86.4 +2.51% for the control experiment). None of the participants had
any neurological or psychiatric disorder or were taking any centrally
acting medication (see Supplementary Information for a complete
list of exclusion criteria). Finally, all participants were asked to fill out
adelay-discounting monetary choice questionnaire'’, which evaluates
the propensity of participants to choose smaller, sooner rewards over
larger, later rewards, a preference commonly associated with choice
impulsivity”>"®, The participants were financially compensated at a
standard rate of 20 CHF per hour.

Experimental procedures

The study employed a randomized, double-blind, sham-controlled
design. Following screening and inclusion, the participants wereinvited
toasingle experimental sessionincluding the performance of amotor
learning task with concurrent tTIS of the striatum and fMRI. Overall,
the participants practised six blocks of trials, which resulted from the
combination of two reinforcement feedback conditions (Reinfyyp:
Reinf,y or Reinfyg) with three types of striatal stimulation (tTISyp:
tTISsham tTIS 01, OF tTISgoy,)-

Motor learning task. General aspects. The participants practised
an adaptation of a widely used force-tracking motor task®**> with an
fMRI-compatible fibre-optic grip-force sensor (Current Designs) posi-
tioned in their right hand. This task has the advantage of evaluating
learning in a context in which movements have to be dynamically
adjusted in response to constantly evolving sensory information.
Such careful, continuous force control represents a situation that is
relevant in many daily-life activities, including situations involving
limited visual feedback such as when learning to drive or to manipu-
late fragile objects'. In these situations, the learner has to use soma-
tosensory information in combination with information about task
success to improve future motor commands, a process that might be
particularly relevantin tasks where visual information s limited as well
asin early stages of motor learning, when the desired sensory state is
unknown>**¢*2° Inaddition to these elements, force-modulation tasks
are relevant for rehabilitation as they can be used to evaluate motor
functionin clinical populations'?'?,

The task was developed in MATLAB 2018 (MathWorks) exploit-
ing the Psychophysics Toolbox extensions'*** and was displayed on
a computer screen with a refresh rate of 60 Hz. The task required the
participants tosqueeze the force sensor to controla cursor displayed on
the screen. Increasing the exerted force resulted in the cursor moving
vertically and upward in alinear way. Each trial started with a prepara-
tory period in which a sidebar appeared at the bottom of the screen
(Fig. 1a). After a variable time interval (0.9 to 1.1s), a cursor (a black
circle) popped up in the sidebar, and simultaneously a target (a grey
larger circle with a cross in the middle) appeared, indicating the start
ofthe movement period. The participants were asked to modulate the
force applied on the transducer to keep the cursor as close as possible
tothe centre of the target. The target moved in asequential way along a
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single vertical axis for 7 s. The maximum force required (thatis, the force
required to reach the target when it was in the uppermost part of the
screen; MaxTarget,,..) was set at 4% of MVC evaluated at the beginning
ofthe experiment. This low force level was chosen on the basis of pilot
experiments to limit muscular fatigue. Finally, each trial ended with
ablank screen displayed for 2 s before the beginning of the next trial.

Trial types andreinforcement manipulation. During the experiment, the
participants were exposed to different types of trials (Fig. 1a and Sup-
plementary Video1). In test trials, the cursor remained on the screen,
and the target was consistently displayed in grey for the whole dura-
tion of the trial. These trials served to evaluate pre- and post-training
performance for each block, without any disturbance. In Reinf,y and
Reinf trials (used during training only), we provided only partial
visual feedback to the participants toincrease the impact of reinforce-
ment on learning>**~*, The cursor was only intermittently displayed
during the trial: it was always displayed in the first second of the trial
andthendisappeared foratotal of 4.5 srandomly splitin the remaining
time by bits of 0.5 s. The cursor was therefore displayed 35.7% of the
time during these trials (2.5 s over the 7 s trial). Importantly, unlike the
cursor, the target always remained on the screen for the whole trial, and
the participants were instructed to continue to track the target even
when the cursor was away.

In addition to this visual manipulation, in Reinf,, trials, the par-
ticipants also trained with reinforcement feedback indicating success
or failure of the tracking in real time. The participants were informed
that, during these trials, the colour of the target would vary as a func-
tion of their performance: the target was displayed in green when
tracking was considered successful and in red when it was considered
a failure. Online success on the task was determined on the basis of
the Error, defined as the absolute force difference between the force
required to be in the centre of the target and the exerted force>**>,
The Error, expressed as a percentage of MVC, was computed for each
frame refresh and allowed to classify a sample as successful or not on
the basis of a closed-loop reinforcement schedule®. More specifically,
for eachtrainingtrial, aforce sample (recorded at 60 Hz, correspond-
ing to the refresh rate of the monitor) was considered successful if
the computed Error was below the median Error over the four previ-
ous trials at this specific sample. Put differently, to be successful, the
participants had to constantly beat their previous performance. This
closed-loop reinforcement schedule allowed us to deliver consistent
reinforcement feedback across individuals and conditions (see the
control analysis on success rates in the Supplementary Information),
while maximizing uncertainty on the presence of reinforcement, an
aspect that is crucial for efficient reinforcement motor learning'”.
In addition to this closed-loop design, samples were also considered
successfulif the cursor was very close to the centre of the target (that
is, within one radius around the centre, corresponding to an Error
below 0.2% of MVC). This was done to prevent any conflict between
visual information (provided by the position of the cursor relative to
thetarget) and reinforcement feedback (provided by the colour of the
target), which could occurinsituations of extremely good performance
(when the closed-loop Error cut-offis below 0.2% of MVC).

Asacontrol, Reinf,; trials were similar to Reinfyy trials, with the only
difference being that the displayed colours were either cyan or magenta
and were generated randomly. The participants were explicitly told that,
in this condition, the colours were displayed randomly and could be
ignored. The visual properties of the target in the Reinf,- condition were
designed tomatch the Reinf,y conditionin terms of relative luminance
(cyan (RGB, (127.5, 242.1, 255)) matched to green (127.5, 255, 127.5) and
magenta (211.7,127.5,255) tored (255,127.5,127.5)) and average frequency
of changein colours (thatis, the average number of changes in colours
divided by the total duration of a trial; Supplementary Information).

In this task, training trials differed from test trials regarding not
only the colour of the target (red/green or cyan/magenta in training

trials and grey in test trials) but also the visual feedback experienced
(partial and full visual feedback intraining and test trials, respectively).
This choice was motivated by several reasons. First, we wanted to evalu-
atelearninginthe classical, unperturbed, version of the force-tracking
task®*, which is compatible with clinical translation. Second, on the
basis of additional behavioural data on another group of participants
(n=24;Supplementary Fig. 1b-d), we found that significant effects of
reinforcement on learning were observed only when training was
performed with partial visual feedback (displayed for 35.7% of the trial
time, asinthe present study), in line with previous results**". However,
thisadditional study also revealed very limited improvement of perfor-
mance during training with partial visual feedback, potentially due to
ceiling effects on performancein this condition. Yet, the improvement
of performance when comparing the pre- and post-training assess-
ments suggested that practising the task with partial visual feedback
stillinduced significant learning of the skill. Finally, the change in visual
feedback betweentraining and post-training was the samein all experi-
mental conditions; this aspect of the task is therefore unlikely to explain
thereinforcement as well as the stimulation effects reported here.

Even though our study focused on reinforcement motor learn-
ing, it is worth mentioning that other learning mechanisms such as
error-based or strategic processes are likely to be also engaged during
the force-tracking task and may have recruited other brain regions
beyond the striatum®. Notably, though, our protocol was specifically
designed to compare learning in the Reinf,y and Reinf,; conditions
inthe sameindividuals while keeping the other parameters of the task
constant, to specifically isolate the contribution of reinforcement
processes in motor learning.

Motor learning protocol. After receiving standardized instructions
about the force-tracking task, the participants practised five blocks
of familiarization (total of 75 trials) without tTIS. The first block of
familiarization included 20 trials with the target moving in a regular
fashion (0.5 Hzsinuoid). Then, in asecond block of familiarization, the
participants performed 35 trials of practice with anirregular pattern,
with the same properties as the training patterns (see below). Finally,
weintroduced thereinforcement manipulation and let the participants
perform two short blocks (eight trials each) including Reinf,y and
Reinf, trials. These first four blocks of familiarization were performed
outside the MRI environment. A final familiarization block (four trials)
was performed after installation in the scanner, to allow the partici-
pantstoget used to performingthe taskin the MRImachine. Thislong
familiarization allowed the participants to get acquainted with the use
of the force sensor before the beginning of the experiment.

During the main part of the experiment, the participants performed
six blocks of trials in the MRI machine with concurrent striatal tTIS
(Fig.1b).Each block was composed of 4 pre-training trials followed by 24
training and 8 post-training trials. Pre-and post-training trials were per-
formed intest conditions, without tTIS, and were used to evaluate motor
learning. Training trials were performed with or without reinforcement
feedback and with concomitant striatal tTIS and were used as a proxy of
motor performance. During training, trials were interspersed with 25 s
resting periods every four trials (used for fMRI contrasts; see below).
The order of the six experimental conditions was pseudo-randomized
across participants: the six blocks were divided into three pairs of blocks
with the sametTIS condition, and each pair was then composed of one
Reinf,y and one Reinf block. Within this structure, the order of the
tTIS1ype and Reinfryp conditions were balanced among the 24 partici-
pants. Hence, this randomization allowed us to ensure that any order
effect that may arise from the repetition of the learning blocks would
have the same impact on each experimental condition (for example,
four participants experienced tTISg,,,~Reinfyy in the first block, four
other participantsinthe second block, fourin the third blockand so on).

As mentioned above, the protocol involved multiple evaluations
of motor learning within the same experimental session. To limit
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carry-over effects from oneblock to the next, each experimental block
was associated with a different pattern of movement of the target (Sup-
plementary Fig.1a). Put differently, in each block, the participants had
to generate a new pattern of force to successfully track the target. To
balance the patterns’ difficulty, they all consisted of the summation of
five sinusoids of variable frequency (range, 0.1-1.5 Hz) that presented
the following properties: the average force was between 45% and 55%
of MaxTarget;,,.., the absolute average derivative was between 54%
and 66% of MaxTarget;,,.. per second and the number of peaks was 14
(defined as an absolute change of force of at least 1% of MaxTarget ,,..)-
These parameters were determined on the basis of pilot experiments
to obtain a relevant level of difficulty for young healthy adults and
consistent learning across the different patterns.

Striatal tTIS. General concept. tTIS is an innovative non-invasive brain
stimulation approach, in which two or more independent stimulation
channels deliver high-frequency currents in the kHz range (oscillating
atfiandf; + Af; Fig.1c). These high-frequency currents are assumed tobe
too highto effectively modulate neuronal activity**>'2, Still, by apply-
ing a small shift in frequency, they result in a modulated electric field
withthe envelope oscillating at the low-frequency Af(target frequency)
where the two currents overlap. The peak of the modulated envelope
amplitude can be steered towards specific areas located deep in the
brain, by tuning the positions of the electrodes and the current ratio
across stimulation channels* (Fig. 1c,d). On the basis of these properties,
tTIShasbeenshowntobeabletofocally target the activity of deep struc-
turesinrodents, without engaging overlying tissues*. Here we applied
tTISviasurface electrodes applying alow-intensity, sub-threshold pro-
tocol following the currently accepted cut-offs and safety guidelines for
low-intensity transcranial electric stimulation in humans'.
Stimulators. The currents for tTIS were delivered by two independent
DS5isolated bipolar constant current stimulators (Digitimer Ltd). The
stimulation patterns were generated using a custom-based MATLAB
graphical user interface and transmitted to the current sources using a
standard digital-analogue converter (DAQ USB-6216, National Instru-
ments). Finally, an audio transformer was added between stimulators
and participants to avoid possible direct current accumulation.

Stimulation protocols. During the six training blocks, we applied three
different types of striatal tTIS (two blocks each): a stimulation with
atTIS envelope modulated at 20 Hz (tTIS,,y,), a stimulation with a
tTIS envelope modulated at 80 Hz (tTISg,,,) and a sham stimulation
(tTISgham)- For tTIS,,,, the posterior stimulation channel (TP7-TPS;
see below) delivered a 1.99 kHz stimulation, while the anterior one
delivereda2.01 kHz stimulation (Af =20 Hz). For tTISg,,, the posterior
and anterior channels delivered 1.96 kHz and 2.04 kHz, respectively
(Af=80Hz).Hence, inboth conditions, the high-frequency component
was comparable, and the only difference was Af. During each block, tTIS
was applied for five minutes (6 x 50 s) during training. Each stimula-
tion period started and ended with currents ramping up and down,
respectively, for 5s.tTIS was applied only while the participants were
performing the motor task and not during resting periods or pre-and
post-training assessments. Finally, tTIS,,, consisted of aramping-up
(5s) immediately followed by a ramping-down (5 s) of 2 kHz currents
delivered without any shift in frequency. This condition allowed us to
mimic the sensations experienced during the active conditions tTIS,,,,
and tTISg,,,, while delivering minimal brain stimulation (Supplemen-
tary Fig. 3). A trigger was sent 5 s before the beginning of each trial to
align the beginning of the task and the beginning of the frequency
shiftafter theramp-up. Other tTIS parameters were set as follows: cur-
rent intensity per stimulation channel, 2 mA (baseline-to-peak); elec-
trode type, round, conductive rubber with conductive cream/paste;
electrode size, 3 cm? (see the ContES checklist in the Supplementary
Information for more details).

The stimulation was applied inthe MRIenvironment (Siemens 3T
MAGNETOM Prisma; Siemens Healthcare) using a standard RF filter
module and MRI-compatible cables (neuroConn GmbH). The techno-
logical, safety and noise tests and the methodological factors can be
foundinthe Supplementary Information (Supplementary Table 4) and
are based on the ContES checklist'®.

Modelling. Electromagnetic simulations were carried out to identify
optimized electrode placement and current steering parameters. The
simulations were performed using the MIDA head model*, a detailed
anatomical head model featuring >100 distinguished tissues and
regions that was derived from multi-modal image data of a healthy
female volunteer. Importantly, for brain stimulation modelling, the
model differentiates different scalp layers, skull layers, grey and white
matter, cerebrospinal fluid, and the dura and accounts for electrical
conductivity anisotropy and neural orientation on the basis of diffu-
sion tensor imaging data. Circular electrodes (radius, 0.7 cm) were
positioned onthe skinaccording to the10-10 system, and the electro-
magnetic exposure was computed using the ohmic-current-dominated
electro-quasistatic solver from Sim4Life v.5.0 (ZMT Zurich MedTech
AG), which is suitable due to the dominance of ohmic currents over
displacement currents and the long wavelength compared with the
simulation domain'”. Dielectric properties were assigned on the basis
of the IT’IS Tissue Properties Database v.4.0 (ref. 130). Rectilinear
discretization was performed, and grid convergence as well as solver
convergence analyses were used to ensure negligible numerical uncer-
tainty, resulting in a grid that included more than 54 million voxels.
Dirichlet voltage boundary conditions and then current normaliza-
tion were applied. The electrode-head interface contact was treated
as ideal. tTIS exposure was quantified according to the maximum
modulation envelope magnitude formula from Grossman et al.*..
Asweep over 960 permutations of the four electrode positions was then
performed, considering symmetric and asymmetric montages with
parallel (sagittal and coronal) or crossing current paths, while quantify-
ing bilateral striatum (putamen (BNA regions 225, 226, 229 and 230),
caudate (BNAregions 219,220,227 and 228) and NAc (BNA regions 223
and 224)) exposure performance according to three metrics: (1) target
exposure strength, (2) focality ratio (the ratio of target tissue volume
above the threshold compared to the whole-brain tissue volume above
the threshold, ameasure of stimulation selectivity) and (3) activation
ratio (the percentage of target volume above the threshold with respect
to the total target volume, a measure of target coverage). We defined
the threshold as the 98th volumetric iso-percentile level of the tTIS.
From the resulting Pareto-optimal front, two configurations stood
out particularly: one that maximized focality and activation (AF3-AF4
and P7-P8) and one thataccepted areduction of these two metrics by
aquarter, whileincreasing the target exposure strength by more than
50% (F3-F4 and TP7-TP8). This last montage was selected to ensure
sufficient tTIS exposure in the striatum®® (Fig. 1c,d).

Electrode positioning and stimulation-related sensations. On the basis
ofthemodellingapproach described above, we defined the stimulation
electrode positions in the framework of the EEG 10-10 system™". The
optimal montage leading in terms of target (that s, bilateral striatum)
exposure strength and selectivity was composed of the following
electrodes: F3, F4, TP7 and TP8. Their locations were marked with a
pen on the scalp, and, after skin preparation (cleaning with alcohol),
round conductive rubber electrodes of 3 cm? were placed, adding a
conductive paste (Ten20, Weaver; or Abralyt HiCl, Easycap GmbH) as
aninterfacetotheskin. Theelectrodes were held in position with tape,
and the cables were oriented towards the top to allow good position-
inginside the scanner.Impedances were checked and optimized until
they were below 20 kQ (ref. 48). Once good contact was obtained, we
tested different intensities of stimulation for each stimulation proto-
col to familiarize the participants with the perceived sensations and

Nature Human Behaviour | Volume 8 | August 2024 | 1581-1598

1592


http://www.nature.com/nathumbehav

Article

https://doi.org/10.1038/s41562-024-01901-z

to systematically document them. tTISgp, 1, tTIS,0, and tTISg,,, were
applied for 20 seconds with the following increasing current ampli-
tudes per channel: 0.5 mA, 1 mA, 1.5 mA and 2 mA. The participants
were asked to report any kind of sensation, and, if a sensation was
felt, they were asked to grade the intensity from1to 3 (light to strong)
as well as give at least one adjective to describe it (Supplementary
Fig. 3). Following this step, the cables were removed and replaced by
MRI-compatible cables, and a bandage was added to apply pressure
on the electrodes and keep them in place. An impedance check was
repeated in the MRI machine right before the training and then again
atthe end of all recordings.

MRI data acquisition. Structural and functional images were acquired
using a 3T MAGNETOM PRISMA scanner (Siemens). T1-weighted
images were acquired via the 3D MPRAGE sequence with the follow-
ing parameters: repetition time (TR), 2.3 s; echo time (TE), 2.96 ms;
flip angle, 9°; slices, 192; voxel size, 1 x 1 x 1 mm?>; field-of-view (FOV),
256 mm. Anatomical T2images were also acquired with the following
parameters: TR, 3 s; TE, 409 ms; flip angle, 120°; slices, 208; voxel size,
0.8 x 0.8 x 0.8 mm?>; FOV, 320 mm. Finally, functional images were
recorded using echo-planar imaging sequences with the following
parameters: TR, 1.25s; TE, 32 ms; flip angle, 58°; slices, 75; voxel size,
2x2x2mm?FOV,112 mm.

Data and statistical analyses

Data and statistical analyses were carried out with MATLAB 2018a
(MathWorks) and the R software environment (version 2021) for sta-
tistical computing and graphics' Robust linear regressions were
fitted with the MATLAB function robustfit. LMMs were fitted using the
Imer function of the Ime4 package inR™. Asrandom effects, we added
intercepts for participants and block. The normality of residuals and
the homoscedasticity of the data were systematically checked, and
logarithmic transformations were applied when necessary (that is,
whenthe skewness of the residuals’ distribution was not between -2 and
2 (ref.134) or when homoscedasticity was violated on the basis of visual
inspection). To mitigate theimpact of isolated influential data points on
the outcome of the final model, we used tools of the influence.ME pack-
agetodetectand remove influential cases on the basis of the following
criterion: distance > 4 x mean distance'. Statistical significance was
determined using the anova function with Satterthwaite’s approxima-
tions of the ImerTest package'®. For specific posthoc comparisons, we
conducted two-sided pairwise tests by computing estimated marginal
means with the emmeans package with Tukey adjustment of Pvalues to
correct for multiple comparisons'. Standardized effect size measures
were obtained using the eff_size function of the emmeans package'*®
and the eta_squared function of the effectsize package'®. The level of
significance was set at P < 0.05.

Behavioural data. Fvaluation of motor learning. The maingoal of the pre-
sentstudy was to evaluate the influence of striatal t TIS on reinforcement
motor learning. To do so, we first removed trials in which participants did
notreactwithin1safter theappearance of the cursor and target, consid-
eringthat these extremely long preparation times may reflect substantial
fluctuationsinattention'°. This occurred extremely rarely (0.52% of the
whole dataset). For each participant and each trial, we then quantified
thetrackingError asthe absolute force difference between the applied
andrequired force, as done previously*>*>*, Tracking performance dur-
ing training and post-training trials was then normalized according to
eachparticipant’sinitial level by expressing the Error dataas a percent-
age of the average pre-training Error for each block. To test our main
hypothesis predicting specific effects of striatal t TIS on reinforcement
motor learning, we performed an LMM on the post-training data with
tTIS;ype and Reinfry,; as fixed effects. We then ran the same analysis on
the training data, to evaluate whether striatal t TIS alsoimpacted motor
performance while stimulation was being delivered.

As a control, we checked that initial performance at pre-training
was not different between conditions with an LMM on the Error data
obtained at pre-training. Again, tTIS;yy and Reinf.,; were considered
as fixed effects. Finally, another LMM was fitted with the fixed effect
tTISype to verify that the amount of positive reinforcement (as indi-
cated by agreentarget) in the Reinf,, blocks was similar across tTISypgs.

fMRI data./maging preprocessing. We analysed the functional imaging
data using Statistical Parametric Mapping v.12 (Wellcome Depart-
ment of Cognitive Neurology) implemented in MATLAB R2018a (Math-
Works). All functional images underwent a common preprocessing
procedureincluding the following steps: slice time correction, spatial
realignmentto the firstimage, normalization to the standard MNIspace
and smoothing with a 6 mm full-width half-maximal Gaussian kernel.
Tlanatomicalimages were then co-registered to the mean functional
image and segmented. This allowed us to obtain bias-corrected grey
and white matterimages by normalizing the functionalimages viathe
forward deformationfield. To select participants with acceptablelevels
of head movement, framewise displacement was calculated for each
run. A visual check of both non-normalized and normalized images
was performed to ensure good preprocessing quality. Finally, possible
tTIS-related artefacts were investigated on the basis of signal-to-noise
ratio maps (see below).

Signal-to-noiseratio. Total signal-to-noise ratio maps were computed
to check the presence of possible artefacts induced by the electrical
stimulation. The values were calculated for each voxel by dividing the
mean of the voxel time series by its standard deviation. Spherical ROIs
were then defined both underneath the tTIS electrodes and at four
differentlocations distant fromthe electrodes as a control. The centre
of each spherical ROl was obtained by projecting the standard MNI
coordinates of each electrode on the scalp** towards the centre of the
brain. After visualinspection of the ROls, average total signal-to-noise
ratio maps were extracted within each sphere. An LMM was used to
compare the average signal-to-noise ratio underneath the electrodes
versus the control regions and between stimulation protocols. The
results of this analysis are presented in the Supplementary Information
(Supplementary Fig. 6).

Task-based BOLD activity analysis. A general linear model was imple-
mented at the single-participant level to estimate signal ampli-
tude. Eight regressors were included in the model: six head motion
parameters (displacement and rotation) and normalized time series
within the white matter and the cerebrospinal fluid. Linear contrasts
were then computed to estimate specific activity during the motor
task with respect to resting periods. Functional activation was also
extracted within specific ROIs individually defined on the basis of
structural images. More specifically, the Freesurfer recon-all func-
tion was run on the basis of the structural Tlw and T2w images (Free-
surfer v.7.1.1, https://surfer.nmr.mgh.harvard.edu/; coded in Bash
(v.4.4.20(1)-release) and Python (v.3.8.3)). The BNA parcellation was
derived ontheindividual participant space, and the selected ROIs were
then co-registered to the functional images and normalized to the MNI
space.BOLD activity within theindividual striatal masks was averaged
and compared between different striatal nuclei—namely, the putamen
(BNAregions 225,226,229 and 230), caudate (BNA regions 219,220, 227
and 228) and NAc (BNA regions 223 and 224). Comparisons between
conditions were presented for uncorrected P= 0.001 at the voxel level
and multiple comparison corrected at the cluster level to reduce the
false discovery rate, P=0.05.

Effective connectivity analyses. As an additional investigation, we
computed task-modulated effective functional connectivity by
means of the CONN toolbox 2021a (www.nitrc.org/projects/conn,
RRID:SCR_009550) running in MATLAB R2018a (MathWorks). An
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additional denoising step was added by applying band-pass filtering
from 0.01to 0.1 Hz and by regressing potential confounders (white
matter, cerebrospinal fluid and realignment parameters). After that,
gPPI connectivity was extracted within specific pre-defined custom-
ized sub-networks: areward network and amotor network. gPPl evalu-
ates condition-specific changes in effective connectivity, defined as
the directed effect that one brain region has on another under some
model of neuronal coupling'*. In particular, gPPI considers aseries of
equations in which activity in a ROI (pre-defined frontal areas in our
case) depends on aspecific condition (the ‘psychological’ factor) and
onactivity inthe seed region (striatum here, the ‘physiological’ factor).
By solving these equations, it is possible to determine a coefficient that
represents task modulation of effective connectivity'. Importantly,
task-related changes in effective connectivity are expressed relative
to rest, and therefore values closer to O reflect a connectivity similar
to theresting state.

The reward network was defined as follows: two regions within
the striatum, the NAc (BNA regions 223 and 224) and the ventro-medial
putamen (BNA regions 225 for left and 226 for right), and two frontal
areas, the ACC (BNAregions 177,179 and 183 for leftand 178,180 and 184
forright) and the orbitofrontal cortex within the vmPFC (BNA regions
41, 45, 47,49 and 187 for left and 42, 46, 48, 50 and 188 for right). The
motor networkincluded the following areas: the dorso-lateral putamen
(BNA 229 for left and 230 for right), the dorsal caudate (BNA regions
227 for leftand 228 for right), the medial part of the SMA (BNA regions
9forleftand 10 for right) and the part of the M1 associated with upper
limb function (BNAregions 57 for left and 58 for right). We considered
connectivity in the left and right motor and reward networks regard-
less of laterality. These ROIs were selected on the basis of the following
rationale. First, they are consistent with previous literature on rein-
forcement learning of motor skills®******1*> Second, there is structural
and functional evidence for these fronto-striatal connections™'"",
Third, the frontal areas included in the analyses are well-established
hubs of the motor learning (M1and SMA; see ref. 12 for a meta-analysis)
and reward networks (vmPFC and ACC; see ref. 11 for a meta-analysis).
Finally, gPPI was also extracted within a control language network,
defined on the basis of the functional atlas described by Shirer et al.”.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Alldatanecessary to generate the main resultsand figures are available
inthe Zenodorepository (https://doi.org/10.5281/zenod0.10458885)"*%,
The BNA was used and can be downloaded from http://atlas.brain-
netome.org/. The tissue properties used for the modelling of elec-
tric fields were based on the IT’IS Tissue Properties Database v.4.0
and can be downloaded here: https://itis.swiss/virtual-population/
tissue-properties/overview/.

Code availability
The scripts necessary to generate the mainresults are available in the
Zenodo repository (https://doi.org/10.5281/zenod0.10458885)™%.
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Software and code
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Data collection  We used custom-made (Matlab 2018a) scripts to collect the behavioural data

Data analysis Behaviour: Matlab 2018a
MRI data: Statistical Parametric Mapping 12 (SPM12; https://www.fil.ion.ucl.ac.uk/spm/) implemented in MATLAB R2018a (Mathworks,
Sherborn, MA, USA), Freesurfer (coded in Bash, 4.4.20(1)-release, and Python (version 3.8.3), https://surfer.nmr.mgh.harvard.edu/); CONN
toolbox 2021a (www.nitrc.org/projects/conn, RRID:SCR_009550) running in Matlab 2018a.
Both (statistics):
R (R Core Team 2021, Vienna, Austria) for linear mixed models: Ime4 package (Imer function), influence.ME package, emmeans package and
effectsize packages
Matlab R2018a function robustfit for robust linear regressions
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data availability:

All data necessary to generate the main results and figures are available in the Zenodo repository (https://doi.org/10.5281/zenodo.10458885). The Brainnetome
atlas was used and can be downloaded from: http://atlas.brainnetome.org/. Tissue properties used for modelling of electric fields were based on the IT'IS Tissue
Properties Database v4.0 and can be downloaded here: https://itis.swiss/virtual-population/tissue-properties/overview/

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender We recruited a total of 29 women and 19 men. Sex was determined based on self-reporting. We did not consider the factor
sex in the analyses.

Population characteristics We recruited 24 healthy adults (15 women, 25.3 + 0.1 years old) for the main experiment and 24 other healthy adults (14
women, 24.2 + 0.5 years old) for the additional experiment

Recruitment We recruited participants based on platforms for recruitment of subjects and based on previous lists of participants who had
performed previous experiments at EPFL. We also distributed flyers at Campus Biotech in Geneva and other public places.

Selection bias: Healthy young subjects were recruited to a significant part within the university community through verbal or
written advertisements. This entails that a disproportionately high number of subjects with a high level of education were
recruited. To minimize the impact of this selection bias, the study employed a randomized within-subject design and we
distributed the advertisement also at other public places.

Ethics oversight All participants gave their written informed consent in accordance with the Declaration of Helsinki and the approval of the
Cantonal Ethics Committee Vaud, Switzerland (project number 2020-00127).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
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Sample size A priori sample size calculation was performed based on effect sizes obtained in our previous behavioral study on reinforcement motor
learning (Vassiliadis et al., 2021, iScience) employing a similar paradigm, with a level of significance p < 0.05 (two-sided) and power (1-R) of
0.90, which resulted in a total sample size of 23 subjects. In order to balance the order of conditions for each subject, we decided to recruit 24
subjects.

Data exclusions  We removed trials from the behavioural analysis in which participants did not react within 1 s after the appearance of the cursor and target,
considering that these extremely long preparation times may reflect significant fluctuations in attention.
Moreover, to mitigate the impact of isolated influential data points on the outcome of the linear mixed model analyses, we used tools of the
influence.ME package (R) to detect and remove influential cases based on Cook's distance: distance > 4 * mean distance. This never removed
more than one participant per analysis.

Replication The main behavioral effects of reinforcement on motor learning (oberved in the tTISSham and tTIS20Hz conditions) were replicated in an
additional, independent cohort of 24 participants (See Figure S1b, c, e).

Randomization  All participants performed all experimental conditions. The order of the 6 experimental conditions was pseudo-randomised across
participants: the 6 blocks were divided into 3 pairs of blocks with the same tTIS condition and each pair was then composed of one ReinfON
and one ReinfOFF block. Within this structure, the order of the tTISTYPE and ReinfTYPE conditions were balanced among the 24 participants.
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Blinding The study was double-blinded. The investigators were not aware of the order of the stimulation type experienced by the participants
(tTISSham, tTIS20Hz or tTIS80Hz)

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods
Involved in the study n/a 7 Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| |X| MRI-based neuroimaging

Animals and other organisms

Clinical data

XXXNXNXX s
oOooood

Dual use research of concern

Magnetic resonance imaging

Experimental design

Design type Task-based fMRI, block design

Design specifications Each subject performed 6 series of 36 trials in the MRI. One trial lasted 10 seconds. During Training, trials were grouped
by bins of 4 and separated by resting periods of 25s.

Behavioral performance measures ~ We measured the force applied on the MRI-compatible force sensor allowing us to compute the Error relative to the
moving target. As explained above, we verified that participants reacted within 1s of the beginning of the trial to make
sure that our data was not corrupted by significant fluctuations in attention. Moreover, eye-tracking was also checked
during the experiment to verify that participants did not fall asleep in the MRI.

Acquisition

Imaging type(s) Functional and structural

Field strength 3T

Sequence & imaging parameters Structural and functional images were acquired using a 3T MAGNETOM PRISMA scanner (Siemens, Erlangen, Germany).
T1-weighted images were acquired via the 3D MPRAGE sequence with the following parameters: TR = 2.3 s; TE = 2.96
ms; flip angle = 9°; slices = 192; voxel size = 1 x 1 x 1 mm, FOV = 256 mm; matrix size = 192 x 240 x 256; orientation =
sagittal, phase encoding dir = A >> P. Anatomical T2 images were also acquired with the following parameters: TR=3's;
TE =409 ms; flip angle = 120°; slices = 208; voxel size = 0.8 x 0.8 x 0.8 mm, FOV = 320 mm; matrix size = 208 x 320 x
320; orientation = sagittal, phase encoding dir = A >> P. Finally, functional images were recorded using Echo-Planar
Imaging (EPI) sequences with the following parameters: TR = 1.25 s; TE = 32 ms; flip angle = 58°; slices = 75; voxel size =
2 x 2 x2mm; FOV = 112 mm; matrix size = 192 x 240 x 256; orientation = transversal, phase encoding dir = A >> P.

Area of acquisition Whole-brain

Diffusion MRI [ ] Used Not used

Preprocessing

Preprocessing software Structural: the Freesurfer recon-all function was run based on the structural T1lw and T2w images (https://
surfer.nmr.mgh.harvard.edu/). The BNA parcellation was derived on the individual subject space and the selected ROIs were
then co-registered to the functional images and normalised to the MNI space.

Functional: we analyzed functional imaging data using Statistical Parametric Mapping 12 (SPM12; The Wellcome Department
of Cognitive Neurology, London, UK) implemented in MATLAB R2018a (Mathworks, Sherborn, MA). All functional images
underwent a common preprocessing including the following steps: slice time correction, spatial realignment to the first
image, normalization to the standard MNI space and smoothing with a 6 mm full-width half-maximal Gaussian kernel. T1
anatomical images were then co-registered to the mean functional image and segmented. This allowed to obtain bias-
corrected gray and white matter images, by normalizing the functional images via the forward deformation field.

Normalization SPM normalisation to MNI space, linear and non-linear transformation based on deformation fields obtained from
segmentation in SPM.




Normalization template MNI152 T1, Imm

Noise and artifact removal Visual check for co-registration and normalisation. Framewise displacement (FD) was computed and subjects showing more
than 40% of time points of FD larger than 0.5mm. No subjects were excluded based on this criterion.

Volume censoring We did not apply volume censoring

Statistical modeling & inference

Model type and settings A general linear model was implemented at the single-subject level in order to estimate signal amplitude. Eight regressors
were included in the model: 6 head motion parameters (displacement and rotation) and normalised time series within the
white matter and the corticospinal fluid.

Effect(s) tested Whole brain, 1 sample t-test on the first-level contrasts:
- Sham, ReinfON
- Sham, ReinfON - ReinfOFF
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Correlation with behavior - whole brain, multiple regression with individual behavioral results:
- tTIS80Hz vs. tTIS20Hz, ReinfON
- tTIS80Hz vs. tTISSham, ReinfON
- tTIS20Hz vs. tTISSham, ReinfON

Specify type of analysis: [ | Whole brain [ ] ROI-based X] Both

Number of regions below are based on the Brainnectome atlas (even numbers: right side, odd numbers,
left side).

BOLD analysis:

Putamen (225, 226, 229, 230), caudate (219, 220, 227, 228) and NAc (223 and 224)
Anatomical location(s) Effective connectivity:
Motor network: dIPu (229, 230), dCa (227,228), M1 (57 and 58), SMA (9 and 10)
Reward network: NAc (223 and 224), vmPu (225 and 226), vmPFC (41, 45, 47, 49, 187, 42, 46, 48, 50,
188), ACC (77, 179, 183, 178, 180, 184)

Control: Language network as defined by Shirer et al., 2012

Statistic type for inference Voxel-wise uncorrected p=0.001 and cluster FDR corrected p=0.05
(See Eklund et al. 2016) For activation map during simple condition (Sham, ReinfON): voxel FWE corrected p=0.05 and cluster FDR corrected p=0.05
Correction Voxel-wise uncorrected p=0.001 and cluster FDR corrected p=0.05

For activation map during simple condition (Sham, ReinfON): voxel FWE corrected p=0.05 and cluster FDR corrected p=0.05

Models & analysis

n/a | Involved in the study
|:| |X| Functional and/or effective connectivity

|X| |:| Graph analysis

|X| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity A generalized Psycho-Physiological Interactions (gPPI) connectivity method (from the CONN toolbox) was
used to evaluate effective connectivity.
All the following conditions were included in the model:
- Sham, ReinfON
- Sham, ReinfOFF
- tTIS20Hz, ReinfON
- tTIS20Hz, ReinfOFF
- tTIS80Hz, ReinfON
- tTIS80Hz, ReinfOFF
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