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This study introduces a unified computational framework connecting
acoustic, speech and word-level linguistic structures to study the
neural basis of everyday conversations in the human brain. We used

electrocorticography to record neural signals across 100 h of speech
production and comprehension as participants engaged in open-ended
real-life conversations. We extracted low-level acoustic, mid-level speech
and contextual word embeddings from a multimodal speech-to-text

model (Whisper). We developed encoding models that linearly map

these embeddings onto brain activity during speech production and
comprehension. Remarkably, this model accurately predicts neural activity
ateach level of the language processing hierarchy across hours of new
conversations not used in training the model. The internal processing
hierarchy in the modelis aligned with the cortical hierarchy for speech and
language processing, where sensory and motor regions better align with the
model’s speech embeddings, and higher-level language areas better align
with the model’s language embeddings. The Whisper model captures the
temporal sequence of language-to-speech encoding before word articulation
(speech production) and speech-to-language encoding post articulation
(speech comprehension). The embeddings learned by this model
outperform symbolic models in capturing neural activity supporting natural
speech and language. These findings support a paradigm shift towards
unified computational models that capture the entire processing hierarchy
for speech comprehension and production in real-world conversations.

One of the ultimate goals of our collective research endeavour in
human neuroscience is to model and understand how the brain sup-
ports dynamic, context-dependent behaviours in the real world.
Perhaps the most distinctly human behaviour—and the focus of
this paper—is our capacity for using language to communicate our
thoughts to others during free, open-ended conversations. In daily
conversations, language is highly complex, multidimensional and
context dependent' . Traditionally, neurolinguistics has relied on an

incremental divide-and-conquer strategy, dividing language into dis-
tinct subfields, including phonetics, phonology, morphology, syntax,
semantics and pragmatics. Psycholinguists aim to build a closed set
of well-defined symbolic features and linguistic processes for each
subfield. For example, classical psycholinguistic models use sym-
bolic units, such as phonemes, to analyse speech (that is, processing
spoken acoustic signals) and curated part-of-speech units, such as
nouns, verbs, adjectives and adverbs, to analyse syntactic structures.
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Fig.1| An ecological, dense-sampling paradigm for modelling neural activity
duringreal-world conversations. We monitored continuous neural activity in

4 ECoG patients during their interactions with hospital staff, family and friends,
providing a unique opportunity to investigate real-world social communication.
Simultaneously recorded verbal interactions are transcribed and segmented into
production (purple) and comprehension (green) components (bottom left).

We used Whisper, a deep speech-to-text model, to process our speech recordings
and transcripts, and extracted embeddings from different parts of the model: for
each word, we extracted ‘acoustic embeddings’ from Whisper’s static encoder
layer, ‘speech embeddings’ from Whisper’s top encoder layer (red), and ‘language

embeddings’ from Whisper’s decoder network (blue) (top left). The embeddings
were reduced to 50 dimensions using PCA. We used linear regression to predict
neural signals from the acoustic embeddings (orange), speech embeddings
(red) and language embeddings (blue) across tens of thousands of words.

We calculated the correlation between predicted and actual neural signals for
left-out test words to evaluate encoding model performance. This process was
repeated for each electrode and each lag, using a 25-ms sliding window ranging
from-2,000 to +2,000 ms relative to word onset (top right). Bottom right: brain
coverage across 4 participants comprising 654 left hemisphere electrodes.

Although interactions exist between these different levels of
representations*”, individual labs have traditionally focused on
modelling each subfield in isolation using targeted experimental
manipulations. The implicit aspiration behind this collective effortis
toeventually integrate these fragmented studies into acomprehensive
neurocomputational model of natural language processing®'°. After
decades of research, however, thereis increasing awareness of the gap
between natural language processing and formal psycholinguistic
theories™". Psycholinguistic models and theories often fail to account
for the subtle, non-linear, context-dependentinteractions within and
across levels of linguistic analysis in real-world conversations™™,

Deep learning provides a unified computational framework that
can serve as an alternative approach to natural language process-
ing in the human brain'®". Recent breakthroughs in large language
models (LLMs) have led to remarkable improvements in processing,
summarizing and generating language for natural conversations'®".
Alongside remarkable advances in processing syntactic, semantic and
pragmatic properties in written texts, deep learning has also come
to excel in recognizing speech in acoustic recordings®’. These multi-
modal, end-to-end models provide atheoretical advance over unimodal
text-based models by offering a unified computational framework for
modelling how continuous auditoryinputis transformed into speech
and word-level linguistic dimensions during natural conversations
(thatis, acoustic-to-speech-to-language processing).

Notably, deep acoustic-to-speech-to-language models do not
rely onsymbolic representations of phonemes for speech recognition
or parts of speech for language processing. The critical distinction
between deep and symbolic models is the shift from discrete symbols
to a multidimensional vectorial representation (that is, embedding
space). This approach embeds all elements of speech and language
into continuous vectors across a population of simple computing
units (‘neurons’) by optimizing simple objectives such as predicting
the next word in context or deciphering words from auditory stimuli.
Combining speech and language embeddings into a unified multi-
modal model provides a numerical ‘code’ for linking across levels of
linguistic representation, which are traditionally studied inisolation.

In this work, we leverage a multimodal acoustic-to-speech-to-
language model called Whisper®° that learns to transcribe acoustic
recordings of natural conversations recorded in real-life contexts®.
The Whisper architecture incorporates amultilayer encoder network
and amultilayer decoder network (Fig. 1): the encoder maps continuous
acoustic inputs into a high-dimensional embedding space, captur-
ing speech features which are transferred into a word-level decoder,
effectively mapping them into contextual word embeddings* . It
isimportant to note that the model was designed and trained with-
out using traditional linguistic elements (such as phonemes, parts
of speech, syntactic rules and so on). Despite the absence of these
symbolic units, the model can process natural language with a level
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of accuracy comparable to that of a human?. Here, ‘speech’ refers to
processing spoken signals, while ‘language’ refers to analysing conver-
sations on the basis of word-level transcripts.

In this work, we report on the alignment between the internal
representations of an acoustic-to-speech-to-language model and the
human brain when processing real-life conversations. To study the
neural basis of natural language processing in the real world, we devel-
oped anewdense-samplingelectrocorticography (ECoG) paradigm to
measure human neural activity at scale in unconstrained, real-world
conversations. Unlike traditional ECoG studies, which typically rely
on brief, controlled experiments, our dense-sampling paradigm ena-
bled continuous, 24/7 recording of ECoG and speech data during each
patient’s days- to week-long stay in the epilepsy unit at NYU Langone
Health. Thisambitious effort resulted ina uniquely large ECoG dataset
of natural conversations: 4 patients recorded during free conversa-
tions, yielding ~50 h (289,971 words) of neural recordings during speech
comprehensionand 50 h (230,238 words) during speech productionin
real-world settings. Modelling the 24/7 conversational data presents an
unprecedented challenge, given that we have notimposed any experi-
mental constraints on our participants and no two conversations are
the same. Patients are free to say whatever they want, whenever they
want; each conversation has its unique context and purpose.

Tomodel and predict the underlying neural activity that supports
our ability to produce or comprehend daily conversations, we opened
the ‘black box’ of the acoustic-to-speech-to-language model (Whisper).
Weinterrogated itsinternal representations—the embeddings—at each
layer. We extracted three types of embedding from Whisper (Fig. 1) for
every word the patients spoke or heard during their conversations.
These embeddingsinclude (1) acousticembeddings derived from the
auditory input layer of the speech encoder, (2) speech embeddings
derived from the final layer of the speech encoder and (3) language
embeddings derived from the final layers of the decoder. For each set
of embeddings, we constructed electrode-wise encoding models to
estimate alinear mapping from the embeddings to the neural activity
for eachword during speech production and comprehension (Fig. 1).

Our encoding models revealed aremarkable alignment between
the human brain and the internal population code of the acoustic-to-
speech-to-text model. We demonstrate that the embeddings provide
surprisingly accurate predictions of human neural activity for each
utterance and word across hundreds of thousands of words in our
conversational dataset. Speech embeddings better captured cortical
activityinlower-level speech perception and production areas, includ-
ing the superior temporal cortex and precentral gyrus. On the other
hand, linguistic embeddings were better aligned with higher-order
language areas such as the inferior frontal gyrus and angular gyrus.
Before each word onset during speech production, we observed a
temporal sequence from language-to-speech encoding across cortical
areas; during speech comprehension, we observed the reverse pro-
gression from speech-to-language encoding after word articulation.
Our findings demonstrate that deep acoustic-to-speech-to-language
models can provide aunified computational framework for the neural
basis of language production and comprehension acrosslarge volumes
of real-world data without sacrificing the diversity and richness of
natural language.

Results

We collected continuous 24/7 recordings of ECoG and speech signals
from 4 patients as they spontaneously conversed with their family,
friends, doctors and hospital staff during their entire days-long stay
at the epilepsy unit (for patient demographics and clinical character-
istics, see Supplementary Table 1). Across the 4 patients, we recorded
neural signals from 676 intracranial electrodes (Fig. 1). Because only 1
ofthe4 patientshad 22 electrodesimplanted in the right hemisphere,
we focused on left hemisphere electrodes (n = 654) in our analyses;
10 electrodes were excluded due to corrupted recordings, leaving

644 electrodes for analysis. We obtained extensive coverage of key
language areas, includingin the inferior frontal gyrus (IFG, also known
asBroca’sarea; n=75) and superior temporal gyrus (STG; n = 45), with
asparser sampling of the angular gyrus (AG; n = 35). We built a preproc-
essing pipeline toidentify the occurrence of speech, remove identifying
information, transcribe each conversation and align each word with
the concurrent ECoG signals. We then divided the data into two catego-
ries: comprehension (when patients were listening to speech) and pro-
duction (when patients were producing speech). This unconstrained
recording paradigm yielded neural activity from multiple electrodes
per patient (104-255 electrodes) for dozens of hours (17-37 h), com-
prising tens of thousands of words (79,654-213,473 words). For details
about linguistic features, see Supplementary Tables1and 2. Foracom-
prehensive description of the speech collected, patient demographics
and clinical characteristics, see Supplementary Tables1and 2 and Fig. 1.

Inour dataset, each conversation is unique: patients freely express
themselves without any intervention from experimenters. We input
the audio recordings and the transcribed text into a multimodal,
acoustic-to-speech-to-language model (Whisper)®. To leverage the
multimodal architecture of Whisper, we separately extracted ‘acous-
tic embeddings, ‘speech embeddings’ and ‘language embeddings’
for each word in every conversation (Fig. 1 and Methods): acoustic
embeddings were extracted from the acousticinputlayer fed into the
speech encoder. Speech embeddings were extracted from the top
layer of the speech encoder, and language embeddings were extracted
fromthe top layers of the decoder (Fig.1). We conducted experiments
to examine how speech input affects language embeddings in the
Whisper model. We used two different methods to extract embed-
dings from the decoder. First, we disconnected the cross attention
and separated it into a speech encoder stack and alanguage decoder
stack. By providing the transcription to the decoder, we could extract
language embeddings that were not influenced by the speech input.
Second, we extracted language embeddings from the intact model,
whichreceivesboth speech and textual inputs, to test how speechinput
modulates the language embeddings. Itisimportant to note that while
Whisper’s encoder can provide direct input toits decoder, the activity
inthe decoder cannot influence the activity in the encoder.

Acoustic-to-speech-to-language prediction of neural activity
To assess whether the embeddings extracted from Whisper can cap-
ture neural activity during natural conversations, we constructed six
sets of encoding models on the basis of acoustic embedding, speech
embeddings and language embeddings during both speech produc-
tion and speech comprehension (Fig.1). We segmented the data from
each patientinto 10 temporally contiguous, non-overlapping folds for
10-fold leave-one-out cross-validation. The encoding models estimated
alinear mapping between the Whisper embeddings and the neural
activity foreachwordinthe training set using 9 folds for training. Sub-
sequently, we used the trained encoding models to predict the neural
activity for each word at each electrode in the left-out unseen new
conversations within the test fold (Fig. 1). This procedure was repeated
10 times to cover all folds. A separate encoding model was trained
for each electrode at various time points, ranging from -2,000 ms
to +2,000 ms relative to the word onset (time 0). The performance
of the encoding model was evaluated by calculating the correlation
between the predicted and actual neural signals for the held-out con-
versations. All analyses were adjusted for multiple comparisons using a
non-parametric procedure to control the family-wise error rate (FWER).
Whisper’s acoustic, speech and language embeddings predicted
neural activity withremarkable accuracy across conversations compris-
ing hundreds of thousands of words during both speech production
and comprehension for numerous electrodesin various regions of the
cortical language network (Fig. 2). Tominimize bias, we estimated the
lag thatyielded the maximum correlationin the training fold and used
ittoextractthe matching correlationinthe test fold (to determine the
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colour of the electrode in Fig. 2). These brain regions include areas
known to beinvolvedinauditory speech processing (for example, supe-
rior temporal gyrus (STG)), language comprehension and production
(forexample, inferior frontal gyrus (IFG)), somatomotor (SM) planning
and execution (for example, precentral and postcentral gyrus (preCG,
postCG)), and high-level semantic cognition (for example, angular
gyrus and temporal pole (AG, TP))***. Overall, acoustic embeddings
yielded fewer significant electrodes than speech embeddings for pro-
duction (64 vs 274, chi-square (1, N= 644) =175.21, P< 0.001, Bonfer-
roni corrected, ¢ = 0.27) and comprehension (46 vs 186, chi-square
(1, N=644)=101.58, P<0.001, Bonferroni corrected, ¢ = 0.16),
and fewer significant electrodes than language embeddings (pro-
duction: 64 vs 154, chi-square (1, N= 644) =43.73, P<0.001, Bon-
ferroni corrected, ¢ = 0.06; comprehension: 46 vs 135, chi-square
(1, N=644)=49.55,P < 0.001, Bonferronicorrected ¢ = 0.08). Speech
embeddingsyielded more significant electrodes than language embed-
dings for both production (274 vs 154, chi-square (1, N = 644) =49.55,
P <0.001, Bonferroni corrected, ¢ =0.08) and comprehension
(186 vs 135, chi-square (1, N= 644) =10.37, P< 0.005, Bonferroni cor-
rected, ¢ = 0.02). Remarkably, the predicted signals were strongly
correlated with the actual signals (Pearson correlations of up to 0.50)
across hours of left-out speech segments. Moreover, prediction per-
formance in the left-out testing segments was robust and did not
meaningfully change even when we used only 25% of the data for train-
ing (Supplementary Fig. 2). We also extracted language embeddings
from the decoder stack of layer 4 (instead of layer 3 which was used
for Figs. 2-7) and a unimodal language model (GPT-2), and obtained
similar encoding results (Supplementary Fig. 3). Because the speech
encoder receives continuous speech recordings, we could also run
encoding models for continuous acoustic and speech embeddings,
encompassingall time pointsin each recording, including non-speech
segments, irrespective of the spoken word boundaries (Supplemen-
tary Fig. 4a,b and Methods). Even when using continuous signals, we
observed statistically higher encoding for the speech embeddings
than for the acoustic embeddings in all electrodes (Supplementary
Fig.4c,d). This demonstrates that speech embeddings, which contain
contextual speech information, model all cortical areas better than
the simple acousticembeddings derived from the model input layer.

Selectivity and integration of speech and language information
Incontrasttoamodular view that assigns acoustic, speech and language
processing to distinct circuits or brain areas, our analyses reveal that
speechand language information are encoded in multiple brainareas.
We utilized a variance partitioning approach to identify the proportion
of the predicted signal in each electrode uniquely explained by the
acoustic, speech and language embeddings. We fitted separate encod-
ing models for speech and language embeddings and ajoint encoding
model by concatenating speech and language embeddings. The analysis
measures the unique variance captured by each set of embeddings and
the extent to which the information in one set is already embedded
in another. A similar analysis was also done for acoustic and speech
embeddings (Supplementary Fig. 5).

We observed different selectivity patterns for speech and lan-
guage embeddings, each accounting for different portions of the
variance across different cortical areas (Fig. 3). During spontaneous
speech production (Fig. 3a), we observed organized hierarchical
processing, where articulatory areas along the preCG and postCG, as
wellas STG, were better predicted by speechembeddings (red), while
higher-level language areas suchas IFG, pMTG and AG were better pre-
dicted by language embeddings (blue). A similar hierarchical organi-
zation was evident in speech comprehension (Fig. 3b): perceptual
areas such as STG and somatomotor areas such as preCG and postCG
showed a preference for speech embeddings, while higher-level lan-
guageareas, including IFG and AG, displayed a preference for language
embeddings. Our predictions had a high level of precision, with a

Speech c
embeddings

a Acoustic b
embeddings
Production

Language
embeddings

Correlation (r)
0.40

0.04
P<0.01,
FWER

Fig. 2| Acoustic, speech and language encoding model performance

during speech production and comprehension. Encoding performance
(correlation between model-predicted and actual neural activity) for each
electrode for acoustic embeddings, speech embeddings and language
embeddings during speech comprehension (-50 h, 289,971 words) and speech
production (-50 h,230,238 words). The plotsiillustrate the correlation values
associated with the encoding for each electrode, with the colour indicating the
highest correlation value across lags (P < 0.01, FWER). a, Encoding based on
acoustic embeddings revealed significant electrodes in auditory and speech
areas along the superior temporal gyrus (STG) and somatomotor areas (SM).
During speech production, we observed enhanced encoding in SM, and during
speech comprehension, we observed enhanced encodingin the STG. b, Encoding
based onspeech embeddings revealed significant electrodes in STG and SM, as
well as the inferior frontal gyrus (IFG; Broca’s area), temporal pole (TP), angular
gyrus (AG) and posterior middle temporal gyrus (pMTG; Wernicke’s area).

¢, Encoding based on language embeddings highlighted regions similar to
speech embeddings (b) but notably fewer electrodes (with lower correlations) in
STG and SM, and higher correlations in IFG.

correlation between predicted and actual neural responses ranging
from 0.2 to 0.5 across electrodes and models (Fig. 3). This high pre-
dictive power was achieved for hundreds of thousands of words and
tens of hours of speech from previously unseen, unique conversations
not used to train the encoding model. Finally, we utilized a variance
partitioning approach to identify the proportion of the predicted
signal in each electrode uniquely explained by the acoustic versus
speech embeddings. Our resultsindicate that the speech embeddings
captured more variance than acousticembeddings in most electrodes
located along the superior temporal cortex, IFG and somatomotor
cortex (Supplementary Fig. 5). Acoustic embeddings only captured
additional variance in a few electrodes along the lateral fissure and
ventral motor cortex.

Auditory speech signals inform language representations

Our multimodal model allowed us to study how speech information
iscombined with and influences language processing across different
language areas. First, we treated Whisper’s language decoder as a uni-
modal modeland gave it text-only input. While providing Whisper with
text-only input, we treated it asaregular unimodal language model (for
example, GPT-2). Next, we utilized Whisper’s multimodal capability by
providing it with speechand textinformation. Inother words, Whisper’s
encoder receives speech recordings, while Whisper’s decoder receives
the text transcription. This allows input from the speech embedding
to influence the activity in the language decoder (as in the original
architecture). In testing both sets of embeddings, we observed that
encoding performance for language embeddings was significantly
higher when the language decoder received speechinformation from
the encoder, during both production (Fig. 4a) and comprehension
(Fig.4b). This pattern was consistent across most electrodesin STG and
SM, aswellasinIFG (Fig. 4c,d). These results demonstrate that speech
information can modify the representation of linguistic informationin
Whisper. Furthermore, infusing speech informationinto the language
embeddingimproves our ability to model neural responses inlanguage
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Fig. 3| Mixed selectivity for speech and language embeddings during speech
production and comprehension. a, Variance partitioning was used to identify
the proportion of variance uniquely explained by either speech or language
embeddings relative to the variance explained by the joint encoding model
during speech production. Surrounding plots display encoding performance
during speech production for selected individual electrodes across different
brain areas and patients. Models were estimated separately for each lag
(relative to word onset at O s) and evaluated by computing the correlation
between predicted and actual neural activity. Data are presented asmean + s.e.
across the 10 folds. The dotted horizontal line indicates the statistical threshold
(g<0.01, two-sided, FDR corrected). During production, the speech encoding
model (red) achieved correlations of up to 0.5 when predicting neural responses
to each word over hours of recordings in the STG, preCG and postCG. The
language encoding model yielded significant predictions (correlations up

to 0.25) and outperformed the speech model in IFG and AG indicated by blue
dots (g <0.01, two-sided, FDR corrected). The variance partitioning approach
revealed a mixed selectivity for speech and language embeddings during speech
production. Language embeddings (blue) better explain IFG, while speech
embeddings (red) better explain STG and SM. b, During comprehension, we
observed asimilar pattern of encoding performance. Language embeddings
better explain IFG and AG, while speech embeddings better explain STG and
SMindicated by red dots (g < 0.01, two-sided, FDR corrected). The variance
partitioning analysis also revealed mixed selectivity for speech (red) and
language (blue) embeddings during comprehension. Matching the flow of
information during conversations, encoding models accurately predicted neural
activity ~500 ms before word onset during speech production and 300 ms after
word onset during speech comprehension. Data are presented as mean £ s.e.
across the 10 folds.
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encoding performancein SM electrodes (g < 0.01, FDR corrected). b, During
speech comprehension, language embeddings fused with auditory features
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receiving text and audio input
(pink) significantly improved encoding performance in STG and SM electrodes
(g<0.01,FDR corrected). ¢, The advantage of the language embedding fused
withauditory features (pink) persists across multiple time points at all significant
electrodes. Data are presented as mean + s.e.m. across the electrodes. d, Even
though the IFGis associated with linguistic processing, it can be seen that
across multiple lags, the audio-fused language embeddings (pink) yield higher
encoding performance during both production and comprehension. Pink
markers indicate lags with a significant difference (g < 0.01, FDR corrected)
between text-only and audio-fused language embeddings. Data are presented as
mean #s.e. across electrodes.

areas. This suggests that language areas, similar to Whisper, encode the
intricate relationship between speech and language representations
inamultidimensional space.

Fine-scale temporal dynamics of speech processing

The high spatiotemporal resolution of our ECoG recordings allowed
us to study the temporal dynamics of speech and language signals
during real-life conversations. We calculated a separate encoding
modelforeachembeddingtype over time, using161lags from-2,000
to+2,000 msin25-msincrements relative to word onset (lag 0). Our
research showed different dynamic patterns for production vs com-
prehension across cortical areas. Our encoding models document a
remarkable temporal specificity. Encoding performance peaks more
than300 msbefore word onset during speech production (Fig. 3a) and
more than 300 ms after word onset during speech comprehension
(Fig.3b). Although both the speech and language embeddings yield
significant predictionsin all regions of interest (ROIs), each embed-
ding type captures different aspects of neural activity. A statistical
contrast between models revealed that the speech embeddings bet-
ter predict neural activity in early perceptual language areas along
the STG and articulatory somatomotor areas. Conversely, language
embeddings better predict neural activity in high-order language
areas such as the IFG. In addition, while we observed biases of IFG
towards language representation, and STG and SM towards speech
representation, we could predict asubstantial portion of the variance
using either speech or language embeddings, suggesting a mixed
representation in those ROIs. Supplementary Figs. 6 and 8 display
the mean encodingresults during production and comprehensionin

three ROIs (SM, IFG and STG) per patient. Aggregated analysis across
patients is presented in Supplementary Fig. 7.

In addition, we observed a different hierarchical selectivity dur-
ing speech production and comprehension. Speech areas in STG and
language areas in anterior and medial IFG yielded higher encoding
performance during speech comprehension (Supplementary Fig. 8b,
green), while posterior IFG and SM (preCG and postCG), as well as the
TP, yielded higher encoding performance during speech production
(Supplementary Fig. 8b, purple). Similar results were seen for language
embeddings (Supplementary Fig. 8b). These results suggest agradient
fromspeech comprehension at the anterior part of IFG to speech pro-
ductionat the posterior IFG towards SM areas. We found that SM areas
play asurprisingly notable roleinreal-life unconstrained conversations
interms of both speech and language features (Supplementary Fig. 8
shows results per cortical area).

Our ability to predict the neural responses of new conversations,
which consisted of ~-100 h of audio recordings and 520,209 words, is a
testament to the remarkable alignment between the neural activity and
the internal population codes of the acoustic-to-speech-to-language
model during our real-world conversations. The ability of the encoding
model to generalize and predict minutes-long new conversations not
seen during training is unrelated to the data size. A similar size effect
was obtained even if only 50% or 25% of data were used, with only a
slight decrease in power while using10% of the data.

Acoustic-to-speech-to-language model vs symbolic models
Deep acoustic-to-speech-to-language models provide an alter-
native, unified framework for modelling neural activity during
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Fig. 5| Comparing speech and language embeddings to symbolic features.

a, We used a variance partitioning analysis to compare encoding models on

the basis of speech embeddings (red; extracted from Whisper’s encoder) and
symbolic speech features (orange; phonemes, manner of articulation, place of
articulation, speech or non-speech). Data are presented as mean + s.e.m. across
electrodes. Red dots indicate lags with a significant difference (g < 0.01, FDR
corrected) between deep speech embeddings and symbolic speech features.
Encoding performance for deep speech embeddings is consistently higher
than encoding performance for symbolic speech features across all significant
electrodes, specifically in IFG and STG. b, We used a variance partitioning

Symbolic language embeddings

approach to compare encoding models on the basis of deep language
embeddings (dark blue; extracted from Whisper’s decoder) and symbolic
language features (light blue; part of speech, dependency, prefix, suffix, stop
word). Data are presented as mean + s.e.m. across electrodes. Blue dots indicate
lags with a significant difference (g < 0.01, FDR corrected) between deep speech
embeddings and symbolic speech features. Encoding performance for deep
language embeddings is consistently higher than encoding performance for
symbolic language features across all significant electrodes, specifically in IFG
and STG.

real-world conversations. Here we compare deep speech and lan-
guage embeddings with symbolic speech and language models. We
vectorize symbolic speech and linguistic features into binarized
vectors. Vectorizing the symbolic models allows us to evaluate
these symbolic models against the Whisper embeddings in the same
regression-based encoding framework. We vectorize symbolic speech
features (phonemes, voice, voiceless, place of articulation (PoA) and
manner of articulation (MoA)) into a 60-dimensional binarized vector
for each spoken word in the conversation. We also vectorize symbolic
linguistic features (parts of speech (PoS), syntactic dependencies,
prefixes, suffixes, stop words) into al37-dimensional binarized vector
for each word in the conversation (see Supplementary Table 3 for a
comprehensive list of features).

Our findings indicate that speech and language embeddings
extracted from the multimodal, deep acoustic-to-speech-to-language
model outperform symbolic speech and language features (Fig. 5) in

predicting neural activity during natural conversations. Thisis evident
inindividual ROIs as well asacross all electrodes. In addition, avariance
partitioning analysis indicates that symbolic features account for very
little unique variance beyond the deep multimodal embeddings.
Finally, we tested whether Whisper’s speech and language embed-
dings implicitly learned classical psycholinguistic constructs. While
phonemes and parts of speech do not function as fundamental com-
putational (symbolic) units in the deep speech-to-text model, they
nonetheless emerge as high-level descriptors of natural language. To
visualize this, we used a nonlinear dimensionality reduction technique
that maps high-dimensional data to a low-dimensional space (¢-SNE)
to project the multidimensional embeddings (3,840 dimensions for
speechand 384 dimensions for language, sampled from each encoder
layer and decoder layer) onto two-dimensional manifolds for visualiza-
tion (Fig. 6a-d and Supplementary Fig.9). Furthermore, we used alogis-
tic classification procedure to classify phonemes with ~-54% accuracy
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Fig. 6 | Representations of phonetic and lexical informationin Whisper.

a-d, Speech embeddings and language embeddings were visualized in a two-
dimensional space using t-SNE. Each data point corresponds to the embedding
for either an audio segment (speech embeddings from the encoder network)
oraword token (language embeddings from the decoder network) for a unique
word (averaged across all instances of a given word). Clustering according to
phonetic categories is visible in speech embeddings (a) but far less prominent
inlanguage embeddings (b). Clustering according to lexical information

(partof speech) is visible in language embeddings (d) but not in speech
embeddings (c). e, Classification of phonetic and lexical categories based
onspeech and language embeddings. We observed robust classification

for phonetic information based on speech embeddings. We also observed
robust classification for parts of speech based on language embeddings.

The classification was performed using logistic regression, and the performance
was measured on held-out data using a10-fold cross-validation procedure.

(chance level 4%, P< 0.001, determined using permutation test; see
Methods) from Whisper’s speechencoder embeddings (Fig. 6e). Similar
clustering results were obtained for PoA and MoA (Supplementary
Fig. 9). This indicates that high-level, symbolic descriptors of human
speechemerge from speechembeddings learned using asimple objec-
tive function against training samples of real-world speech. Similarly,
we successfully clustered and classified PoS (nouns, verbs, adjectives
and so on) with~67% accuracy (chance level 20%, P < 0.001; see Meth-
ods for details) from the language embeddings (Fig. 6e). This suggests
thatlanguage embeddings can capture high-level syntactic properties
without relying on built-in symbolic processing or representational
units. Note that Whisper was trained end-to-end to predict upcoming
words given the audio asinput; the encoder was not explicitly trained
torecognize phonemes, and the decoder was not trained to recognize
parts of speech. Our findings confirm that deep end-to-end multimodal
models can capture language statistics without relying on predefined
symbolic units,commonly considered the fundamental building blocks
for natural language processing in psycholinguistics.

Information flow during speech production and
comprehension

Evaluating encoding models at each lag relative to word onset allows us
totrace the temporal flow of information from STG (speech comprehen-
sionROI) to IFG (language-related ROI) to SM (speech production ROI)
during the production and comprehension of natural conversations
(Fig. 7). In congruence with the flow of information during speech
production, language encoding in IFG peaked first at ~500 ms before
word onset (M =-505 ms, s.d. =201 ms), whereas in SM (comprising
preCG and postCG), the speech model encoding peaked significantly
closer to speech onset (M=-200ms, s.e. =7 ms, t;5 =2.23,P<0.05,
Cl(95%) =[-180,-220 ms], Cohen’sd = 0.03; Fig. 7). Areverse dynamic
was observed during speech comprehension (Fig. 7; see also ref. 26).
During speech comprehension, speech areas along the STG peaked
shortly after word onset (M =54 ms, s.d. =186 ms), while language
model encoding in IFG peaked significantly later, ~300 ms after word
onset (M =247 ms, s.e.=4 ms, £, =—6.48, P<0.001, CI(95%) = [221,
273 ms], Cohen’s d = 0.04; Fig. 7). Finally, we found an unexpected
temporal pattern of speech encoding during speech production: peak
encoding performance proceeded from dorsal SM to middle SM, and
finally to ventral SM before word articulation (Fig. 7).

Upon closer examination of the activity pattern, we observed two
distinct peaks inthe STG and somatosensory areas during speech pro-
duction (Fig.3a). Thefirst peak appears ~300 ms before word onset. In
contrast, the second peak occurs ~200 ms after word onset. Additional
analysesindicate that the first peakis associated with motor planning,
while the second peak is associated with the speaker processing their
own voice (Supplementary Fig. 10).

To further dissociate neural activity before and after word onset
during speech production and comprehension, we utilize the high pre-
cisionof Whisper’s encoder to extract speechembedding and construct
encoding models for each20-ms segment of speech (see Methods for
details). This fine-grained analysis allows us to map the sequence of
neural activity inunconstrained, real-world conversations with atem-
poralresolution of 20 ms. We observed that during speech comprehen-
sion, neural encoding begins to peak around word onset and gradually
shifts over time (Fig. 8b,d). Thisindicates that the processing sequence
inthe speechencoder’s top layer matches the sequence of neural activ-
ity in the human brain. Note that the embeddings at word onset carry
some contextual information about the previous word and, thus, can
fitresponses about -50 ms before word onset. We observed a different
sequence of neural responses during speech production (Fig. 8a,c).
Before word onset, neural encoding peaks across speech units occur
with a fixed delay of about —300 ms and do not shift over time. This
suggests that during the planning phase, the brain already has infor-
mation about the entire sequence of speecharticulation for eachword
atapproximately —300 msbefore speech articulation (Fig. 8a,c). After
word onset, neural encoding peaks gradually shift over timeinasimilar
pattern to speech comprehension (Fig. 8a,c). This finding indicates
that the second post-word onset neural encoding peak is associated
with neural mechanisms for processing self-generated speech as the
speakers hear their own voice. To statistically evaluate the relationship
between the encoder unit and the peakin encoding performance while
considering patient variability, we constructed linear mixed models
includingarandomintercept per patient. During comprehension, we
observe atemporal shiftinthe encoding peak withincreasing distance
betweenthe temporal segment covered by the encoder unitand word
onset (§=0.028, P<0.001, CI(95%) =[0.021, 0.035]). During produc-
tion, we observe a comparable shift in the encoding peak after word
onset (§=0.017,P<0.001, CI(95%) =[0.015, 0.019]) but not before word
onset (f=0.001, P=0.59, CI(95) =[-0.003, 0.005]).
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Fig. 7| Temporal dynamics of speech production and speech comprehension
across different brain areas. On the basis of tuning preferences for each ROI,
we assessed temporal dynamics using the language model for IFG and the
speech model for STG and SM. Coloured dots show the lag of the encoding

peak for each electrode per ROI. Data are presented as mean + s.e. across
electrodes. To determine significance, we performed independent-sample ¢-tests
between encoding peaks; Pvalues are one-sided. a, During speech production,
encoding for language embeddings in IFG peaked significantly before speech
embeddingsin SM and STG. b, The reverse pattern was observed during speech
comprehension: encoding performance for language embeddings encoding
inIFG peaked significantly after speech encoding in SM and STG. ¢, For speech
production, we observed a temporal pattern of encoding peaks shifting towards
word onset within SM, proceeding from dorsal (dSM) to the middle (mSM) to
ventral (vSM). d, Map showing the distribution of electrodes per ROI.

Discussion

Weanalysed neural processesinvolvedinnatural speech productionand
comprehension using ECoG recordings collected over ~100 h of spon-
taneous open-ended conversations, comprising approximately half a
millionwords. The unprecedented size of this dataset provides us with
adetailed and uniquely comprehensive look at the richness of human
conversations as they unfold in real-world contexts. We extracted inter-
nal acoustic, speech and language-related activity from embeddings
at different layers of a unified acoustic-to-speech-to-language model
(Whisper). Next, we built encoding models that learn a simple linear
mapping between the model’sinternal embeddings and human brain
activity—word by word during speech production and comprehension.
Using the encoding model, we predicted, with remarkable precision,
neural activity associated with acoustic, speech and language pro-
cessinginspeech-related and language-related areas for hours of new
conversations not used in training the model.

Our encoding models revealed a distributed processing hier-
archy in which sensory areas along the superior temporal gyrus and
somatomotor areas along the precentral gyrus were better modelled
by speech embeddings (red, Fig. 3). This result aligns with previous
findings that used aunimodal speech model (Hubert) toencode speech
information during passive listening to a closed set of sentences”.
Higher-order language areasin theinferior frontal gyrus, aswell as the
posterior temporal and parietal cortex, were better modelled by lan-
guage embeddings (blue, Fig. 3). This was true for speech production
and comprehension. These results recapitulate the known hierarchy
of natural language processing during free-flowing conversations®*.
Notably, we found strong alignment to speech embeddings in both

SMand STG articulation areas during speech production, suggesting
apotential coupling between motor and perceptual processes®**.

The unified, multimodal model provides a precise numerical code
for how acoustic, speech and language features can be integrated
across different levels of the cortical hierarchy. For example, acoustic
informationis preservedinspeech embeddings (Fig.3a), while speech
and language embeddings capture different portions of the variance
across areas (Fig. 3b). Allowing information to flow from the speech
encoder into the language decoder, however, did improve the ability
of the language embeddings to model neural activity across language
areas (Fig.4). Thisillustrates how the acoustic-to-speech-to-language
model provides a holistic computational framework for how the brain
integrates acoustic, speech and language information while process-
ing natural conversations'*2. Overall, these results shed new light on
theinteractionbetween lower-level speech and higher-level semantic
processing, where linguistic prediction can facilitate speech processing
inauditory areas, and acousticinformation can facilitate the processing
of wordsin language areas®’.

The acoustic-to-speech-to-language model processes natural
speech with a temporal resolution of 20 ms. This gives us unprec-
edented precisioninmodelling how speech and language information
are processed during real-life conversations. Regarding speech com-
prehension, the model revealed a sequence of speech-related activity
at20-msresolution triggered around word onset. On the other hand,
during speech production, the model revealed thatinformation about
the entire sequence of word articulation is already present 300 ms
before word onset (Fig. 7). Interestingly, we also observed a second-
ary cascade of activity after word onset during speech production,
which matches the activity wave during speech comprehension. These
findings suggest that the same cortical areas that process incoming
information from other speakers also process the speaker’sown speech
(Supplementary Fig. 10; see also ref. 38). In our investigation of sen-
sorimotor areas, we observed a distinct dynamic of neural encoding
following speech onset. Notably, these responses were accurately
predicted only by a model trained during production, while models
trained for comprehensionyielded lower correlations (Supplementary
Fig.10). This divergence suggests unique neural representations of
articulatory and speech features in the SM areas during speech com-
prehension and production. However, further research is required to
test this hypothesis.

How should we interpret the relationship between the internal
representations of the acoustic-to-speech-to-language model and the
humanbrain when processing human speech? There are two potential
optionsto consider. Thefirst optionis that our encoding model effec-
tively learns the transformation between distinct codes for processing
natural language. This is significant because it positions deep language
models as a powerful computational tool to study and predict how the
brain processes everyday conversations. They enable us torobustly pre-
dict the neural responses to speech and language information across
multiple conversations and contexts on ascale that was not previously
possible. This breakthrough was instrumental in modelling our unique,
entirely unconstrained conversational dataset. The second interpreta-
tionis that deep language models and the human brain share compu-
tational principles for natural language processing®*°. This stronger
theoretical claim challenges traditional rule-based symbolic linguistic
models of language representation and processing*. Some arguments
support the stronger theoretical claim. First, our encoding models
established that a simple linear mapping between the internal neural
activity in Whisper and the human brainyields remarkably high predic-
tion performance. This suggests that the two internal representations
may be more similar thaninitially anticipated. Second, deep speech and
language embeddings dramatically outperform symbolic models for
speech and language processing of our natural conversations (Fig. 5).
Combined, our finding of a linear relationship between the internal
activity inthe acoustic-to-speech-to-language model and the internal
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Fig. 8| Fine-grained temporal sequence of speech encoding during
production and comprehension. a, Encoding models for encoder units 1-20
time locked to word onset (corresponding to atemporal segment of 20-400 ms
after word onset) during production. The encoding performance exhibits two
peaks (one before and one after word onset). Data are presented as mean * s.e.
across electrodes. b, Encoding models for encoder units 1-20 time locked to
word onset during comprehension. The encoding performance peaks mainly

20

after word onset. Data are presented as mean + s.e. across electrodes. ¢, Coloured
squares correspond to peaks encoding during production before word onset,
and round dots after word onset. The model was found to be significant, the
Pvalueis two-sided. d, Coloured dots correspond to peaks encoding during
comprehension after word onset. Data are presented as mean + s.e.m. across
electrodes. The model was found to be significant, the Pvalue is two-sided.

activity in the human brain during natural speech and language pro-
cessing offers analternative, unified computational framework for how
the brain learns to process many aspects of natural speech.

Finally, although phonemes, place of articulation, manner of
articulation and parts of speech are not considered fundamental
computational units in the deep speech and language model, they
emerge as high-level statistical descriptors of natural language
embedded in the neural code of the model. This highlights the dual
power of our unified acoustic-to-speech-to-language model to (1)
account for how the brain processes language in real-life conversa-
tions collected in the wild across a diversity of real-life contexts™
and (2) account for high-level phenomena documented by psycho-
linguistics over the years*.

In summary, the acoustic-to-speech-to-language model pro-
vides a new unified computational framework for studying the
neural basis of natural language processing. This integrated frame-
work signifies the beginning of a paradigm shift towards a new
family of non-symbolic models based on statistical learning and
high-dimensional embedding spaces. As these models improve at
processing natural speech, their alignment with cognitive processes
may also improve. For instance, new models are being developed
to process speech-to-language-to-articulation without written text,
referred to as audio-to-audio language models*. Such models allow
foramore comprehensive analysis of linguistic phenomena, covering
alllevels of linguistic analysis, from acoustic and speech perception to
language and motor articulation. Some models, such as GPT-40, add
a third visual modality to the speech and text multimodal model*,

while others incorporate embodied articulation systems that mimic
human speech articulation systems®. The fastimprovement of these
models supports a shift to a unified linguistic paradigm that empha-
sizestherole of usage-based statistical learningin language acquisition
asitis materialized in real-life contexts.

Methods

Ethics oversight

The study was approved by the NYU Grossman School of Medicine
Institutional Review Board (approved protocol s14-02101) which oper-
ates under NYU Langone Health Human Research Protections and
Princeton University’s Review Board (approval protocol 4962). Stud-
ieswere performed in accordance with the Department of Health and
Human Services policies and regulations at 45 CFR 46. Before obtaining
consent, all participants were confirmed to have the cognitive capacity
to provide informed consent by a clinical staff member. Participants
provided oral and written informed consent before beginning study
procedures. They were informed that participation was strictly vol-
untary and would not impact their clinical care. Participants were
informed that they were free to withdraw participationin the study at
any time. All study procedures were conducted inaccordance with the
Declaration of Helsinki.

Participants

Four patients (2 females, gender assigned on the basis of medical
record; 24-53 years old) with treatment-resistant epilepsy undergo-
ingintracranial monitoring with subdural grid and strip electrodes for
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clinical purposes participated in the study. No statistical method was
used to predetermine sample size. Three study participants consented
to have a US Food and Drug Administration (FDA)-approved hybrid
clinical-research grid implanted that includes additional electrodes
in between the standard clinical contacts. The hybrid grid provides a
higher spatial coverage without changing clinical acquisition or grid
placement. Each participant provided informed consent following
protocols approved by the New York University Grossman School
of Medicine Institutional Review Board. Patients were informed that
participation in the study was unrelated to their clinical care and
that they could withdraw from the study without affecting their
medical treatment.

Preprocessing the speechrecordings
We developed a semi-automated pipeline for preprocessing the data-
set. The pipeline can be broken down into four steps:

1. De-identifying speech. All conversations in a patient’s room
were recorded using a high-quality microphone and stored
locally. These audio recordings contain sensitive information
about the patient’s medical history and private life. To comply
with the Health Insurance Portability and Accountability Act
0of 1996 (HIPAA)’s data privacy and security provisions for
safeguarding medical information, any identifiable informa-
tion (for example, names of people and places) was censored.
Given the sensitivity of this phase, we employed a research
specialist dedicated to the manual de-identification of record-
ings for each patient.

2. Transcribing speech. Although many speech-to-text tran-
scription tools have been developed, extracting text from
24/7 noisy, multispeaker audio recordings is challenging.
We used a human-in-the-loop annotation pipeline integrated
with human transcribers from Amazon’s Mechanical
Turk to achieve the transcription quality necessary for our
preliminary analyses.

3. Aligning text to speech. Text transcripts (that is, sequences
of words) must be aligned with the audio recordings at the
individual word level to provide an accurate time stamp for the
production of each word. We used the Penn Forced Aligner*,
which yields timestamps with 20-ms precision, to generate
rough word onsets and offsets. We further improved this auto-
mated forced alignment by manually verifying and adjusting
each word’s onset and offset times.

4. Aligning speech to neural activity. To provide a precise map-
ping between neural activity and the conversational tran-
scripts, we engineered one of the ECoG channels to record the
microphones’ output directly. The concurrent recordings of
the audio and neural signals allowed us to align both signals
with ~20 ms of precision.

Preprocessing the ECoG recordings

The ECoG preprocessing pipeline mitigated artefacts due to move-
ment, faulty electrodes, line noise, abnormal physiological signals
(for example, epileptic discharges), eye blinks and cardiac activity®.
We built a semi-automated analysis pipeline to identify and remove
corrupted data segments (for example, due to epileptic seizures or
loose wires) and mitigate other noise sources using fast Fourier trans-
form (FFT), independent component analysis (ICA) and de-spiking
methods*®. We then bandpassed the neural signals using a broadband
(75-200 Hz) filter and computed the power envelope, a proxy foreach
electrode’s average local neural firing rate*. The signal was z-scored
and smoothed with a50-ms Hammingkernel. Three thousand samples
were trimmed ateach signal end to avoid edge effects. Signal preproc-
essing was performed using custom preprocessing scriptsin MATLAB
2019a (MathWorks).

Acoustic embedding extraction

To prepare audio recordings for subsequent processing by the speech
model, we downsampled the audio recordings from 16 kHz. Since Whis-
peristrained on30-saudio segments, audiorecordings were fedtothe
model using aslidingwindow of 30 s. Whisper encoder’sinternal repre-
sentations are not aligned to discrete word tokens (asinthe decoder);
instead, the encoder embeddings correspond to temporal segments
of the original audio input. In our data, the median word duration is
189 ms (mean =227 ms, s.d. =158 ms), with the shortest word being
12 ms ('T) and the longest being 2,000 ms (‘hysterical)’. Other long
wordsinclude ‘mademoiselle’ (1,850 ms), ‘two-hundred-and-fifty-six’
(1,995 ms) and ‘narcolepsy’ (1,996 ms). To temporally align the embed-
dings to word onsets, we defined the endpoint of each sliding window
totheword’s onset plus200 msso that the extracted ‘word embedding’
contained no information before word onset after the spectrogram
and convolution layers. Inside Whisper, each 30-s audio segment was
transformed into 1,500 encoder hidden state embeddings, where
each hidden state represents a temporal segment of ~20 ms. We con-
catenated the last 10 hidden states to extract embeddings on the word
level (d =10 x 384 = 3,840), corresponding to 200 ms of the audioinput.
The acousticembedding was extracted from the zeroth encoder layer
(before any transformer blocks); therefore, no previous context was
incorporated into the embedding.

Speech embedding extraction

The speech embedding extraction processis the same as that foracous-
ticembedding extraction, where we aligned the temporal segments of
audio input to word onsets. However, instead of the zeroth layer, we
extracted embeddings from the fourth encoder layer since our classi-
fication analysisindicated that embeddings extracted from the fourth
encoder layer have the most structured representation of phonetic
categories compared with embeddings extracted from other encoder
layers (Supplementary Fig. 9e).

Speech embedding extraction with varied length

Since word duration is highly variable in conversational speech, we
calculated the number of hidden states needed to capture the fullword,
fromword onset to offset. For example, since each hidden state roughly
represents atemporal segment of 20 ms, we would need 5 hidden states
foral00-msword, 10 fora200-ms word, and 20 for a400-ms word. To
temporally align the word embedding to the word onset, we defined
the endpoint of each sliding window to the word’s onset plus 20 ms
times the number of hidden states needed to capture the word. This
process created embedding vectors with different dimensions. Since
the encoding model requires the same embedding size for all words,
we used principal component analysis (PCA) for each word embed-
ding to the same dimensionality of asingle embedding unit (d =384).
We re-ran the encoding models for comprehension and production
using the speech-aligned embeddings and received results similar to
those of the fixed-length speech embeddings. The results indicated
that the original (fixed 200-ms length) speech encoding and the new,
word length-based speech embeddings are almost identical (produc-
tion, ryse = 0.99, P<0.001, CI(95%) =[0.996, 0.998]; comprehension,
Fasey=0.99, P<0.001, CI(95%) =[0.996, 0.998]). This shows that our
speech encoding results are robust when extracting speech embed-
dings on the basis of a fixed duration or over adynamic range.

Continuous acoustic and speech embedding extraction

Instead of using a sliding window of 30 s, audio recordings were fed
to the model by non-overlapping 30-s segments. Because the 30-s
audio segments were transformed into 1,500 encoder hidden state
embeddings, each hidden state roughly represents a temporal seg-
ment of 20 ms. For each hidden state, we extracted its embeddings
and calculated its onset and offset. Notably, instead of concatenating
temporal hidden states to align with words, we treated each hidden
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state asindependent. Consequently, the embeddings representacon-
tinuous audio stream rather than discrete words. We extracted embed-
dings from the zeroth (continuous acoustic) and fourth (continuous
speech) encoder layers, corresponding to our previous acoustic and
speech embedding extraction process. Due to the inherent continu-
ous nature of the embeddings and the challenges in identifying clean
boundaries between production and comprehension, we limited our
selectionto 30-s audio segments that are entirely either production or
comprehension. We performed encoding on both continuous acoustic
and continuous speech embeddings. When averaging neural signals,
we used a20-ms window at each lag (at 20-ms increments) to account
for the finer temporal resolution of the continuous embeddings. We
alsoreplicated our results with the original 200-ms window at each lag
(at25-msincrements).

Language embedding extraction

For each word, text transcripts corresponding to the 30-s context
window were tokenized and given as contextual input to the decoder
(M =70 words, s.d. =28 words in a 30-s window). We extracted the
embedding corresponding to the last word in the sequence. We
extracted embeddings from the third decoder layer in line with previ-
ousresults, indicating that late-intermediate layers of language models
show the best encoding performance for neural data.

Electrode-wise encoding

We used linear regression to estimate encoding models for each elec-
trode and lag relative to word onset to map the Whisper embeddings
onto the neural activity. To construct the outcome variable, we aver-
aged the neural signal across a 200-ms window at each lag (at 25-ms
increments) for each electrode across all words (the results replicate
for varying windows of 50 ms, 100 ms and 200 ms; Supplementary
Fig. 5b). Using a 10-fold cross-validation procedure, we trained two
sets of encoding models to predict the word-by-word neural signal
magnitude on the basis of either speech or language embeddings.
Within each training fold, we standardized the embeddings and used
PCA to reduce the embeddings to 50 dimensions. We then estimated
the regression weights using ordinary least-squares multiple linear
regression from the training set and applied those weights to predict
the neural responses for the test set. We calculated the Pearson correla-
tion between the predicted and actual neural signals for each held-out
test fold to assess model performance. The correlations were averaged
across the 10 test folds. This procedure was repeated at 161 lags from
-2,000 to 2,000 ms in 25-ms increments relative to word onset; the
exact predictor embeddings were used at each lag. To determine the
maximum correlation across lags for each fold, we used the 9 training
folds to estimate the lag that yielded the maximum correlation, then
extracted the corresponding correlation for that specific lag from
the test fold.

Variance partitioning analysis
We employed avariance partitioning scheme to estimate the variance
that different models uniquely explain. We built encoding models on
the basis of two different embeddings A and B (for example, speech
and language embeddings) and an additional combined encoding
model where we concatenate the embeddings of A and B. Evaluating
the encoding performance of the concatenated model gives us r? 5.
Using set arithmetic, we can derive the unique variance explained by
embeddings A and B: we calculated the shared variance explained by
bothembeddings Aand Bas r?,.5 = r?4 + r’g—r*a . NOw we can calcu-
late the unique variance explained by embeddings A and B as
P pee =12 = Pacg@nd g = r*g —r’ 5. We further calculated the
percent variance uniquely explained by embeddings A and B as
B A= P A/ aop AN %y =g /1%, Our colour scheme
reflects the relative variance explained. This way, we canidentify which
electrodes arebetterexplainedby r2, 12y or r2,5.Since %7,

unique” unique unique”

% By AN %% pp Must add up to one, if both %%, and %’y .
are low (indicated by white), % s is high, that is, the percent shared
variance explained by both embeddings A and B is higher than the
percent variance explained by either A or B alone.

Electrode selection

Toidentify significant electrodes, we used arandomization procedure.
Ateachiteration, we performed arandom shiftin the assigned embed-
dings to each predicted signal, thus disconnecting the relationship
between the words and the brain signal while preserving the order
between the different embeddings. The random shift was restricted
to avoid rolling the assignment inside the context window. We then
performed the entire encoding procedure for each electrode on the
mismatching words. We repeated this process 1,000 times. After each
iteration, the encoding model’s score was calculated on the basis of
the maximal value minus the minimal value across all 161 lags for each
electrode. We then took the maximum value for each patient for each
permutation across all electrodes. This resulted in a distribution of
1,000 maximum values for each patient, which was used to determine
thesignificance of all electrodes. For each electrode, a Pvalue was com-
puted as the percentile of the original maximum-minimum values of
the encoding model across all lags from the null distribution 0f 1,000
similarly calculated values. Performing a significance test using this
randomization procedure evaluates the null hypothesis that thereis no
systematicrelationship between the brain signal and the correspond-
ing word embedding. This procedure yielded a family-wise error rate
corrected Pvalue for each electrode, correcting for the multiple lags™.
Electrodes with Pvalues less than 0.01 were considered significant.

Differences in the overall magnitude of encoding performance
We used the same randomization procedure described inthe electrode
selection section to identify electrodes with significant differences
in the magnitude of encoding performance for speech and language
embeddings. We only statistically evaluated differences in model
performance for electrodes with significant encoding performance for
atleastonemodel (see ‘Electrode selection’ above). For each permuta-
tion, we computed the difference in model performance by subtracting
the two maximal encoding performance (correlation) values for each
electrode across all 161 lags. This resulted in a distribution of 1,000
difference values between speech and language embeddings’ encod-
ing performance at each electrode. For each electrode, a P value was
computed as the percentile of the non-permuted maximum difference
valuesin encoding performance between speech and language embed-
dings across all lags from the null distribution of 1,000 difference
values. We used false discovery rate (FDR) correction to correct for
testing across multiple electrodes®. Electrodes with g-values less than
0.005 (significance of 0.01 standardized for the two-sided test) were
considered to have significant differences in model performance. We
used the same procedure to identify electrodes that showed a signifi-
cant difference in the magnitude of encoding performance between
speech production and comprehension.

Differences in lag-by-lag encoding performance

Totest for significant differencesin electrode-wise encoding perfor-
mance between the speech and language embeddings for each lag,
we used a paired-sample permutation procedure: in each permuta-
tion, we randomly shuffled the labels of all observations for both
models (we obtained a correlation coefficient for each fold during
a10-fold validation procedure, thus collecting 10 observations per
electrode for each model). Then, we computed the difference in
encoding performance between speech and language embeddings.
We computed the exact null distribution of different values for the
10 observations (2'° =1,024 permutations). For each lag, a P value
was computed as the percentile of the non-permuted difference
relative to the null distribution of 1,024 difference values. To correct
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for multiple lags, we used the FDR correction procedure®. Lags with
g-valuesless than 0.005 (significance of 0.01 for the two-sided test)
were considered significant.

We used a similar procedure to test for significant differences in
electrode-wise encoding performance for the speech and language
embeddings averaged across electrodes in different ROIs: we randomly
shuffled the labels of all observations (10 x n, where 10 is the number
offoldsand n corresponds to the number of electrodes inthe ROI) and
computed the difference in mean encoding performance between
the speech embeddings and language embeddings. This process was
repeated 10,000 times, resulting in a distribution of 10,000 difference
values. For each lag, a P value was computed as the percentile of the
non-permuted difference relative to the null distribution. FDR cor-
rection was applied to correct for multiple lags. Lags with g-values less
than 0.005 (significance of 0.01for the two-sided test) were considered
statistically significant.

Differences in the temporal lag of peak encoding performance
To test for significant differences in the temporal dynamics of encod-
ing performance between ROls, we performed independent-sample
t-tests. First, we hypothesized that peak encoding in IFG electrodes
would occur significantly earlier than in electrodes in somatomotor
and auditory areas for production. To test this hypothesis, we per-
formed anindependent-sample¢-test (one-sided) on the lags at peak
encoding for electrodes in the given ROIs. Second, we hypothesized
that for comprehension, peak encoding in electrodes in IFG would
occur significantly later than peak encoding in electrodes in SM and
STG. To test this hypothesis, we performed an independent-sample
t-test (one-sided) on the lags at peak encoding for electrodes in
the given ROIs. To test whether the peak encoding performance
for electrodes in a given ROl occurred significantly before or after
word onset, we performed one-sample t-tests (two-sided) on the
lags at peak encoding for electrodes in the given ROl against lag O
(word onset). Weremoved electrodes where the maximal lag exceeded
three interquartile ranges above or below the median to reduce the
influence of outliers.

Implementing comprehension encoding model during
production

Wetrained encoding models on speech comprehension datato further
investigate the shared mechanisms between speech production and
comprehension. We applied the beta weights of the best-performing
lag to predict neural activity during production. Notably, the 10-fold
cross-validation procedure was done on production and comprehen-
siondatatogether toavoid dataleakage. We identified electrodes show-
ingadouble peak during speech production (at least one peak before
and after word onset). We defined an encoding peak as alocal maximum
with a minimum correlation of 0.1 and a topographic prominence of
atleast 0.007. We implemented the peak-finding algorithm from the
Scipy-signals package in Python (Scipy v.1.11.4.).

Encoding models per speech unit

To test the temporal relationship between speech representation in
Whisper’s encoder and the brain, we constructed separate encoding
models for 20 encoder hidden states (eachreceiving 20 ms of the origi-
nal audio input in consecutive steps). All 20 encoder hidden states in
the original audioinput covered the range fromword onset to 400 ms
after word onset. Since there were more short words than long words
inour dataset, the sample size decreases for later temporal segments
(from 221,989 words for the encoding model corresponding to the
first unit to 24,089 words for the encoding model corresponding to
the 20th unit for production; and 276,812 words to 29,562 words for
comprehension). We used a temporal smoothing window of 200 ms
to average the neural signal. We replicated the results using a 20-ms
smoothing window.

Linear mixed model

We averaged encoding performance across all electrodes separately
for each patient and computed each model’s peak in encoding per-
formance. For production, we computed two encoding peaks (before
and after word onset), which align with our results showing a distinct
double peak during production. The preprocessing procedure intro-
duced a temporal uncertainty of 200 ms around word onset, where
information fromafter leakage after word onset is bounded by 100 ms.
Therefore, encoding peaks were defined as ‘before word onset’ when
occurring between -2,000 ms and 100 ms before word onset and
as ‘after word onset’ when occurring between -100 ms before and
2,000 ms after word onset. We computed the encoding peak between
-2,000 ms and 2,000 ms around word onset for comprehension. To
account for intersubject variability, we analysed time points of the
neural encoding peaks with linear mixed models (LMMs), including
arandom intercept per patient using restricted maximum likelihood
estimation. LMMs were implemented using the Statsmodels-regression
package (Statsmodels v.0.14.1) in Python.

Visualization of embedding space

We used ¢-SNE to project the high-dimensional embedding spaces down
to two-dimensional manifolds to visualize the information structure
represented in speech and language embeddings. This projection was
computed separately for the speech embeddings (from the encoder
network) and the language embeddings (from the decoder network).
Each data point in the scatterplots (Fig. 6 and Supplementary Fig. 9)
correspondstoaspeech orlanguage embedding for aunique word. We
averaged theembeddings across instances throughout the transcript
for eachunique word (n =13,347) to get one embedding per word. We
replicated the analysis using eachword’s first or randominstances and
obtained similar results. We then applied ¢-SNE to the averaged embed-
dings with perplexity = 50. To better understand the structure of this
two-dimensional space, we coloured the data points (corresponding to
word embeddings) according to several speech and language features:
phonemes, place of articulation, manner of articulation and part of
speech. Phonemes, PoA and MoA capture speech acousticand articu-
latory features, whereas PoS captures lexical categories. We obtained
phoneme classes from the Carnegie Mellon Pronouncing Dictionary*?,
which provides 39 classes (37 in our dataset). We further classified the
phonemes on the basis of their place of articulation (total of 9 classes
in our dataset) and manner of articulation (total of 9 classes in our
dataset) according to the general American English consonants of the
International Phonetic Alphabet. Because each word consists of multi-
ple phonemes, we took the first phoneme for each word. We replicated
the following visualizations and classification analyses for each word’s
second, third and fourth phonemes separately, and obtained similar
results. To extract part of speech information, we used the part of the
speech tagging process available in the NLTK Python package (total
of12classes, 11in our dataset). We removed classes with less than100
occurrences (lessthan1% of the data, resulting in 27 phoneme classes,
9 PoA classes, 9 MoA classes and 5 PoS classes).

Classification of speech and linguistic features

To quantify the information encoded in the embeddings, we trained
multinomial logistic regression classifiers (using the L2 penalty and
default C=1.0 in sci-kit-learn) to predict phonetic (phonemes, PoA,
MoA) and lexical categories (PoS) separately for both speech and lan-
guage embeddings. We used a10-fold cross-validation procedure with
temporally contiguous training/test folds to train and evaluate classifier
performance. On each fold of the cross-validation procedure, embed-
dings were standardized and reduced to 50 dimensions using PCA.
To establish a baseline for comparing classifier accuracy, we trained
dummy classifiers thatlearned to predict the most frequent class. Since
the distribution of classes in our dataset was unbalanced, we used the
balanced accuracy metric to evaluate classification performance®.
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Balanced accuracy was calculated as the proportion of correct pre-
dictions per class averaged across all classes. This resulted in a value
between 0 and 1, with higher values indicating better classification
performance. For instance, a random classifier that always predicts
the most frequent class will have a balanced accuracy of 1 divided by
the number of classes at the chance level. The balanced accuracy met-
ric assesses how well the classifier can differentiate between classes
while minimizing misclassifications due to unbalanced data. The clas-
sification significance was computed using a non-parametric boot-
strapping procedure where the labels of the classes tested (phoneme,
PoA, MoA, PoA) were shuffled 1,000 times and the classification score
was computed for each of the shuffle interactions. The actual score
(non-shuffled) was higher than allthe scoresinthe shuffled interactions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data contain patient-doctor conversations protected by HIPAA
privacy regulations. Due to the size and complexity of our recordings,
the data cannot be de-identified. Due to the sensitive nature of audio
conversation data, we canonly share datawith researchers who directly
contactthe corresponding author and complete asigned data-sharing
agreement with NYU Langone and onboard to our IRB. This process
ensures that datasharing complies with HIPAA terms and our IRB terms,
andthatadequateresourcesarein place to preventidentifiable patient
or audio datafromleaving the Hospital’s ecosystem.

All data for reproducing the encoding results including encoding
plots, error bars, thresholds and significance asterisks are available
onGitHub at https://github.com/hassonlab/247-plotting/blob/main/
scripts/tfspaper_whisper.ipynb.

Code availability

The codes for replicating the core analyses of this manuscript are avail-
able on GitHub at https://github.com/hassonlab/247-pickling/tree/
whisper-paper-1(forembedding extraction) and at https://github.com/
hassonlab/247-encoding/tree/whisper-paper-1(forencoding models).
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Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

/a | Confirmed

>

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

< A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Recordings from grid, strip and depth electrode arrays were acquired using one of two amplifier types: NicoletOne C64 clinical amplifier
(Natus Neurologics), band-pass filtered from 0.16—250Hz, and digitized at 512 Hz; NeuroWorks Quantum Amplifier recorded at 2,048 Hz, high-
pass filtered at 0.01Hz and then resampled to 512 Hz.

Data analysis Data were preprocessed using Matlab 2019b and The Fieldtrip toolbox (commit: 56769ab0s).
The Python packages used: Scipy v1.11.4, Statsmodels v0.14.1, nltk 3.9.1. Codes for:
For embedding extraction: https://github.com/hassonlab/247-pickling/tree/whisper-paper-1
For encoding models: https://github.com/hassonlab/247-encoding/tree/whisper-paper-1
For plotting: https://github.com/hassonlab/247-plotting/blob/main/scripts/tfspaper_whisper.ipyn

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The current dataset contains sensitive patient-doctor conversations protected under HIPAA regulations. De-identifying such a large naturalistic dataset is a
challenging task, and there is always a risk of researchers decoding sensitive information from neural signals. Therefore, we cannot make this dataset available to
public data archives. We are developing a data-sharing protocol with selected research groups to promote collaboration.
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Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Four patients (2 females (gender assigned based on medical record); 24—48 years old)
Sex or gender are not relevant variables to this study, and analysis was not done considering it.

Reporting on race, ethnicity, or  Four patients (2 females (gender assigned based on medical record); 24-48 years old)
other socially relevant

groupings

Population characteristics All the patients suffer from drug immune epilepsy. We select patients with intact cognitive faculty as determined by
neuropsychological tests that are done as part of the hospitalization process. Effects were not moderated by age.

Recruitment .Each participant provided informed consent following protocols approved by the New York University Grossman School of
Medicine Institutional Review Board. Patients were informed that participation in the study was unrelated to their clinical
care and that they could withdraw from the study without affecting their medical treatment. As the patients volunteer to the
experiment there is a potential to self-selection based on this trait. However, the researcher could not think how it could
impact the results.

Ethics oversight The study was approved by the NYU Grossman School of Medicine Institutional Review Board (approved protocol s14-02101)

which operates under NYU Langone Health Human Research Protections and Princeton University’s Review Board (approval
protocol 4962). Studies are performed in accordance with the Department of Health and Human Services policies and
regulations at 45 CFR 46. Before obtaining consent, all participants were confirmed to have the cognitive capacity to provide
informed consent by a clinical staff member. Participants provided oral and written informed consent before beginning study
procedures. They were informed that participation was strictly voluntary, and would not impact their clinical care.
Participants were informed that they were free to withdraw participation in the study at any time. All study procedures were
conducted in accordance with the Declaration of Helsinki.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|:| Life sciences Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description We used the recorded neural activity of four participants using dense intracranial arrays while they stayed in the hospital. Thisis a
quantitative research as we correlate the brain signal recorded with the representation induced by deep ASR model (whisper)

Research sample No statistical method was used to predetermine the sample size. We collected dozens of hours from each participants with dozens of
thousands of words which are the unit for the analysis. We demonsrate that the results can replicate per-patient and for fractions of
the sample size within parient (even as small as 25% from the obtained dataset).

Sampling strategy The sample is 4 patients that gave their consent for the audio recording of their speech




Data collection Recordings from grid, strip and depth electrode arrays were acquired using one of two amplifier types: NicoletOne C64 clinical
amplifier (Natus Neurologics), band-pass filtered from 0.16-250Hz, and digitized at 512 Hz; NeuroWorks Quantum Amplifier
recorded at 2,048 Hz, high-pass filtered at 0.01Hz and then resampled to 512 Hz.

The participants as well as the personal who interacted with the patients were not aware of the study hypothesis.

Timing Each patient came to the hospital at 2019. The recording was continous during their stay. The exact date of collection is an
identifiable information and should not be shared: https://privacyruleandresearch.nih.gov/pr_08.asp

Data exclusions No data was excluded

Non-participation No patients were removed.

Randomization As analyses can be seen for each participant (seperatly and together) there is no between particiapant analysis nor allocation to
conditions.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern
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Plants

Plants

Seed stocks NA

Novel plant genotypes  NA

Authentication NA
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