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Do humans learn like transformers? We trained both humans (n = 530) and
transformer networksonarule learning task where they had torespond to
aqueryinasequence. At test, we measured ‘in-context’ learning (generalize

therule tonovel queries) and ‘in-weights’ learning (recall past experiences
from memory). Manipulating the diversity and redundancy of examplesin
the training distribution, we found that humans and transformer networks
respond in very similar ways. In both types of learner, redundancy and
diversity trade off in driving in-weights and in-context learning, respectively,
whereas a composite distribution with a balanced mix of redundancy and
diversity allows the two strategies to be used in tandem. However, we also
found that while humans benefit from dynamic training schedules that
emphasize diverse examples early, transformers do not. So, while the same
data-distributional properties promote learning in humans and transformer
networks, only people benefit from curricula.

Therelationship between memory and reasoningis among the oldest
problemsin the cognitive sciences. Humans can make stronginductive
inferences, allowing them to reason about novel data—for example,
using the laws of calculus to compute integrals on a maths exam, or
applying grammar rules to understand a sentence never heard before.
However, the ability to encode and retain specific instances of past
experience in memory is also a critical hallmark of healthy cognitive
function. This duality was first articulated in the 1940s by Cattell, who
distinguished ‘crystallized’ from ‘fluid’ intelligence—the former index-
ingthe integrity of core skills and knowledge and the latter our ability
to reason beyond extant data’. This dichotomy prefigured seminal
dual-process frameworksin psychology and neuroscience, which sepa-
rated heuristics from rational computation®, information integration
fromrule-based categorization®, associative from symbolic processes*
and model-free from model-based reinforcement learning®. However,
the nature of the computations that allow humans (and perhaps other
animals) to use both memory and inductive inference to solve complex
problems remains an open question in psychology, neuroscience and
artificial intelligence research.

Throughout the twentieth century, symbolic systems that strictly
separated memory and inference remained popular®®, but connection-
ist models have since reemerged as theories of biological cognition®".
Neural networks can be trained either to store and retrieve information
from memory or to learn generalizable patterns in data”, doing so
by modifying their weights, which serves both to store information
and support generalization (‘in-weights’ learning). Nevertheless, one
surprising finding is that modern deep networks can be pretrained
to generalize over patterns in sequential data after just a few exam-
ples, a capacity (dubbed ‘in-context’ learning) that is reminiscent of
humaninductive inference'>"*. Rather than relying on weight updates,
in-context learning arises from the networks’ internal processing;:
it is best understood as an emergent result of meta-learning, where
training leads the network to ‘learn how to learn’ from the structure
ofitsinput, enabling it to perform few-shot learning without updating
its weights'*". In-context learning has come to prominence with the
arrival of anew neural network architecture known as the transformer.
Transformer networks use self-attention to compute how much each
tokeninasequence shouldinfluence the representation of every other
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token. This allows the model to integrate information across positions
and build context-aware representations at each layer'. Large trans-
former networks trained on giant text corporaare able to generate flu-
entsentences, equations or code on the fly” ", and it has been claimed
that these networks canmake inferences beyond their training datain
ways that resemble human fluid intelligence?®?. Conversely, the idea
that human cognition might emerge from a relatively undifferenti-
ated neural network architecture has once again become fashionable
in the neurosciences??. While the distinction between in-context
and in-weights learning is reminiscent of dual-process frameworks,
itisimportant to note that classical dual-system models do not make
specific predictions about how learning strategies should vary with
the statistical structure of the training data. This is the central focus
of our work.

Inarecentline of work, machinelearning researchers have studied
how the distributional properties of training data variously promote
in-weights (memory-based) and in-context (inference-based) learning
intransformer networks® . Using cleverly designed probes that can
distinguish the two types of learning, researchers have shown that
training distributions that involve lots of repetitions (redundancy)
promote in-weights learning, whereas distributions that involve lots
of diverse examples (diversity) promote in-context learning, with
hints that a sweet spot may exist in between. Here we asked whether
the results reported in these papers also hold true for human partici-
pants performing a comparable task. We found that human learners
and transformers respond to the training data distribution in remark-
ably similar ways, and that a near-identical manipulation allows both
humans and transformers to learnin-weights and in-context solutions
in tandem. However, we also observed an important dissociation:
humans, but not transformers, benefit from curricula that prioritize
diverse examples early onin training.

Results
Transformers trade offin-context and in-weights learning
depending on the training data distribution
We adapted a paradigm previously used to distinguish in-context
and in-weights learning in transformers®. On each trial, the learner is
prompted withasequence of {item: label} pairs, and then asingle item
isqueried foritslabel {item:?}. A real-world analogy might belearning
vocabulary items in a foreign language. For example, during training
the learner sees pairs such as the following:

oiseau: bird; chien: dog; chat: cat; poisson: fish; chat:?

(training trial)

Attest, we can evaluate both in-context and in-weights learning by
varying the novelty and familiarity of the sequences. These evaluations
occur without any feedback (or gradient updates). In-context learning
isindexed by zero-shot performance on previously unseen sequences
with comparable structure, such as:

katze: cat; hund: dog; vogel: bird; fisch: fish; katze:?
(in-context test trial)

By contrast, in-weights learning is quantified as a tendency to
repeat answers to queries previously experienced during training,
ignoring any contextual information:

pferd: horse; hund: dog; vogel: bird; fisch: fish; chat:?
(in-weights test trial)

We used this approach to study how the training data distribu-
tion influences the learning strategy used by transformer networks
and humans (Fig. 1a—c). Like previous studies involving transformers
only, we varied the diversity and redundancy of training examples.
Toillustrate, consider two extremes: a fully redundant distributionin
whichevery training trial contains the same item-label pair and a fully
diverse distribution in which every trial contains entirely novel item-
label pairs. We can interpolate between these extremes by sampling

trials from a rank-frequency (or Zipfian) distribution parameterized
by the exponent a, where a controls the skewness (Fig. 1a). At a =0,
the distribution is uniform (fully diverse); at a > 0, the distribution
is skewed, and in the limit of a > +, the distribution is concentrated
around one single example (fully redundant).

Using this task, we first attempted to replicate previously reported
findings using a simple transformer architecture comprising two
attention-only layers (one attention head each) followed by a classi-
fier (Fig. 1d and Extended Data Fig. 1). Inputs were coded as vectors
sampled from multidimensional Gaussian distributions (Methods). We
first confirmed that transformers were able to learn the task (Fig. 2a).
Indeed, ontrainingtrials, transformerslearned well irrespective of the
statistics of the training distribution (allaccuracies near100%, except
when a=1). However, at test, we found that performance varied sharply
with the distributional properties of the training data. Transformers
trained on a uniform distribution (a = 0) scored nearly perfectly on
in-context test trials (accuracy of 100%), whereas those trained on a
skewed distribution scored close to chance on these trials (-10% for
transformers trained on a > 1). By contrast, transformers trained on
auniformdistribution (a = 0) performed at chance on in-weights test
trials, whereas transformers trained on a skewed distribution scored
very highly (accuracy near 100% for transformers trained on a =4).
Inboth cases, a transition between these two regimes occurred close
to a =1, at which point approximately half of transformers learned to
solve the task, and halfremained at chance. These findings, which are
shown in Fig. 2a, replicate previous reports that the relative balance
between in-weights and in-context learning depends on the distribu-
tion of examplesin the training data®’*,

We also trained other classes of neural networks on the task,
including feed-forward architecture (multi-layer perceptron (MLP))
andlongshort-term memory (LSTM) networks. In general, these archi-
tectures had no difficulty learning the task, but none showed effective
in-context learning (Fig. 2c and Extended DataFig. 2). This result repli-
cates previous findings showing that neural architecture matters for
in-context learning®. It should be noted that in-context learning is not
exclusive to transformer networks—under specific conditions, both
feed-forward and recurrent architectures such as LSTM networks can
learn in-context®**, However, transformers adopt this strategy more
robustly and flexibly across a wider range of settings, including those
used in our study. This is probably due to the attention mechanism,
which explicitly provides an opportunity to integrate information
presentinthe context when processing the query (see the mechanistic
interpretability analysis below).

Humans trade off in-context and in-weights learningina
similar manner to transformers (Experiment 1)
Next, we designed a variant of the task that could be performed by
human participants, recruited via an online platform. The context
sequence was composed of seven alternatingimages (items) and num-
bers (labels) that were presented inaring. The query item was presented
centrally, inside the ring. During training, the query image was always
also presentinthe context (for example, ‘cat’in the example above; we
call this the ‘target image’). As shownin Fig. 1b, the correct (or target)
label was always located three steps clockwise from the target image.
Participants responded by pressing a digit between 0 and 9 on their
keyboard. They were notinstructed as to therulebut learned gradually
from fully informative feedback that was provided after each trial. Thus,
during training, agents could use two strategies to solve the task: they
could either memorize the class label for each image from the trialwise
feedback (in-weights learning), or they could learn the ‘+3 steps’ rule
toinfer the correct label from the context of any sequence, including
potentially novel sequences (in-context learning).

We used a between-group design, in which four groups (n=30
each, Experiment 1) experienced training distributions characterized
by different parameters a € {0, 1, 2, 4}. The results are presented in
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Fig.1|Paradigm. a, We studied learning in animage-label association task by
manipulating the distribution of the training data. Under a uniform distribution
(a=0), allimages are equally likely to appear. In skewed distributions, some
images are more likely than others (a > 0). b, Example training trial. In agiven
trial, agents were asked to select the label corresponding to the query image,
presented at the centre of the screen. Seven images and seven labels were also
presented in a surrounding circle (the context). During training, a copy of the
query image (the target image) was always present in the context. The correct
label was always located three steps clockwise relative to the target image (the
target label). ¢, Paradigm overview. During training, two learning strategies
areavailable. The in-context learning strategy consists in using the context to
infer the correct label—that s, using the ‘+3 steps’ rule. The in-weights learning
strategy consists in learning each image-label association in memory using
the feedback. Test blocks were designed to probe which strategy (or strategies)
the agent is using. On in-context test blocks, novel images (depicted in grey)
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were presented, such that the only way to be accurate was to use information
from the context—that s, the in-context strategy. On in-weights test blocks, a
training image (depicted in blue) was presented as the query image, but novel
images (depicted in grey) were presented in the context, such that the only way
to be accurate was to use information stored in memory—thatis, the in-weights
strategy. On arbitrage test blocks, a training image was presented as the query
image, and the context indicated a different label than the one that was presented
during training. This was done to reveal the dominant strategy used by the agent
when presented with conflicting evidence for the two strategies. d, A minimal
transformer model, composed of two attention-only layers of one attention head
each, was trained on the task. e, Accuracy curves for two example transformers
trained on two different training distributions, uniform (a = 0, left) and skewed
(a=4,right). When a < 1, transformers learn in-context but not in-weights.
Conversely, when a > 1, transformers learn in-weights but not in-context.

Fig.2b. Like transformer networks, humansinall four groups learned
to become proficient at the task. They had mostly reached a stable
level of accuracy by the final training block (average accuracy of
85.6 +2.3%), and the data distribution did not impact their perfor-
manceintraining (effect of a onaccuracy, = 0.247 £ 0.179; P= 0.168;
Bayes factor (BF), 0.042; ‘strong’ evidence in favour of an absence
of effect). Thus, as for transformers, manipulating the training data
distribution did notimmediately affect agents’ learning or their ability

to associateimages with labels, as performance remained consistent
regardless of a.

However, again like transformer networks, the performance of
human participants at test was greatly influenced by the training data
distribution. This was the case for both in-context test trials (effect of
aonaccuracy, f=-1.543+0.208, P= 0.0, BF > 100, ‘decisive’evidence)
and in-weights test trials (effect of a« on accuracy, f=1.89 + 0.106,
P=0.0, BF >100, ‘decisive’ evidence). Similar to transformers,
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Fig. 2| Transformers and humans trade offin-context and in-weights learning
depending on the training data distribution (Experiment1). a, Training and test
performances for transformers (n =30 per training data distribution). b, Same for
human participants (Exp. 1, n =30 per training data distribution). The small dots
indicate data fromindividual transformers/humans; the large dots indicate group

averages. ¢, Scatter plots of the in-context versus in-weights test performances for
feed-forward networks (left), LSTM networks (middle left), transformers (middle
right) and humans (right). Feed-forward and LSTM networks do not learnin-
context. Transformers and human participants trade off in-context and in-weights
learning. Each dotindicates data from anindividual model/human.

participants trained on a uniform distribution were very accurate
on in-context test trials (85.7 + 5.3% for the group trained on a = 0),
while participants trained on a skewed distribution were near chance
level (17.0 £ 3.9% for the group trained on a = 4). Conversely, on the
in-weights test, participants trained on a uniform distribution were
at chance level (7.26 + 0.8% for the group trained on a = 0), while par-
ticipants trained on a skewed distribution showed near-perfect per-
formance (97.4 + 0.8% for the group trained on a =4). Once again, a
transition between successful strategies occurred around a =1. These
findings arereportedin Fig. 2b.

To better understand what drives performance in the in-weights
test, we analysed accuracy as a function of item frequency during
training (Extended Data Figs. 3 and 4). Both transformer networks and

human participants performed better on frequent items, confirming
that they learned from repeated exposure.

Finally, we also used a class of test that we call an ‘arbitrage’ trial,
designed to disambiguate in-context and in-weights responding with
asingle query. Arbitrage test trials resembled in-weights test trials
in that the query matched examples in the training data, and so the
trial could be solved from memory. However, they also resembled
in-context test trials, in that the query item was repeated in the con-
text, sothatthe +3 rule could be applied. Crucially, the query item was
paired with a different label in the context than the one it was paired
with during training.

vogel: bird; hund: dog; chat: kitty; fisch: fish; chat:?

(arbitrage test trial)
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Arbitrage trials had no inherently correct answer but allowed us
to evaluate whether humans and transformer networks were using an
in-context or an in-weights approach to solve the trial. We posed this
type of trial to both human participants and transformer networks.
Note that this condition is nearly identical to set-ups used in recent
machinelearning studies: the ICL2’ trials inref. 30, the ‘Flip’ condition
inref.36 and the ‘Swap’ conditioninref. 35.

The results followed a similar pattern to those observed on
in-context and in-weights test trials. Transformers trained on uni-
formdata (a = 0) responded according to in-context learning and not
in-weights learning, whereas transformers trained on skewed data
(a>1) responded the other way around. Once again, transformers
trade off in-weights for in-context learning around a = 1. Similarly,
human participants responded according to in-context learning
when trained on auniformdistribution (a = 0) and progressively more
according to in-weights learning as the skewness of the distribution
increased (a > 0). Indeed, we observed a strong negative effect of «
on accuracy with respect to in-context learning (8 =-1.542 + 0.183,
P=0.0, BF >100, ‘decisive’ evidence) and a strong positive effect of
a on accuracy with respect to in-weights learning (8 =1.752 + 0.111,
P=0.0, BF >100, ‘decisive’ evidence). Note that these two accura-
cies do not necessarily sum to 1, as agents can respond according to
neither strategy.

To confirm the robustness of our findings, we conducted a pre-
registered replication of Experiment 1 with a new sample of human
participants (n =30 per training distribution; the preregistration is
available at AsPredicted no. 231356, https://aspredicted.org/rqgz-rdfk.
pdf). All key effects were replicated (Extended Data Fig. 4), including
the trade-off between in-context learning and in-weights learning as
afunction of the training distribution.

In-context and in-weights learning trade offin both humans
and transformer networks

Inallthree types of test trial, we observed a transitionin learning strate-
giesthat occurred around a = 1. At this point transformers and humans
seemto trade offin-context for in-weights learning. Thisimplies that
no (or very few) agents learn both strategies simultaneously. We con-
firmed that this was the case by plotting individual transformers’and
individual participants’ in-context test performance against their
in-weights test performance (Fig. 2c). The majority of transformers
were either purein-context learners (26.7%; cluster of red pointsin the
bottomrightin Fig. 2c) or pure in-weights learners (66.7%; cluster of
blue points in the top left in Fig. 2c), whereas just 6.7% learned both
strategies. Similarly, most human participants were clustered in two
groups, corresponding to in-context and in-weights learners (nega-
tive correlation between in-context and in-weights across the entire
cohort, $=-0.286 + 0.097, P=0.004, BF = 6.66, ‘strong’ evidence).
The majority of transformers and humans thus appear to trade off
between in-context and in-weights learning, favouring one strategy
depending on the data distribution.

Nevertheless, we noted that a few participants had good per-
formance in both tests (5/127, 4%), meaning that humans can in
principle learn both strategies simultaneously. Similarly, a few
transformers had better-than-chance—but poor—performance in
both tests (6.7%; cluster of grey pointsin Fig. 2c). These transformers
learned some image classes in-weights but also discovered a subopti-
malin-contextlearning strategy consistingin choosing one random
label from the context, reducing the chance performance from1/10
to-1/7, thusslightly improving performance. All these models were
trained with the critical value a =1 (on aside note, they are also the
models that did not reach perfect performance at the end of training;
Fig.2a). This suggests that transformers can alsoin principle learn
both strategiesindependently and at the same time, although a Zip-
fian distribution might not be optimal. This is what we explored in
Experiment 2.

Transformers and humans learn both strategies in tandem
when exposed to a non-Zipfian, composite training
distribution (Experiment 2)

Experiment1revealed thatatraining distribution with maximal diver-
sity (a = 0) promotes in-context learning, while training with high
levels of redundancy (a > 1) promotes in-weights learning. Crucially,
however, we see that in both humans and transformer networks, a
training distribution that advantages one type of learning seems to
impair the other, so that no (or very few) learners were able to acquire
both anin-weights and an in-context strategy. Inspired by this result,
we reasoned that a distribution that contains a mix of redundancy
and diversity might favour learning both strategies at the same time.
We thus moved beyond standard Zipfian distributions and created a
‘composite’ distribution where a fraction P, of the query images are
sampled from a uniform distribution (a = 0) and the remainder are
sampled from a skewed distribution (a, > 0) (Fig. 3a).

First, we trained the same transformer architecture on this com-
posite distribution. The results from a full sweep of parameters are
shown in Extended Data Fig. 5, but here we focus on the case where
P.=0.5and a, = 2. In contrast to what we observed with Zipfian distri-
butions, under this parameterization transformers performed well
in both in-context and in-weights test trials simultaneously. Plotting
individual transformers’ in-context test performance against their
in-weights test performance revealed alarge cluster of modelslocated
in the top-right corner (-31/50, 62%; Fig. 3d, left). These models have
high levels of accuracy in both in-context and in-weights. This confirms
that transformers are able to learn both strategies independently,
if exposed to a distribution containing both redundant and diverse
training examples.

Human participants trained on this composite distribution (Exper-
iment 2; Fig. 3b) also had high levels of accuracy for both in-context
test trials (65.6 + 5.9%) and in-weights trials (57.4 + 5.0%). Note that
this does not directly imply that participants learned both strategies
simultaneously, as what is true at the population level might not be
reflected at theindividual level—there could simply be two subgroups,
one learning in-context and one learning in-weights. We thus intro-
duced a ‘double learning index’ to quantify the amount of learning
of both strategies at the individual level. Formally, it was computed
asaproduct of the individual performance in-context and in-weights
trials scaled to account for chance level (Methods). The index varies
between O (when the individual is at chance in either one of the two
tests) and1(whentheindividual has perfect performancein both tests).
We confirmed that human participants had a greater double learning
index value when trained on a composite distribution (0.27 + 0.05
a.u.) than when trained on a uniform distribution (a =0, -0.02 + 0.01
a.u.; difference between groups, f=-0.295 + 0.066, P= 0.0, BF > 100,
‘decisive’ evidence) or a skewed distribution (a¢ =2, 0.08 £ 0.04 a.u.,
£=-0.191+0.067,P=0.005, BF >100, ‘decisive’ evidence) (Fig. 3c). We
further confirmed thathuman participants truly became ‘double learn-
ers’ by plotting individual participants’ in-context test performance
against their in-weights test performance (Fig. 3d). We observed a
large cluster of double-learners participants (17/50, 34%), located in
the top-right corner.

Humans, but not transformers, benefit from curricula that
prioritize diverse samples early onin training (Experiment 3)
We have so farinvestigated static, unstructured training regimes, where
examples are sampled independently and identically across training.
Next, we asked whether a dynamic training curriculum would improve
learning in transformers and humans. The question was whether the
order of presentation of the trials would influence performance—for
example, because learning one strategy interacts with the learning of
the other strategy. For that, we used the same composite distribution
aspreviously, known to promote the learning of both strategies, but we
manipulated the order of the skewed and uniform trials across training.
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Fig. 3 | Transformers and humans can learn both in-context and in-weights
when trained on a composite, non-Zipfian distribution (Experiment 2).

a, Composite distribution, where a fraction P, = 0.5 of the query images

are sampled from a uniform distribution (a = 0) and the rest from a skewed
distribution (a, = 2). This distribution contains redundant images, thus
promotingin-weights learning, but also rare, diverse images, thus promoting
in-context learning as well. b, Training and test performances of humans (Exp.
2,n=50)when training query images were sampled from this composite
distribution. On average, human participants became accurate in both in-context
and in-weights test blocks. The small dots indicate data fromindividuals;

the large dots indicate group averages. ¢, Double learning index for human

In-context test

participants trained on uniform (Uni, a = 0, Exp. 1, n =30), composite (Comp,
Exp. 2, n=50) and skewed distributions (Skw, a =2, Exp.1,n =30). Human
participants had agreater double learning index value when trainedon a
composite distribution than when trained on a uniform distribution (linear
regression with the group as a fixed effect, §=-0.295 + 0.066, P= 0.0, BF > 100,
‘decisive’ evidence) or a skewed distribution (8 =-0.191+ 0.067, P= 0.005,

BF >100, ‘decisive’ evidence).**P < 0.01; **P < 0.001. d, Scatter plots of the
in-context versus in-weights test performances for transformers (left) and
human participants (right). The dots indicate data from individual transformers/
humans. The stars indicate group averages for uniform (blue, a =0, Exp.1),
composite (pink, Exp. 2) and skewed distributions (red, a =2, Exp.1).

Specifically, we designed two training curricula for transformers.
Thefirst curriculum (C1) involved maximally diverse exemplarsin the
first half of the training (the ‘uniform part’ of the composite distribu-
tion, a = 0) and then more redundant exemplars in the second half of
the training (the ‘skewed part’ of the composite distribution, a, > 0).
The second curriculum (C2) reversed this ordering (Fig. 4a). Trans-
formers trained on these curricula failed to become double learners.
Indeed, the double learning index was near zero for all transformers,
and this was true for a wide range of «,, as shown in Fig. 4d. Even in
an extremely skewed regime (a, =4), transformers do not become
good doublelearners. Infact, thereis animportantinterference from
learning in initial trials. For example, when a = 4, 92% of the trials are
dominated by oneitem-label pair and >99% by the first five item-label
pairs, soin-weights learning should be straightforward. Nevertheless,
when initially trained on a uniform distribution (C1), transformer
networks failed to learn this task. These data are illustrated in Fig. 4e
and Extended Data Fig. 6, which shows the test performance of trans-
formers trained on C1 or C2 as training progresses. During the first
part of the Cltraining, transformers become purein-context learners
(the red curve goes to the bottom-right corner). In the second part
of the Cl training, transformers progressively forget the in-context
strategy as they learn in-weights (the red curve goes to the top-left
corner). Adouble-learning transformer would keep high performance
forin-context trials while learning in-weights (the red curve would go
to the top-right corner). We observed the same pattern in opposite
directions for transformers trained on C2 (the blue curve in Fig. 4e).
Thus, transformers converge towards one strategy during the first part
of the training according to the training distribution, but then forget
this strategy, showing a form of catastrophicinterference®,

We next used a similar approach to investigate this question in
humans (Experiment 3). Training was composed of four blocks: two
blocks where query images were sampled from a uniform distribution
(a=0) and two blocks from a skewed distribution (a, = 2). We then
defined a curriculum as a permutation of the block order, denoted
Cland C2 (Fig. 4a). We used a between-group design, in which two
groups of human participants (n = 50 per group) each experienced one
curriculum. Both groups thus experienced the same trials but not in
the same order. We preregistered our predictions prior to data collec-
tion (AsPredicted no.173550, https://aspredicted.org/yhvp-6y3y.pdf,
hypothesis H1). On the basis of pilot data, we predicted that C1would
favourin-contextlearning while notimpairing in-weights learning rela-
tiveto C2. Theresultsare showninFig.4b,c and reveal that, inline with
our predictions, participants trained on C1showed better performance
onin-context trials than participants trained on C2 (difference between
groups, f=-2.635+0.784, P=0.019, BF = 5.3, ‘substantial’ evidence, P
value Bonferroni corrected). This was also the case in arbitrage trials,
where participants trained on Clresponded more using thein-context
strategy than participants trained on C2 (difference between groups,
p=-2.676 +0.711, P=0.004, BF =12.1, ‘strong’ evidence). However,
participants in both groups had the same performance onin-weights
trials (difference between groups, f=0.096 + 0.428,P=1.0,BF = 0.019,
‘strong’ evidence).

These results suggest that, in line with our preregistered predic-
tions, a human curriculum that prioritizes diverse examples early on
intraining (C1) is beneficial for in-context learning while notimpairing
in-weights learning. We believe this reveals an asymmetry between
in-context and in-weights learning in humans. Participants can still
learn image-label associations even when they have discovered the
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Fig. 4| Humans, but not transformers, benefit from a training curriculum
promoting in-context learning first (Experiment 3). a, Training curricula
based on the composite distribution (P, = 0.5, a, > 0). The first curriculum

(C1) involved maximally diverse exemplarsin the first half of the training (the
uniform part of the composite distribution, a = 0) and then more redundant
exemplarsin the second half of the training (the skewed part of the composite
distribution, a; > 0). The second curriculum (C2) reversed this ordering. b, Two
groups of human participants (Exp. 3, n =50 per group) were exposed to two
training curricula, Cland C2 (composite distribution, P.= 0.5, a, = 2). Human
participants trained on C1showed better performance on in-context trials
than participants trained on C2 (logistic regression with the group as a fixed
effect, f=-2.635 + 0.784, P= 0.019, BF = 5.3, ‘substantial’ evidence, P value
Bonferroni corrected). They also responded more using the in-context strategy
inarbitrage trials (8 =-2.676 + 0.711, P= 0.004, BF =12.1, ‘strong’ evidence, P

C2: skewed (a,) - uniform

3 4 0 025 050 075 of training

In-context test

1.00

value Bonferroni corrected). However, both groups had similar performance
onin-weights trials (8=0.096 + 0.428, P=1.0, BF = 0.019, ‘strong’ evidence, P
value Bonferroni corrected). The small dots indicate data from individuals; the
large dots indicate group averages. NS, P> 0.05; *P < 0.05; **P < 0.01. NS, not
significant; prer., preregistered contrasts. ¢, Double learning index of human
participants (linear regression with the group as a fixed effect, §=-0.162 + 0.076,
P=0.036,BF =0.969).*P < 0.05. The small dots indicate data from individuals;
the large dots indicate group averages. d, Double learning index for transformers
trained on the C1 curriculum (left) and the C2 curriculum (right). Transformers
were trained with different values of a, for the skewed part of the composite
distribution. e, Test performances over the course of training of transformers
trained on C1 (red) and C2 (blue). The bold lines indicate group averages (n =20
transformers per curriculum). The arrows were manually added to emphasize the
direction of the trajectories.

in-context rule (C1) but have trouble discovering the in-context rule
if they are first exposed to a training regime that favours in-weights
learning (C2). For completeness, we tested all permutations of the
block order as well as two ‘interleaved’ curricula where uniform and
skewed distributions alternate during training (C3 and C4). Theresults
are presented in Extended Data Fig. 7 and show that no other group
contrasts were statistically significant (all P> 0.05, Bonferroni cor-
rected; Extended Data Table 1).

Transformers and humans use an induction mechanism for
in-context learning (Experiment 4)

One limitation of our comparison between transformers and humans
is that it offers little insight into the mechanisms by which in-context
learning is happening. To better understand the similarities between
transformers and humans, we studied the inference process as it
unfolds, using a mixture of tools from the emerging field of mechanistic
interpretability (in transformers)* and abehavioural mouse-tracking
study (in humans)*°. The results suggest that both humans and trans-
formers solve the task using atwo-step process composed of abinding
operation followed by a searching operation.

For transformers, we first trained a transformer on the a = O dis-
tribution to create a pure in-context learning model. We then inves-
tigated the attention patterns of its two attention heads during an
in-context learning test trial. Attention patterns can be illustrated as
square matrices that plot how the transformer weights information
abouteachitemiwhen predicting each otheritemj.First, inattention

head 1, the transformer associates each item with its corresponding
label, which is located three positions ahead: we observed in Fig. 5a
(matrix of attention head 1) that the attention weight for eachitem is
concentrated on the token that is three positions ahead. This reflects
a binding operation, where the attention head writes information
about each item into the embedding of its corresponding label***.
Crucially for the next step, it writes information about the target item
into the embedding of the target label. Second, in attention head 2,
the transformer searches for amatch between the query item and the
preceding context tokens. Since attention head 1 has already written
information about the target item into the embedding of the target
label, the match occurs at the target label’s location: in Fig. 5a (matrix
of attention head 2, last column), we see that the attention weights
for the query item are concentrated on the target label. The model
then reads the information stored at this label. This computational
architecture has been previously described in detail in refs. 41,42,44
and is referred to as an ‘induction head’. The two attention heads are
essentially implementing a minimal induction operation of the form
[AI[B]...[A] > [B]. This copying operationindeed solves our in-context
learning task ‘item; label; ... ;item:?".

For humans, we trained a new in-person group of participants
(Experiment 4, n=20) on a uniform distribution (a = 0) to induce
in-context learning, alongside a control group (n =20) who encoun-
tered askewed distribution (a = 2). For these participants, unlike in the
previous experiments, we used a mouse-tracking paradigm to reveal
the computational processes underlyinghumanin-contextinference

Nature Human Behaviour


http://www.nature.com/nathumbehav

Article

https://doi.org/10.1038/s41562-025-02359-3

Read out the associated label in the
residual stream of the query image

Logits

Gﬂ@ﬂ@ﬂ@ﬂ@ﬂﬁ@@ﬂ&

Attentionhead2 = ====== >

In-context test

Humans trained on a uniform
distribution (a = 0)

Search for the target image@ in

the residual streams and copy the
associated label

010E6Z0=eBe=0: ¢

Attention head1 ~ ——---o >

Write information about images in the

Trial start Trial end

Time

In-context test

Humans trained on a skewed
distribution (a = 2)

[
CD [30
O

residual stream of the token
located at +3 steps

Low

010620080 ¢

Input
15 tokens

Fig. 5| Transformers and humans use aninduction mechanism for in-
context learning (Experiment 4). a, Right, schematic representation of the
computations realized by a two-layer transformer performing in-context
learning. Left, attention matrices of both layers for the example sequence. The
transformer binds the representations of the images and the labels in attention
head1and searches for the target image in the context in attention head 2 (the
induction head). b, Cursor trajectories of participants revealing their attention
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trained on a uniform (a = 0) distribution. Participants search for the target image
inthe context and then associate it with the target label. Bottom, trajectories in
the in-context test block for participants trained on a skewed (a = 2) distribution
(Exp. 4, n =20 per group). Trajectories were aligned trial-by-trial toacommon
frame where the targetimage is located on the top of the context circle. The
small lines are individual average trajectories; the diamonds are group average
trajectories.

asitunfolds (Methods, Fig. 5b and Extended Data Fig. 8). In test trials,
the display was blurred and obscured, so that the locations of the
images and labels could be seen but not their content. Participants
were allowed to move asharp aperture with their mouse to reveal part
of the screen. Thus, similar to an eye-tracking device, tracking mouse
position allowed us to track whichinformation participants were view-
ingonthescreen.

First, we confirmed that the participants trained ona = 0 became
in-context learners, whereas the participants trained on a = 2 did not,
replicating once again the results of Experiment 1. Indeed, the train-
ing data strongly influenced performance on in-context test trials
(effect of e onaccuracy, f=-2.437 + 0.636, P= 0.0, BF =44.3, ‘strong’
evidence), in-weights test trials (8=2.262 + 0.129, P= 0.0, BF > 100,
‘decisive’evidence) and arbitrage test trials (effect of # onaccuracy with
respect to in-context learning, §=2.002 + 0.264, P= 0.0, BF > 100,
‘decisive’ evidence). Asin Experiment1, we confirmed that the training
distribution did not directly influence the performance at the end of
training (8=-0.09 £ 0.408, P=0.824, BF = 0.027, ‘strong’ evidence)
butonly the strategy used by the participants.

Mouse trajectories are depictedin Fig. 5b (top). Instep 1, after look-
ing at the query image, participants search for the targetimage in the
context.Instep 2, once they have found the targetimage, they aim for
thetargetlabellocated at +3 steps clockwise and give aresponse. Note
that these two steps correspond exactly to the two attention heads of
the transformer: step lisimplemented by attention head 2 (the search-
ing operation), and step 2 is implemented by attention head 1 (the

binding operation). We quantified the occurrence of these two steps
inhumans by counting the number of times the participant’s trajectory
hit the target image and the target label on in-context test trials. We
confirmed that participants trained on a = O hit the targetimage more
often (84.5 + 5.4%) thanthose trained on a =2 (43.0 + 9.8%) (effect of a
on the probability of a hit, =-2.117 + 0.591, P= 0.0, BF =17.3, ‘strong’
evidence). Similarly, participants trained on a = 0 hit the target label
more often (82.8 + 4.1%) than those trainedona =2 (32.6 + 8.4%) (effect
of a on the probability of a hit, f=-2.433 + 0.582, P=0.0, BF >100,
‘decisive’ evidence). The mouse-tracking data thus suggested that
participants trained on a uniform distribution (a = 0) were using a
two-step process, perhaps implementing an induction head similar
to transformer networks. However, one difference between humans
and transformer networks is that transformers bind all items with
their corresponding labels in the context, while humans only bind the
target image with the target label. This is because transformers are
parallel architectures, applying the same operation to all the tokens
atthe same time.

Finally, to test whether our findings generalize to more abstract
forms of reasoning, we trained transformers on a transitive inference
task. In this task, the model had to infer A > C from examples such as
A>Band B> Cpresented in the context. As in the main task, perfor-
mance depended on the training distribution: models trained on a
uniform distribution (a = 0) solved the task using in-context learn-
ing, while models trained on a skewed distribution (a > 1) relied on
in-weights learning. These results confirm that the link between
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training distribution and learning strategy holds even in tasks requir-
ing more abstract generalization (Extended Data Fig. 9).

Discussion

Transformers are feed-forward neural networks augmented with
self-attention that process long sequences of inputs in parallel. By
contrast, the brainmore closely resembles arecurrent neural network,
where inputs are necessarily processed over sequential time steps. A
priori, thereislittle reason to believe that humans and transformer net-
works wouldlearnin comparable ways. We were thus quite surprised to
find that their sensitivity to the distributional properties of the training
datawassosimilar. Both humans and transformer networks show the
same sensitivity to increasing skewness of the training distribution,
with atransition between in-weights and in-context learning occurring
inboth cases at a = 1. Both humans and transformer networks traded
in-weights for in-context learning when the training distribution was
Zipfian, butbothbecame double learners when trained on acomposite
distribution that jointly prioritized both diversity and redundancy in
the training samples. Finally, both humans and transformer networks
appear to use a binding-plus-searching operation to solve the task, as
revealed by mechanistic interpretability analysis (in transformers) and
analysis of viewing trajectories (in humans).

Previous studies using a similar methodology have argued that
a=1representsa ‘sweet spot’at which bothin-weights and in-context
learning are possible in transformers. We show here that what seems to
betrueatthelevel of the populationis not true at the individual model
level, as no single network learned both strategies in tandem using
Zipfian distributions. At a =1, some models converge to in-context
learning and some to in-weights learning, but every model trades off
one strategy for the other. We tried different model sizes and con-
firmed that this was also the case with larger and deeper models, with
and withoutinterleaved feed-forward layers between attention layers
(up to four attention heads per layer, up to ten layers; Extended Data
Figs.10 and 11). Furthermore, we used mechanistic interpretability to
confirmthat attention heads were performing either in-context learn-
ing or in-weights learning but never both. To test this, we quantified
thesimilarity betweenidealized attention patterns for in-context and
in-weights learning and observed the attention patterns of models
trained on different Zipfian distributions. The results are displayed
in Extended Data Fig. 12 and show that models trained on a <1are
similar to in-context learning heads, while models trained on a > 1
are similar to in-weights learning heads. Conversely, and in line with
ref. 30, we show that composite, non-Zipfian distributions promote
the learning of both strategies in tandem in transformers. While our
results are based on relatively small transformer models trained from
scratch, prior work suggests that many such behaviours generalize
to larger-scale settings®>***, We nonetheless caution that scaling and
pretraining introduce additional factors that may alter the dynamics
oflearning strategy selection.

Despite these striking similarities, transformers did not benefit
from curriculathat prioritized either diversity or redundancy inexam-
ples, whereas humans clearly did. This difference probably reflects a
well-known limitation of neural networks: catastrophic interference.
Oncetransformers settle on astrategy, they often forget earlier infor-
mation—especially whentrainingis blocked. In humans, early diversity
boosts generalization, even when redundancy comes later. In trans-
former networks, later training tends to overwrite earlier strategies,
making them less flexible to curriculum structure.

However, the broader failure of neural networks to benefit from
structured training remains a puzzle in machine learning. For exam-
ple, the BabyLM challenge (https://babylm.github.io/) is a competi-
tioninwhich machinelearning researchers attempt to train language
models with fewer than 100 million words. In its first iteration, many
of the entrants attempted to use some sort of curriculum, but none
were particularly successful*®. Recent theoretical work suggests that

curricula can help neural networks trained with gradient descent by
guiding learning dynamics early on, especially by increasing diversity
ininput directions during theinitial phase of training. This early diver-
sity helps steer the model towards useful solutions more efficiently®.
This implies that overparameterized deep neural networks (which
typically already begin with a very high-dimensional initialization in
weight space) are unlikely to benefit from curricula. However, this
problem remains unsolved, and how to structure training examples
to train neural networks more efficiently and effectively remains an
open question.

Our findings have two potentially important implications for
how people learn. The first is that for humans, as for transformers,
a curriculum that promotes both redundancy and diversity allows
people to learn strategies that rely on both memory and inference.
This speaks to a long-standing debate in education research, which
has asked whether schools should emphasize rote learning or critical
thinking*®. The answer implied by our datais that both are important.
Presenting diverse examples that teach students how to tackle new
problemsis crucial, but being able to retrieve information about past
experiences requires repetition. Of course, we cannot know whether
insights from the simple, stylized setting employed here would trans-
late to the classroom, but at least our work sets up a hypothesis that
could be tested in more translational settings.

The second finding provides an interesting caveat to this claim:
in humans, it is beneficial to provide diverse training examples early
on. Early diversity does not seem to be overwritten by repetition
that occurs later in training, whereas people that start learning from
repeated examples never quite master the task. It is likely that early
redundancy encourages learners to overfit to aspecific strategy, mak-
ingit more difficult to later embrace generalities. This result aligns with
recent findings on asymmetries between in-context and in-weights
learning. Specifically, Singh et al.*’ showed that in-context learning
tends to give way to in-weights learning asymptotically, but not the
reverse. Furthermore, Singh et al.*® showed that once amodel adopts
anin-weights learning strategy, it struggles to recover in-context learn-
ing—while the reverse transition remains possible. We observed a
similar pattern in humans: participants trained first on skewed data
(favouringin-weightslearning) failed to adopt in-context learning later,
but those trained first on uniform data (favouring in-contextlearning)
couldshiftstrategies. These findings suggest that early learning condi-
tions constrain later flexibility. We find this observation interesting,
but we are unsure about its generality. It would be interesting to test
whether this result replicates in other tasks involving a mixture of
in-weights and in-context learning.

Our work compares humans and transformer networks. We found
thatinoneinteresting respect—the emergence of in-weights learning
andin-context learning in response to the training data distribution—
they show some striking similarities. However, this should not be taken
to imply overlap between humans and transformers at the algorith-
mic level. Indeed, other classes of neural network, including simple
multi-layer perceptrons, may in principle be capable of in-context
learning**. Transformers are feed-forward networks with a highly
structured architecture based on self-attention, diverging sharply
from the recurrent, feedback-driven and biologically grounded com-
putations of the human brain. Nevertheless, the way that they trade
off memory-based strategies and inference-based strategies exhibits
surprising commonalities with how this happens in human cognition.

Methods

Stimuli and paradigm

Participants. Intotal, we collected data from 530 participants (121 for
Experiment 1,50 for Experiment 2,199 for Experiment 3,40 for Experi-
ment 4 and 120 for the replication of Experiment 1). The participants
were recruited on the crowdsourcing platform Prolific (https://app.
prolific.co/). The inclusion criteria included being between 18 and 40
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yearsold, reporting no neurological condition, being an English speaker,
beinglocated in the USA or the UK, not having participated in another
version of the task, having aminimal approval rate of 90% on Prolificand
having a minimum of five previous submissions on Prolific. Participants
received on average £10 per hour for their time and effort, including
a bonus on performance (£8.5 per hour for random performances
and £10.5 per hour for perfect performances). All experiments were
approved by the Medical Sciences Research Ethics Committee of the
University of Oxford (approval reference no. R50750/RE00S). Before
starting the experiment, informed consent was taken through an online
form, and the participantsindicated that they understood the goals of
the study, how to raise any questions, how their data would be handled
and that they were free to withdraw from the experiment at any time.

Stimuli. We selected 2,000 pictures from the Common Objects in
Context dataset™. The pictures represented a large variety of items
(animals, people, landscapes, food and objects). The images were
cropped and scaled to 300 x 300 pixels.

Procedure. JavaScript online experiments. The experiments were
writteninJavaScript, usingjsPsych (version 7.3.1, https://www.jspsych.
org/7.3/)”!, and hosted on a web server. The scripts are available at
https://osf.io/xb43k.

Instructions. The participants were instructed that the task was deter-
ministic. The exact instructions were “This task is a learning task. You
may have poor performances at the beginning but you willimprove over
the course of the experiment. On each trial, you will see a sequence of
images and numbers. Your task is to press on the correct number on
your keyboard, from 0 to 9. The rule determining which number you
have to choose is 100% deterministic. This means that once you have
discovered the rule, you will have 100% of correct responses.”

Maintask.Oneachtrial, the participants were presented with animage
at the centre of the screen (the query image) surrounded by seven
images and seven labels arranged in a ring (the context). The partici-
pants were asked to select the correct label associated with the query
image by pressing on their keyboard among ten possible labels: {0’,
1,2,3,4,'5,'6’,'7',‘8,‘9’}. Trials consisted of the following events: (1)
ablack loading screen for 500 ms, (2) stimulus presentation (query
image and context) and response recording until aresponse was made,
and (3) trialwise feedback for 1,000 ms. The stimuli remained visible on
screen during feedback. For trials without trialwise feedback, a black
screen was presented for 1,000 ms instead of the feedback screen. In
training blocks, the participantsreceived blockwise feedback on their
performance in the last block on top of trialwise feedback.
Four block types were presented:

« Training blocks. The query images were sampled from a Zipfian
distribution with parameter a (see below). A copy of the query
image (the target image) was always present in the context. The
location of this target image was sampled uniformly from the
seven possible locations. The six other images in the context were
sampled uniformly from our pool of 2,000 images. The correct
label was always located three steps clockwise from the target
image (the target label). The other six labels in the context also
followed the same rule: each was located three steps clockwise
fromits corresponding context image. The three-steps-clockwise
rule and the use of seven context images were chosen on the basis
of pilot data to avoid trivial or symmetry-based rules that led to
rapid learning. Fully informative trialwise feedback was provided
during training: after each trial, the participants were shown
whether their response was correct or incorrect, as well as the
correct response. Blockwise feedback was also given after each
block during training. The mapping between images and labels
was arbitrary and not semantically meaningful.

« In-context test blocks. The query images were novel images
sampled uniformly from unseen images during training. A copy
of this query image (the target image) was always present in the
context. The location of the target image was sampled uniformly
from the seven possible locations. The six other images in the
context were sampled uniformly from our pool of 2,000 images.
The correct label was always located three steps clockwise from
the target image (the target label). The other six labels in the
context were sampled uniformly between O and 9. No feedback
was given during in-context test blocks.

« In-weights test blocks. The query images were old images

sampled from the same Zipfian distribution as the training. No

target image was present in the context. The seven images in the
context were sampled uniformly from our pool of 2,000 images.

The seven labels in the context were sampled uniformly between

0 and 9. No feedback was given during in-weights test blocks.

Arbitrage test blocks. The query images were old images sam-

pled from the same Zipfian distribution as the training. A copy

of the query image (the target image) was always present in the
context. The location of this target image was sampled uni-
formly from the seven possible locations. The six other images

in the context were sampled uniformly from our pool of 2,000

images. The seven labels in the context were sampled uniformly

between 0 and 9. No feedback was given during arbitrage test
blocks.

Rank-frequency (Zipfian) distribution. Intraining blocks, query images
were sampled from arank-frequency (Zipfian) distribution of param-
eter a. A Zipfian distribution on N elements assigns to the element of
rank k (counting from 1) the probability:

1 1

SN, a) = mk_ﬂ

where H, . is anormalization constant and is equal to the Nth general-
ized harmonic number. When a = 0, the distribution is the uniform
distribution. When a > 0, the distribution is skewed, with larger values
of a associated with a higher degree of skewness. On 150 trials, the
frequency rankings were as follows:

« For a=0, the distribution was uniform, and the frequency of the
imageswas|[1,1,1, ...,1,1] (allimages are novel and appear once).

« For =1, the distribution was skewed, and the frequency of the
images sorted in decreasing order was [25,13,9,7,5,5,4,4, 3,3,
3,3,2,2,2,2,2,2,2,2,2,2,2,2,1,1,...].

« For a =2, the distribution was skewed, and the frequency of the
images sorted in decreasing order was [92, 23,11, 6,4,3,2,2,2,
11..1.

» For a=4, the distribution was highly skewed, and the frequency
of the images sorted in decreasing order was [139, 9, 2].

Experiment1and Experiment 1 replication.In Experiment1, training con-
sisted of five blocks of 30 trials (150 training trials in total). Participants
were assigned randomly to one of four groups (between-participant
design), corresponding to four distributions of the query images dur-
ing training: a Zipfiandistributionwitha € {0, 1,2, 4}. After training, the
participants performed the three test blocks: one in-context test block
of 30 trials, onein-weights test block (30 trials) and one arbitrage test
block (30 trials). The order of the test blocks was randomized across
participants.

Experiment 2. In Experiment 2, training consisted of four blocks of 30
trials (120 training trials in total). Query images during training were
sampled from a composite distribution—that is, 60 trials with query
images sampled from a uniform distribution (a = 0) and 60 trials with
queryimages sampled from askewed distribution (a = 2). The order of
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alltrials was shuffled for each participant, meaning both distributions
were fully interleaved. After training, the participants performed the
threetest blocks: onein-context test block of 30 trials, one in-weights
test block (30 trials) and one arbitrage test block (30 trials). Query
imagesin the in-weights and arbitrage test blocks were sampled from
the skewed distribution (a = 2). The order of the test blocks was rand-
omized across participants.

Experiment 3.In Experiment 3, training consisted of four blocks of 30
trials (120 training trials in total). Two types of training blocks were
presented: training blocks with query images sampled froma uniform
distribution (a = 0) and training blocks with query images sampled
from a skewed distribution (a = 2). Participants were assigned ran-
domly to one of four groups (between-participant design), corre-
sponding to four training curricula: C1 (the first block is skewed, the
secondblockis skewed, the third block is uniform and the fourth block
isuniform), C2 (uniform, uniform, skewed, skewed), C3 (skewed, uni-
form, skewed, uniform) and C4 (uniform, skewed, uniform, skewed).
After training, the participants performed the three test blocks:
one in-context test block of 30 trials, one in-weights test block (30
trials) and one arbitrage test block (30 trials). Query images in the
in-weights and arbitrage test blocks were sampled from the skewed
distribution (a =2). The order of the test blocks was randomized
across participants.

Experiment 4. In Experiment 4, training consisted of five blocks of
30 trials (150 training trials in total). Participants were assigned
randomly to one of two groups (between-participant design), cor-
responding to two distributions of the query images during training:
aZipfiandistribution with a € {0, 2}. After training, the participants
performed the three test blocks: one in-context test block of 30
trials, one in-weights test block (30 trials) and one arbitrage test
block (30 trials). The order of the test blocks was randomized across
participants. During the test blocks, we used MouseView.js** to track
the attention of the participants on the screen during stimulus pres-
entation. For that, the display was blurred and obscured so that the
locations of images and labels could be seen but not their content.
The participants were allowed to move a sharp aperture with their
mouse to reveal part of the screen. We used the default parameter
values of MouseView.js, withan aperture of size 15% (roughly the size
of animage on the screen).

Preregistrations. The replication of Experiment 1 was preregistered
on AsPredicted (no. 231356, https://aspredicted.org/rqgz-rdfk.pdf).
Experiment 3 was also preregistered on AsPredicted (no. 173550,
https://aspredicted.org/yhvp-6y3y.pdf). Allhypotheses and planned
analyses are publicly available in the corresponding preregistration
documents.

Neural networks
Our model was largely based on the work of Reddy*°, whichinvestigated
the mechanistic basis of in-context learning in transformers.

Stimuli. The network was trained to predict the label ‘label,’ of a query
item ‘item, given anaalternating sequence of Nimages and Nlabels:
item;; label;; item,; label,; ... ; itemy; label,; item:?

The images and labels were embedded in D + P dimensions. The
first D dimensions encoded content, while the latter P dimensions
encoded positional information. Position was encoded by a one-hot
P-dimensional vector. Images were D-dimensional vectors sampled
independent and identically from a D-dimensional Gaussian distribu-
tionwithmean O and variance 1. Each of the Kimages was assigned one
oftheLlabels (L < K).Labels were drawn prior to training and were also
sampled independent and identically from a D-dimensional Gaussian
distribution with mean O and variance 1.

Architecture. The inputs were passed through a two-layer attention-
only network of intrinsic dimensionality D,, followed by a classifier.
Each attention layer had one attention head with a causal mask. The
classifier was composed of two fully connected layers with ReLU acti-
vations and D, hidden units each. The last layer was a fully connected
layer that predicted the probabilities of the L labels.

We also tested aninterleaved MLP model (Extended Data Fig.11),
where eachattention layer was followed by afeed-forward (MLP) block
consisting of two dense layers with Dy, units (with ReLU activation), a
residual connection and alayer normalization step.

Mimicking our human experiment, the dimensions of the problem
were set to L =10 and N=7. The dimensions of the inputs were set to
K=2"and D =8.The dimension of the model was set to D,, = 16.

Training. The network was trained using a cross-entropy loss. For train-
ing, we used a batch size of 128 and the Adam optimizer with alearning
rate of 0.01. The models were trained on 5,000 steps.

Alternative models. We compared the performance of the transformer
network with two other architectures, keeping the number of layers and
total number of parameters fixed: a two-layer feed-forward fully con-
nected network with ReLU activations, and atwo-layer LSTM network.
Allmodels were trained on the same data and evaluated using the same
procedure as the transformer, including positional encodings in their
input representations.

The feed-forward model received the entire input sequence flat-
tenedintoasingle vector. Thestandard LSTMreceived inputs oneitem
atatime, with the query presented last, matching the set-up used for
transformers and human participants. We also tested a query-first
LSTM variant, where the query appeared at the start of the sequence,
followed by the context items. This was designed to test whether know-
ingthetarget query early would help the model focus onrelevant con-
textand learnanin-context strategy. Despite these variations, none of
the models showed reliable in-context learning (Extended DataFig. 2).

Transitive inference task. We designed a second modelling task to
test whether the effects of training distribution on learning strategy
generalize beyond the image-label association setup. In this task,
each training environment consisted of six unique images, each with
an implicit rank. The model received ten training triplets per trial,
each expressing a one-step comparison betweenimages (for example,
‘image 4 >image 3’), followed by aquery that required a two-step transi-
tive inference (for example, ‘image 4 ?image 2').
Oneach trial, the model received:

» Acontext of one-step comparisons between image pairs froma
single environment (for example, ‘image 4 >image 3’ ‘image 3 >
image2).

« Aqueryrequiring a two-step inference (for example, ‘image 4 ?
image 2’), where the model had to choose the correct relational
symbol (>’ or ‘<’).

We manipulated the training distribution by varying the skewness
(Zipf exponent a) of how often each environment appeared during
training, following the same logic as in our main task. At test, three
types of blocks were used:

« In-context test: the context came from a novel environment,
so the only way to respond correctly was to use in-context
learning.

» In-weights test: the query pair had been seen during training,
but the context came from a novel environment; accuracy
relied on memorized pair-label associations.

« Arbitrage test: environments were reused from training but
with reversed item orders (for example, ‘image 4 <image 3'),
to probe which strategy dominated when in-context and
in-weights learning gave conflicting answers.
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We used the same architecture, training set-up and evaluation
metrics as in the image-label association task. The full results are
presented in Extended DataFig. 9.

Statistical analysis
Outliers. No outliers were removed from the analyses.

Model selection. Statistical analyses were done using R version 4.4.2
(ref.53) and the package Ime4 (ref. 54). For all analyses, model complex-
ity was monitored using the Bayesian information criterion (BIC), a
standard measure to arbitrate between complexity and accuracy. The
reported Pvalues are Satterthwaite approximations. We alsoreport the
BF for each effect as approximated using the difference betweenthe BIC
ofthe model with the effect BIC,and the model without the effect BIC,
and defined as BF = exp((BIC, — BIC,)/2). The BF quantifies the support
ofthe datainfavour of an effect. We followed ref. 55 for the interpreta-
tionof its values: BF > 3, BF >10 and BF > 100 were respectively taken as
substantial, strong and decisive evidencein favour of aneffect (BF < 0.3,
BF <0.1and BF < 0.01as evidencein favour of the absence of an effect).

Accuracy. In Experiment1and Experiment 4, the probability of being
correct (0, incorrect; 1, correct) was modelled as anindependent logis-
tic regression for each block type, with a as a fixed effect and one
random intercept per participant.

In Experiment 3, the probability of being correct was modelled as
anindependent logistic regression for eachblock type and each group
contrast, with the group as a fixed effect and one random intercept
per participant. We applied a Bonferroni correction to correct for
multiple comparisons.

Power analysis. The sample size for the replication of Experiment 1
was determined via power simulations based on data from Experiment
1, assuming a 50% smaller effect size than observed in that study. The
simulations suggested a minimum of 10-20 participants per group,
depending on the block. To ensure robust power across all analyses,
we conservatively set the sample size to 30 per group.

Double learning index. We defined a double learning index as a
value between O (no double learning) and 1 (perfect performance in
bothin-contextandin-weights test trials). For each participant, it was
defined as:

D = scale(mc) x scale(myy)

scale(m) = m — chance
1— chance
where m,. is the average performance of the participant in the
in-context test trials, m,, is the average performance of the participant
in the in-weights test trials and ‘scale’ is a linear mapping accounting
for chancelevel (‘chance’,here 10%). Becauseitisa product, thisindex
is O if either of the two performances is at chance (and thus non-zero
onlyifboth performances are above chance).
In Experiment 2and Experiment 3, the double learning index was
modelled as alinear regression with the group as a fixed effect.

Mouse trajectories. For visualization purposes, trial-by-trial cursor
trajectories were first rotated in a common frame where the target
image was located on the top of the context circle and then resampled
to100 time points between the start and the end of the trial using linear
interpolation. A ‘hit’ trial was defined as the target image being at a
minimum distance of20% of the screen height at least one time during
the trial. In Experiment 4, the probability of a hit (0, no hit; 1, hit) was
modelled as a logistic regression for in-context test trials, with @ as a
fixed effect and one random intercept per participant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The anonymized data, materials and preregistration documents are
all available via OSF at https://osf.io/xb43k.

Code availability
The scripts for stimulus presentation and data analysis are available
via OSF at https://osf.io/xb43k.
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Extended Data Fig. 1| Example learning curves for multiple transformer

networks. Accuracy curves for multiple example transformer networks trained
on different training distributions, uniform (a = 0, top row), moderately skewed
(a=1, middle row) and skewed (a =2, bottom row). In-context test performance

and arbitrage test performance (with respect to in-context learning) strongly
overlap. Over the course of training, in-context test performance trade-off with
in-weights test performance.
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Extended Data Fig. 3 | Performance as afunction of the image frequency
during training. a,b, Training and test performances for transformers

(top, N=30 per training data distribution) and human participants (bottom,
Exp.1,N =30 per training data distribution) as a function of the frequency of the
image during training. For each value of a, test items were grouped by how often
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they appeared during training. For example, in a=2:‘top 1’ corresponds to the
image that was seen 92 times during training, ‘top 2-4’ to images that were seen
~13 times, and ‘top 5-10" to images that were seen -2 times. Large dots are group
average. Errorsares.e.m.
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Extended DataFig. 4 | Replication of Experiment 1. a. Training and test
performances of human participants (bottom, replication of Exp.1,N=30 per

0.138,p=0.0,BF >100, ‘decisive’ evidence), a negative effect of # onaccuracy
with respect toin-context learning in arbitrage blocks (8=-1.097 + 0.168,

training data distribution). Small dots are individuals, large dots are group
average. Our pre-registered effects (AsPredicted #231356, https://aspredicted.
org/rqgz-rdfk.pdf) were all verified. In particular, there was a negative effect of &

on accuracy inin-context test block (3=-1.145+0.208, p=0.0, BF >100, ‘decisive’

evidence), a positive effect of @ on accuracy inin-weights test block (=1.786 +

p=0.0,BF>100, ‘decisive’ evidence), and a positive effect of « on accuracy with
respect toin-weights learning in arbitrage blocks (5=1.669 + 0.128, p= 0.0, BF >
100, ‘decisive’ evidence). b. Training and test performances as a function of the
frequency of the image during training. c. Scatter plots of the in-context vs in-
weights test performances. Each dot is an individual model/human.
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Extended Data Fig. 7 | Performance of human participants in all curricula.
a.Four groups of human participants (Exp. 3, N =50 per group) were exposed
toacomposite distribution (Pc=0.5, as = 2) with different training curricula,
thatis different block order, denoted C1to C4 (‘uniform’, a =0; ‘skewed’, as =2).
b. Performance during training per curriculum. c. Double learning index per

curriculum. n.s. p>0.05,* p<0.05,* p<0.01, **p< 0.001.d. Training and test
performances for humans per curriculum. A curriculum that promotes learning
firstin-context and then in-weights improves the in-context performance
without impairing in-weights learning. Small dots are individuals, large dots are
group average.n.s.p>0.05,*p<0.05,*p<0.01,**p<0.001.
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Extended Data Fig. 9| Modelling results in a transitive inference task. a. We
replicated our modelling results in a distinct task probing transitive inference.
As inthe image-label association task (Fig. 1), we manipulated the distribution
of the training data: under a uniform distribution (@ = 0), all environments are
equally likely; under a skewed distribution (a >>0), some environments are
more frequent. Each environment consisted of siximages ordered along an
underlying dimension. b. Example training trial. The context presented ten
triplets, each comprising two images and a symbol, corresponding to all one-step
comparisons within a given environment (for example, ‘image 4 >image 3'). The
query consisted of atwo-step comparison (for example, ‘image 4 ? image 2’),
and the model had to select the correct relational symbol (>’ or ‘<’). c. Paradigm
overview. During training, two learning strategies are available. The ‘in-context’
learning strategy consists in using local comparison given in the context to
infer the correct relational symbol via transitive inference (for example, relying

on ‘image 4 >image 3’ and ‘image 3 >image 2’ to infer ‘image 4 >image 2’). The
‘in-weighs’ learning strategy consists in learning the association between pairs
ofimages and relational symbols in memory using the feedback. Test blocks
were designed to probe which strategy(ies) the modelis using. Onin-context test
blocks, images from novel environments (depicted in grey) were presented, such
that the only way to be accurate is to use information from the context, a.k.a. the
in-context strategy. On in-weights test blocks, a training pair (depicted in blue)
was presented as the query pair butimages from novel environments (depicted
ingrey) were presented in the context, such that the only to be accurate is to use
information stored in memory, a.k.a. the in-weights strategy. On ‘arbitrage’ test
blocks, a trained environment was presented but the order of the images was
reversed (for example, ‘image 4 <image 3’). d. Training and test performances
for transformers (N =30 per training data distribution). Small dots are individual
transformers, large dots are group average.
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Extended Data Fig. 10 | Performance of transformers with varying
architecture sizes. Scatter plots of the in-context vs in-weights test
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Extended Data Fig. 11| Performance of transformers with interleaved MLP

with varying architecture sizes. The MLP blocks consist of two dense layers with

aReLU activation, followed by a residual connection and layer normalization.

Scatter plots of the in-context vs in-weights test performances for transformers

with varying numbers of layers, number of heads per layers, and varying training

0.0 T T T 00 T T T T
000 025 050 075 100 000 025 050 075  1.00
In-context test In-context test
distributions. Each dot represents amodel trained with a specific number of
layers, attention heads, and training data distribution. Dot color indicates
the a exponent of the training distribution. Dotted lines indicate chance-level
performance.
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Extended Data Fig. 12| Similarity score with respect to idealised attention
patterns. (left) Similarity score between observed attention patterns (N=

10 transformers per training distribution) and idealised attention patterns
performing in-context learning. (right) Same with idealised attention patterns
performing in-weights learning. The similarity score was a dot product
normalised by the £1-norm of the idealised head. Models trained on a <1were

Zipf exponent a

similar to in-context learning heads while models trained on a >1were similar
toin-weights learning. Results were less clear for in-weights learning head #1
because these heads tended to have more diverse patterns (attention spread to
all tokens, or restricted to some tokens, and most of the time restricted to the last
token).
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Extended Data Table 1| Pairwise comparisons between curricula (Experiment 3)

Complete results of the pairwise comparisons between curricula (Experiment 3). Each row reports the effect size (8), standard error (SE), uncorrected p-value (p), and Bayes Factor (BF).

B SE p BF
In-context test blocks
C1vs C2 -2.635 0.784 0.001 5.348
C1vs C3 -1.261 0.95 0.185 0.045
C1vs C4 -1.953 0.917 0.033 0.176
C2vs C3 1.495 0.73 0.041 0.138
C2vs C4 0.796 0.713 0.264 0.034
C3vs C4 -0.691 0.824 0.402 0.024
In-weights test blocks
C1vs C2 0.096 0.428 0.822 0.019
C1vs C3 0.06 0.455 0.895 0.019
C1vs C4 0.793 0.342 0.02 0.244
C2vs C3 -0.036 0.441 0.935 0.019
C2vs C4 0.702 0.329 0.033 0.164
C3vs C4 0.731 0.358 0.041 0.137
Aribtrage test blocks (w.r.t.
in-context)
C1vs C2 -2.676 0.71 0 12.133
C1vs C3 -0.559 0.77 0.468 0.023
C1vs C4 -1.563 0.704 0.026 0.188
C2vs C3 2.122 0.712 0.003 1.221
C2vs C4 1.093 0.65 0.093 0.072
C3vs C4 -1.007 0.705 0.153 0.049
Aribtrage test blocks (w.r.t.
in-weights)
C1vsC2 1.397 0.475 0.003 1.129
C1vs C3 0.675 0.441 0.126 0.058
C1vs C4 1.185 0.432 0.006 0.658
C2vs C3 -0.715 0.461 0.121 0.06
C2vs C4 -0.203 0.451 0.652 0.02
C3vs C4 0.51 0.42 0.224 0.038

Bonferroni-corrected p-values are used in the main text to ensure a consistent and conservative analysis.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Give P values as exact values whenever suitable.

|X| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|X| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Participants were recruited on the crowdsourcing platform Prolific (https://app.prolific.co/
). The experiments were written in JavaScript, using jsPsych (version 7.3.1, https://www.jspsych.org/7.3/
), 44, and hosted on a web server.

Data analysis Data analysis was done using custom scripts in Python available at https://osf.io/xb43k.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Anonymized data, materials and pre-registration documents are available at https://osf.io/xb43k.
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Population characteristics No covariates included.

Recruitment Participants were recruited on the crowdsourcing platform Prolific (https://app.prolific.com).

Ethics oversight All experiments were approved by the Medical Sciences Research Ethics Committee of the University of Oxford (approval

reference R50750/REQ0Q5). Before starting the experiment, informed consent was taken through an online form, and
participants indicated that they understood the goals of the study, knew how to raise any questions, how their data would be
handled, and that they were free to withdraw from the experiment at any time.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|:| Life sciences Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Describe how sample size was determined, detailing any statistical methods used to predetermine sample size OR if no sample-size calculation
was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data exclusions | Describe any data exclusions. If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

Replication Describe the measures taken to verify the reproducibility of the experimental findings. If all attempts at replication were successful, confirm this
OR if there are any findings that were not replicated or cannot be reproduced, note this and describe why.

Randomization | Describe how samples/organisms/participants were allocated into experimental groups. If allocation was not random, describe how covariates
were controlled OR if this is not relevant to your study, explain why.

Blinding Describe whether the investigators were blinded to group allocation during data collection and/or analysis. If blinding was not possible,
describe why OR explain why blinding was not relevant to your study.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Quantitative experimental study.

Research sample Inclusion criteria included being between 18 and 40 years old, reporting no neurological condition, being an English speaker, being
located in the US or the UK, not having participated in another version of the task, having a minimal approval rate of 90% on Prolific,
and having a minimum of 5 previous submissions on Prolific. These criteria were chosen to ensure participants could understand task
instructions (native English), reduce variability due to neurological conditions, and include individuals with sufficient prior experience
on Prolific to provide reliable data. As participants were recruited via Prolific, the sample may over-represent younger, English-
speaking, and more internet-active individuals (potential selection bias).

Sampling strategy The sampling was random. Sample size was determined based on a pilot study and chosen to provide adequate power to detect
medium-sized effects. The sample size for the replication of Experiment 1 was determined via power simulations based on data from
Experiment 1, assuming a 50% smaller effect size than observed in that study. The simulations suggested a minimum of 10-20
participants per group, depending on the block. To ensure robust power across all analyses, we conservatively set the sample size to
30 per group.




Data collection All data were collected online on the crowdsourcing platform Prolific (https://app.prolific.co/
). During data collection, participants were blind to the experimental condition. No members of the study team were present when
participants were performing the task.

Timing Data collection took place between the 31/01/2024 and the 31/05/2024.
Data exclusions No data were excluded from the analysis.

Non-participation All experiments consisted of one session only (no dropout).
Randomization Allocation to experimental conditions was randomized.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.
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Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,

describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.
Timing and spatial scale |/ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your studly.

Did the study involve field work? |:| Yes |:| No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).
Access & import/export | Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.




Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |:| |:| ChIP-seq
Eukaryotic cell lines |:| |:| Flow cytometry
Palaeontology and archaeology |:| |:| MRI-based neuroimaging
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Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method, if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall




numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:
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[ ] Public health

[ ] National security
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|:| Ecosystems
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Plants

Seed stocks

Novel plant genotypes

Authentication

ChlP-seq

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied.
Describe-any-atthentication-procedtres foreach seed stock tised-ornovel-genotype generated-—Describe-any-experiments-tised-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links

For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,

May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session
(e.g. UCSC)

Methodology

Replicates

Sequencing depth
Antibodies
Peak calling parameters

Data quality

Software

Flow Cytometry

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
enable peer review. Write "no longer applicable" for "Final submission" documents.

Describe the experimental replicates, specifying number, type and replicate agreement.

Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.

Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and
lot number.

Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
used.

Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community
repository, provide accession details.

Plots
Confirm that:

|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation
Instrument

Software

Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Identify the instrument used for data collection, specifying make and model number.

Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.
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Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.q. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] Used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based | | Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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