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Shared sensitivity to data distribution  
during learning in humans and  
transformer networks
 

Jacques Pesnot Lerousseau    1,2,3   & Christopher Summerfield    1 

Do humans learn like transformers? We trained both humans (n = 530) and 
transformer networks on a rule learning task where they had to respond to 
a query in a sequence. At test, we measured ‘in-context’ learning (generalize 
the rule to novel queries) and ‘in-weights’ learning (recall past experiences 
from memory). Manipulating the diversity and redundancy of examples in 
the training distribution, we found that humans and transformer networks 
respond in very similar ways. In both types of learner, redundancy and 
diversity trade off in driving in-weights and in-context learning, respectively, 
whereas a composite distribution with a balanced mix of redundancy and 
diversity allows the two strategies to be used in tandem. However, we also 
found that while humans benefit from dynamic training schedules that 
emphasize diverse examples early, transformers do not. So, while the same 
data-distributional properties promote learning in humans and transformer 
networks, only people benefit from curricula.

The relationship between memory and reasoning is among the oldest 
problems in the cognitive sciences. Humans can make strong inductive 
inferences, allowing them to reason about novel data—for example, 
using the laws of calculus to compute integrals on a maths exam, or 
applying grammar rules to understand a sentence never heard before. 
However, the ability to encode and retain specific instances of past 
experience in memory is also a critical hallmark of healthy cognitive 
function. This duality was first articulated in the 1940s by Cattell, who 
distinguished ‘crystallized’ from ‘fluid’ intelligence—the former index-
ing the integrity of core skills and knowledge and the latter our ability 
to reason beyond extant data1. This dichotomy prefigured seminal 
dual-process frameworks in psychology and neuroscience, which sepa-
rated heuristics from rational computation2, information integration 
from rule-based categorization3, associative from symbolic processes4 
and model-free from model-based reinforcement learning5. However, 
the nature of the computations that allow humans (and perhaps other 
animals) to use both memory and inductive inference to solve complex 
problems remains an open question in psychology, neuroscience and 
artificial intelligence research.

Throughout the twentieth century, symbolic systems that strictly 
separated memory and inference remained popular6–8, but connection-
ist models have since reemerged as theories of biological cognition9,10. 
Neural networks can be trained either to store and retrieve information 
from memory or to learn generalizable patterns in data11, doing so 
by modifying their weights, which serves both to store information 
and support generalization (‘in-weights’ learning). Nevertheless, one 
surprising finding is that modern deep networks can be pretrained 
to generalize over patterns in sequential data after just a few exam-
ples, a capacity (dubbed ‘in-context’ learning) that is reminiscent of 
human inductive inference12,13. Rather than relying on weight updates, 
in-context learning arises from the networks’ internal processing: 
it is best understood as an emergent result of meta-learning, where 
training leads the network to ‘learn how to learn’ from the structure 
of its input, enabling it to perform few-shot learning without updating 
its weights14,15. In-context learning has come to prominence with the 
arrival of a new neural network architecture known as the transformer. 
Transformer networks use self-attention to compute how much each 
token in a sequence should influence the representation of every other 
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trials from a rank-frequency (or Zipfian) distribution parameterized 
by the exponent α, where α controls the skewness (Fig. 1a). At α = 0, 
the distribution is uniform (fully diverse); at α > 0, the distribution 
is skewed, and in the limit of α → +∞, the distribution is concentrated 
around one single example (fully redundant).

Using this task, we first attempted to replicate previously reported 
findings using a simple transformer architecture comprising two 
attention-only layers (one attention head each) followed by a classi-
fier (Fig. 1d and Extended Data Fig. 1). Inputs were coded as vectors 
sampled from multidimensional Gaussian distributions (Methods). We 
first confirmed that transformers were able to learn the task (Fig. 2a). 
Indeed, on training trials, transformers learned well irrespective of the 
statistics of the training distribution (all accuracies near 100%, except 
when α = 1). However, at test, we found that performance varied sharply 
with the distributional properties of the training data. Transformers 
trained on a uniform distribution (α = 0) scored nearly perfectly on 
in-context test trials (accuracy of 100%), whereas those trained on a 
skewed distribution scored close to chance on these trials (~10% for 
transformers trained on α > 1). By contrast, transformers trained on 
a uniform distribution (α = 0) performed at chance on in-weights test 
trials, whereas transformers trained on a skewed distribution scored 
very highly (accuracy near 100% for transformers trained on α = 4). 
In both cases, a transition between these two regimes occurred close 
to α = 1, at which point approximately half of transformers learned to 
solve the task, and half remained at chance. These findings, which are 
shown in Fig. 2a, replicate previous reports that the relative balance 
between in-weights and in-context learning depends on the distribu-
tion of examples in the training data30,32.

We also trained other classes of neural networks on the task, 
including feed-forward architecture (multi-layer perceptron (MLP)) 
and long short-term memory (LSTM) networks. In general, these archi-
tectures had no difficulty learning the task, but none showed effective 
in-context learning (Fig. 2c and Extended Data Fig. 2). This result repli-
cates previous findings showing that neural architecture matters for 
in-context learning32. It should be noted that in-context learning is not 
exclusive to transformer networks—under specific conditions, both 
feed-forward and recurrent architectures such as LSTM networks can 
learn in-context34,35. However, transformers adopt this strategy more 
robustly and flexibly across a wider range of settings, including those 
used in our study. This is probably due to the attention mechanism, 
which explicitly provides an opportunity to integrate information 
present in the context when processing the query (see the mechanistic 
interpretability analysis below).

Humans trade off in-context and in-weights learning in a 
similar manner to transformers (Experiment 1)
Next, we designed a variant of the task that could be performed by 
human participants, recruited via an online platform. The context 
sequence was composed of seven alternating images (items) and num-
bers (labels) that were presented in a ring. The query item was presented 
centrally, inside the ring. During training, the query image was always 
also present in the context (for example, ‘cat’ in the example above; we 
call this the ‘target image’). As shown in Fig. 1b, the correct (or target) 
label was always located three steps clockwise from the target image. 
Participants responded by pressing a digit between 0 and 9 on their 
keyboard. They were not instructed as to the rule but learned gradually 
from fully informative feedback that was provided after each trial. Thus, 
during training, agents could use two strategies to solve the task: they 
could either memorize the class label for each image from the trialwise 
feedback (in-weights learning), or they could learn the ‘+3 steps’ rule 
to infer the correct label from the context of any sequence, including 
potentially novel sequences (in-context learning).

We used a between-group design, in which four groups (n = 30 
each, Experiment 1) experienced training distributions characterized 
by different parameters α ∈ {0, 1, 2, 4}. The results are presented in 

token. This allows the model to integrate information across positions 
and build context-aware representations at each layer16. Large trans-
former networks trained on giant text corpora are able to generate flu-
ent sentences, equations or code on the fly17–19, and it has been claimed 
that these networks can make inferences beyond their training data in 
ways that resemble human fluid intelligence20,21. Conversely, the idea 
that human cognition might emerge from a relatively undifferenti-
ated neural network architecture has once again become fashionable 
in the neurosciences22,23. While the distinction between in-context 
and in-weights learning is reminiscent of dual-process frameworks, 
it is important to note that classical dual-system models do not make 
specific predictions about how learning strategies should vary with 
the statistical structure of the training data. This is the central focus 
of our work.

In a recent line of work, machine learning researchers have studied 
how the distributional properties of training data variously promote 
in-weights (memory-based) and in-context (inference-based) learning 
in transformer networks24–33. Using cleverly designed probes that can 
distinguish the two types of learning, researchers have shown that 
training distributions that involve lots of repetitions (redundancy) 
promote in-weights learning, whereas distributions that involve lots 
of diverse examples (diversity) promote in-context learning, with 
hints that a sweet spot may exist in between. Here we asked whether 
the results reported in these papers also hold true for human partici-
pants performing a comparable task. We found that human learners 
and transformers respond to the training data distribution in remark-
ably similar ways, and that a near-identical manipulation allows both 
humans and transformers to learn in-weights and in-context solutions 
in tandem. However, we also observed an important dissociation: 
humans, but not transformers, benefit from curricula that prioritize 
diverse examples early on in training.

Results
Transformers trade off in-context and in-weights learning 
depending on the training data distribution
We adapted a paradigm previously used to distinguish in-context 
and in-weights learning in transformers32. On each trial, the learner is 
prompted with a sequence of {item: label} pairs, and then a single item 
is queried for its label {item:?}. A real-world analogy might be learning 
vocabulary items in a foreign language. For example, during training 
the learner sees pairs such as the following:

oiseau: bird; chien: dog; chat: cat; poisson: fish; chat:?
(training trial)

At test, we can evaluate both in-context and in-weights learning by 
varying the novelty and familiarity of the sequences. These evaluations 
occur without any feedback (or gradient updates). In-context learning 
is indexed by zero-shot performance on previously unseen sequences 
with comparable structure, such as:

katze: cat; hund: dog; vogel: bird; fisch: fish; katze:?
(in-context test trial)

By contrast, in-weights learning is quantified as a tendency to 
repeat answers to queries previously experienced during training, 
ignoring any contextual information:

pferd: horse; hund: dog; vogel: bird; fisch: fish; chat:?
(in-weights test trial)

We used this approach to study how the training data distribu-
tion influences the learning strategy used by transformer networks 
and humans (Fig. 1a–c). Like previous studies involving transformers 
only, we varied the diversity and redundancy of training examples. 
To illustrate, consider two extremes: a fully redundant distribution in 
which every training trial contains the same item–label pair and a fully 
diverse distribution in which every trial contains entirely novel item–
label pairs. We can interpolate between these extremes by sampling 
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Fig. 2b. Like transformer networks, humans in all four groups learned 
to become proficient at the task. They had mostly reached a stable 
level of accuracy by the final training block (average accuracy of 
85.6 ± 2.3%), and the data distribution did not impact their perfor-
mance in training (effect of α on accuracy, β = 0.247 ± 0.179; P = 0.168; 
Bayes factor (BF), 0.042; ‘strong’ evidence in favour of an absence 
of effect). Thus, as for transformers, manipulating the training data 
distribution did not immediately affect agents’ learning or their ability 

to associate images with labels, as performance remained consistent 
regardless of α.

However, again like transformer networks, the performance of 
human participants at test was greatly influenced by the training data 
distribution. This was the case for both in-context test trials (effect of 
α on accuracy, β = −1.543 ± 0.208, P = 0.0, BF > 100, ‘decisive’ evidence) 
and in-weights test trials (effect of α on accuracy, β = 1.89 ± 0.106, 
P = 0.0, BF > 100, ‘decisive’ evidence). Similar to transformers, 
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Fig. 1 | Paradigm. a, We studied learning in an image–label association task by 
manipulating the distribution of the training data. Under a uniform distribution 
(α = 0), all images are equally likely to appear. In skewed distributions, some 
images are more likely than others (α > 0). b, Example training trial. In a given 
trial, agents were asked to select the label corresponding to the query image, 
presented at the centre of the screen. Seven images and seven labels were also 
presented in a surrounding circle (the context). During training, a copy of the 
query image (the target image) was always present in the context. The correct 
label was always located three steps clockwise relative to the target image (the 
target label). c, Paradigm overview. During training, two learning strategies 
are available. The in-context learning strategy consists in using the context to 
infer the correct label—that is, using the ‘+3 steps’ rule. The in-weights learning 
strategy consists in learning each image–label association in memory using 
the feedback. Test blocks were designed to probe which strategy (or strategies) 
the agent is using. On in-context test blocks, novel images (depicted in grey) 

were presented, such that the only way to be accurate was to use information 
from the context—that is, the in-context strategy. On in-weights test blocks, a 
training image (depicted in blue) was presented as the query image, but novel 
images (depicted in grey) were presented in the context, such that the only way 
to be accurate was to use information stored in memory—that is, the in-weights 
strategy. On arbitrage test blocks, a training image was presented as the query 
image, and the context indicated a different label than the one that was presented 
during training. This was done to reveal the dominant strategy used by the agent 
when presented with conflicting evidence for the two strategies. d, A minimal 
transformer model, composed of two attention-only layers of one attention head 
each, was trained on the task. e, Accuracy curves for two example transformers 
trained on two different training distributions, uniform (α = 0, left) and skewed 
(α = 4, right). When α < 1, transformers learn in-context but not in-weights. 
Conversely, when α > 1, transformers learn in-weights but not in-context.
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participants trained on a uniform distribution were very accurate 
on in-context test trials (85.7 ± 5.3% for the group trained on α = 0), 
while participants trained on a skewed distribution were near chance 
level (17.0 ± 3.9% for the group trained on α = 4). Conversely, on the 
in-weights test, participants trained on a uniform distribution were 
at chance level (7.26 ± 0.8% for the group trained on α = 0), while par-
ticipants trained on a skewed distribution showed near-perfect per-
formance (97.4 ± 0.8% for the group trained on α = 4). Once again, a 
transition between successful strategies occurred around α = 1. These 
findings are reported in Fig. 2b.

To better understand what drives performance in the in-weights 
test, we analysed accuracy as a function of item frequency during 
training (Extended Data Figs. 3 and 4). Both transformer networks and 

human participants performed better on frequent items, confirming 
that they learned from repeated exposure.

Finally, we also used a class of test that we call an ‘arbitrage’ trial, 
designed to disambiguate in-context and in-weights responding with 
a single query. Arbitrage test trials resembled in-weights test trials 
in that the query matched examples in the training data, and so the 
trial could be solved from memory. However, they also resembled 
in-context test trials, in that the query item was repeated in the con-
text, so that the +3 rule could be applied. Crucially, the query item was 
paired with a different label in the context than the one it was paired 
with during training.

vogel: bird; hund: dog; chat: kitty; fisch: fish; chat:?
(arbitrage test trial)
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Fig. 2 | Transformers and humans trade off in-context and in-weights learning 
depending on the training data distribution (Experiment 1). a, Training and test 
performances for transformers (n = 30 per training data distribution). b, Same for 
human participants (Exp. 1, n = 30 per training data distribution). The small dots 
indicate data from individual transformers/humans; the large dots indicate group 

averages. c, Scatter plots of the in-context versus in-weights test performances for 
feed-forward networks (left), LSTM networks (middle left), transformers (middle 
right) and humans (right). Feed-forward and LSTM networks do not learn in-
context. Transformers and human participants trade off in-context and in-weights 
learning. Each dot indicates data from an individual model/human.
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Arbitrage trials had no inherently correct answer but allowed us 
to evaluate whether humans and transformer networks were using an 
in-context or an in-weights approach to solve the trial. We posed this 
type of trial to both human participants and transformer networks. 
Note that this condition is nearly identical to set-ups used in recent 
machine learning studies: the ‘ICL2’ trials in ref. 30, the ‘Flip’ condition 
in ref. 36 and the ‘Swap’ condition in ref. 35.

The results followed a similar pattern to those observed on 
in-context and in-weights test trials. Transformers trained on uni-
form data (α = 0) responded according to in-context learning and not 
in-weights learning, whereas transformers trained on skewed data 
(α > 1) responded the other way around. Once again, transformers 
trade off in-weights for in-context learning around α = 1. Similarly, 
human participants responded according to in-context learning 
when trained on a uniform distribution (α = 0) and progressively more 
according to in-weights learning as the skewness of the distribution 
increased (α > 0). Indeed, we observed a strong negative effect of α 
on accuracy with respect to in-context learning (β = −1.542 ± 0.183, 
P = 0.0, BF > 100, ‘decisive’ evidence) and a strong positive effect of 
α on accuracy with respect to in-weights learning (β = 1.752 ± 0.111, 
P = 0.0, BF > 100, ‘decisive’ evidence). Note that these two accura-
cies do not necessarily sum to 1, as agents can respond according to 
neither strategy.

To confirm the robustness of our findings, we conducted a pre-
registered replication of Experiment 1 with a new sample of human 
participants (n = 30 per training distribution; the preregistration is 
available at AsPredicted no. 231356, https://aspredicted.org/rqgz-rdfk.
pdf). All key effects were replicated (Extended Data Fig. 4), including 
the trade-off between in-context learning and in-weights learning as 
a function of the training distribution.

In-context and in-weights learning trade off in both humans 
and transformer networks
In all three types of test trial, we observed a transition in learning strate-
gies that occurred around α = 1. At this point transformers and humans 
seem to trade off in-context for in-weights learning. This implies that 
no (or very few) agents learn both strategies simultaneously. We con-
firmed that this was the case by plotting individual transformers’ and 
individual participants’ in-context test performance against their 
in-weights test performance (Fig. 2c). The majority of transformers 
were either pure in-context learners (26.7%; cluster of red points in the 
bottom right in Fig. 2c) or pure in-weights learners (66.7%; cluster of 
blue points in the top left in Fig. 2c), whereas just 6.7% learned both 
strategies. Similarly, most human participants were clustered in two 
groups, corresponding to in-context and in-weights learners (nega-
tive correlation between in-context and in-weights across the entire 
cohort, β = −0.286 ± 0.097, P = 0.004, BF = 6.66, ‘strong’ evidence). 
The majority of transformers and humans thus appear to trade off 
between in-context and in-weights learning, favouring one strategy 
depending on the data distribution.

Nevertheless, we noted that a few participants had good per-
formance in both tests (5/127, 4%), meaning that humans can in 
principle learn both strategies simultaneously. Similarly, a few 
transformers had better-than-chance—but poor—performance in 
both tests (6.7%; cluster of grey points in Fig. 2c). These transformers 
learned some image classes in-weights but also discovered a subopti-
mal in-context learning strategy consisting in choosing one random 
label from the context, reducing the chance performance from 1/10 
to ~1/7, thus slightly improving performance. All these models were 
trained with the critical value α = 1 (on a side note, they are also the 
models that did not reach perfect performance at the end of training; 
Fig. 2a). This suggests that transformers can also in principle learn 
both strategies independently and at the same time, although a Zip-
fian distribution might not be optimal. This is what we explored in  
Experiment 2.

Transformers and humans learn both strategies in tandem 
when exposed to a non-Zipfian, composite training 
distribution (Experiment 2)
Experiment 1 revealed that a training distribution with maximal diver-
sity (α = 0) promotes in-context learning, while training with high 
levels of redundancy (α > 1) promotes in-weights learning. Crucially, 
however, we see that in both humans and transformer networks, a 
training distribution that advantages one type of learning seems to 
impair the other, so that no (or very few) learners were able to acquire 
both an in-weights and an in-context strategy. Inspired by this result, 
we reasoned that a distribution that contains a mix of redundancy 
and diversity might favour learning both strategies at the same time. 
We thus moved beyond standard Zipfian distributions and created a 
‘composite’ distribution where a fraction Pc of the query images are 
sampled from a uniform distribution (α = 0) and the remainder are 
sampled from a skewed distribution (αs > 0) (Fig. 3a).

First, we trained the same transformer architecture on this com-
posite distribution. The results from a full sweep of parameters are 
shown in Extended Data Fig. 5, but here we focus on the case where 
Pc = 0.5 and αs = 2. In contrast to what we observed with Zipfian distri-
butions, under this parameterization transformers performed well 
in both in-context and in-weights test trials simultaneously. Plotting 
individual transformers’ in-context test performance against their 
in-weights test performance revealed a large cluster of models located 
in the top-right corner (~31/50, 62%; Fig. 3d, left). These models have 
high levels of accuracy in both in-context and in-weights. This confirms 
that transformers are able to learn both strategies independently, 
if exposed to a distribution containing both redundant and diverse 
training examples.

Human participants trained on this composite distribution (Exper-
iment 2; Fig. 3b) also had high levels of accuracy for both in-context 
test trials (65.6 ± 5.9%) and in-weights trials (57.4 ± 5.0%). Note that 
this does not directly imply that participants learned both strategies 
simultaneously, as what is true at the population level might not be 
reflected at the individual level—there could simply be two subgroups, 
one learning in-context and one learning in-weights. We thus intro-
duced a ‘double learning index’ to quantify the amount of learning 
of both strategies at the individual level. Formally, it was computed 
as a product of the individual performance in-context and in-weights 
trials scaled to account for chance level (Methods). The index varies 
between 0 (when the individual is at chance in either one of the two 
tests) and 1 (when the individual has perfect performance in both tests). 
We confirmed that human participants had a greater double learning 
index value when trained on a composite distribution (0.27 ± 0.05 
a.u.) than when trained on a uniform distribution (α = 0, −0.02 ± 0.01 
a.u.; difference between groups, β = −0.295 ± 0.066, P = 0.0, BF > 100, 
‘decisive’ evidence) or a skewed distribution (α = 2, 0.08 ± 0.04 a.u., 
β = −0.191 ± 0.067, P = 0.005, BF > 100, ‘decisive’ evidence) (Fig. 3c). We 
further confirmed that human participants truly became ‘double learn-
ers’ by plotting individual participants’ in-context test performance 
against their in-weights test performance (Fig. 3d). We observed a 
large cluster of double-learners participants (17/50, 34%), located in 
the top-right corner.

Humans, but not transformers, benefit from curricula that 
prioritize diverse samples early on in training (Experiment 3)
We have so far investigated static, unstructured training regimes, where 
examples are sampled independently and identically across training. 
Next, we asked whether a dynamic training curriculum would improve 
learning in transformers and humans. The question was whether the 
order of presentation of the trials would influence performance—for 
example, because learning one strategy interacts with the learning of 
the other strategy. For that, we used the same composite distribution 
as previously, known to promote the learning of both strategies, but we 
manipulated the order of the skewed and uniform trials across training.
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Specifically, we designed two training curricula for transformers. 
The first curriculum (C1) involved maximally diverse exemplars in the 
first half of the training (the ‘uniform part’ of the composite distribu-
tion, α = 0) and then more redundant exemplars in the second half of 
the training (the ‘skewed part’ of the composite distribution, αs > 0). 
The second curriculum (C2) reversed this ordering (Fig. 4a). Trans-
formers trained on these curricula failed to become double learners. 
Indeed, the double learning index was near zero for all transformers, 
and this was true for a wide range of αs, as shown in Fig. 4d. Even in 
an extremely skewed regime (αs = 4), transformers do not become 
good double learners. In fact, there is an important interference from 
learning in initial trials. For example, when α = 4, 92% of the trials are 
dominated by one item–label pair and >99% by the first five item–label 
pairs, so in-weights learning should be straightforward. Nevertheless, 
when initially trained on a uniform distribution (C1), transformer 
networks failed to learn this task. These data are illustrated in Fig. 4e 
and Extended Data Fig. 6, which shows the test performance of trans-
formers trained on C1 or C2 as training progresses. During the first 
part of the C1 training, transformers become pure in-context learners 
(the red curve goes to the bottom-right corner). In the second part 
of the C1 training, transformers progressively forget the in-context 
strategy as they learn in-weights (the red curve goes to the top-left 
corner). A double-learning transformer would keep high performance 
for in-context trials while learning in-weights (the red curve would go 
to the top-right corner). We observed the same pattern in opposite 
directions for transformers trained on C2 (the blue curve in Fig. 4e). 
Thus, transformers converge towards one strategy during the first part 
of the training according to the training distribution, but then forget 
this strategy, showing a form of catastrophic interference37,38.

We next used a similar approach to investigate this question in 
humans (Experiment 3). Training was composed of four blocks: two 
blocks where query images were sampled from a uniform distribution 
(α = 0) and two blocks from a skewed distribution (αs = 2). We then 
defined a curriculum as a permutation of the block order, denoted 
C1 and C2 (Fig. 4a). We used a between-group design, in which two 
groups of human participants (n = 50 per group) each experienced one 
curriculum. Both groups thus experienced the same trials but not in 
the same order. We preregistered our predictions prior to data collec-
tion (AsPredicted no. 173550, https://aspredicted.org/yhvp-6y3y.pdf, 
hypothesis H1). On the basis of pilot data, we predicted that C1 would 
favour in-context learning while not impairing in-weights learning rela-
tive to C2. The results are shown in Fig. 4b,c and reveal that, in line with 
our predictions, participants trained on C1 showed better performance 
on in-context trials than participants trained on C2 (difference between 
groups, β = −2.635 ± 0.784, P = 0.019, BF = 5.3, ‘substantial’ evidence, P 
value Bonferroni corrected). This was also the case in arbitrage trials, 
where participants trained on C1 responded more using the in-context 
strategy than participants trained on C2 (difference between groups, 
β = −2.676 ± 0.711, P = 0.004, BF = 12.1, ‘strong’ evidence). However, 
participants in both groups had the same performance on in-weights 
trials (difference between groups, β = 0.096 ± 0.428, P = 1.0, BF = 0.019, 
‘strong’ evidence).

These results suggest that, in line with our preregistered predic-
tions, a human curriculum that prioritizes diverse examples early on 
in training (C1) is beneficial for in-context learning while not impairing 
in-weights learning. We believe this reveals an asymmetry between 
in-context and in-weights learning in humans. Participants can still 
learn image–label associations even when they have discovered the 
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Fig. 3 | Transformers and humans can learn both in-context and in-weights 
when trained on a composite, non-Zipfian distribution (Experiment 2).  
a, Composite distribution, where a fraction Pc = 0.5 of the query images 
are sampled from a uniform distribution (α = 0) and the rest from a skewed 
distribution (αs = 2). This distribution contains redundant images, thus 
promoting in-weights learning, but also rare, diverse images, thus promoting 
in-context learning as well. b, Training and test performances of humans (Exp. 
2, n = 50) when training query images were sampled from this composite 
distribution. On average, human participants became accurate in both in-context 
and in-weights test blocks. The small dots indicate data from individuals; 
the large dots indicate group averages. c, Double learning index for human 

participants trained on uniform (Uni, α = 0, Exp. 1, n = 30), composite (Comp, 
Exp. 2, n = 50) and skewed distributions (Skw, α = 2, Exp. 1, n = 30). Human 
participants had a greater double learning index value when trained on a 
composite distribution than when trained on a uniform distribution (linear 
regression with the group as a fixed effect, β = −0.295 ± 0.066, P = 0.0, BF > 100, 
‘decisive’ evidence) or a skewed distribution (β = −0.191 ± 0.067, P = 0.005, 
BF > 100, ‘decisive’ evidence). **P < 0.01; ***P < 0.001. d, Scatter plots of the 
in-context versus in-weights test performances for transformers (left) and 
human participants (right). The dots indicate data from individual transformers/
humans. The stars indicate group averages for uniform (blue, α = 0, Exp. 1), 
composite (pink, Exp. 2) and skewed distributions (red, α = 2, Exp. 1).

http://www.nature.com/nathumbehav
https://aspredicted.org/yhvp-6y3y.pdf


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02359-3

in-context rule (C1) but have trouble discovering the in-context rule 
if they are first exposed to a training regime that favours in-weights 
learning (C2). For completeness, we tested all permutations of the 
block order as well as two ‘interleaved’ curricula where uniform and 
skewed distributions alternate during training (C3 and C4). The results 
are presented in Extended Data Fig. 7 and show that no other group 
contrasts were statistically significant (all P > 0.05, Bonferroni cor-
rected; Extended Data Table 1).

Transformers and humans use an induction mechanism for 
in-context learning (Experiment 4)
One limitation of our comparison between transformers and humans 
is that it offers little insight into the mechanisms by which in-context 
learning is happening. To better understand the similarities between 
transformers and humans, we studied the inference process as it 
unfolds, using a mixture of tools from the emerging field of mechanistic 
interpretability (in transformers)39 and a behavioural mouse-tracking 
study (in humans)40. The results suggest that both humans and trans-
formers solve the task using a two-step process composed of a binding 
operation followed by a searching operation.

For transformers, we first trained a transformer on the α = 0 dis-
tribution to create a pure in-context learning model. We then inves-
tigated the attention patterns of its two attention heads during an 
in-context learning test trial. Attention patterns can be illustrated as 
square matrices that plot how the transformer weights information 
about each item i when predicting each other item j. First, in attention 

head 1, the transformer associates each item with its corresponding 
label, which is located three positions ahead: we observed in Fig. 5a 
(matrix of attention head 1) that the attention weight for each item is 
concentrated on the token that is three positions ahead. This reflects 
a binding operation, where the attention head writes information 
about each item into the embedding of its corresponding label41–43. 
Crucially for the next step, it writes information about the target item 
into the embedding of the target label. Second, in attention head 2, 
the transformer searches for a match between the query item and the 
preceding context tokens. Since attention head 1 has already written 
information about the target item into the embedding of the target 
label, the match occurs at the target label’s location: in Fig. 5a (matrix 
of attention head 2, last column), we see that the attention weights 
for the query item are concentrated on the target label. The model 
then reads the information stored at this label. This computational 
architecture has been previously described in detail in refs. 41,42,44 
and is referred to as an ‘induction head’. The two attention heads are 
essentially implementing a minimal induction operation of the form 
[A][B]…[A] → [B]. This copying operation indeed solves our in-context 
learning task ‘item; label; … ; item:?’.

For humans, we trained a new in-person group of participants 
(Experiment 4, n = 20) on a uniform distribution (α = 0) to induce 
in-context learning, alongside a control group (n = 20) who encoun-
tered a skewed distribution (α = 2). For these participants, unlike in the 
previous experiments, we used a mouse-tracking paradigm to reveal 
the computational processes underlying human in-context inference 
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(C1) involved maximally diverse exemplars in the first half of the training (the 
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training curricula, C1 and C2 (composite distribution, Pc = 0.5, αs = 2). Human 
participants trained on C1 showed better performance on in-context trials 
than participants trained on C2 (logistic regression with the group as a fixed 
effect, β = −2.635 ± 0.784, P = 0.019, BF = 5.3, ‘substantial’ evidence, P value 
Bonferroni corrected). They also responded more using the in-context strategy 
in arbitrage trials (β = −2.676 ± 0.711, P = 0.004, BF = 12.1, ‘strong’ evidence, P 

value Bonferroni corrected). However, both groups had similar performance 
on in-weights trials (β = 0.096 ± 0.428, P = 1.0, BF = 0.019, ‘strong’ evidence, P 
value Bonferroni corrected). The small dots indicate data from individuals; the 
large dots indicate group averages. NS, P > 0.05; *P < 0.05; **P < 0.01. NS, not 
significant; prer., preregistered contrasts. c, Double learning index of human 
participants (linear regression with the group as a fixed effect, β = −0.162 ± 0.076, 
P = 0.036, BF = 0.969). *P < 0.05. The small dots indicate data from individuals; 
the large dots indicate group averages. d, Double learning index for transformers 
trained on the C1 curriculum (left) and the C2 curriculum (right). Transformers 
were trained with different values of αs for the skewed part of the composite 
distribution. e, Test performances over the course of training of transformers 
trained on C1 (red) and C2 (blue). The bold lines indicate group averages (n = 20 
transformers per curriculum). The arrows were manually added to emphasize the 
direction of the trajectories.
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as it unfolds (Methods, Fig. 5b and Extended Data Fig. 8). In test trials, 
the display was blurred and obscured, so that the locations of the 
images and labels could be seen but not their content. Participants 
were allowed to move a sharp aperture with their mouse to reveal part 
of the screen. Thus, similar to an eye-tracking device, tracking mouse 
position allowed us to track which information participants were view-
ing on the screen.

First, we confirmed that the participants trained on α = 0 became 
in-context learners, whereas the participants trained on α = 2 did not, 
replicating once again the results of Experiment 1. Indeed, the train-
ing data strongly influenced performance on in-context test trials 
(effect of α on accuracy, β = −2.437 ± 0.636, P = 0.0, BF = 44.3, ‘strong’ 
evidence), in-weights test trials (β = 2.262 ± 0.129, P = 0.0, BF > 100, 
‘decisive’ evidence) and arbitrage test trials (effect of α on accuracy with  
respect to in-context learning, β = 2.002 ± 0.264, P = 0.0, BF > 100, 
‘decisive’ evidence). As in Experiment 1, we confirmed that the training 
distribution did not directly influence the performance at the end of 
training (β = −0.09 ± 0.408, P = 0.824, BF = 0.027, ‘strong’ evidence) 
but only the strategy used by the participants.

Mouse trajectories are depicted in Fig. 5b (top). In step 1, after look-
ing at the query image, participants search for the target image in the 
context. In step 2, once they have found the target image, they aim for 
the target label located at +3 steps clockwise and give a response. Note 
that these two steps correspond exactly to the two attention heads of 
the transformer: step 1 is implemented by attention head 2 (the search-
ing operation), and step 2 is implemented by attention head 1 (the 

binding operation). We quantified the occurrence of these two steps 
in humans by counting the number of times the participant’s trajectory 
hit the target image and the target label on in-context test trials. We 
confirmed that participants trained on α = 0 hit the target image more 
often (84.5 ± 5.4%) than those trained on α = 2 (43.0 ± 9.8%) (effect of α 
on the probability of a hit, β = −2.117 ± 0.591, P = 0.0, BF = 17.3, ‘strong’ 
evidence). Similarly, participants trained on α = 0 hit the target label 
more often (82.8 ± 4.1%) than those trained on α = 2 (32.6 ± 8.4%) (effect 
of α on the probability of a hit, β = −2.433 ± 0.582, P = 0.0, BF > 100, 
‘decisive’ evidence). The mouse-tracking data thus suggested that 
participants trained on a uniform distribution (α = 0) were using a 
two-step process, perhaps implementing an induction head similar 
to transformer networks. However, one difference between humans 
and transformer networks is that transformers bind all items with 
their corresponding labels in the context, while humans only bind the 
target image with the target label. This is because transformers are 
parallel architectures, applying the same operation to all the tokens 
at the same time.

Finally, to test whether our findings generalize to more abstract 
forms of reasoning, we trained transformers on a transitive inference 
task. In this task, the model had to infer A > C from examples such as 
A > B and B > C presented in the context. As in the main task, perfor-
mance depended on the training distribution: models trained on a 
uniform distribution (α = 0) solved the task using in-context learn-
ing, while models trained on a skewed distribution (α > 1) relied on 
in-weights learning. These results confirm that the link between 
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transformer binds the representations of the images and the labels in attention 
head 1 and searches for the target image in the context in attention head 2 (the 
induction head). b, Cursor trajectories of participants revealing their attention 
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trained on a uniform (α = 0) distribution. Participants search for the target image 
in the context and then associate it with the target label. Bottom, trajectories in 
the in-context test block for participants trained on a skewed (α = 2) distribution 
(Exp. 4, n = 20 per group). Trajectories were aligned trial-by-trial to a common 
frame where the target image is located on the top of the context circle. The 
small lines are individual average trajectories; the diamonds are group average 
trajectories.
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training distribution and learning strategy holds even in tasks requir-
ing more abstract generalization (Extended Data Fig. 9).

Discussion
Transformers are feed-forward neural networks augmented with 
self-attention that process long sequences of inputs in parallel. By 
contrast, the brain more closely resembles a recurrent neural network, 
where inputs are necessarily processed over sequential time steps. A 
priori, there is little reason to believe that humans and transformer net-
works would learn in comparable ways. We were thus quite surprised to 
find that their sensitivity to the distributional properties of the training 
data was so similar. Both humans and transformer networks show the 
same sensitivity to increasing skewness of the training distribution, 
with a transition between in-weights and in-context learning occurring 
in both cases at α = 1. Both humans and transformer networks traded 
in-weights for in-context learning when the training distribution was 
Zipfian, but both became double learners when trained on a composite 
distribution that jointly prioritized both diversity and redundancy in 
the training samples. Finally, both humans and transformer networks 
appear to use a binding-plus-searching operation to solve the task, as 
revealed by mechanistic interpretability analysis (in transformers) and 
analysis of viewing trajectories (in humans).

Previous studies using a similar methodology have argued that 
α = 1 represents a ‘sweet spot’ at which both in-weights and in-context 
learning are possible in transformers. We show here that what seems to 
be true at the level of the population is not true at the individual model 
level, as no single network learned both strategies in tandem using 
Zipfian distributions. At α = 1, some models converge to in-context 
learning and some to in-weights learning, but every model trades off 
one strategy for the other. We tried different model sizes and con-
firmed that this was also the case with larger and deeper models, with 
and without interleaved feed-forward layers between attention layers 
(up to four attention heads per layer, up to ten layers; Extended Data 
Figs. 10 and 11). Furthermore, we used mechanistic interpretability to 
confirm that attention heads were performing either in-context learn-
ing or in-weights learning but never both. To test this, we quantified 
the similarity between idealized attention patterns for in-context and 
in-weights learning and observed the attention patterns of models 
trained on different Zipfian distributions. The results are displayed 
in Extended Data Fig. 12 and show that models trained on α < 1 are 
similar to in-context learning heads, while models trained on α > 1 
are similar to in-weights learning heads. Conversely, and in line with 
ref. 30, we show that composite, non-Zipfian distributions promote 
the learning of both strategies in tandem in transformers. While our 
results are based on relatively small transformer models trained from 
scratch, prior work suggests that many such behaviours generalize 
to larger-scale settings32,41,45. We nonetheless caution that scaling and 
pretraining introduce additional factors that may alter the dynamics 
of learning strategy selection.

Despite these striking similarities, transformers did not benefit 
from curricula that prioritized either diversity or redundancy in exam-
ples, whereas humans clearly did. This difference probably reflects a 
well-known limitation of neural networks: catastrophic interference. 
Once transformers settle on a strategy, they often forget earlier infor-
mation—especially when training is blocked. In humans, early diversity 
boosts generalization, even when redundancy comes later. In trans-
former networks, later training tends to overwrite earlier strategies, 
making them less flexible to curriculum structure.

However, the broader failure of neural networks to benefit from 
structured training remains a puzzle in machine learning. For exam-
ple, the BabyLM challenge (https://babylm.github.io/) is a competi-
tion in which machine learning researchers attempt to train language 
models with fewer than 100 million words. In its first iteration, many 
of the entrants attempted to use some sort of curriculum, but none 
were particularly successful46. Recent theoretical work suggests that 

curricula can help neural networks trained with gradient descent by 
guiding learning dynamics early on, especially by increasing diversity 
in input directions during the initial phase of training. This early diver-
sity helps steer the model towards useful solutions more efficiently47. 
This implies that overparameterized deep neural networks (which 
typically already begin with a very high-dimensional initialization in 
weight space) are unlikely to benefit from curricula. However, this 
problem remains unsolved, and how to structure training examples 
to train neural networks more efficiently and effectively remains an 
open question.

Our findings have two potentially important implications for 
how people learn. The first is that for humans, as for transformers, 
a curriculum that promotes both redundancy and diversity allows 
people to learn strategies that rely on both memory and inference. 
This speaks to a long-standing debate in education research, which 
has asked whether schools should emphasize rote learning or critical 
thinking48. The answer implied by our data is that both are important. 
Presenting diverse examples that teach students how to tackle new 
problems is crucial, but being able to retrieve information about past 
experiences requires repetition. Of course, we cannot know whether 
insights from the simple, stylized setting employed here would trans-
late to the classroom, but at least our work sets up a hypothesis that 
could be tested in more translational settings.

The second finding provides an interesting caveat to this claim: 
in humans, it is beneficial to provide diverse training examples early 
on. Early diversity does not seem to be overwritten by repetition 
that occurs later in training, whereas people that start learning from 
repeated examples never quite master the task. It is likely that early 
redundancy encourages learners to overfit to a specific strategy, mak-
ing it more difficult to later embrace generalities. This result aligns with 
recent findings on asymmetries between in-context and in-weights 
learning. Specifically, Singh et al.49 showed that in-context learning 
tends to give way to in-weights learning asymptotically, but not the 
reverse. Furthermore, Singh et al.36 showed that once a model adopts 
an in-weights learning strategy, it struggles to recover in-context learn-
ing—while the reverse transition remains possible. We observed a 
similar pattern in humans: participants trained first on skewed data 
(favouring in-weights learning) failed to adopt in-context learning later, 
but those trained first on uniform data (favouring in-context learning) 
could shift strategies. These findings suggest that early learning condi-
tions constrain later flexibility. We find this observation interesting, 
but we are unsure about its generality. It would be interesting to test 
whether this result replicates in other tasks involving a mixture of 
in-weights and in-context learning.

Our work compares humans and transformer networks. We found 
that in one interesting respect—the emergence of in-weights learning 
and in-context learning in response to the training data distribution—
they show some striking similarities. However, this should not be taken 
to imply overlap between humans and transformers at the algorith-
mic level. Indeed, other classes of neural network, including simple 
multi-layer perceptrons, may in principle be capable of in-context 
learning34,35. Transformers are feed-forward networks with a highly 
structured architecture based on self-attention, diverging sharply 
from the recurrent, feedback-driven and biologically grounded com-
putations of the human brain. Nevertheless, the way that they trade 
off memory-based strategies and inference-based strategies exhibits 
surprising commonalities with how this happens in human cognition.

Methods
Stimuli and paradigm
Participants. In total, we collected data from 530 participants (121 for 
Experiment 1, 50 for Experiment 2, 199 for Experiment 3, 40 for Experi-
ment 4 and 120 for the replication of Experiment 1). The participants 
were recruited on the crowdsourcing platform Prolific (https://app.
prolific.co/). The inclusion criteria included being between 18 and 40 
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years old, reporting no neurological condition, being an English speaker, 
being located in the USA or the UK, not having participated in another 
version of the task, having a minimal approval rate of 90% on Prolific and 
having a minimum of five previous submissions on Prolific. Participants 
received on average £10 per hour for their time and effort, including 
a bonus on performance (£8.5 per hour for random performances 
and £10.5 per hour for perfect performances). All experiments were 
approved by the Medical Sciences Research Ethics Committee of the 
University of Oxford (approval reference no. R50750/RE005). Before 
starting the experiment, informed consent was taken through an online 
form, and the participants indicated that they understood the goals of 
the study, how to raise any questions, how their data would be handled 
and that they were free to withdraw from the experiment at any time.

Stimuli. We selected 2,000 pictures from the Common Objects in 
Context dataset50. The pictures represented a large variety of items 
(animals, people, landscapes, food and objects). The images were 
cropped and scaled to 300 × 300 pixels.

Procedure. JavaScript online experiments. The experiments were 
written in JavaScript, using jsPsych (version 7.3.1, https://www.jspsych.
org/7.3/)51, and hosted on a web server. The scripts are available at 
https://osf.io/xb43k.

Instructions. The participants were instructed that the task was deter-
ministic. The exact instructions were “This task is a learning task. You 
may have poor performances at the beginning but you will improve over 
the course of the experiment. On each trial, you will see a sequence of 
images and numbers. Your task is to press on the correct number on 
your keyboard, from 0 to 9. The rule determining which number you 
have to choose is 100% deterministic. This means that once you have 
discovered the rule, you will have 100% of correct responses.”

Main task. On each trial, the participants were presented with an image 
at the centre of the screen (the query image) surrounded by seven 
images and seven labels arranged in a ring (the context). The partici-
pants were asked to select the correct label associated with the query 
image by pressing on their keyboard among ten possible labels: {‘0’, 
‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’}. Trials consisted of the following events: (1) 
a black loading screen for 500 ms, (2) stimulus presentation (query 
image and context) and response recording until a response was made, 
and (3) trialwise feedback for 1,000 ms. The stimuli remained visible on 
screen during feedback. For trials without trialwise feedback, a black 
screen was presented for 1,000 ms instead of the feedback screen. In 
training blocks, the participants received blockwise feedback on their 
performance in the last block on top of trialwise feedback.

Four block types were presented:

•	 Training blocks. The query images were sampled from a Zipfian 
distribution with parameter α (see below). A copy of the query 
image (the target image) was always present in the context. The 
location of this target image was sampled uniformly from the 
seven possible locations. The six other images in the context were 
sampled uniformly from our pool of 2,000 images. The correct 
label was always located three steps clockwise from the target 
image (the target label). The other six labels in the context also 
followed the same rule: each was located three steps clockwise 
from its corresponding context image. The three-steps-clockwise 
rule and the use of seven context images were chosen on the basis 
of pilot data to avoid trivial or symmetry-based rules that led to 
rapid learning. Fully informative trialwise feedback was provided 
during training: after each trial, the participants were shown 
whether their response was correct or incorrect, as well as the 
correct response. Blockwise feedback was also given after each 
block during training. The mapping between images and labels 
was arbitrary and not semantically meaningful.

•	 In-context test blocks. The query images were novel images 
sampled uniformly from unseen images during training. A copy 
of this query image (the target image) was always present in the 
context. The location of the target image was sampled uniformly 
from the seven possible locations. The six other images in the 
context were sampled uniformly from our pool of 2,000 images. 
The correct label was always located three steps clockwise from 
the target image (the target label). The other six labels in the 
context were sampled uniformly between 0 and 9. No feedback 
was given during in-context test blocks.

•	 In-weights test blocks. The query images were old images 
sampled from the same Zipfian distribution as the training. No 
target image was present in the context. The seven images in the 
context were sampled uniformly from our pool of 2,000 images. 
The seven labels in the context were sampled uniformly between 
0 and 9. No feedback was given during in-weights test blocks.

•	 Arbitrage test blocks. The query images were old images sam-
pled from the same Zipfian distribution as the training. A copy 
of the query image (the target image) was always present in the 
context. The location of this target image was sampled uni-
formly from the seven possible locations. The six other images 
in the context were sampled uniformly from our pool of 2,000 
images. The seven labels in the context were sampled uniformly 
between 0 and 9. No feedback was given during arbitrage test 
blocks.

Rank-frequency (Zipfian) distribution. In training blocks, query images 
were sampled from a rank-frequency (Zipfian) distribution of param-
eter α. A Zipfian distribution on N elements assigns to the element of 
rank k (counting from 1) the probability:

f(k,N,α) = 1
HN,α

1
kα

where HN,α is a normalization constant and is equal to the Nth general-
ized harmonic number. When α = 0, the distribution is the uniform 
distribution. When α > 0, the distribution is skewed, with larger values 
of α associated with a higher degree of skewness. On 150 trials, the 
frequency rankings were as follows:

•	 For α = 0, the distribution was uniform, and the frequency of the 
images was [1, 1, 1, …, 1, 1] (all images are novel and appear once).

•	 For α = 1, the distribution was skewed, and the frequency of the 
images sorted in decreasing order was [25, 13, 9, 7, 5, 5, 4, 4, 3, 3, 
3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, …].

•	 For α = 2, the distribution was skewed, and the frequency of the 
images sorted in decreasing order was [92, 23, 11, 6, 4, 3, 2, 2, 2, 
1, 1, …].

•	 For α = 4, the distribution was highly skewed, and the frequency 
of the images sorted in decreasing order was [139, 9, 2].

Experiment 1 and Experiment 1 replication. In Experiment 1, training con-
sisted of five blocks of 30 trials (150 training trials in total). Participants 
were assigned randomly to one of four groups (between-participant 
design), corresponding to four distributions of the query images dur-
ing training: a Zipfian distribution with α ∈ {0, 1, 2, 4}. After training, the 
participants performed the three test blocks: one in-context test block 
of 30 trials, one in-weights test block (30 trials) and one arbitrage test 
block (30 trials). The order of the test blocks was randomized across 
participants.

Experiment 2. In Experiment 2, training consisted of four blocks of 30 
trials (120 training trials in total). Query images during training were 
sampled from a composite distribution—that is, 60 trials with query 
images sampled from a uniform distribution (α = 0) and 60 trials with 
query images sampled from a skewed distribution (α = 2). The order of 
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all trials was shuffled for each participant, meaning both distributions 
were fully interleaved. After training, the participants performed the 
three test blocks: one in-context test block of 30 trials, one in-weights 
test block (30 trials) and one arbitrage test block (30 trials). Query 
images in the in-weights and arbitrage test blocks were sampled from 
the skewed distribution (α = 2). The order of the test blocks was rand-
omized across participants.

Experiment 3. In Experiment 3, training consisted of four blocks of 30 
trials (120 training trials in total). Two types of training blocks were 
presented: training blocks with query images sampled from a uniform 
distribution (α = 0) and training blocks with query images sampled 
from a skewed distribution (α = 2). Participants were assigned ran-
domly to one of four groups (between-participant design), corre-
sponding to four training curricula: C1 (the first block is skewed, the 
second block is skewed, the third block is uniform and the fourth block 
is uniform), C2 (uniform, uniform, skewed, skewed), C3 (skewed, uni-
form, skewed, uniform) and C4 (uniform, skewed, uniform, skewed). 
After training, the participants performed the three test blocks: 
one in-context test block of 30 trials, one in-weights test block (30 
trials) and one arbitrage test block (30 trials). Query images in the 
in-weights and arbitrage test blocks were sampled from the skewed 
distribution (α = 2). The order of the test blocks was randomized 
across participants.

Experiment 4. In Experiment 4, training consisted of five blocks of 
30 trials (150 training trials in total). Participants were assigned 
randomly to one of two groups (between-participant design), cor-
responding to two distributions of the query images during training: 
a Zipfian distribution with α ∈ {0, 2}. After training, the participants 
performed the three test blocks: one in-context test block of 30 
trials, one in-weights test block (30 trials) and one arbitrage test 
block (30 trials). The order of the test blocks was randomized across 
participants. During the test blocks, we used MouseView.js52 to track 
the attention of the participants on the screen during stimulus pres-
entation. For that, the display was blurred and obscured so that the 
locations of images and labels could be seen but not their content. 
The participants were allowed to move a sharp aperture with their 
mouse to reveal part of the screen. We used the default parameter 
values of MouseView.js, with an aperture of size 15% (roughly the size 
of an image on the screen).

Preregistrations. The replication of Experiment 1 was preregistered 
on AsPredicted (no. 231356, https://aspredicted.org/rqgz-rdfk.pdf). 
Experiment 3 was also preregistered on AsPredicted (no. 173550, 
https://aspredicted.org/yhvp-6y3y.pdf). All hypotheses and planned 
analyses are publicly available in the corresponding preregistration 
documents.

Neural networks
Our model was largely based on the work of Reddy30, which investigated 
the mechanistic basis of in-context learning in transformers.

Stimuli. The network was trained to predict the label ‘labelq’ of a query 
item ‘itemq’ given an alternating sequence of N images and N labels:

item1; label1; item2; label2; … ; itemN; labelN; itemq:?
The images and labels were embedded in D + P dimensions. The 

first D dimensions encoded content, while the latter P dimensions 
encoded positional information. Position was encoded by a one-hot 
P-dimensional vector. Images were D-dimensional vectors sampled 
independent and identically from a D-dimensional Gaussian distribu-
tion with mean 0 and variance 1. Each of the K images was assigned one 
of the L labels (L ≤ K). Labels were drawn prior to training and were also 
sampled independent and identically from a D-dimensional Gaussian 
distribution with mean 0 and variance 1.

Architecture. The inputs were passed through a two-layer attention- 
only network of intrinsic dimensionality DM followed by a classifier. 
Each attention layer had one attention head with a causal mask. The 
classifier was composed of two fully connected layers with ReLU acti-
vations and DM hidden units each. The last layer was a fully connected 
layer that predicted the probabilities of the L labels.

We also tested an interleaved MLP model (Extended Data Fig. 11), 
where each attention layer was followed by a feed-forward (MLP) block 
consisting of two dense layers with DM units (with ReLU activation), a 
residual connection and a layer normalization step.

Mimicking our human experiment, the dimensions of the problem 
were set to L = 10 and N = 7. The dimensions of the inputs were set to 
K = 214 and D = 8. The dimension of the model was set to DM = 16.

Training. The network was trained using a cross-entropy loss. For train-
ing, we used a batch size of 128 and the Adam optimizer with a learning 
rate of 0.01. The models were trained on 5,000 steps.

Alternative models. We compared the performance of the transformer 
network with two other architectures, keeping the number of layers and 
total number of parameters fixed: a two-layer feed-forward fully con-
nected network with ReLU activations, and a two-layer LSTM network. 
All models were trained on the same data and evaluated using the same 
procedure as the transformer, including positional encodings in their 
input representations.

The feed-forward model received the entire input sequence flat-
tened into a single vector. The standard LSTM received inputs one item 
at a time, with the query presented last, matching the set-up used for 
transformers and human participants. We also tested a query-first 
LSTM variant, where the query appeared at the start of the sequence, 
followed by the context items. This was designed to test whether know-
ing the target query early would help the model focus on relevant con-
text and learn an in-context strategy. Despite these variations, none of 
the models showed reliable in-context learning (Extended Data Fig. 2).

Transitive inference task. We designed a second modelling task to 
test whether the effects of training distribution on learning strategy 
generalize beyond the image–label association setup. In this task, 
each training environment consisted of six unique images, each with 
an implicit rank. The model received ten training triplets per trial, 
each expressing a one-step comparison between images (for example, 
‘image 4 > image 3’), followed by a query that required a two-step transi-
tive inference (for example, ‘image 4 ? image 2’).

On each trial, the model received:

•	 A context of one-step comparisons between image pairs from a 
single environment (for example, ‘image 4 > image 3’, ‘image 3 > 
image 2’).

•	 A query requiring a two-step inference (for example, ‘image 4 ? 
image 2’), where the model had to choose the correct relational 
symbol (‘>’ or ‘<’).

We manipulated the training distribution by varying the skewness 
(Zipf exponent α) of how often each environment appeared during 
training, following the same logic as in our main task. At test, three 
types of blocks were used:

•	 In-context test: the context came from a novel environment, 
so the only way to respond correctly was to use in-context 
learning.

•	 In-weights test: the query pair had been seen during training, 
but the context came from a novel environment; accuracy 
relied on memorized pair–label associations.

•	 Arbitrage test: environments were reused from training but 
with reversed item orders (for example, ‘image 4 < image 3’),  
to probe which strategy dominated when in-context and 
in-weights learning gave conflicting answers.
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We used the same architecture, training set-up and evaluation 
metrics as in the image–label association task. The full results are 
presented in Extended Data Fig. 9.

Statistical analysis
Outliers. No outliers were removed from the analyses.

Model selection. Statistical analyses were done using R version 4.4.2 
(ref. 53) and the package lme4 (ref. 54). For all analyses, model complex-
ity was monitored using the Bayesian information criterion (BIC), a 
standard measure to arbitrate between complexity and accuracy. The 
reported P values are Satterthwaite approximations. We also report the 
BF for each effect as approximated using the difference between the BIC 
of the model with the effect BIC1 and the model without the effect BIC0 
and defined as BF = exp((BIC0 − BIC1)/2). The BF quantifies the support 
of the data in favour of an effect. We followed ref. 55 for the interpreta-
tion of its values: BF > 3, BF > 10 and BF > 100 were respectively taken as 
substantial, strong and decisive evidence in favour of an effect (BF < 0.3, 
BF < 0.1 and BF < 0.01 as evidence in favour of the absence of an effect).

Accuracy. In Experiment 1 and Experiment 4, the probability of being 
correct (0, incorrect; 1, correct) was modelled as an independent logis-
tic regression for each block type, with α as a fixed effect and one 
random intercept per participant.

In Experiment 3, the probability of being correct was modelled as 
an independent logistic regression for each block type and each group 
contrast, with the group as a fixed effect and one random intercept 
per participant. We applied a Bonferroni correction to correct for 
multiple comparisons.

Power analysis. The sample size for the replication of Experiment 1 
was determined via power simulations based on data from Experiment 
1, assuming a 50% smaller effect size than observed in that study. The 
simulations suggested a minimum of 10–20 participants per group, 
depending on the block. To ensure robust power across all analyses, 
we conservatively set the sample size to 30 per group.

Double learning index. We defined a double learning index as a 
value between 0 (no double learning) and 1 (perfect performance in 
both in-context and in-weights test trials). For each participant, it was 
defined as:

D = scale(mIC) × scale(mIW)

scale(m) = m − chance
1 − chance

where mIC is the average performance of the participant in the 
in-context test trials, mIW is the average performance of the participant 
in the in-weights test trials and ‘scale’ is a linear mapping accounting 
for chance level (‘chance’, here 10%). Because it is a product, this index 
is 0 if either of the two performances is at chance (and thus non-zero 
only if both performances are above chance).

In Experiment 2 and Experiment 3, the double learning index was 
modelled as a linear regression with the group as a fixed effect.

Mouse trajectories. For visualization purposes, trial-by-trial cursor 
trajectories were first rotated in a common frame where the target 
image was located on the top of the context circle and then resampled 
to 100 time points between the start and the end of the trial using linear 
interpolation. A ‘hit’ trial was defined as the target image being at a 
minimum distance of 20% of the screen height at least one time during 
the trial. In Experiment 4, the probability of a hit (0, no hit; 1, hit) was 
modelled as a logistic regression for in-context test trials, with α as a 
fixed effect and one random intercept per participant.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The anonymized data, materials and preregistration documents are 
all available via OSF at https://osf.io/xb43k.

Code availability
The scripts for stimulus presentation and data analysis are available 
via OSF at https://osf.io/xb43k.
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Extended Data Fig. 1 | Example learning curves for multiple transformer 
networks. Accuracy curves for multiple example transformer networks trained 
on different training distributions, uniform (α = 0, top row), moderately skewed 
(α = 1, middle row) and skewed (α = 2, bottom row). In-context test performance 

and arbitrage test performance (with respect to in-context learning) strongly 
overlap. Over the course of training, in-context test performance trade-off with 
in-weights test performance.
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Extended Data Fig. 2 | Feed-forward networks and LSTM networks do not 
become in-context learners in the same task. a. (top) 2-layer feed-forward 
fully-connected network. (bottom) Scatter plots of the in-context vs in-weights 
test performances after training. b. (top) 2-layer LSTM network. (bottom) 

Scatter plots of the in-context vs in-weights test performances after training. 
Each dot is an individual network (N = 30 per training data distribution for each 
architecture).
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Extended Data Fig. 3 | Performance as a function of the image frequency 
during training. a,b, Training and test performances for transformers  
(top, N = 30 per training data distribution) and human participants (bottom, 
Exp. 1, N = 30 per training data distribution) as a function of the frequency of the 
image during training. For each value of α, test items were grouped by how often 

they appeared during training. For example, in α = 2: ‘top 1’ corresponds to the 
image that was seen 92 times during training, ‘top 2–4’ to images that were seen 
~13 times, and ‘top 5–10’ to images that were seen ~2 times. Large dots are group 
average. Errors are s.e.m.
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Extended Data Fig. 4 | Replication of Experiment 1. a. Training and test 
performances of human participants (bottom, replication of Exp. 1, N = 30 per 
training data distribution). Small dots are individuals, large dots are group 
average. Our pre-registered effects (AsPredicted #231356, https://aspredicted.
org/rqgz-rdfk.pdf) were all verified. In particular, there was a negative effect of α 
on accuracy in in-context test block (β = −1.145 ± 0.208, p = 0.0, BF > 100, ‘decisive’ 
evidence), a positive effect of α on accuracy in in-weights test block (β = 1.786 ± 

0.138, p = 0.0, BF > 100, ‘decisive’ evidence), a negative effect of α on accuracy 
with respect to in-context learning in arbitrage blocks (β = −1.097 ± 0.168,  
p = 0.0, BF > 100, ‘decisive’ evidence), and a positive effect of α on accuracy with 
respect to in-weights learning in arbitrage blocks (β = 1.669 ± 0.128, p = 0.0, BF > 
100, ‘decisive’ evidence). b. Training and test performances as a function of the 
frequency of the image during training. c. Scatter plots of the in-context vs in-
weights test performances. Each dot is an individual model/human.
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Extended Data Fig. 5 | Performance of transformers trained on a wide range of composite distributions. Scatter plots of the in-context vs in-weights test 
performances of transformers after training on different values of Pc (proportion of in-context trials during training) and αs (the rest of the trials). Dots are individual 
models.
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Extended Data Fig. 6 | Transformers do not benefit from structured curricula. 
a. Test performances over the course of training of transformers trained on 
C1 (red) and C2 (blue). Bold lines are group average (N = 20 transformers per 

curriculum). Arrows were manually added to emphasise the direction of the 
trajectories. b. Accuracy curves for one example transformer network trained on 
C1. c. Accuracy curves for one example transformer network trained on C2.
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Extended Data Fig. 7 | Performance of human participants in all curricula. 
a. Four groups of human participants (Exp. 3, N = 50 per group) were exposed 
to a composite distribution (Pc = 0.5, αs = 2) with different training curricula, 
that is different block order, denoted C1 to C4 (‘uniform’, α = 0; ‘skewed’, αs = 2). 
b. Performance during training per curriculum. c. Double learning index per 

curriculum. n.s. p > 0.05, * p < 0.05, ** p < 0.01, *** p< 0.001. d. Training and test 
performances for humans per curriculum. A curriculum that promotes learning 
first in-context and then in-weights improves the in-context performance 
without impairing in-weights learning. Small dots are individuals, large dots are 
group average. n.s. p > 0.05, * p < 0.05, ** p < 0.01, *** p< 0.001.
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Extended Data Fig. 8 | Cursor trajectories and performances of participants in 
all test blocks (Exp. 4, N = 20 per group). a. Trajectories for participants trained 
on a uniform distribution (α = 0) in the (left) in-context test block, (middle) in-
weights test block and (right) arbitrage block. b. Same for participants trained 
on a skewed distribution (α = 2). Trajectories were aligned trial-by-trial to a 

common frame where the target image is located on the top of the context circle. 
Small lines are individual average trajectories, diamonds are group average 
trajectories. c. Training and test performances. Small dots are individual, large 
dots are group average.
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Extended Data Fig. 9 | Modelling results in a transitive inference task. a. We 
replicated our modelling results in a distinct task probing transitive inference. 
As in the image-label association task (Fig. 1), we manipulated the distribution 
of the training data: under a uniform distribution (α = 0), all environments are 
equally likely; under a skewed distribution (α >> 0), some environments are 
more frequent. Each environment consisted of six images ordered along an 
underlying dimension. b. Example training trial. The context presented ten 
triplets, each comprising two images and a symbol, corresponding to all one-step 
comparisons within a given environment (for example, ‘image 4 > image 3’). The 
query consisted of a two-step comparison (for example, ‘image 4 ? image 2’), 
and the model had to select the correct relational symbol (‘>’ or ‘<’). c. Paradigm 
overview. During training, two learning strategies are available. The ‘in-context’ 
learning strategy consists in using local comparison given in the context to 
infer the correct relational symbol via transitive inference (for example, relying 

on ‘image 4 > image 3’ and ‘image 3 > image 2’ to infer ‘image 4 > image 2’). The 
‘in-weighs’ learning strategy consists in learning the association between pairs 
of images and relational symbols in memory using the feedback. Test blocks 
were designed to probe which strategy(ies) the model is using. On in-context test 
blocks, images from novel environments (depicted in grey) were presented, such 
that the only way to be accurate is to use information from the context, a.k.a. the 
in-context strategy. On in-weights test blocks, a training pair (depicted in blue) 
was presented as the query pair but images from novel environments (depicted 
in grey) were presented in the context, such that the only to be accurate is to use 
information stored in memory, a.k.a. the in-weights strategy. On ‘arbitrage’ test 
blocks, a trained environment was presented but the order of the images was 
reversed (for example, ‘image 4 < image 3’). d. Training and test performances 
for transformers (N = 30 per training data distribution). Small dots are individual 
transformers, large dots are group average.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02359-3

Extended Data Fig. 10 | Performance of transformers with varying 
architecture sizes. Scatter plots of the in-context vs in-weights test 
performances for transformers with varying numbers of layers, number of 
heads per layers, and varying training distributions. Each dot represents a model 

trained with a specific number of layers, attention heads, and training data 
distribution. Dot color indicates the α exponent of the training distribution. 
Dotted lines indicate chance-level performance.
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Extended Data Fig. 11 | Performance of transformers with interleaved MLP 
with varying architecture sizes. The MLP blocks consist of two dense layers with 
a ReLU activation, followed by a residual connection and layer normalization. 
Scatter plots of the in-context vs in-weights test performances for transformers 
with varying numbers of layers, number of heads per layers, and varying training 

distributions. Each dot represents a model trained with a specific number of 
layers, attention heads, and training data distribution. Dot color indicates 
the α exponent of the training distribution. Dotted lines indicate chance-level 
performance.
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Extended Data Fig. 12 | Similarity score with respect to idealised attention 
patterns. (left) Similarity score between observed attention patterns (N = 
10 transformers per training distribution) and idealised attention patterns 
performing in-context learning. (right) Same with idealised attention patterns 
performing in-weights learning. The similarity score was a dot product 
normalised by the ℓ1-norm of the idealised head. Models trained on α < 1 were 

similar to in-context learning heads while models trained on α > 1 were similar 
to in-weights learning. Results were less clear for in-weights learning head #1 
because these heads tended to have more diverse patterns (attention spread to 
all tokens, or restricted to some tokens, and most of the time restricted to the last 
token).
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Extended Data Table 1 | Pairwise comparisons between curricula (Experiment 3)

Complete results of the pairwise comparisons between curricula (Experiment 3). Each row reports the effect size (β), standard error (SE), uncorrected p-value (p), and Bayes Factor (BF). 
Bonferroni-corrected p-values are used in the main text to ensure a consistent and conservative analysis.
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