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Themammalian brain orchestrates the processing and integration
ofinformation to guide behaviour. Here, to characterize mammalian
information-processing architecture, we combine functional neuroimaging
and anaesthesia in humans, macaques, marmosets and mice. We show that
breakdown of information integrationis a convergent effect of diverse
anaesthetics across mammalian species. As the system disintegrates,

brain dynamics become more difficult to control. Both effects are reversed
upon re-awakening induced by thalamic deep-brain stimulationin the
macaque. Regional breakdown of integrated information coincides with the
species-specific spatial topography of PVALB/Pvalb gene expression. To provide
mechanisticinsight beyond correlation, we develop computational models for
humans, macaques and mice thatintegrate species-specific connectivity and
transcriptomic gradients, demonstrating their respective roles for controlling
brain dynamics and information integration. We reveal evolutionarily
conserved controllers of information integration in the mammalian brain.

To coordinate behaviour in response to a complex environment, the
central nervous system of humans and other animals must combine the
information provided by diverse sensory signals'2. Prominent theoreti-
calaccounts of neural computation, cognition and even consciousness
convergeinattributing afundamental role tointegrative processesin
the brain®, However, understanding how the brain orchestrates the
integration of information remains a formidable open challenge and
afocus of intense investigation in neuroscience*’. Addressing this

challengerequires acombination of theoretical advances and suitable
experimental approaches.

On the theoretical front, there is growing recognition that a full
understanding of neural information processing requires disentan-
gling qualitatively different kinds of information that can co-exist
in any distributed system, including the brain'®°, In particular, the
framework of information decomposition has revealed the existence
of synergy:information thatis presentin the system as awhole but not
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in any of its individual components®*™'®, Here we capitalize on these
recent theoretical developmentsto obtainarigorous quantification of
‘integrated information’ as the information that is presentin the whole
system, over and above the sum of the parts.

Onthe experimental front, the combination of neuroimaging and
general anaesthesia provides a powerful avenue to identify neurobio-
logical controllers of the brain’sinformational architecture 2. With-
outaltering brain anatomy, anaesthesia induces adrastic breakdown of
information processing inthe brain, asindicated by the suppression of
bothsensory and motor interactions between organismand environ-
ment. Unlike lesions, anaesthesiais fully reversible, making it suitable
for investigating brain function in healthy humans rather than being
restricted to patients. Although anaesthetic drugs vary in terms of
microscale molecular targets, the macroscale effects of anaesthesiaare
highly conserved across evolution, reliably suppressing behavioural
responsiveness across a wide variety of species including humans,
non-human primates and rodents'>**. Indeed, the effects of anaes-
thesiaonbrain dynamics are similar both across species, and between
anaesthesiaand patients with disorders of consciousness?-**"*%, Thus,
studying brain activity under anaesthesia provides a powerful oppor-
tunity for translational discovery, by comparing how the same phe-
nomenon manifests in the brains of humans and in other species that
are more experimentally accessible'>*?*, Here we capitalize on each
ofthese advantages.

The consistency of anaesthesia’s behavioural effects across
species suggests the presence of an evolutionarily conserved archi-
tecture for the integration of information in the mammalian brain,
representing acommon target of diverse anaesthetics. Here we seek
to uncover this shared architecture, by identifying changes in neural
activity that are consistently induced by different anaesthetics and in
different species, upon anaesthetic-induced breakdown of interac-
tion with the environment. To this end, we systematically compare
functional MRI (fMRI) activity during wakefulness and anaesthesia
across four mammalian species: human (Homo sapiens); rhesus
macaque (Macaca mulatta), a gyrencephalic primate; common
marmoset (Callithrix jacchus), a lissencephalic primate; and mouse
(Mus musculus)®>"**** (Fig.1a). Our strategy is threefold. First, we ask
whether anaesthetic-induced breakdown of the capacity to interact
with the environment corresponds to a breakdown of information
integration in the brain, and whether this effect is shared across spe-
cies, similar to the behavioural manifestation of anaesthesia. Second,
to establish a bidirectional causal link, we combine the specificity of
deep-brain stimulation with fMRI’s coverage of the entire cortexin the
macaque’. Leveraging the experimental accessibility of non-human
animals, we show that neural integration of information is restored
uponre-awakening from anaesthesiainduced by electrical stimulation
ofthemacaque central thalamus, thereby demonstrating local control
over global information processing across brain and behaviour.

Third, we seek to identify shared neurobiological underpinnings
that control neural integration of information across species. Specifi-
cally, wefocus on (1) the anatomical connectivity betweenbrainregions,
which shapes their ability to interact and exchange information®*; and
(2) the genetic make-up of each region’s cyto- and chemo-architecture,
on which anaesthetics act at the microscale to influence local circuit
dynamics. To this end, we capitalize on the recent availability of
species-specific connectomics®® and transcriptomic databases for
human®, macaque*® and mouse*. To provide insight beyond cor-
relation, we develop in silico computational models that integrate
species-specific brain activity, structural connectivity and gene
expression*>*3, We show that across species, the regional expression
ofthe PVALB/Pvalb gene (a cell-type marker for inhibitory interneurons)
is especially suitable for controlling brain dynamics and modulating
the integration of information via regionally heterogeneous inhibi-
tion. In contrast, our model indicates that the structural connectivity
ofthe macaque central thalamus makes it especially suitable as afocal

stimulation target for restoring integration ofinformation, replicating
ourinvivo deep-brain stimulation (DBS) results and providing mecha-
nisticinsight about their connectomic origin. Overall, our multimodal,
multispeciesapproachreveals evolutionarily conserved localand global
controllers of information integration in the mammalian brain.

Results

Integrated information from information dynamics

In a system such as the brain, the spontaneous evolution of regional
dynamicsisnotrandombutis rather partly dependent onits previous
state. This means that past states hold information about future states?.
This ‘intrinsic’ information (We also note that Shannon’s well-known
definitionis not the only way to operationalize information; in particu-
lar, astronger notion of what it means for information to be ‘intrinsic’
hasbeenrecently formalized, leading to alternative interpretations of
integrated information that are beyond the scope of classicinformation
theory. See Supplementary Discussion for alternative development
of integrated information beyond IIT 2.0.) contained in the system’s
spontaneous dynamics can be characterized usinginformation theory
inthe absence of any explicit tasks, by means of the time-delayed mutual
information (TDMI): mutual information between the past and future
timeseries of regions X and Y, reflecting the amount of information
flowing from the system’s past toits future. Thisapproachis fully analo-
gous to how the commonly used functional connectivity (statistical
correlation between the timeseries of regions Xand ) is used to study
the brain’s ‘intrinsic connectivity networks’.

Crucially, recent advances in the theory of information decom-
position have demonstrated that brain dynamics carry multiple
qualitatively different kinds of information, going beyond traditional
measures of functional connectivity>"”'®**-*¢_In particular, two vari-
ables, such as two brain regions, can carry information about a target
inthree fundamentally distinct ways (Fig. 2a): (1) if each variable pro-
vides the same information as the other, this is redundant informa-
tion; (2) unique information refers toinformation that only one of the
variables carries and the other does not; and (3), information can be
carried synergistically, if itis available only when considering both vari-
ablestogether but not when considering either of theminisolation™*
(Fig. 2a). For example, much of human depth perception is conveyed
synergistically by the eyes, since closing either eye will greatly impair
depth perception®. When viewed as the information that the past of
the system provides about its future, the time-delayed mutual infor-
mation can be exhaustively decomposed into a formal taxonomy of
‘information dynamics’: distinct combinations of synergistic, unique
and redundantinformation between Xand Y (Extended Data Fig.1)'*¢,
For example, if there is unique information in region X in the past
about unique information in region Y at a later point in time, this can
be described as reflecting ‘information transfer’ from Xto Y.

This taxonomy of information dynamics enables a formal char-
acterization of ‘integrated information’ in distributed systems. The
key insight is that if the elements of a system form a coherent whole,
then considering the system as a whole should provide additional
information about its future behaviour, beyond the information that
is already provided by the individual parts about their own future
behaviour. This whole-minus-sum information is the ‘difference that
makes a difference’: information that arises from how the parts of
the system interact with each other*. However, an initial attempt to
quantify this whole-minus-sum information (here termed @®,,,5) was
later found toinvolve subtracting the information thatis persistently
redundant between X and Y (ref. 16). Thus, the lens of information
dynamics explained why this apparently intuitive measure produced
such counter-intuitiveresults, including negative values (which we now
know would occur whenever the system is redundancy dominated)*S.
Aneffective solution was therefore proposed in the form of the revised
measure of integrated information, @, by simply adding back the
redundancy term®.
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| fMRI + anaesthesia across mammalian species

‘ Wakefulness ‘

‘ Anaesthesia

Sevoflurane

Propofol
Sevoflurane
Ketamine

Propofol

Halothane

Propofol
Sevoflurane
Isoflurane

Recovery

—— Spontaneous awakening

Re-awakening via
thalamic DBS

R —

@

Medetomidine + isoflurane

) :\_\ Network \J".)
- control energy 3
- t+1
Activity at
time t

Species-specific .
connectome

Fig.1|Integrating neuroimaging and pharmacology with computational
modelling across species. a, Across four mammalian species (human, macaque,
mouse and marmoset), we consider fMRI data acquired during wakefulness

and under avariety of anaesthetic regimes (sevoflurane, propofol, ketamine,
isoflurane, halothane and isoflurane-medetomidine). We also investigate
spontaneous recovery of consciousness (in humans) and re-awakening induced
by thalamic deep-brain stimulation (DBS) during continuous anaesthetic
infusioninthe macaque. b, We then use network control theory and biophysical
computational modelling to provide mechanistic insights by integrating species-
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specific structural connectivity and species-specific gene expressionin human,
macaque and mouse. Credits for a: human head icon, walking human silhouette
and marmoset icon from pixabay.com; macaque and mouse icons adapted from
ref.133, published under a CC-BY licence; macaque icon originally designed

by Freepik.com; mouse icon originally designed by CraftStarters.com; brain
icons adapted fromref. 38, published under a CC-BY license, and originally from
SciDraw.io; MRlicon adapted fromref. 134, published under a CC-BY license;
macaque DBSillustration adapted fromref. 30, published under a CC-BY licence.

Here we demonstrate that @y is not just a pragmatic solution to
the shortcomings of @,: in fact, @, represents a conceptually more
appropriate measure of whole-minus-sumintegrated information. This
is because the subtraction of persistent redundancy involved in @,y
arises froma naive way of quantifying the sum of the parts. Specifically,
redundantinformation (which by definitionis presentinboth Xand Y)is
included both when computing the informationin Xand when comput-
ingtheinformationin Y, and thereforeitendsup being double counted
inthe subtraction from the totalinformation when computing @,y,s. In
contrast, @, corresponds to the totalinformation minus the ‘proper’ sum
ofthe parts (thatis, without mistakenly double counting the persistent
redundancy as being independently contributed by both Xand Y; see
Methods for the mathematical formalism and Extended DataFig.1fora
visualillustration). Thus, the framework of information dynamicsreveals
@ asaprincipled quantification of integrated information (Fig. 2b).

Breakdown of integrated information is a convergent effect of
diverse anaesthetics across mammalian species

Equipped with @, as a rigorous quantification of integrated infor-
mation, we systematically investigate integrated information
between each pair of brain regions in humans, macaques, marmo-
sets and mice, on the basis of their haemodynamic fMRI timeseries.
This approach is fully analogous to pairwise correlation between
regional timeseries that is commonly used to quantify ‘functional
connectivity’ but reflecting a more nuanced set of dynamical phe-
nomenain the system'**¥ Specifically, our datasets comprise N=15
humanvolunteers undergoing fMRIscanning while awake and during
deep anaesthesia with sevoflurane, as well as spontaneous recovery
of responsiveness®*; N=5 macaques undergoing repeated scan-
ning while awake and during anaesthesia with sevoflurane, propo-
fol or ketamine®*’; N = 4 marmoset monkeys each scanned 12 times
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Fig.2| Anaesthesia disintegrates the mammalian brain. a, The total
informationjointly carried by two variables X and Y (for example, two brain
regions) can be exhaustively decomposed into information thatis redundantly
carried by both variables (blue); or uniquely by each (green and orange);

or synergistically by considering the two variables together (red). Various
information dynamics phenomena can then take place as the different types of
information evolve over time from past to future. b, We can obtain ‘integrated
information’ as the sum of all information-dynamic phenomena that reflect
interactions between the system’s components'. Equivalently, we can obtain
integrated information as the difference between information in the whole
system and information in the sum of the system’s parts considered in isolation
(thatis, any information that remains in the same variable over time). This
measure of integrated information, termed @;, overcomes the limitations of an
influential early proposal (®,,,5) Wwhich was shown to double count the redundant
information contained in the parts, leading to negative values and other
paradoxical results' (see Methods and Extended Data Fig. 1for an explanation
of this double counting and how this issue is resolved by the use of information
decomposition). Intuitively, integrated information will be low if there is little
differentiation among elements of the system, such that they are just redundant
copies and considering them together provides no additional advantage; or
ifthereislow integration, such that the parts behave independently without
influencing each other. Supplementary Figs. 1-3 provide examples of different
systems and their integrated information. For each pair of brain regions, we
quantify their integrated information by applying information decomposition to

their fMRI timeseries and summing the values of the corresponding information
dynamics. Awhole-brain value is then obtained by averaging across all pairs
ofbrain regions. ¢, Human sevoflurane anaesthesia (Sevo) versus wakefulness
(two-sided paired-samples t-test, FDR-corrected for multiple comparisons)
and versus post-anaesthetic recovery (two-sided paired-samples ¢-test, FDR-
corrected for multiple comparisons); n =15.d, Mouse wakefulness (n =10)
versus medetomidine-isoflurane (MedlIso; n =14) and halothane (Halo; n=19)
anaesthesia data. Pvalues are from two-sided independent-samples ¢-test,
FDR-corrected for multiple comparisons against awake condition. e, Macaque
wakefulness versus anaesthesia with Ppfl, Sevo and Keta. N = 24 runs from

3 animals for awake; 11 runs from 2 animals for sevoflurane; 23 runs from

3 animals for propofol; and 22 runs from 3 animals for ketamine anaesthesia.
Pvalues are from linear mixed-effects models (two-sided), FDR-corrected for
multiple comparisons against the awake condition (see Methods). Datapoints
with the same colour indicate the same animal. f, Marmoset wakefulness versus
anaesthesia with isoflurane (Iso), Sevo and Ppfl. N = 48 runs from 4 animals for
each condition. Pvalues are from linear mixed-effects models (two-sided), FDR-
corrected for multiple comparisons against the awake condition (see Methods).
Inall boxplots: central line, median; box limits, upper and lower quartiles;
whiskers, 1.5x interquartile range. Datapoints with the same colour indicate the
same animal. See Source data for full statistical reporting. Credits: brainicon
inafrom SciDraw.io. Human head icon in ¢ from pixabay.com. Mouseiconind
designed by CraftStarters.com. Macaqueiconin e designed by Freepik.com.
Marmoseticoninffrom pixabay.com.
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during wakefulness or anaesthesia with sevoflurane, propofol or iso-
flurane®; and N = 43 mice scanned either during wakefulness or during
anaesthesiawith halothane or combined medetomidine-isoflurane™.

We find that anaesthetic-induced disconnection from the environ-
ment significantly reduces the brain’s mean value of integrated infor-
mation across all pairs of regions. This result is consistently observed
across species and anaesthetics (except for medetomidine-isoflurane
in the mouse) (Fig. 2c-f). Thus, anaesthesia consistently reduces the
mammalian brain’s capacity tointegrate information at the macroscale.
However, is integrated information also restored upon awakening
from anaesthesia? Indeed, we find that this is the case: integrated
information in the human brain increases significantly upon sponta-
neous recovery of responsiveness following discontinuation of the
anaesthetic (Fig. 2c).

Integration of information is restored upon re-awakening
induced by central thalamic DBS

Inadditionto suppressing responsiveness and presumably conscious-
ness, eachanaestheticis also likely to induce drug-specific side effects
on physiology, such as changes in breathing, heart rate and vascular
tone. By identifying changes in neural activity that are consistently
induced by diverse drugs in different species, we can narrow down how
anaesthetics acton the brain toinduce the same behavioural outcome
across species (breakdown of interaction with the environment) and
exclude side effects that are drug or species specific. The combination
of fMRIand dual causal manipulation with anaesthesiaand deep-brain
stimulation provides arare opportunity for additional nuance. We can
single out aspects of brain function that specifically co-vary with the
anaesthetic’s consciousness-suppressing effects, being not only per-
turbed by anaesthesia but also restored when DBS induces recovery
of behavioural responsiveness.

We take this approach by considering an independent dataset
of macaque fMRI acquired during propofol anaesthesia and during
restoration of behavioural responsiveness induced by deep-brain
stimulation of the central thalamus (Fig. 3a)*°. We first use this inde-
pendent dataset toreplicate our observation that propofol anaesthesia
reduces integrated information in the macaque (Fig. 3b). Crucially,
we next show that integrated information in the macaque brain is
significantly increased compared with propofol anaesthesia, upon
in-scanner electrical deep-brain stimulation of the central thalamus
(CT)athigh(5V)andevenatlow (3 V) intensity (Fig. 3b). These results
go beyond the mere injection of current: the same stimulation proto-
cols were also applied to a control site in the ventrolateral thalamus
(VT), eliciting no behavioural effect™. Likewise, there is no statistical
evidence of integrated information being affected by high-intensity
stimulation of the ventrolateral thalamus, although a smaller but sig-
nificantincrease occurs for low-intensity stimulation (Fig. 3b). Notably,
the greatest restoration of integrated information is observed upon
CT stimulation at high intensity, which also has the greatest effect on
behavioural arousal. Overall, breakdown of integrated information
only occurs when the anaesthetic induces breakdown of interaction
with the environment, but not when this effect is countered by central
thalamic stimulation. In other words, integrated information co-varies
with the consciousness-suppressing effect of anaesthetics, not with
their mere presence in the system.

To further interrogate the link between integrated information
and the behavioural effect of anaesthesia, we consider the ability of
integrated information to track behavioural arousal and its resto-
ration by thalamic DBS across all animals and conditions together.
Specifically, we use dominance analysis, a multivariate technique that
distributes the fit of a statistical model across predictors, such that
the contribution of each predictor can be assessed and compared to
that of other predictors, reflecting the proportion of the explained
variance that can be attributed to each predictor. Here, our model’s
target is the behavioural score on the preclinical arousal scale (see
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Fig.3|Integrated information is restored upon DBS-induced recovery
of consciousness and tracks behavioural arousal better than alternative
information-dynamic measures. a, Tasserie and colleagues® delivered
deep-brain stimulation to the centro-median thalamus (CT) or ventrolateral
thalamus (VT) during fMRI scanning in N = 2 anaesthetized macaques at
either high intensity (5 V) or low intensity (3 V). CT stimulation consistently
restored behavioural arousal. Panel adapted from ref. 30, published under a
CC-BY licence.b, Integrated information for macaque across wakefulness and
propofol anaesthesia with and without deep-brain stimulation of different
thalamic sites and intensities. Pvalues are from linear mixed-effects models
(two-sided), FDR-corrected for multiple comparisons against propofol
anaesthesia without DBS (‘No-DBS’ condition; see Methods). N =36 runs from
3 animals for awake; 28 runs from 2 animals for anaesthesia (DBS-off); 31 runs
from 2 animals for low-amplitude centro-median thalamic DBS; 25 runs from
2 animals for high-amplitude centro-median thalamic DBS; 18 runs from
lanimal for low-amplitude ventrolateral thalamic DBS; 18 runs from 1 animal
for high-amplitude ventrolateral thalamic DBS. Datapoints with the same
colour indicate the same animal. Boxplots: central line, median; box limits,
upper and lower quartiles; whiskers, 1.5x interquartile range. See Source
data for full statistical reporting. ¢, Dominance analysis determines the
relative contribution of each independent variable to the overall fit (adjusted
R?) of amultiple linear regression model**, partitioning the total variance
explainedinthe target (here, behavioural arousal score) accounted for by
each predictor. Here, our predictors are the integrated information (®;) from
ref.16; the measure of integration-redundancy balance (@,s) fromref. 47;
causal density**"'; and net information flow (see Methods for details of each).
Regression target is the behavioural arousal score from each animal in the DBS
macaque dataset®°. Percentage of relative importance is represented as a
pie chart, revealing that integrated information is the predictor with highest
relative importance, accounting for 51% of the total variance explained. We
establish the statistical significance of the multiple linear regression model
accounting for arousal score as a function of our fMRI information-dynamic
measures model using a non-parametric permutation test (one-sided), by
comparing the empirical variance explained against a null distribution of R?
obtained from repeating the multiple regression with randomly reassigned
arousal scores. The empirical variance explained is significantly greater than
chance (R*=0.57; P< 0.001).
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Methods and Supplementary Table 1), which ranges from 0 (complete
unresponsiveness and lack of arousal) to 11 (fully awake and alert).
In addition to integrated information, we also consider prominent
information-dynamic quantities that canbe obtained from information
decomposition. Specifically, we consider (1) the original (thatis, uncor-
rected) proposed measure of integrated information, @,,s, which
was put forward as a measure of conscious level in the brain**%°°, As
shown in Extended Data Fig. 1 (see also Methods), @,,,s can be more
properly understood as quantifying the balance between integrated
information (@) and the persistent redundancy in the system. We also
consider (2) causal density, another measure that seeks to quantify the
‘relevant complexity’inasysteminterms of overall (statistical) causal
interactivity between its elements, and was likewise proposed as a
candidate measure of conscious level in the brain*’. Finally, we consider
the overall net flow of information, which quantifies the prevalence
of imbalanced information transfer in the system. Measures of infor-
mation transfer such as transfer entropy can exhibit changes across
anaesthesia and wakefulness, including due to thalamic stimulation®..
In addition, presence of a net flow of information indicates an asym-
metry in the system, and therefore information flow as defined here
is mathematically related to the notion of ‘temporal irreversibility’,
another measure of brain organization that is often reduced in the
unresponsive (and presumably unconscious) brain®*%,

Using dominance analysis** to disentangle the relative importance
of each predictor, we show that integrated information (®;) emerges
as the predictor with highest relative importance for tracking behav-
ioural arousal in the macaque DBS dataset, alone accounting for
>50% of the total variance explained (Fig. 3c). This result is also repli-
cated when considering both macaque datasets together (DBS and
multi-anaesthesia), which used the same scale for measuring behav-
ioural arousal and are therefore comparable (Supplementary Fig. 4).
Altogether, even though each of the other three candidates has been
associated with consciousness on either theoretical or empirical
grounds, we find thatintegrated informationis the measure of neural
information dynamics that most closely tracks the behavioural effects
of anaesthesia.

Compromised controllability of brain dynamics in the
disintegrated mammalian brain

How can we understand the anaesthetic-induced reduction in inte-
grated information from the brain’s past toits future? Mechanistically,
the transition from past to future states of brain activity unfolds over
the network of physical connections between regions: the structural
connectome® ¥, We therefore turn to ‘network control theory’, which
providesaframework to understand how the network architecture of

asystem shapes its ability to transition between different activation
states: here, patterns of regional fMRI signal*>~*%, Specifically, we can use
linear control theory to determine the controllability of brain dynamics
intermsof the ‘control energy’ that would be required to achieve atran-
sition from one activation pattern to another (Fig. 4a). When it is easy
to steer the system between different functional configurations, the
resulting ‘energy landscape’ will be relatively flat. In contrast, asteeper
landscape indicates that transitions are more effortful, corresponding
to less controllable dynamics (Fig. 4a). This approach was recently
used to reveal pharmacologically induced facilitation of brain state
transitions®*®°, Thus, we adopt this framework to ask: does anaesthesia
induce systematic changes in the controllability of brain dynamics,
that could explain why we observe a drop inintegrated information?

To address this question, we capitalize on the availability of
species-specific anatomical connectomes: (1) human consensus
structural connectome from diffusion-weighted MRI tractography;
(2) macaque structural connectivity combining diffusion-weighted
MRI tractography and CoCoMac tract tracing®; (3) mouse structural
connectome from the Allen Institute’s tract-tracing data®’; and (4)
marmoset structural connectome fromin vivo diffusion-weighted MRI
tractography® (see Methods for details). We use these species-specific
connectomes to quantify the control energy (operationalized as the
squared input signal, summed across brain regions and integrated
across time) required to transition between each pair of successive
fMRI activation states®* during wakefulness and during anaesthesia.

Across species and across anaesthetics, we show that the con-
trol energy required to transition between successive timepoints of
brain activity is significantly increased under anaesthesia (except for
halothane in the mouse) (Fig. 4b-f). This corresponds to the brain
exhibiting a steeper ‘energy landscape’ and less controllable dynam-
ics under anaesthesia. These results from fMRI are consistent with
recent modelling of electrodynamics based onthe human connectome,
which indicated that anaesthesia should induce a steepening of the
energy landscape®.

Crucially, we can again demonstrate that this effect is not amere
by-product of the presence of anaesthetic in the bloodstream but is
rather related to anaesthetic-induced suppression of responsiveness
to the environment: the average transition energy is lowered again
uponawakening from anaesthesia, whether due to discontinuation of
the anaesthetic (human data, Fig. 4b), orinduced by electrical stimula-
tionof the central thalamus inthe macaque (Fig. 4e). However, we note
that this effect was to some extent also observed with low-intensity
stimulation of the VT, which did not induce a corresponding restora-
tion of behavioural arousal®® (we return to this point in the Discus-
sion). Across human, both macaque datasets and marmoset, we also

Fig. 4| Anaesthesia and thalamic DBS exert opposite effects on the
controllability of brain dynamics. a, Network control theory quantifies the
energy (magnitude of input across time) required to transition between brain
states, here defined as successive fMRI signal timepoints. Higher transition
energy means that transitions are more difficult, on average, and dynamics
areless controllable. b, Human sevoflurane data (n =15), including recovery.
Pvalues are from two-sided paired-samples t-test, FDR-corrected for multiple
comparisons against the awake condition, and against the recovery condition.
Boxplots: central line, median; box limits, upper and lower quartiles; whiskers,
1.5xinterquartile range. c, Mouse wakefulness (n =10) versus medetomidine-
isoflurane (Medlso; n =14) and halothane (Halo; n =19) anaesthesia data. P values
are from two-sided independent-samples ¢-test, FDR-corrected for multiple
comparisons against the awake condition. d, Macaque wakefulness versus
anaesthesia with propofol (Ppfl), sevoflurane (Sevo) and ketamine (Keta). N = 24
runs from 3 animals for awake; 11 runs from 2 animals for Sevoflurane; 23 runs
from 3 animals for Propofol; 22 runs from 3 animals for ketamine anaesthesia.
Pvalues are from linear mixed-effects models (two-sided), FDR-corrected for
multiple comparisons against awake condition (see Methods). Datapoints with
the same colour indicate the same animal. e, Macaque DBS data. CT, centro-
median thalamus; VT ventrolateral thalamus. P values are from linear

mixed-effects models (two-sided), FDR-corrected for multiple comparisons
against propofol anaesthesia with no DBS (see Methods). N =36 runs from

3 animals for awake; 28 runs from 2 animals for anaesthesia (DBS-off); 31runs
from 2 animals for low-amplitude centro-median thalamic DBS; 25 runs from

2 animals for high-amplitude centro-median thalamic DBS; 18 runs from 1animal
for low-amplitude ventrolateral thalamic DBS; 18 runs from 1animal for high-
amplitude ventrolateral thalamic DBS. Datapoints with the same colour indicate
the same animal. f, Marmoset wakefulness versus anaesthesia with propofol
(Ppfl), sevoflurane (Sevo) and isoflurane (Iso). N = 48 runs from 4 animals for
each condition. Pvalues are from linear mixed-effects models (two-sided), FDR-
corrected for multiple comparisons against the awake condition (see Methods).
Inall boxplots: central line, median; box limits, upper and lower quartiles;
whiskers, 1.5x interquartile range. Datapoints with the same colour indicate the
same animal. See Source data for full statistical reporting. g, Pearson correlation
(two-sided) between transition energy and integrated information across all
datapoints within each dataset. Shading indicates 95% confidence intervals (Cls).
Credits: human head icon (b,g) from pixabay.com; mouse icon (c,g) designed by
CraftStarters.com; macaqueicon (d,g) designed by Freepik.com; DBS icon (e,g)
adapted fromref. 30, published under a CC-BY licence; marmoseticon (f,g) from
pixabay.com.

Nature Human Behaviour


http://www.nature.com/nathumbehav

https://doi.org/10.1038/s41562-025-02381-5

Article
a Landscape of network control energy
Difficult
transitions
= 4
e 3 N
2 X
QS = AN
<3 \\\'Q
. \’ .s:'r‘f
o !\O
(@)
Activity j Activity
attime t \) attimet \
Species-specific
connectome
b c
, Human ‘ & Mouse
= 5 A 4
| x10° Pr0003 o Avale 1277  P=0.002vs Awake
P =0.013 vs Recovery . o
= 1.0 ° * i
c 3 °
25 10 $ . H
G = o 10.8
5o N 5 ’ H
= Q0 o ° °
=< 10.6
o 9 * ’ ) ‘ *;
o )
. e 10.4 o
N ° QA N & >°
$'b (-00 o\\e; $rb 06 A
ks on ¥ K
d
Macaque
P =0.023 vs Awake
x10° ) ® Monkey 1
— ° ° < ‘ﬁ .. ©® Monkey 2
S =2 o ®
298 -‘ ¢ * o ® Monkey 3
[ °
c D P < 0.001vs Awake
S 2 ! ° % P < 0.001vs Awake ©® Monkey 4
© 6 ¢ : . ; , ® Monkey 5
2
bQ/zQ 600Q \k.é}‘
K &
@ R
e @ Macaque DBS
<10° P <0.001 P<0.001 " g Monkey 1
P <0.001 vs No DBS vs No DBS
— 87vsNoDBS : ° © Monkey 2
é.;. 74 Slg ® Monkey 3
Z) ) . ° ‘ ©® Monkey 4
s264% onkey
g
5] 5 ® Monkey 5
T T T T T 1
) N S X
& F 6\@ & &
\\\(\O & Q?G & S
N 9 Q N Q
f
Marmoset
x108
P <0.001
4 °® vs Awake ® Monkey 1
5 3 3 § t [ 7 ‘ ® Monkey 2
== °
235 12 H t ¢ ° M | ® Monkey 3
S ! P<0.001 U s
& H vs Awake ° P <0.001 © Monkey 4
1.0 ¢ vs Awake
2 o o ™
& ¥ & &

ABlous uonisuel |

9 Correlate measures
r=-0.71; P<0.001

Transition energy

ntegrated information
r=0.21; P=0.184
o

0 ¢
o@o o
o (o]
o
°

o

ntegrated information

o

Transition energy

r=-0.67; P<0.001

Transition energy

Integrated information

r=-0.77; P<0.001

Transition energy

Integrated information

r=-0.31; P<0.001

Transition energy

Integrated information

Nature Human Behaviour


http://www.nature.com/nathumbehav

Article

https://doi.org/10.1038/s41562-025-02381-5

find asignificant negative correlation between individuals’ transition
energy and the integrated information in their fMRI signals (Fig. 4g).
In other words, the brain’s capacity to integrate information is sys-
tematically diminished when brain dynamics are less controllable,
whereupon the organism’s ability to interact with the environment is
also compromised.

Transcriptomic underpinnings of regional changes in
integrated information

The analyses carried out up to this point considered integrated infor-
mation at the global level, by averaging this quantity across all brain
regions in the parcellation. However, to obtain further insight about
the neurobiological origin of this overall reduction, we can alsointer-
rogate changesinintegrated information at theregional level. We use
the Network-Based Statistic (NBS)® to identify pairs of regions thatare
significantly affected by anaesthesia, compared with either baseline
wakefulness or recovery. In each species, the NBS reveals widespread
significant changes in integrated information (@), with the major-
ity being reductions (that is, anaesthetic-induced dis-integration),
overwhelmingly so in the case of human and macaque where the
anaesthetic regimen is deepest (Supplementary Fig. 5). We also find
thatineach species, the majority of significant cortical changes occur
between pairs of regions belonging to different functional systems
(Supplementary Fig. 6), highlighting their distributed nature, in line
with growing consensus that ‘anaesthesia and consciousness are
network-level processes™.

We then obtain the mean value of each region’s significant
changes in integrated information with the rest of the cortex, result-
ing in species-specific cortical maps of anaesthetic-induced changes
inintegrated information (Fig. 5). We see that anaesthetic-induced
changes in integrated information are widely distributed across the
brain, but not uniformly so, instead displaying prominent patterns
of regional variation. Specifically, we find that across species, the
highest prevalence of significant reductions in integrated informa-
tion involves unimodal visual and somatomotor cortices (Fig. 5). We
emphasize that this finding does not contradict the importance of the
default mode network (DMN) and association cortex in supporting
consciousness?, because changes in integrated information are not
confined to unimodal cortices: across species, our NBS analysis also
consistently finds significant reductions inintegrated information in
the association cortex (including anterior and posterior midline corti-
calregions ofthe human brainbelonging to the DMN; Fig. 5). Likewise,
the present results do not contradict early fMRI studies that showed
relative preservation of functional connectivity in primary sensory net-
works under anaesthesia®****’, because these studies used traditional

functional connectivity (that is, correlation) which reflects primarily
redundant information*"*¢ and is therefore fundamentally different
fromthe measure of integrated information used in the present study.
Indeed, the brain-wide but unimodal-dominated spatial topography
of dis-integration (reduced @;) observedinthe present study is highly
consistent with recent findings using another measure intended to
quantify the balance of integration and segregation in the brain, termed
integration-segregation difference (ISD)*2. Jiang and colleagues®also
found distributed dis-integration throughout the humanbrain under
anaesthesia, but with the most prominent effects inunimodal regions,
similar to our own findings with reduced @y (ref. 32). Thus, measures
that are sensitive to the balance of integration and segregation (@,
ISD), rather thansimple correlation, appear to converge ona consistent
topography of anaesthesia.

The question arises: what is the neurobiological underpinning
forsuchaconsistent spatial topography? Brainregions exhibit variable
cytoarchitecture and chemo-architecture, whichis going to shape their
susceptibility to the influence of anaesthetic compounds. Ultimately,
these microarchitectural properties are shaped by each region’s
unique profile of gene expression. Therefore, to identify potential
neurobiological underpinnings of regional changes in integrated
information, we capitalize on the availability of human and mouse
transcriptomic databases from the Allen Institute for Brain Science,
which provide gene expression measures across brain regions from
microarray probes (human)* and insitu hybridization (mouse)*. We
complement these human and mouse databases with a third database
of gene expression in the macaque cortex from stereo-seq, recently
released by the Brain Science Data Center of the Chinese Academy
of Sciences*.

We start by pursuing adata-driven approach. Specifically, we con-
sideralist of evolutionarily conserved brain-related genes pertaining
to neurotransmitter receptors and cell-type markers’. These human
genes have orthologues in both mouse and macaque, making them
comparableacross species. Fromthe genesinthislist, atotal of 81genes
are available and pass our quality control criteria in each of the three
species (human, macaque and mouse) (Supplementary Tables 2 and
3). To obtain consistent patterns across species, we focus on cortical
gene expression, for which dataare availableinall three species. After
obtaining species-specific spatial correlations between regional loss
ofintegrated information and each gene’s expression pattern, we use
these correlations to rank genes across species to identify the most
consistent pattern.

Our data-driven approach indicates that the gene with the most
consistent spatial association with anaesthetic-induced reductions
inintegrated information is PVALB/Pvalb (Fig. 5a). This is noteworthy

Fig. 5| Regional loss of integrated information under anaesthesia correlates
with regional PVALB/Pvalb gene expression across species. a, PVALB/Pvalbis
the gene whose spatial association with regional loss of integrated information

is the most consistent across species. Spatial correlations are used to compare
the 81 genes within each species, ranking them from most negative to most
positive. To aggregate across species, we then average the three species’ ranks.
Since both positive and negative correlations are of interest, we z-score the ranks’
magnitude such that genes whose correlation is the most extremely ranked

(in either direction) will have a higher value, indicated by a darker colour.b,
Regionally defined PVALB gene expression data for the human brain are obtained
from the Allen Institute for Brain Science (AIBS) transcriptomics database®.
Across cortical regions, we observe a negative spatial correlation (Spearman’s
rho, two-sided; significant against a spatial autocorrelation-preserving null
distribution) between the cortical distribution of PVALB gene expression and
the mean NBS-derived significant reduction in integrated information from
comparing anaesthesia against baseline and recovery. Shading indicates 95%
Cl. c,Regionally defined PVALB gene expression data for the macaque brain are
provided by the Brain Science Data Center of the Chinese Academy of Sciences*
and translated to the macaque Regional Mapping atlas by ref. 70. Across cortical
regions, we observe a negative spatial correlation (Spearman’s rho, two-sided;

0

significant against a spatial autocorrelation-preserving null distribution)
between the cortical distribution of PVALB gene expression and the mean
NBS-derived significant reduction inintegrated information from comparing
anaesthesia against baseline and recovery induced by CT deep-brain stimulation.
Shadingindicates 95% CI. d, Regionally defined Pvalb gene expression data for
the mouse brain are obtained from the AIBS transcriptomics database*'. Across
cortical regions where integrated information is reduced under anaesthesia, we
observe anegative spatial correlation (Spearman’s rho, two-sided; significant
against a spatial autocorrelation-preserving null distribution) between the
cortical distribution of Pvalb gene expression and the mean NBS-derived
significant reductioninintegrated information from comparing anaesthesia
against baseline. Across regions where integrated information is increased under
anaesthesia, we observe a positive spatial correlation (Spearman’s rho, two-
sided; significant against a spatial autocorrelation-preserving null distribution)
between the cortical distribution of Pvalb gene expression and the mean
NBS-derived significantincrease inintegrated information from comparing
anaesthesia against baseline. See Supplementary Fig. 7 for corresponding results
with SST/Sst gene expression, another cell-type marker for a different class of
inhibitory interneurons. Shading indicates 95% Cl. Credits: silhouettes and brain
icons from SciDraw.io.
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because PVALB (Pvalbinthe mouse) is amarker gene that is expressed
by inhibitory interneurons, which are targeted by many anaesthetics”
and control the onset and duration of cortical ‘down’ states’”>. We
therefore focus more closely on PVALB/Pvalb. We show that in each of
human, macaque and mouse datasets, regional anaesthetic-induced
reductions in integrated information are negatively correlated with
the regional density of PVALB/Pvalb expression (Fig. 5b—d). In other
words, the more a region reduces its integrated information under

anaesthesia, the more it expresses PVALB/Pvalb. We further use Moran
spectral randomization to implement species-specific null models
and confirm that the association between regional loss of integrated
informationand regional PVALB/Pvalb gene expressionis statistically
significant beyond what would be expected from random maps with
preserved spatial autocorrelation™.

Specifically, in humans we observe a significant negative
correlation (rho(98) =-0.40, P=0.01, Cl =[-0.55, -0.22]) between
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the cortical distribution of PVALB expression and the distribution
of anaesthetic-induced loss of integrated information (Fig. 5b). For
comparison, a significant positive correlation is observed for the
marker gene for the other main class of inhibitory interneurons, SST
(rho(98) =0.27, P=0.045,Cl =[0.09, 0.45]; Supplementary Fig. 7a). For
the macaque, we also find a significant negative correlation between
loss of cortical integrated information and cortical expression of PVALB
(rho(80) =-0.61, P<0.001, CI=[-0.74, -0.47]; Fig. 5¢). However, no
corresponding significant correlation is observed with the distribu-
tion of macaque SST expression from stereo-seq (rho(80) =-0.01,
P=0.477, C1=[-0.21, 0.22]; Supplementary Fig. 7b). Notably, the
restoration of integrated information induced by CT-DBS (both
compared against anaesthesia without stimulation, and against
stimulation of the control site, VT) mirrors the spatial topography
of anaesthetic-induced dis-integration, and correlates with PVALB
expression (Extended Data Fig. 2): the more integrated informa-
tion drops under anaesthesia, the more it is restored by DBS of the
centro-median thalamus. Similar to the anaesthetic-induced loss
of integrated information, its regionally heterogeneous restoration
also closely follows the regional expression of PVALB (Extended Data
Fig.2).Inother words, CT-DBS counteracts the integration-suppressing
effects of anaesthesia in a way that is regionally specific as a function
of PVALB expression.

Finally, the correlation between anaesthetic-induced cortical
changesinintegrated information and Pvalb cortical gene expression
in the mouse follows two opposite patterns: we observe increases in
regional integrated information, as well as decreases. Across corti-
cal regions where integrated information is reduced under anaes-
thesia, we observe a significant negative correlation with cortical
Pvalb (rho(24) =-0.28, P=0.008, CI=[-0.60, 0.13]), similar to that
in humans and macaques. Conversely, a significant positive corre-
lation with Pvalb becomes apparent for regions whose integrated
informationisincreased under anaesthesia (rho(44) = 0.48, P < 0.001;
C1=[0.22,0.68]; Fig. 5d). Aswith the macaque, no significant correla-
tions (for either increases or decreases inintegrated information) are
observed with Sst gene expression in the mouse after accounting for
spatial autocorrelation (Supplementary Fig. 7c). Thus, in the mouse,
the direction of the relationship between integrated information
and Pvalb cortical gene expression depends on whether integrated
information is increased or decreased: in both cases, more extreme
changes occur for regions with higher Pvalb gene expression. Many
differences exist between our primate and murine datasets, includ-
ing acquisition parameters and the anaesthetics used; it is known
that anaesthetics can differ in their effects on cerebral blood flow
and fMRI signals®”>. However, perhaps the most likely cause for the
presence of local increases in integrated information in our mouse
dataset, alongside the observed reductions, is the use of a lighter
anaesthetic regimenin the mouse compared with the deep anaesthe-
siaof our human and macaque datasets. Unsurprisingly, anaesthesia
exerts dose-dependent effects on brain activity and functional con-
nectivity across species’. This interpretation of arole of anaesthetic
depthonintegrated informationis further supported by our analyses
with different depths of anaesthesia in the human data, showing
greater loss ofintegrated information at greater doses of anaesthesia
(Supplementary Fig. 8). Future work with mice under deeper anaes-
thesia will be required to provide a definitive answer to this ques-
tion. Nevertheless, there is a consistent finding in all three species:
in addition to the global reduction in integrated information, we
consistently observe agenetic underpinning for anaesthetic-induced
loss of integrated information, whereby regions that exhibit reduced
integrated information under anaesthesia do soin proportionto their
PVALB/Pvalb gene expression.

We also repeat our analysis across subcortical regions for which
gene expression data are available in both human and mouse**.
Although we find reduced integrated information for most human

subcortical regions and also several mouse subcortical regions, in
neither case do we find a significant correlation with PVALB/Pvalb gene
expression (Supplementary Fig. 9), suggesting that this relationship
betweenintegrated information and PVALB/Pvalb, although consistent
across species, may be a primarily cortical phenomenon. Inspired by
recent work in humans’’, we further investigate the specific role of the
thalamus using the differential MRNA expression of PVALB and CALBI
to differentiate between thalamic nuclei rich in core versus matrix
cells””’%, We ask whether a spatial correlation exists between transcrip-
tomically defined core-matrix architecture and anaesthetic-induced
changes in integrated information. Indeed, we find that loss of inte-
grated informationis stronger for human thalamic nucleirich in matrix
cells (Supplementary Fig.10). This prominent role of the matrix thala-
mus aligns with the human functional connectivity results of ref. 77, but
alsowith other reports about the importance of the matrix thalamus for
anaesthesiafrom the human and non-human primate literature®¢%7°-%2,
including our own present result, that deep-brain stimulation of the
macaque central thalamus reverses the loss of integrated information
induced by anaesthesia (Fig. 3).

However, this human result is not observed in our mouse data.
We perform the mouse analysis through two complementary strate-
gies. First, we use the same approach as for the human data, using the
relative proportion of Calb1to Pvalb mRNA expression from the Allen
Mouse Brain Atlas database (Supplementary Fig. 11). Second, since
mRNA is not always a good proxy for the corresponding protein in
thebrain’®**, we use immunohistochemistry data about the density of
parvalbumin (the protein coded by Pvalb) and calbindin (the protein
coded by Calbl) indifferent nuclei of the mouse thalamus, as provided
byref. 84. After ranking regions on the basis of the relative abundance
ofthese proteins, we perform the same correlation between regional
core-matrix prevalence and regional change in integrated informa-
tion (Supplementary Fig. 12). Despite using independent datasets
and modalities to define mouse thalamic architecture, both analyses
converge in showing similar, non-significant correlations. On one
hand, this may be due to the relatively lighter anaesthesia used in
our mouse datasets (with several nuclei failing to show significant
NBS-corrected changes in integrated information), compared with
the deep anaesthesia of our human dataset. Future work with deeper
levels of anaesthesia will be required to enable formal comparison
between the two species. On the other hand, we note that thalamic
cellular architecture also differs between rodents and primates. In
mice, interneurons represent only 6% of thalamic neurons and are
largely restricted to the visual thalamus, whereas in primates, thalamic
interneurons are more prevalent (-30% of the total thalamic neuronal
population) and can be found throughout the entire thalamus®.

A transcriptomic gradient mediates increased control cost of
brain dynamics under anaesthesia

Is there also a link between PVALB/Pvalb gene expression and the
observed increasesin transition energy under anaesthesia? Network
controltheory requires aspecification of a set of ‘control points’ where
energyisinjectedinto the systemtoinduce the desired transition. For
ourinitial quantification of transition energy, we used a uniform con-
trol strategy, whereby each brain region is given equal control. Next,
we adopt a heterogeneous control strategy instead, to ask whether
theincreaseintransition energy that we observed under anaesthesia
may be driven by regional differences in PVALB/Pvalb gene expression.
Given the inhibitory role of parvalbumin-positive interneurons, the
main type of cell that express the PVALB/Pvalb gene, we model region-
ally heterogeneous inhibition as areductionin the amount of control
energy that each region can inject into the system, proportional to
thatregion’s PVALB/Pvalb expression. This approach is analogous to
arecentapproach that modelled the effect of engaging the excitatory
5HT,, receptor asincreasing the regional amount of control energy, in
proportion to each region’s receptor expression®® (Fig. 6a).
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Fig. 6 | Modelling PVALB/Pvalb-mediated increase in the control cost of brain
dynamics. a, We model regionally heterogeneous inhibition as areduction
inthe amount of control energy that each region caninject into the system,
proportional to that region’s PVALB/Pvalb expression. b-e, In each dataset, we
compare the increase in control cost obtained with PVALB/Pvalb expression,
against the control cost obtained from species-specific surrogate spatial

gradients with preserved spatial autocorrelation, showing that PVALB/Pvalb
induces significantly greater increases in transition costs due to its anatomical
distribution. Human: n = 15; macaque: n = 24 runs from 3 animals; macaque DBS:
n=36runsfrom3animals; mouse: n=10. Pvalues are from non-parametric
paired-samples test (two-sided). For b-e boxplots: central line, median; box
limits, upper and lower quartiles; whiskers, 1.5x interquartile range.

Inother words, we seek to determine whether the specific regional
distribution of PVALB/Pvalb gene expression in the mammalian cortex
could correspond to especially suitable control points for inducing an
increase in transition energy (that is, reduced controllability), which
might then be targeted by anaesthesia. We recalculate the transition
energy between each pair of successive BOLD signal patterns for the
awake condition of each dataset, this time downweighting the energy
injected into every region in proportion to itsamount of PVALB/Pvalb
gene expression (whichis sigmoid normalized and thus lies between O
andlineachspecies); thatis, the more PVALB/Pvalb aregion expresses,
theless control input it will be able to exert on the system. Indeed, we
find that the PVALB/Pvalb-weighted inputs result in higher transi-
tion energy than the uniform inputs (Supplementary Fig. 13). How-
ever, it could be argued that giving less control to some regions will
resultin higher control energy, regardless of their particular spatial
arrangement. To demonstrate that our results are specific to the
spatial distribution of PVALB/Pvalb gene expression, we therefore
compare the transition energy obtained from heterogeneous con-
trol with the empirical PVALB/Pvalb regional distribution against the
transition energy obtained from applying heterogeneous control
with species-specific surrogate maps that preserve the PVALB/Pvalb
map’s mean and spatial autocorrelation, but are otherwise random.
Indeed, we find that the true regional distribution of PVALB/Pvalb
gene expressionis significantly better positioned toinduceincreases
in transition energy than equivalent surrogate maps (Fig. 6). This
effect is once again consistent across species: human (n =15; null
maps mean =5.56 x 107 (s.d. =2.86 x 107); PVALB mean =1.17 x 108
(s.d.=1.06 x107), Wilcoxon sum of signed ranks =1, P < 0.001; Hedge’s
g=2.76); macaque dataset 1 (n =24; null maps mean =4.83 x 10’
(s.d.=4.04 x107); PVALBmean = 6.43 x 10 (s.d. = 6.88 x 10°), Wilcoxon
sumofsigned ranks =77,P=0.037; Hedge’s g = 0.54); macaque dataset 2
(n=36; null maps mean=3.66 x 107 (s.d. =2.96 x 107); PVALB mean =
5.37 x 107 (s.d. = 8.58 x 10°), Wilcoxon sum of signed ranks =137,
P=0.002; Hedge’s g=0.77); and mouse (n =10; null maps mean =
2.52x10° (s.d. = 7.76 x 10°); PVALBmean = 6.13 x 10" (s.d. =1.90 x 10?),
Wilcoxon sum of signed ranks = 0, P= 0.002; Hedge’s g = 9.82).

Integrating species-specific transcriptomics and
connectomics with computational modelling

Thus far, in the four mammalian species we find that anaesthesia
reduces integrated information in the brain. Spatially, the best tran-
scriptomic match for the regional reductioninintegrated information

is the regional expression of the PVALB/Pvalb gene, which we found
to be especially suitable for inducing increases in transition energy.
Such increases are indeed observed in our data. Furthermore, less
controllable dynamics correlate with lower integrated information.

To gobeyond correlation and obtain mechanist insights, we turn
to generative computational modelling: this paradigm provides a
powerful avenue to integrate multimodal data about brain network
structure and neurobiology****%¢. Whole-brain models, including
the neurobiologically plausible dynamic mean-field (DMF) model
employed here, represent regional macroscale activity in terms of
two key ingredients: (1) a biophysical model of each region’s excita-
tory and inhibitory dynamics (see Supplementary Table 4 for model
parameters); and (2) inter-regional anatomical connectivity. The model
output consists of simulated BOLD signal timeseries for each region.
The DMF model can be further enriched with regionally heterogene-
ousdynamics according to anempirical brain map of interest tointer-
rogate its consequences for brain dynamics. Due to its multiplatform
compatibility, low memory usage and high speed, we use the recently
developed ‘FastDMF’ library®’.

Here we use thismodel to ask how integrated informationin brain
dynamics is shaped by increasing regional inhibition in accordance
withthe empirical distribution of PVALB/Pvalb gene expression across
species. For human, macaque and mouse, we develop species-specific
whole-brain models informed by each species’s own structural
connectome, tuned to reproduce the empirical functional connecti-
vity dynamics (FCD) observed during wakefulness in each species®
(Methods; see Supplementary Table 5 for species-specific optimal
working points). Next, we increase regional inhibitionin proportionto
eachregion’s normalized expression of species-specific PVALB/Pvalb
gene. Note that this heterogeneous modelis not directly fitted to match
the anaesthesia data. Rather, its goalis to inform us about the dynami-
cal consequences of increasing inhibition according to PVALB/Pvalb
gene expression.

Compared against the model with regionally homogeneousinhi-
bition, introducing transcriptomics-informed inhibition results in
simulated BOLD dynamics that exhibit significantly less integrated
information (Extended Data Fig. 3). This effect is observed consist-
ently in human, macaque and mouse. To further demonstrate that
this effect is specific to the anatomical distribution of PVALB/Pvalb
gene expression, we perform the same analysis using spatial
autocorrelation-preserving null maps. For all three species, we find
that the reduction in integrated information is significantly more
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Fig. 7| Increasing regional inhibition according to the anatomical distribution
of PVALB/Pvalb expression disrupts integrated information in species-
specific biophysical models. We start from models fitted to the awake functional
connectivity dynamics of each species’s fMRI data. Inhibitory tone is then
increased inaregionally heterogeneous manner, according to each region’s
normalized PVALB/Pvalb gene expression (which is sigmoid normalized in each
species and therefore bound between 0 and 1). Integrated information is then
computed from the resulting simulated BOLD signals and compared against
those obtained from models with regionally heterogeneous inhibition shaped

by spatial autocorrelation-preserving null spatial maps. a, Model based on
human connectome and incorporating human PVALB gene expression from

the AIBS human transcriptomics database. Null maps (n = 41 simulations)

mean =1.03 x1072(s.d. =3.29 x10™); PVALB (n = 41 simulations) mean = 9.98 x 10>
(s.d.=2.38 x10™*); t(80) = 4.57, P < 0.001 two-sided, Hedges g =1.00, 95% CI
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[0.60,1.45]. b, Model based on macaque CoCoMac connectome from DTl and
tract tracing, and incorporating macaque PVALB gene expression from the

Brain Science Data Center of the Chinese Academy of Sciences transcriptomics
database. Null maps (n = 41simulations) mean = 8.94 x 107 (s.d. = 5.85x10™);
PVALB (n=41simulations) mean =8.28 x 107 (s.d. =1.76 x 10™*); £(80) = 6.95,
P<0.001two-sided, Hedges g =1.52,95% CI[1.21,2.02]. ¢, Model based on mouse
tract-tracing connectome and incorporating mouse Pvalb gene expression

from the AIBS mouse transcriptomics database. Null maps (n = 41 simulations)
mean =4.38 x 1073 (s.d. = 1.68 x 10™*); Pvalb (n = 41 simulations) mean =4.29 x 10
(s.d.=8.24 x107); ¢(80) = 3.18, P= 0.002 two-sided, Hedges g = 0.70, 95% C1[0.34,
1.07]. For all boxplots: central line, median; box limits, upper and lower quartiles;
whiskers, 1.5x interquartile range. Pvalues are from independent-samples ¢-test.
Credits: silhouettes and brain icons from SciDraw.io.
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Fig. 8| Macaque-specific biophysical model with stimulation of different
thalamic nuclei reproduces the greater suitability of the central thalamus
for restoring integrated information. a, Illustration of thalamic ROIs and their
inclusionin the DMF model; adapted from ref. 30, published under a CC-BY
licence. Models based on the macaque anatomical connectivity, fitted to the
empirical anaesthesia condition, are subjected to injection of excitatory current
onthe basis of the structural connectivity of the central thalamus (CT, red) and
ventrolateral lateral thalamus (VT, green), obtained from diffusion-weighted
MRItractography of anindependent sample of macaques. b, Simulated CT
stimulation achieves significantly integrated information in brain dynamics
than both no-stimulation (CT mean =1.48 x 107 (s.d. =1.27 x 10%); No stim

mean =4.82x1072(s.d. =5.67 x107%); t(80) = 45.88, P< 0.001 from independent-
samples t-test (two-sided), Hedges g =10.04, 95% C1[8.49,12.70]) and VT
stimulation (CT mean=1.48 x107(s.d. =1.27 x102); VT mean=1.35x10""
(s.d.=1.23 x107); t(80) = 4.87, P < 0.001 from independent-samples t-test (two-
sided), Hedges g =1.07,95% C1[0.64,1.58]). N = 41 simulations for each condition.
Boxplots: central line, median; box limits, upper and lower quartiles; whiskers,
1.5xinterquartile range. Credits: macaque DBSillustration adapted fromref. 30,
published under a CC-BY licence.

pronounced whenthe regional heterogeneity of inhibition follows the
empirical distribution of PVALB/Pvalb gene expressionrather thanan
autocorrelation-preserving surrogate spatial gradient (Fig. 7).
Finally, we investigate whether we can obtain a model of the
anaesthesia-reversing effects of thalamic stimulation observed
in the macaque DBS dataset, and if so, whether the model provides
a useful in silico indication of which of the two thalamic nuclei
would be most suitable to stimulate for restoring integrated infor-
mation. We obtain an ‘augmented’ macaque connectome, with
cortico-cortical connectivity being given by the CoCoMac/DTI con-
nectome previously used for our model®, plus cortical connectivity of
the central and ventrolateral thalamus defined by diffusion tractogra-
phy between the macaque cortex and thalamic nuclei from the SARM
macaque subcortical atlas (Supplementary Methods and Fig. 8a). After
tuning this model to reproduce the dynamics of the anaesthetized
macaque brain (Supplementary Fig. 14), we then separately increase
the intrinsic excitatory scaling of CT and VT from 1 (baseline value
in the DMF model) to 3. This procedure is intended to simulate the

experimental procedure of injecting inputinto the anaesthetized brain.
We find that stimulation of both thalamic regionsinduces anincrease
inintegrated information in the simulated dynamics compared to the
‘anaesthetized’ model (Fig. 8b). Remarkably, stimulation of the central
thalamus region of interest (ROI) induces significantly greater recov-
ery of integrated information than stimulation of the ventrolateral
thalamus (Fig. 8b), in accordance with our empirical observations
(Fig.3).Thisrelative advantage of CT over VT stimulation for restoring
integrated information becomes more pronounced with greater levels
of stimulation (Supplementary Fig.15), also inaccordance with empiri-
cal observations. Taken together, our computationalmodelling results
show that the regional distribution of PVALB/Pvalb gene expressionis
especially suitable forinducing reductions inintegrated information
whenused to tuneregional inhibition. Conversely, since inour model,
CT and VT differ only in terms of their empirically derived anatomical
connectivity, we caninfer that the connectivity profile of the CT nucleus
isespecially suitable forinducingincreases inintegrated information
when used for stimulation.

Validation and robustness

To ensure that our information-theoretic results are not unduly influ-
enced by estimation bias, we replicate them using a debiased version
of integrated information. Bias is estimated by computing the same
information measure on surrogate timeseries data, constrained to
have the same distribution of values for each region and preserve the
instantaneous synchrony between regions (thereby preserving the
functional connectivity) while destroying the past-future relationships
on which integrated information is predicated. A debiased measure
is obtained by subtracting the surrogate-derived quantity from the
empirical quantity. We show that our results are not driven by bias,
being essentially unchanged after debiasing (Supplementary Fig. 16
and Tables 6-10).

We also showresults for different doses of anaesthesia available in
human (Supplementary Fig. 8) and macaque (Supplementary Fig.17)
datasets. For the human dataset, we further show that consistent results
are obtained with a different cortical parcellation, combining 200
cortical regions from the Schaefer atlas and 32 subcortical regions
fromthe Tian atlas (Supplementary Fig. 8). We also show that the cor-
relations betweenintegrated information and transition energy remain
significant in both macaque and human, when these additional data
areincluded (Supplementary Fig. 18). We further validate our spatial
correlations between integrated information and PVALB/Pvalb gene
expression using (1) immunohistochemically quantified parvalbu-
min protein density in the macaque cortex®’; (2) transcriptomically
defined density of PV+ interneurons in the macaque cortex*’; and (3)
transcriptomically defined density of PV+interneurons in the mouse
cortex’® (Supplementary Fig. 19).

Although motionwasactively prevented in each of the four animal
datasets (see Methods) and further eliminated through denoising, we
deploy three additional strategies to further mitigate any concerns
about in-scanner motion affecting our measure of transition energy.
First, we repeat our analyses using mean framewise displacement (FD)
asacovariateof nointerestin each species. We find that although some
individual results become non-significant in human and marmoset,
the results nonetheless remain qualitatively similar, and significant
differences persistineach dataset: human, macaque multi-anaesthesia,
macaque DBS, marmoset and mouse (Supplementary Tables 11-15).
Second, as analternative approach, for the humanand marmoset data-
setswealso repeat the original analysis of transition energy, butinstead
of including motion as a covariate, we apply a more stringent thresh-
old for rejection. Namely, we exclude humans with mean FD > 0.30
(3 exclusions), and we exclude marmosets with mean FD > 0.10 (5
exclusions; note that this is a conservative threshold adopted from
therodentliterature). Results remain the same asin the main analyses
(Supplementary Tables 16 and 17). Note that for the mouse and
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macaque datasets, it is superfluous to perform this analysis because
allanimalsin all conditions are already below the stringent threshold
of mean FD < 0.10. Third, we repeat the correlations between tran-
sition energy and integrated information but using partial correla-
tion to partial out the potential confounding effects of motion (mean
FD). Our results remain the same, with significant negative correla-
tions between the two measures in each of the four primate datasets
(Supplementary Fig. 20).

Due to the computational tractability limitations of information
decomposition, for our main analyses we adopted a pairwise strat-
egy, quantifying @, between pairs of regions and then aggregating
the results. However, to examine the role of integrated information
generated by systems composed of more than two elements, we con-
sider an alternative, more general strategy: instead of calculating
@ across pairs of regions, we calculate @, across a large number of
randomly sampled sets of Kregions splitinto abipartition with evenly
sized parts. This approach (analysing K > 2 regions but divided in a
bipartition) provides a suitable trade-off between considering truly
higher-order information without falling victim to the combinatorial
explosion of possible partitions (and elements in the information
decomposition lattice). Specifically, to achieve acompromise between
high order and low bias, we pick K= 6 and randomly sample 2,000
sets of 6 regions. Each set is divided into 2 groups of 3 regions, and
we then compute the integrated information (®;) between the two
groups of 3 channels. This method was initially proposed as a practical
approach forintegrated information analysis by ref. 48; it has already
been used successfully in previous analyses using alternative measures
of integrated information®'; and more recently we have shown (using
other, non-®@; measures of high-order information) that considering
larger sets of regions beyond pairs increases measured effect sizes in
empirical analyses. Indeed, we find that including a larger number of
elements to consider beyond pairwise interactions does not qualita-
tively change our results. On the contrary, we consistently observe
even stronger effect sizes, which now include false discovery rate
(FDR)-corrected significant reductions in integrated information for
both mouse anaesthesia conditions (Extended Data Fig. 4). This result
suggests that anaesthesia may also affect the integrated information
contained in beyond-pairwise interactions.

To complement our dominance analysis that directly compares
@, against other information-theoretic measures proposed to be
relevant for consciousness, we show how each of these alternative
information-theoretic quantities is reshaped by anaesthesia across
all our datasets. For ease of comparison, their respective decomposi-
tions in terms of integrated information decompositions are shown
in Supplementary Fig. 21. First, we consider the original proposed
measure of integrated information, @,,., corresponding to the whole
minus a naive sum of parts. This measure is therefore equivalent to
the balance between integrated information (@) and persistent
redundancy. We show that the behaviour of @, is highly inconsistent
both within and across species, and does not track loss of responsive-
ness (and presumably consciousness), being unchanged in anaes-
thetized humans or macaques, and even increased in anaesthetized
mice and marmosets (Supplementary Fig. 22). Crucially, this analy-
sis demonstrates that the possibility of @,,. taking negative values
(paradoxical for asupposed measure of integration) is not only a theo-
retical concern but also a practical one: we see this happen in several
of our empirical brain datasets (especially prominentin the macaque
DBS dataset; Supplementary Fig. 22 and Tables 18-22).

Next we consider causal density, which attempts to quantify the
overall prevalence of causal interactions as anindicator of the system’s
causal complexity*°. Specifically, causal density adopts a statistical
interpretation of causality in terms of transfer entropy (information
about Y's future thatis not provided by Y’s past, but only by X’s past). In
the linear case, transfer entropy is equivalent to the Granger-Weiner
notion of statistical causality®. Causal density is thus defined as the

sum of the transfer entropies between elements. However, trans-
fer entropy includes additional information-dynamic phenomena
beyond pure unique-to-unique transfer, including synergistic effects
(Supplementary Fig. 23). Asaresult, causal density shares several atoms
with @g: the two pure transfer terms and all the ‘downward causation’
atoms. In a system where these were the only information-dynamic
phenomena, causal density and @, would therefore become equivalent.
However, each measure also includesinformation-dynamics phenom-
enathatthe otherignores. Onone hand, causal density double-counts
the synergy-to-redundancy atom (being present in both transfer
entropy from X'to Yand transfer entropy from Yto X) and includes the
two information duplication atoms (which @, ignores). On the other
hand, causal density does not account for any information-dynamics
phenomena with synergy in the future, which instead are all included
in @ (ref. 16). Empirically, we find that causal density is substantially
less sensitive to anaesthetic-induced perturbations than @g:inhumans,
causal density detects a reduction under anaesthesia but does not
increase back upon recovery of responsiveness. In the mouse, the
only significant difference is a paradoxical increase. In macaque and
marmoset, no significant changes in causal density are observed for
either anaesthesia or its DBS-induced reversal (Supplementary Fig.23
and Tables 23-27).

Third, we consider the net balance (difference in magnitude)
between the ‘pure’ flow of information from X to Y and from Yto X:
this measure will be zero if the pure transfer from X to Y and from
Yto X are equal. In the case of an imbalance (more transfer in one
direction than the other), this measure is mathematically equivalent
to the INSIDEOUT measure®®, which was recently introduced to
quantify ‘temporal irreversibility’ in linear systems. Although this
‘pure flow of information’ was not explicitly derived as a measure
of consciousness, the INSIDEOUT measure has been repeatedly
shown to track pharmacological and pathological perturbations
of consciousness®>***, making this a relevant candidate to include.
Empirically, we show that pure information flow/INSIDEOUT yields
qualitatively similar results as @ for tracking loss of recovery of
responsiveness, being reduced in anaesthesia across species, and
increasing again upon both spontaneous and DBS-induced awaken-
ing (Supplementary Fig. 24 and Tables 28-32). Indeed, the informa-
tion flow/INSIDEOUT measure was also the second-best predictor
of macaque behavioural arousal score in our dominance analysis,
although @, remains the best-performing measure, accounting for
more than 2x as much variance (Fig. 3).

Finally, we repeat our dominance analysis but including an addi-
tional predictor: the traditional functional connectivity between
regions which is ubiquitous in the fMRI literature. We find that our
revised measure of integrated information (@) remains by far the most
important predictor of macaque behavioural arousal score. Alone, @y
accounts for almost half (46%) of all variance explained: more than
2x that of the next-best predictor (information flow/INSIDEOUT),
with ~3x as much importance as either traditional functional connec-
tivity (15%), or the original @,,,s measure of integrated information
(Supplementary Fig. 25).

Altogether, these empirical results converge with theoretical
arguments in supporting the greater suitability of our revised meas-
ure of integrated information over its original formulation and
alternative information-dynamic quantities for tracking consistent
changesinneural dynamics under anaesthesiaand their reversal with
deep-brainstimulation.

Discussion

Here we combined functional neuroimaging and causal manipulations
through pharmacology and deep-brain stimulation to study macro-
scale integration of information in the brains of humans, macaques,
marmosets and mice. Our main contributions are threefold. First,
we provided evidence that breakdown of information integration is
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aconvergent target of diverse anaesthetics across mammalian spe-
cies. Second, we identified evolutionarily conserved underpinnings
of anaesthetic-induced breakdown of integrated information in
the connectivity and genetics of mammalian cortex. Third, we devel-
oped species-specific computational models to go beyond correla-
tion and demonstrate how patterns of thalamic connectivity and
regional inhibition mediated by PVALB/Pvalb gene expression can exert
bidirectional control over neural integration of information.

By identifying changes in neural activity that coincide with the
same behavioural outcome (breakdown of interaction with the envi-
ronment) despite being induced by different anaesthetics, we can
narrow down anaesthesia’s consciousness-suppressing effects on the
brain. Across species, we provide evidence that anaesthesia reduces
bothintegrated information and the network controllability of brain
dynamics (indicated by higher transition energy). These effects are
significantly correlated inall our primate datasets. A similar correlation
wasalso foundinrecentanalyses thatapplied network control theory
tothe structural connectomes of patients suffering from disorders of
consciousness (DOC), showingthat they are less suitable for supporting
transitions between brain states’. The same patients also exhibited
a correlated reduction in synergistic dynamics, a key component of
integrated information®. Indeed, we previously showed that propofol
anaesthesia and DOC both reduce integrated information between a
shared set of cortical regions*. The same regions are also among those
that exhibited reduced integrated information in the present dataset
ofhuman sevoflurane anaesthesia. Taken together, our results suggest
that despite their different neurobiological origins (pharmacology and
brain injury), anaesthesia and DOC-inducing brain lesions may have
functionally equivalent effects: less controllable dynamics, ultimately
manifesting in a failure to integrate information.

These results are relevant for potential avenues of treatment for
DOC patients. On one hand, recent empirical and computational evi-
dence indicates that suitable pharmacological intervention can also
facilitate brain transitions. In particular, agonists of the serotonergic
5HT,, receptor such as LSD, psilocybin and DMT induce a ‘flatten-
ing’ of the energy landscape corresponding to easier transitions®,
and facilitatory effects have also been reported for dopaminergic
agents®. Such pharmacologically induced facilitatory effects are the
opposite of whatis observed during both anaesthesiaand DOC, which
is encouraging because dopaminergic agents and 5HT,, agonists are
bothbeing considered as potential pharmacological avenues for restor-
ing consciousness in DOC patients®°. Taken together, these studies
provide empirical and computational evidence that the controllability
of brain dynamics can be bidirectionally manipulated via selective
pharmacological interventions.

Ontheother hand, the present work provides evidence that phar-
macology is not the ‘only’ way to restore the controllability of brain
dynamics. We also achieved the same effect via spatially selective
deep-brain stimulation of the central thalamic nucleus in the macaque,
which also restored behavioural arousal and integrated information.
Indeed, our results converge with a growing literature indicating a
role of the central thalamus for controlling consciousness and brain
dynamics on both theoretical and empirical grounds*?%4%°17779-8197-10
9 (see Supplementary Discussion), including as a potential target for
deep-brain stimulation in DOC patients’*®,

The dual causal manipulation of anaesthesia and electrical
stimulation in non-human primates provides a rare opportunity to
single out neural changes that specifically co-vary with the anaes-
thetic’s consciousness-suppressing effects. Previous work adopted
this approach to show that integrated information in macaque elec-
trodynamics is reduced by anaesthesia and sleep, and increased
upon awakening induced by thalamic stimulation®, as are additional
electrophysiological and fMRI markers of consciousness in the
macaque’***”*%!, Combining the specificity of deep-brain stimulation
with global coverage of the entire cortex through functional MRI,

the present study represents an extension of those earlier findings
along multiple dimensions: (1) different neuroimaging modality
(non-invasive fMRIrather thanintracortical electrophysiology), allow-
ing us to measure integrated information across the entire cortex;
(2) a broader range of anaesthetics; (3) identification of transcrip-
tomic underpinnings; and (4) crucially, generalization of the anaes-
thesia results to humans, mice and a different species of non-human
primate (marmoset).

Inaddition, dominance analysis enabled usto directly compare the
ability of different information-theoretic measures to track changes
in behavioural arousal. On one hand, the present results consistently
highlightintegrated information (@) as being unequivocally the most
consistentinformation-theoretic marker of anaesthesiaanditsrever-
sal, accounting for over half (51%) of the total variance explained and
corroborating the susceptibility of integrative processes to loss and
recovery of responsiveness. On the other hand, they also reveal net
information flow (which is mathematically equivalent to the INSIDE-
OUT measure of temporal irreversibility®®) as the measure that best
complements @ for explaining variance inbehavioural arousal (being
the second-best predictor). It stands to reason that the two meas-
ures should complement each other: @, is symmetric and therefore
insensitive to directionality of interactions in the system, whereas
the net information flow is asymmetric, being high when the ‘pure’
(unique-to-unique) information transfer is greater in one direction
than the other. Thus, @ and net flow may complement each other
because @ cares about the ‘intensity’ of interactions between elements
of the system (‘how much’ they interact to make an integrated whole)
but not their direction, whereas net information flow cares about the
‘imbalance’ of the interactions but not their strength per se. Elucidat-
ing this newfound empirical relationship between @, and net transfer/
INSIDEOUT represents a promising avenue for future work.

Likewise, several other measuresin the neuroscience literature are
intended to reflect the balance of integration and segregation, draw-
ing on diverse fields such as network science and dynamical systems
theory*'®?532191-10 \Of particular relevance for the present results is
the recently introduced measure of integration-segregation differ-
ence, defined as the difference between a network’s global efficiency
and clustering coefficient™. When applied dynamically to different
brain states obtained from human fMRI, this measure was found to
be reduced under anaesthesia*’. Thus, both @ and ISD converge to
indicate loss of integration during anaesthetic-induced loss of respon-
siveness, which is then reversed upon recovery. No formal work has
yet related @, and ISD, being both very recent. However, the fact that
both are intended to reflect integration and segregation, and both
track the effect of anaesthesiain the brain, suggests that anunderlying
relationship may indeed exist. Infact, anindirect relationship already
existsintheliterature: both ISD and @, have shown empirical correla-
tions with a third measure intended to capture integration-segrega-
tion balance: the metastability index*'"" (variability over time of the
instantaneous synchrony), which will be high when a systemis neither
fully synchronized nor fully desynchronized, but rather alternates
between states of high and low synchrony'®. Nevertheless, it should
be noted that @, and ISD are conceptually distinct: first, ISD uses a
graph-theoretic definition of integration and segregation, whereas
@y is based on information theory; second, integration-segregation
difference is an explicit difference between the two quantities (with
zero indicating perfect balance); whereas @, does not subtract one
from the other, but rather quantifies the presence of both. We look
forward to future theoretical work that may further explore the links
between these measures. Notably, similar to our present findings with
@, the integration-segregation difference of ref. 32 also displayed
anaesthetic-induced reductions that were widespread across the brain
but especially prominent in primary cortices (visual, somatomotor):
‘SMN and attention networks showed larger magnitudes of change
compared to those of SUB, LIM and transmodal networks (FPN and
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DMN)’*2, Primary visual and somatomotor regions were also the most
prominent in time, being the first to disintegrate®”. Likewise, upon
recovery, ‘reintegration began with changes in the unimodal (VIS and
SMN)*. In other words, recent measures that consider both integration
and segregation rather than simple correlation, appear to converge
towards a consistent spatial topography of anaesthesia: widespread
but unimodal dominated. Our transcriptomic and computational
modelling results reveal alikely neurobiological reason for this spatial
topography, arising from the regional prevalence of PVALB, the main
marker of PV+interneurons. Further, we showed that this phenomenon
isunder local control by the centro-median thalamus.

Our empirical observation that CT stimulation can counter the
effects of anaesthesia on consciousness and informationintegrationin
fMRIsignals does not, by itself, provide evidence about the underlying
neurobiological mechanisms. One way to obtain such insights is via
computational modelling*. References ** recently used thalamocorti-
cal biophysical models based on human neuroimaging to successfully
simulate the effects of anaesthesia and its reversal by stimulation
of matrix (versus core) thalamus on cortical electrodynamics of the
macaque, as reported by the electrophysiological experiments of
ref.79. Here we used a macaque-specific connectome and successfully
modelled restoration of integrated informationin fMRI, including the
preferential role of CT over VT stimulation for restoring integrated
informationin the macaque. Crucially, in our model, CT and VT differ
only in terms of their empirically derived patterns of anatomical con-
nectivity with the macaque cortex, suggesting that the CT may achieve
its role as local controller of global dynamics by virtue of its specific
structural connectivity profile (although we note that this is likely to
beonly one of several convergent relevant factors, given the complex
cytoarchitecture and microcircuitry of different thalamic nuclei’®'°°).

Having demonstrated that regions’ differential suitability as stimu-
lation targets may be predicted from their structural connectivity, our
computational model offers the potential for systematic screening of
everyregiontoidentifyalternative stimulation targets that may be even
more successful than the central thalamus, or more anatomically acces-
sible (see also Supplementary Discussion). Convergent evidence from
the present work supports the translational potential of our model for
DOC patients: both our empirical findings and computational models
are highly consistent across human and macaque, despite being based
on species-specific data. Indeed, our integration of species-specific
connectomics and species-specific gene expression to model empiri-
cal observations in humans, macaques and mice constitutes one of the
key advances of the present study.

Another key contribution of the present work is the identification
of potential mechanisms underlying the effects of anaesthesia on
macroscale information dynamics across species. Among 81 genes,
the regional breakdown of integrated information induced by anaes-
thesia exhibits the closest cross-species correspondence with the
spatial distribution of PVALB/Pvalb gene expression across humans,
macaques and mice. Although regional gene expression data are not
yetavailable at present for the marmoset cortex, we expect that future
work will extend our spatial correlation results to this species, given
the broader pattern of consistencies observed in the present work.
PVALB/Pvalb is a cell-type marker for inhibitory interneurons, and
indeed we validated a spatial association with PV+interneurons using
immunohistochemistry and cell-type deconvolutionin macaque and
mouse. Notably, our species-specific computational models confirmed
that the spatial distribution of PVALB/Pvalb gene expression is espe-
cially suitable for shaping regional inhibitionin away thatinducesless
controllable dynamics and less integrated information, both of which
were reliably observed in our empirical datafor almost every combina-
tion of species and anaesthetics.

Incontrastto PVALB/Pvalb, no consistent association was observed
for another prominent marker of inhibitory interneurons, SS7/Sst
gene expression. Of note, recent work in rodents showed that PV+

interneurons exert greater effect on cortical state than SST+interneu-
rons’’. Crucially, the cortical pattern of parvalbumin gene expression
is highly conserved from mice to humans'® and also from macaques
to humans’, which may make it a plausible candidate underlying the
effects of anaesthesia, which are also deeply conserved across species”.
Admittedly, the anaesthetics employed here have widely different
molecular targets, not all of which are directly known to influence
inhibition or PV+ interneurons'°. However, the brain is a complex
system withintricate feedback loops and molecular cascades that are
still far from completely understood. It should not be too surprising
thatdrugs with different molecular targets at the microscale may end
up exhibiting convergent effects on the same macroscale systems
and physiological properties, beyond what may be apparent from
in vitro studies. Indeed, ketamine shares effects with other anaes-
thetics such as propofol and isoflurane, not only at the macroscale
(as reported here and in EEG studies?) but also at the mesoscale, in
terms of downregulating K*/CI™ co-transporter 2 (KCC2) in the ventral
posteromedial nucleus of the thalamus'®’; and at the microscale, induc-
ing decoupling between apical and basal dendritic compartments of
mouse layer 5 pyramidal neurons, with a recent model showing that
integrated information can be tuned by thalamic control over the
coupling between apical and basal dendritic compartments of layer
5 pyramidal neurons®.

Crucially, apical-basal decoupling was also observed uponinac-
tivation of the higher-order matrix thalamus'®®. Since cortical ‘down’
states during anaesthesia are controlled by thalamic drive to cortical
PV+interneurons in rodents”, multiple lines of evidence point to the
thalamus as a potential convergence target for the results that we
havereported here, which would alsobein line with our empiricaland
computational results about the thalamus’s role in controlling state
transitions. In particular, intralaminar thalamic nuclei, distinguished
by ‘matrix’ cells (in opposition to ‘core’), project widely to the cortex,
including the medial prefrontal and anterior cingulate cortex, as well
as PV+ rich somatosensory and primary and supplementary motor
cortices'*”'%’, PV+ interneurons are primarily output modulating,
whereas SST+ interneurons are mainly input modulating’®. Thus, our
results from empirical cortex-wide correlations and regionally hetero-
geneous computational models suggest that anaesthesia may affect
macroscale informationintegrationin the mammalianbrainbyacting
more closely on output modulation than oninput modulation. Future
studies may investigate this possibility more explicitly by measuring
changesinintegrated information during optogenetic modulation of
PV+interneuronactivity, with and without anaesthesia. Intriguingly, a
recent study in the mouse identified PV+interneurons as being sleep
active, and selective chemogenetic manipulation further demon-
strated that sleep/wake-dependent cortical ignition (the ability of
local stimuli to propagate globally) is modulated by PV+ inhibition of
pyramidal neurons'°.

Our focus here was on the brain’s capacity to process environmen-
talinformation, whichisindexed by loss of behavioural responsiveness,
amarker that is shared across species'” and also widely used in human
clinical practice with DOC patients™. Indeed, the generalization of
our results across four different species is a key strength of the pre-
sent work. However, research with animal models comes with inevi-
table challenges. Since animals cannot provide subjective reports in
the same way as humans, we need to rely on behavioural markers
alone. Behavioural unresponsivenessis animperfect marker of uncon-
sciousness since it can also occur as aresult of sensory disconnection
or motor impairment, neither of which is the same as unconscious-
ness'?. More broadly, our analysis is based on fMRI acquired in the
resting state, thatis, in the absence of a stimulus or atask. Responsive-
ness to the environment can also be evaluated in a way that bypasses
behaviour, by observing the brain’s spontaneous response to natu-
ralistic or synthetic stimuli (for example, suspenseful narratives or
engaging movies'?), as well as examining the neural effects of causal
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perturbations, used as a probe rather than as a means of inducing
awakening™* ™", Translating these paradigms across species will pro-
vide invaluable insights to dissociate brain and behavioural respon-
siveness, complementing our present identification of integrated
information as a cross-species neural marker of anaesthesia.

On the theoretical side, it isimportant to acknowledge that inte-
grated information decomposition is not without limitations (see
‘Measuring integrated information’ in Methods for a detailed discus-
sion), and information decomposition remains an actively evolving
field. In particular, computational tractability remains a limitation of
information decomposition approaches due to combinatorial explo-
sioninthe number of terms. Therefore, here we focused onintegrated
information related to the dynamics of pairs of brain regions. Thus,
our brain-wide estimation of information integration among pairs
of regions is perhaps best viewed as alower bound of the global inte-
grated information that can be obtained at the level of macroscopic
BOLD signals, since it neglects any additional integration between
groups of three or more regions. However, we sought to mitigate this
limitation by analysing a bipartition of 6 channels, which revealed
consistently greater ability to detect anaesthetic-induced differ-
ences, including by identifying significant differences in both mouse
anaesthesia conditions, one of which was not detected with our main
analysis. Developing information decomposition approaches that
scale more gracefully with system size remains an ongoing topic of
active research in the field. More broadly, here we focused on ‘intrin-
sic’ information in the brain, but a complementary approach is to
track ‘extrinsic’ task-relevant information from stimulus to behav-
iour across the brain*"""'%°, although this approach is challenging to
apply in the case of anaesthesia, which is operationalized by loss of
behavioural responsiveness.

On the computational modelling side, it is important to bear in
mind that computational models vary widely in terms of the inevi-
table trade-off between complexity and neurobiological detail, and
where our model lies on this continuum. Onone hand, our model does
notincorporate individual neuron types, or layer-specific cytoarchi-
tecture and thalamocortical connectivity®*>'?', On the other hand,
our dynamic mean-field model represents brain regions as coupled
excitatory and inhibitory neural masses, which is more biologically
realistic than the binary spins of an Ising model, or the oscillators of
Kuramoto and Hopf models, and therefore allowed us to intervene
directly onaregion’s excitationandinhibition. Choices are alsoinevita-
blyrequiredin terms of which sources of biological detail are relevant
to include. If the goal were to model the detailed neurobiological
mechanism of action of a specific drug with known receptor affinity,
rather than our present goal of intervening directly on inhibition,
then it would also be possible to implement more neurobiologically
realistic receptor dynamics, for example, by adding more parameters
such as regional gain scaling'”. Instead, here we incorporate a dif-
ferent source of biological detail: namely, species specificity, in the
form of species-specific gene expression and species-specific ana-
tomical connectivity. Pertaining to the model of thalamic stimulation,
our goals were twofold. First, to investigate whether we can obtain a
species-specific model of integrated information being restored by
local stimulation. Second, to investigate whether the model provides a
usefulinsilicoindication of which of the two thalamic nuclei would be
most suitable to stimulate for restoring integrated information, purely
on the basis of their relative connectivity profiles. Therefore, for this
second objective we focused on the ‘relative’ performance of the two
thalamic nuclei rather than their absolute performance. Indeed, we
found greater restorative effect of CT over VT stimulation, and more so
at higher stimulation levels. Both findings arein accordance with our
empirical results. Nonetheless, we acknowledge that our modelisnot a
perfectreflection of allempirical results: in particular, VT stimulation
achieves greater success in our model thaninreal data. However, this
discrepancy does not impinge on our conclusions about the relative

performance between CT and VT. This partial discrepancy between
therealand simulated results may arise from many factors; for exam-
ple, our model does not include differential cell-type composition
and gene expression of different thalamic nuclei®®’®%*°°, Rather, we
modelled the CT and VT as differing only in terms of their empirical
species-specific profiles of structural connectivity. However, this rela-
tive simplicity hasits own merits: it allows us to conclude that anatomi-
cal connectivity, by itself, could be a powerful predictor of aregion’s
suitability for stimulation aimed at restoring integrated information
(without of course claiming thatitis a perfect predictor, let alone the
‘only’ predictor). Ultimately, no model can ever be a perfect reflection
of biological reality, and ours is no exception: as the adage goes, ‘all
models are wrong’. We take the view that different models address
different desiderata and provide different, complementary insights.

On the empirical side, we also acknowledge that although each
of our results was repeatedly observed in multiple species and with
multiple anaesthetics, the consistency was not perfect. Integrated
information and the controllability of brain dynamics were also partly
restored by low-intensity VT stimulation in the macaque, which did
not restore behavioural arousal. We speculate that this discrepancy
may occur when the neural effects (which must logically precede any
behavioural ones) have not achieved sufficient prominenceto translate
into behaviour. Indeed, the most extreme effect of DBS on integrated
information and the controllability of brain dynamics was consist-
ently observed for high-intensity CT stimulation, concomitant with
re-awakening from anaesthesia. In a similar vein, anaesthetic-induced
breakdown of integrated information and increased transition energy
were each absent from one of the anaesthetized mouse conditions
(but note that neither effect was entirely absent in this species, and
that reduced integrated information was detected in both datasets
when accounting for multiple channels). Inclusion of the marmoset
dataset allowed us to exclude differences in cortical gyrification as
a candidate explanation for this weaker effect, since marmosets are
alissencephalic species similar to mice. As a more plausible explana-
tion, weinstead pointto the fact that our mouse dataset used different
anaesthetics and especially a lighter anaesthetic regimen than our
dataset for the other species, such that interspecies differences may
be confounded by differences between drugs®. In particular, medeto-
midine-isofluraneis ananaesthetic combinationintended to minimize
the effects of anaesthesia on the rodent brain (by using asmaller dose of
eachdrug) while still suppressing motion'?. Altogether, these dissocia-
tionsopenthe door for future comparative studies about the specific
mechanisms that enable different drugs or stimulation protocols to
selectively suppress only one or the other aspect of brain function.

More broadly, we emphasize that the main focus of this work
was on ‘commonalities’ rather than differences, both between drugs
and between species. In this respect, broad convergence of results
despite differences in species and in the anaesthetics used is an asset
of our work. The same applies to the differences in acquisition, such as
different temporal resolution, different scanners and magnetic field
strength, and adoption of species-specific best practices for fMRI
preprocessing and denoising. It is reassuring that our results display
substantial consistency not only across species and anaesthetics, but
also across these extraneous methodological variations. This consist-
ency canbeinterpreted as an additional support for the robustness of
our findings.

Overall, the results presented here offer mechanisticlinks between
the shared neural effects of different anaesthetics and shared aspects of
mammalian neurobiology. Through bidirectional causalmanipulations
that combine pharmacology and electrical deep-brainstimulation dur-
ing functional MRIscanning, we discovered that anaesthetic-induced
suppression of the mammalian brain’s ability tointeract with the envi-
ronment coincides with less controllable dynamics and abreakdownin
thebrain’s capacity to integrate information. We observed these results
with different anaesthetics across humans, macaques, marmosets and
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mice. Integrating species-specific connectomics and transcriptomics,
we furtheridentified genetically encoded gradients of heterogeneous
inhibition as potential neurobiological mechanisms underlying the
shared neural effects of different anaesthetics. Going forward, our
connectome-based model of DBS-induced restoration of integrated
information may hold translational potential for predicting the success
of stimulating different regions to re-awaken patients suffering from
disorders of consciousness. Taken together, this work illuminates how
regional differences in connectivity and genetically encoded circuit
dynamics canbe acted upon by anaesthetics and stimulation to govern
information integration in the mammalian brain.

Methods
For details of each fMRI dataset and its corresponding preprocessing
and denoising procedures, see Supplementary Methods.

Measuring integrated information

In this section, we provide a brief description of information decom-
position and formulae required to compute the results. For further
details, seerefs.16,17.

Partial information decomposition. We begin with Shannon’s mutual
information (MI), which quantifies the interdependence between two
random variables Xand Y. Itis calculated as

IX:Y) = HX) — HX|Y) = H(X) + H(Y) — HX, Y) @®

where H(X) stands for the Shannon entropy of a variable X. Above, the
first equality states that the mutual information is equal to the reduc-
tioninentropy (thatis, uncertainty) about X after Yis known. Put simply,
the mutual information quantifies the information that one variable
provides about another.

Crucially, ref. 15 observed that the information that two
source variables X and Y give about a third target variable Z, I(X,Y;
Z), should be decomposable in terms of different ‘types’ of infor-
mation: information provided by one source but not the other
(unique information); by both sources separately (redundant infor-
mation); or jointly by their combination (synergistic information;
Extended Data Fig. 1). Following this intuition, they developed the
‘partial information decomposition’ (PID)" framework, which leads
to the following fundamental decomposition:

IX,Y:Z) = Red(X, ¥:Z) + UnQG2\Y) + Un(Y:2X) + Syn(X. ¥:2).  (2)

Above, ‘Un’ corresponds to the unique information one source has
butthe other does not, ‘Red’is the redundancy betweenboth sources,
and ‘Syn’ is their synergy: information that neither X nor Y alone can
provide, but that can be obtained by considering Xand Ytogether:

Syn(X,Y:2) = I(X,Y;Z) — (Red(X, YV;Z) + Un(X; 2\Y) + Un(Y;2\X)) (3)

The simplest example of a purely synergistic system is one in
which X and Yare independent fair coins, and Zis determined by the
exclusive-OR function Z=XOR(X,Y): that is, Z= 0O whenever Xand ¥
have the same value, and Z=1otherwise. It can be shown that Xand Y
are both statistically independent of Z, which implies that neither
of them provide, by themselves, information about Z. However,
X and Ytogether fully determine Z, hence the relationship between
Zwith Xand Yis purely synergistic. As another example for the case
of Gaussian variables (as employed here), consider a 2-node coupled
autoregressive process with two parameters: anoise correlationcanda
coupling parameter a. As cincreases, the system s flooded by ‘common
noise’, making the systemincreasingly redundant because the common
noise ‘swamps’ the signal of each node. As aincreases, each node has
a stronger influence both on the other and on the system as a whole,

and we expect synergy toincrease. Therefore, synergy reflects the joint
contribution of parts of the system to the whole that is not driven by

common noise. This can be demonstrated empirically'>.

Integrated information decomposition. Dynamical systems can be
studied via an information-theoretic lens by investigating how they
process information through time, which can be assessed by charac-
terizing the information flow between past and future. Formally, one
can calculate the amount of information flowing from the system’s
pasttoits future, known as ‘time-delayed mutual information’ (TDMI).
Furthermore, one can use PID to decompose this information into
atoms. Specifically, by denoting the past of variables as X,,and Y,.,and
treating them as information sources, and their joint future state
(X, Y,), as target, one can apply the PID framework and decompose
the information flowing from past to future (TDMI) as:

Xz, Ye_r; Xo, Vo) = Red(Xe, Vs X Vo) + UNXes X Ve\Veo)
+Un(Ye_ X, YXeo) + Syn(X—g, Vs X, Vo)

4)

This makes PID applicable to the dynamical systems setting, and
yields a decomposition with redundant, unique and synergistic com-
ponentsinthe past and future that canbe used as aprincipled method
to analyse information flow in neural activity’.

Crucially, the way in which two variables of a dynamical system
encode information may itself change over time. For instance, infor-
mation that was uniquely provided by one variable at one timepoint
may become redundantly encoded by two in the future, or vice versa.
Forthisreason, adoptingatemporal perspectiveleadstoanincreased
number of information atoms. For example, decomposing information
flow between past and future of two components of adynamical system
yields not four, but rather 4 x 4 =16 distinct information-dynamic phe-
nomena, captured by differentinformationatoms, each corresponding
to a pair of the original four PID atoms evolving from past to future
(Fig. 2a and Extended Data Fig. 1)'°. To simplify notation, here we use
the form ‘pastatom - future atom’, such that forexample, ‘UnX~> Red’
referstoinformation that was unique to Xinthe past andis redundant
inthe future. To aid intuition, minimal examples of 2-element systems
implementing each of the atoms are provided in Supplementary Fig. 1:
each system displays only one of the 16 information-dynamic atoms.

This dynamical extension of PID was formally introduced by Medi-
ano and Rosas under the name ‘integrated information decomposi-
tion®, The 16 atoms that integrated information decompositionyields
fortwointerdependent dynamical components can be systematically
organized into a taxonomy of 6 information-dynamic phenomena (see
refs. 16,124 for visual illustrations of this taxonomy):

« Persistence (also termed ‘storage”®'**): information that remains
carried in the same way over time: UnX~> UnX, UnY~> UnY,
Red »> Red, and Syn - Syn;

+ Copy (also termed ‘duplication”®?*): information that was not
redundant in the past, but becomes redundantly available from
both variables in the future; UnX > Red, and UnY - Red;

« Pure transfer (also termed ‘migration”®'?*): information that was
uniquely present in a single variable in the past and is uniquely
presentin the other variable in the future; UnX~> UnY, and
UnY->UnX;

« Erasure (also termed ‘de-duplication”®'?*): information that is
pruned from duplication, such that it was redundant in the
past, but is no longer redundant in the future; Red > UnX, and
Red > UnY;

+ Upward causation (also termed ‘encryption”®'?*): information
that was entirely present in at least one variable in the past and
becomes synergistic in the future, such that it can no longer be
recovered by only considering one variable, but only by consider-
ing them both together: UnX - Syn, UnY - Syn, and Red - Syn.
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« Downward causation (also termed ‘decryption”®'?*): informa-
tion that was encoded synergistically by both variables in the
past, but becomes no longer synergistic in the future, such
thatit s fully available from at least one of the two variables:
Syn - UnX, Syn > UnY, and Syn > Red.

Notably, this framework identifies stronger notions of redun-
dancy, whereby information is present in both X and Yin both past
and future; and synergy, whereby informationis carried synergistically
atall times™",

Minimum mutual information approximation. PID and integrated
information decomposition are frameworks that formally specify
the nature of the information atoms and their mutual relationships
but do not fully specify how they should be estimated in practice.
Hence, animportant limitation of PID, whichis inherited by integrated
information decomposition, is the need to specify a redundancy
function fromwhich the calculation of all other atoms directly follows.
A growing number of redundancy functions have been proposed,
stemming from diverse literatures such as neuroscience, crypto-
graphy and game theory, and satisfying different combinations
of desiderata*'®,

For the case of univariate Gaussian variables, several decompo-
sitions converge into the same simple form'*, Known as ‘minimum
mutual information PID’ (MMI-PID), this decomposition quantifies
redundancy in terms of the minimum mutual information of each
individual source with the target; synergy then becomes identified
with the additional information provided by the weaker source once
the stronger source is known. Crucially, this has been shown to be
the most ‘conservative’ way of defining redundancy in the sense that
it ensures that one does not underestimate its relevance, being an
upper bound to other possible definitions'”. An attractive feature
of MMl is that it makes the redundancy only depend on the marginal
distributions betweenindividual sources and target. However, a limi-
tation of MMl is that it calculates redundancy solely on the basis of
the amount of information that each variable has about the target,
which does not necessarily imply that this information comprises
the same ‘content’™. In addition, a peculiarity of MMl is its stringent
definition of unique information, which is always zero for one of the
two variables under the MMI definition of redundancy. By identifying
redundancy with the minimum of the Mls between each source and
thetarget, the source whose Mlis the minimum will have redundancy
equal toits MIwith the target. Since asource’s unique and redundant
information must sum up to its Ml with the target, this means that
this source’s unique information will be zero. In other words, the
liberal definition of redundancy under MMl is at the expense of a
stringent interpretation of unique information. Relatedly, in PID,
MMl is a totally monotonic function on the redundancy lattice and
therefore yields a non-negative decomposition. It is worth noting
that this does not hold inintegrated information decomposition: the
MMl double redundancy ismonotonic (but not totally monotonic) on
the double-redundancy lattice and can thus lead to negative-signed
atoms. In practice, many PID formulations have been shown to agree
in various empirical scenarios'®'”%, and consistent results have also
beenobserved between different redundancy functions for integrated
information decomposition'®”. Nonetheless, it should be borne in
mind that they obey different theoretical desiderata and hence may
be more or less suitable for specific types of analysis.

Since linear-Gaussian models are sufficiently good descriptors
of functional MRItimeseries, here we adopt this MMI-PID decomposi-
tion, following our own and others’ previous applications of informa-
tion decomposition to neuroscientific data'®"*, Specifically, we used
the Gaussian solver implemented in the JIDT toolbox (https://github.
com/jlizier/jidt) to obtain TDMI, and subsequently applied the MMI
decomposition as described in ref. 16. Moreover, following ref. 16, we

employed the natural extension of MMI for dynamical settings, which
leads to the estimation of the double-redundancy atom as:

Red — Red = min{/(X,_1; X0, IXe—z3 YO I Y s X (Y3 Vo)) (5)

Information decomposition of integrated information
Through the framework of information decomposition, we can obtain
aninformation-dynamicrecipe for ‘integrated information’inasystem:
information about the system’s future behaviour that becomes avail-
able when considering the system as awhole, beyond theinformation
thatis already provided by the individual parts. This whole-minus-sum
information is the ‘difference that makes a difference’: information
that arises from how the parts of the systeminteract with each other®.

The original formulation of ref. 47, which we here term @,,g, is
computed as follows:

D008 = I X1, Y5 Xe, Yo) = U Xees X)) + 1 (Y3 Y1) (6)

However, once the original formulation from ref. 47 is rendered
suitable for practical empirical application*®, the resulting mathemati-
calformulation has known shortcomings, including the fact thatit can
yield negative values in some cases, which are hard to interpret and
seemingly paradoxical, as it does not seem plausible for a system to
be ‘negatively integrated’ or an organism to have negative conscious-
ness*®, Asaresult, several alternative operationalizations of integrated
information have been proposed over the years (see Supplementary
Discussion for alternative development of ‘Integrated information
beyond IIT 2.0’; note that our intention here is ‘not’ to test integrated
information theory (in any of its versions: 2.0, 3.0 or 4.0)).

Crucially, with information decomposition, it can be formally
demonstrated that @,,qis not asingle information-dynamic quantity,
but rather an aggregation of several distinct information-dynamic
phenomena': it contains all the synergisticinformation in the system,
the unique information transferred from X to Y and vice versa, and
importantly, the subtraction of persistent redundancy.

This insight resolves the paradox of why @,,,s can return nega-
tive values: this will occur whenever the system is dominated by the
persistent redundancy’®.

Importantly, information decomposition also provides an expla-
nation for why this subtraction of redundancy occurs. Based on the
formula for @,,,s, the information in each of the parts is given by
1(X._:; Xp), which corresponds to information about the future of X
that is fully provided by its past without the need for reference to
any other parts of the system. In terms of information dynamics, the
information provided by variable X, /(X,_;; X,), is obtained by summing
thefour possible combinations of redundant information and X-unique
information across past and future (recalling that redundancy is
information thatis presentinboth Xand Y):

I (X¢—; X)) = UnX - UnX + UnX —» Red + Red - UnX+ Red - Red (7)

where the shorthand notationusedinthe last expressionis as explained
inthe previous subsection. A similar decomposition can be calculated
for 1(Y,_;Y,). Using these expressions, we obtain that the information
contained in the sum of the parts is given by:

IX—; X)) + (Y3 )

UnX — UnX + UnX — Red + Red — UnX + Red — Red (8)
+

UnY — UnY + UnY — Red + Red — UnY + Red — Red

The Red » Red atom is therefore double counted in the formula-
tion of the sum of the parts as /(X,_;; X;) + /(Y._; ¥;) . When subtracting
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this quantity from the totalinformation about the system’s future that
is provided by its past (that is, /(X,_;, Y;_:; X..Y;), Which is the TDMI
and therefore simply the sum of all atoms, each counted once) to
obtain @,,., the resultis that we are left with a sum of all the synergy-
containing atoms, plus UnX-> UnYand UnY~ UnX, minus Red > Red.

In terms of the taxonomy from integrated information decom-
position, this means that @,,, is made up of the two atoms of pure
transfer (UnX - UnY, and UnY - UnX), synergistic storage (Syn > Syn),
encryption/upward causation (UnX - Syn, UnY - Syn, and Red > Syn)
and decryption/downward causation (Syn > UnX, Syn > UnY, and
Syn - Red), minus the persistent redundancy (Red > Red). Thus, @,ys
double counts the persistent redundancy when computing the sum
of'the parts that it subtracts from the whole.

Oncethisissue has beenidentified as the source of the conceptual
difficulties of @, it becomes straightforward to develop a revised
‘whole-minus-sum’ measure of integrated information (termed @) that
doesnot double count the persistent redundancy when computing the
sum of the information held in the parts'.

The following formulations are therefore equivalent:

Dr=1Xe_t, Vs Xe, Vo) — U Xe_s Xp) + 1 (Ye_; Yy)) + Red — Red

P = Pyo0s + Red — Red

&g = Syn — Syn + Syn — UnX + Syn — UnY + Syn — Red 9)
+Red — Syn + UnX — Syn + UnY — Syn+
UnX — UnY + UnY - UnX

Thus, we can obtain integrated information by adding all
information-dynamic phenomena where information is not persis-
tently present in the same individual variable: the sum of all synergy-
containing atoms and the two transfer terms (Fig. 2a and Extended Data
Fig. 1). This is the measure of integrated information that we used
throughout this work (with Red — Reddefined asinequation (4), using
the minimum mutual information formalism). This measure is com-
putationally tractable and properly reflects the original intuition of
integrated information as measuring the extent to which ‘the wholeis
greater than the sum of its parts’, while also demonstrably yielding
non-negativeresults eveninaredundancy-dominated Gaussiansystem,
thereby avoiding a major conceptual limitation of the original
whole-minus-sum formulation of @,y (ref.16). In turn, this means that
we canre-express @,,.s as the balance between integrated information
(@) and the persistent redundancy.

To provide additional intuition about @, and its relationship to
the underlying network organization of a system, we provide a series
of progressively more complex examples.

(1) Supplementary Fig. 1 shows the amount (in bits) of @, gener-
ated by the minimal system implementing each information-dynamic
atom. The results align with the theoretical decomposition of @,
(ref.16), such that non-zero @ is observed for all and only the systems
whose atomis a constituent of @;. (2) Next, Supplementary Fig. 2 shows
how much @ is generated by each of the 13 possible 3-node motifs
that can occur in a network, corresponding to the network’s elemen-
tary computational circuits'”. Notably, we find higher @, for motifs
exhibiting recurrent connectivity, whether direct (that is, reciprocal
connections between two nodes) or indirect (that is, a 3-node cycle).
This link between integrated information and recurrent connectivity
is intriguing, given the central role that both recurrent processing
and integration of information play in many prominent theoretical
accounts of consciousness®™’. (3) Finally, Supplementary Fig. 3 shows
the mean amount of @, between pairs of regions in a biophysically
realistic network-based computational model (dynamic mean-field),
whereby the wiring between regions is either the empirical human
connectome from diffusion tractography, or one of several rewired
network models. All null networks preserve the network size, density
and weight distribution, thereby only varying in their topology: lattice,

fully random topology, random but preserving the degree (number of
connections) of eachnode, and random but preserving the degree and
also the strength (sum of connections’ weights) of each node. We find
that integrated information (@) is lowest for the two most extreme
topologies (lattice and fully random) and progressively increases as
more features of human brain connectivity are introduced in the net-
work, reachingits highest value for the empirical human connectome
(Supplementary Fig. 3).

To summarize: computing integrated information
(whole-minus-sum) requires computing both the information in the
whole and in the sum of the parts. However, if we try to quantify the
information contained in the sum of the parts by simply summing
the information that can be found in part X without reference to Y,
and the information that can be found in part ¥ without reference to
X, then this ‘naive sum of the parts’ will double count the information
that is redundantly present in both X and Y across past and future
(persistent redundancy). Use of this naive sum of parts is what leads
to the well-known conceptual difficulties of the original proposal for
integrated information as ‘whole minus sum’ (@,,,), including negative
values for redundancy-dominated systems'. This issue is resolved in
the revised measure of integrated information from ref. 16, @, which
does not double count the persistent redundancy when computing
the sum of the information held in the parts. In turn, this means that
we canre-express @,sas the balance (difference) betweenintegrated
information (@) and the persistent redundancy.

For our main analysis, we compute @, between pairs of regions and
thenaggregate the results by averaging across all pairs. Thisapproachis
computationally tractable, but neglects interactions among more than
tworegionsatatime. Toachieve acompromise between high order and
low bias, we adopt the same approach as*®’: instead of calculating @,
across pairs of regions, we calculate @, across a large number of ran-
domly sampled sets of Kregions splitinto a bipartition withevenly-sized
parts. Concretely, we pick K= 6 and randomly sample 2,000 sets of
6 regions. Each set is divided into 2 groups of 3 regions, and we then
compute theintegrated information (@) between the two groups of 3
channels, finally aggregating across all sets to obtain asingle estimate.

Additional information-dynamic measures of consciousness
As described above (and shown in Extended Data Fig. 1 and Supple-
mentary Fig. 21), the @,,,; measure from ref. 47 can be obtained as the
balance (difference) between integrated information (@) and the
persistent redundancy:

P5008 = PR — Red — Red (10)

Causal density*>™' corresponds to the sum of transfer entropies

from Xto Y, and from Yto X. Transfer entropy'*from X to Yisintended
to quantify theinformation about V’s future thatis not provided by Y’s
past, but only by X’s past. It is therefore intended to reflect the (statisti-
cal) influence of Xon Y, being equivalent to the econometric measure
of statistical causal influence known as Granger causality’*, hence the
name ‘causal density’ for the sum of transfer entropies. As demon-
strated in ref. 16, transfer entropy from X to Y can be decomposed in
terms of integrated information atoms as follows:

TEyy = Syn — Red + Syn — UnY + UnX — Red + UnX - UnY 11)

Thus, as shown in Supplementary Fig. 21, the causal density is
computed as

CD = 2(Syn — Red) + Syn — UnY + UnX — Red + UnX - UnY
+Syn — UnX + UnY — Red + UnY - UnX

(12)

The net information flow can be obtained from information
decomposition of the fMRIsignal timeseries between pairs of regions,
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asthe sum ofthe absolute difference between information that was in
region X and is then in region Y (unique X to unique Y), and the infor-
mationthatwasinregion Yandistheninregion X (unique Yto unique
X) (Supplementary Fig. 21). These two information-dynamic terms
correspond to the ‘pure transfer’ between X and Y (disregarding any
synergistic phenomena or duplication of information). Information
flow is zero when the two terms are equal in sign and magnitude, that
is, Xand Y are in balance. A positive value reflects the presence of a
net flow of information between the two. Presence of a net flow of
information indicates an asymmetry in the system, and therefore
information flow as defined here is mathematically related to the notion
of ‘temporal irreversibility’, as quantified by the recently introduced
INSIDEOUT measure®.

Aswithintegrated information, for allinformation-theoretic meas-
ures, asingle overall value for the entire brainis obtained by averaging
across all pairs of regions. This pairwise approachis necessary because
information decompositionscales super-exponentially with the num-
ber of elements in the system; overcoming this limitation remains an
areaof active research.

Network control energy

Network control theory allows us to probe the constraints of
white-matter connectivity on dynamic brain activity and to calculate
the minimum energy required for the brain to transition from one
activation pattern to another®®®, The model of brain dynamics used
for network controllability analysis is based on extensive previous
work demonstrating its wide applicability in health and disease* ",
Ineffect, there exists substantial evidence that linear models provide an
adequate description of the brain dynamics measured with fMRI, such
that more complicated nonlinear models only capture little additional
variance. On the basis of this literature and the well-known tractabil-
ity of linear models, here we follow previous work on network control
theory applications to structural brain networks®.

While this procedure has been detailed elsewhere®®, we briefly
summarizeithere, following the same wording asin our previous work.
For each species, we obtained an N x N structural connectome A as
described above, where Nis the number of regions (100 for human, 82
for macaque, 70 for marmoset and 162 for mouse). We then employed
alinear time-invariant model:

X(t) = AX(f) + Bu(t) 13)

wherexisavector oflength N containing the regional activity at time ¢.
Bisan N x Nmatrix that contains the controlinput weights, andis other-
wiseknown asthe controlstrategy. Here, Bis the identity matrix, reflect-
ing uniform control fromall regions. To compute the minimum control
energy required to drive the system (network) from an initial activity
pattern (x,) to a final activity pattern (x;) over some finite amount of
time (7), we minimize the inputs (u(¢)) subject to equation (13):

T

u(@®)* = min/ u' (Hu(t)dt (14)
0

where Tis the time horizon that specifies the time over whichinput to
the system is allowed. Here, a common choice of T=1was used. The
minimum control energy for asingle brainregion is then:

T 2
£ = [ Iy 1s)
0

Finally, the global minimum control energy for a transition sums
over each node:

N
Emin = Y E (16)
i=1

This quantity (£,,,) was calculated for each pair of initial x, and final
Xx¢brainstates (that s, adjacent fMRIsignal volumesin eachindividual’s
fMRIscans) and then averaged across the whole timeseries duration to
obtain an overall estimate of transition energy under each condition.

Network control theory requires aspecification of a set of ‘control
points’ where energy is injected into the system to induce the desired
transition: this control strategy is formalized in the matrix of control
input weights B. For our initial quantification of transition energy, we
used a uniform control strategy whereby equal inputs are provided
at each brain region, such that Bis the identify matrix. To model the
potential role of regionally heterogeneous inhibition, we reduce the
amount of control energy that each region caninject into the system,
proportional to that region’s PVALB/Pvalb normalized gene expres-
sion. Concretely, thisis implemented as subtracting from the identity
matrix of uniformcontrolinput weights B, adiagonal matrix where each
entryisthe normalized gene expression (whose valuesliein the range
[0,1]). Thus, entries along the diagonal of the heterogeneous control
matrix Barenotalllsanymorebutlieintherange[0,1]. Thisapproach
for modulating the control strategy is analogous to arecentapproach
that modelled the effect of engaging the excitatory SHT,, receptor as
increasing the regionalamount of control energy in proportionto each
region’sreceptor expression®,

Whole-brain computational modelling

The whole-brain computational modelling framework, as used in
our previous work®*** and implemented in the ‘FastDMF’ library®, is
describedindetail inthe Supplementary Methods. Below we describe
the maininnovations specific to the present work.

Model with regionally heterogeneous inhibition. To interrogate the
effect of providing additional inhibitionin aregionally heterogeneous
way as a simplified model of what might occur under anaesthesia, we
increase the value of local inhibitory input according to the value of
eachregion’snormalized PVALB/Pvalb gene expression quantified from
species-specific transcriptomics. Specifically, regional inhibitory input
wasincreased by its original value (0.7 for every region) multiplied by
theregion’s normalized gene expression. Sincein eachspecies, the gene
expression values are sigmoid normalized and therefore liein the range
[0,1], the values of inhibition in the regionally heterogeneous models
range from 0.7 (original value) to 1.4 (thatis, doubled inhibition). The
DMF model was then run as described above, and the corresponding
functional measures were computed. To dissociate the effects of a het-
erogeneous distribution of inhibition from those of neuroanatomy, we
alsorepeated the above process with uncorrelated surrogate versions
ofthe species-specific gene expression maps (see ‘Nullmodels’ section
of the Supplementary Methods).

Modelling electrical stimulation of thalamic nuclei. Stimulation pro-
tocol.Based onthe augmented macaque thalamocortical connectome,
the DMF model was used to simulate 41 instances of BOLD timeseries
using the G parameter that best reproduced the empirical dynam-
ics observed in the macaque under anaesthesia. This corresponds
tosimulation of the anaesthetized condition. To simulate DBS-induced
awakening, thalamic stimulation was modelled by increasing the
excitatory scaling of the external input current to the CT or VT from
1(baselinevalue) to 3,and thengenerating 41instances of BOLD signals
for each condition. In Supplementary Fig. 15, we also report results
for alternative values of excitatory scaling (1.5 and 2x).

Statistical reporting
See Supplementary Methods for full statistical reporting information.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability

For thehuman sevoflurane dataset, dataare available from author D.G.
through academic collaboration. For the macaque multi-anaesthesia
dataset, raw data are available for access from B.). through academic
collaboration. For the macaque DBS dataset, raw data are available for
access fromB.J. through academic collaboration. For the mouse data-
set,dataareavailable from A.G. The marmoset fMRI data are available
from K.M. through academic collaboration. The HCP DWI datain SRC
formatare available online (http://brain.labsolver.org/diffusion-mri-
data/hcp-dmri-data). Themacaque structural connectomeis available
onZenodoathttps://doi.org/10.5281/zenodo.1471588. The CoCoMac
databaseisalso available online at http://cocomac.g-node.org/main/
index.php?. Preprocessed macaque dMRIdatain DSIStudio format are
available on Zenodo (https://doi.org/10.5281/zenodo0.6321168). The
mouse connectome is available from A.G. The marmoset structural
connectivity data are available online at https://doi.org/10.24475/
bminds.mri.thj.4624. Human gene expression data® are available from
the Allen Human Brain Atlas at http://human.brain-map.org/static/
download. Mouse gene expression data* are available at https://mouse.
brain-map.org/. Macaque cortical gene expression data from ref. 40
are available at https://macaque.digital-brain.cn/spatial-omics. The
datasetis provided by Brain Science Data Center, Chinese Academy of
Sciences (https://braindatacenter.cn/). The macaque gene expression
dataresampled to the Regional Mapping atlas are available at https://
github.com/netneurolab/luppi-genes-receptors-macaque. Mouse
regional PV+ neuron count data are from Table S3in ref. 90. Macaque
parvalbumin density data from immunohistochemistry for several
regions of the macaque cortex are available in the Supplementary
Materials of ref. 89. Immunohistochemically derived measurements of
therelative prevalence of calbindin-positive and parvalbumin-positive
neurons in different thalamic nuclei are available from the Supple-
mentary Material of ref. 84. Source data are provided with this paper.

Code availability

Analysiswas performedin MTLABv.2019a and 2024b, and Python 3.11.
The Python processing for PreClinical data pipeline, Pypreclinv.1.0.1,
is freely available at https://github.com/neurospin/pypreclin. FMRIB
Software Library (FSL) is freely available online (http://www.fmrib.
ox.ac.uk/fsl/; version accessed 4 February 2018). The CONN toolbox
v.17fis freely available at http://www.nitrc.org/projects/conn/. DSI
Studio (v.2022) is freely available at https://dsi-studio.labsolver.org/.
The‘abagen’ toolbox (v.0.1.4) is available at https://github.com/rmar-
kello/abagen. The RheMap toolbox (v.1.4) isavailable at https://doi.org/
10.5281/zenodo.3668510. The BrainSpace toolbox for generation of
Moran spectral surrogates is available at https://brainspace.readthe-
docs.io/en/latest/. The Pythontoolbox for Dominance Analysisis freely
available at https://github.com/dominance-analysis/dominance-anal-
ysis. The Brain Connectivity Toolbox is available online at https://sites.
google.com/site/bctnet/. TheJIDT toolboxis available at https://github.
com/jlizier/jidt. FastDMF toolbox whole-brainmodelling is available at
https://www.gitlab.com/concog/fastdmf. MATLAB/Octave and Python
codetocompute measures of integrated information decomposition
oftimeseries with the Gaussian MMl solver is available at https://github.
com/Imperial-MIND-lab/integrated-info-decomp.
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decomposition. (a) Partial information decomposition distinguishes
information thatis uniquely provided by variable X or by variable Y; redundant
information thatis equally available from either variable; and synergistic
information, which is only available when considering both variables jointly, but
not either of theminisolation. (b) Information decomposition enables tracking
how information from the system’s past toits future is carried by its constituent
elements, corresponding to each of the 4x4 =16 combinations of redundancy,
X-unique information, Y-unique information, and synergy. (c) Naive sum of

the parts. Some information can be obtained by considering element X alone,
without reference to any other parts of the system. This information corresponds
to the 4 possible combinations of redundant information and X-unique
information across past and future. Likewise, some information can be obtained
by considering element Y alone, given by the combinations of redundancy and
Y-unique information. However, if we simply sum the information that can be
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found in Xwithout reference to ¥, and the information that can be foundin Y
without reference to X, then this ‘naive sum of the parts’ will double-count the
information that is redundantly presentin both Xand Yacross past and future
(persistent redundancy). (d) Integrated information is the information that

is presentin the system as awhole, over and above the sum of the information
provided by each of the parts. However, attempting to quantify this ‘whole
minus sum’ by subtracting the naive sum of the parts from the total information
flowing between past and future of the system, yields the original measure of
integrated information from Balduzzi and Tononi (@,,s), which has well-known
conceptual difficulties including negative values for redundancy-dominated
systems (Mediano et al., 2025). If instead the proper sum of the parts is used
(thatis, without double-counting the persistent redundancy), we obtain the
revised measure of integrated information from (Mediano et al., 2025), @;.In
turn, this means that we can re-express @, as the balance (difference) between
integrated information (®;) and the persistent redundancy.
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Extended Data Fig. 2| DBS-induced restoration of Integrated Informationin of PVALB gene expression, and the mean change in integrated information from
the macaque brain mirrors the spatial topography of anaesthetic-induced comparing anaesthesia against reawakening induced by CT stimulation. Shading
disintegration and correlates with PVALB expression. (a) We observe anegative  indicates 95% confidence intervals. (c) We observe a negative spatial correlation
spatial correlation (Spearman’s rho, two-sided; significant against a spatial (Spearman’s rho, two-sided; significant against a spatial autocorrelation-
autocorrelation-preserving null distribution) between the cortical distribution preserving null distribution) between the cortical distribution of PVALB gene
of macaque PVALB gene expression, and the mean change in integrated expression, and the mean change in integrated information from comparing VT
information from comparing anaesthesia against baseline wakefulness in the stimulation (which does not re-awaken the animal from anaesthesia) against CT
macaque. Shadingindicates 95% confidence intervals. (b) We observe a negative stimulation. Shading indicates 95% confidence intervals. Credits: Macaqueicon
spatial correlation (Spearman’s rho, two-sided; significant against a spatial designed by Freepik.com. DBS and macaque thalamus illustrations adapted from
autocorrelation-preserving null distribution) between the cortical distribution Tasserie et al (2022), published under CC-BY license.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Species-specific biophysical whole-brain models exhibit
significantly lower integrated information whenincorporating regionally
heterogeneousinhibition according to the empirical distribution of PVALB/
Pualb gene expression, than with homogeneous inhibition. (a) Model based

on human connectome and incorporating human PVALB gene expression from
the Allen Institute for Brain Science human transcriptomics database. N = 41
simulations for each condition. Box plots: central line, median; box limits, upper
and lower quartiles; whiskers, 1.5x interquartile range. (b) Model based on
macaque connectome from DTl and tract-tracing, and incorporating macaque

PVALB gene expression from the Brain Science Data Center of the Chinese
Academy of Sciences transcriptomics database. N = 41 simulations for each
condition. Box plots: central line, median; box limits, upper and lower quartiles;
whiskers, 1.5x interquartile range. (c) Model based on mouse tract-tracing
connectome and incorporating mouse Pvalb gene expression from the Allen
Institute for Brain Science mouse transcriptomics database. N = 41 simulations
for each condition. Box plots: central line, median; box limits, upper and lower
quartiles; whiskers, 1.5x interquartile range. All p < 0.001 from independent-
samples t-test (two-sided).
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Extended Data Fig. 4 | See next page for caption.
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Extended DataFig. 4 | Integrated information across a bipartition of 6 channels.
(a) Human (n =15) sevoflurane anaesthesia (Sevo) versus wakefulness (p < 0.001
from two-sided paired-samples t-test, FDR-corrected for multiple comparisons
against Awake condition) and recovery (p < 0.001 from two-sided paired-samples
t-test, FDR-corrected for multiple comparisons against Recovery condition).

Box plots: central line, median; box limits, upper and lower quartiles; whiskers,
1.5x interquartile range. (b) Mouse wakefulness (n = 10) versus medetomidine-
isoflurane (Medlso; n =14) and halothane (Halo; n =19) anaesthesia data. P-values
are from two-sided independent-samples t-test, FDR-corrected for multiple
comparisons against Awake condition. Box plots: central line, median; box

limits, upper and lower quartiles; whiskers, 1.5x interquartile range. (c) Macaque
wakefulness versus anaesthesia with propofol (Ppfl), sevoflurane (Sevo), and
ketamine (Keta). N = 24 runs from 3 animals for Awake; 11 runs from 2 animals

for Sevoflurane; 23 runs from 3 animals for Propofol; 22 runs from 3 animals for
Ketamine anaesthesia. P-values are from linear mixed effects models (two-sided),
FDR-corrected for multiple comparisons against Awake condition (see Methods).
Box plots: central line, median; box limits, upper and lower quartiles; whiskers,
1.5xinterquartile range. (d) Macaque DBS stimulation. N = 36 runs from 3 animals
for Awake; 28 runs from 2 animals for anaesthesia (DBS-off); 31 runs from 2

animals for low amplitude centro-median thalamic DBS; 25 runs from 2 animals
for high amplitude centro-median thalamic DBS; 18 runs from 1 animal for low
amplitude ventrolateral thalamic DBS; 18 runs from 1 animal for high amplitude
ventrolateral thalamic DBS. P-values are from linear mixed effects models (two-
sided), FDR-corrected for multiple comparisons against propofol anaesthesia
with no DBS (see Methods). Box plots: central line, median; box limits, upper and
lower quartiles; whiskers, 1.5x interquartile range. Data-points with the same
colour indicate the same animal. (e) Marmoset wakefulness versus anaesthesia
withisoflurane (Iso), sevoflurane (Sevo) and propofol (Ppfl). N = 48 runs from

4 animals for each condition. P-values are from linear mixed effects models
(two-sided), FDR-corrected for multiple comparisons against Awake condition
(see Methods). Box plots: central line, median; box limits, upper and lower
quartiles; whiskers, 1.5x interquartile range. Data-points with the same colour
indicate the same animal. See Source Data for full statistical reporting. Credits:
Human head icon from pixabay.com. Mouse icon designed by CraftStarters.com.
Macaque icon designed by Freepik.com. DBS and macaque thalamusillustrations
adapted from Tasserie et al (2022), published under CC-BY license. Marmoset
icon from pixabay.com.
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in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

>
S~
Q

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  The Python processing for PreClinical data pipeline, Pypreclin version 1.0.1, is freely available at https://github.com/neurospin/pypreclin.
FMRIB Software Library (FSL) is freely available online (http://www.fmrib.ox.ac.uk/fsl/; version accessed February 4, 2018).

Data analysis Analysis was performed in MTALAB version 2019a and 2024b, and Python 3.11. The CONN toolbox version 17f is freely available at http://
www.nitrc.org/projects/conn/. DSI Studio (version 2022) is freely available at https://dsi-studio.labsolver.org/. The abagen toolbox (version
0.1.4) is available at https://github.com/rmarkello/abagen. The RheMap toolbox(version 1.4) is available at https://doi.org/10.5281/
zen0do.3668510. The BrainSpace toolbox for generation of Moran spectral surrogates is available at https://brainspace.readthedocs.io/en/
latest/. The Python toolbox for Dominance Analysis is freely available at https://github.com/dominance-analysis/dominance-analysis. The
Brain Connectivity Toolbox is available online at https://sites.google.com/site/bctnet/. The JIDT toolbox is available at https://github.com/
jlizier/jidt. The FastDMF code for whole-brain modelling at https://www.gitlab.com/concog/fastdmf. MATLAB/Octave and Python code to
compute measures of Integrated Information Decomposition of timeseries with the Gaussian MM solver is freely available at https://
github.com/Imperial-MIND-lab/integrated-info-decomp.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

For the human sevoflurane dataset, data are available from author D.G. through academic collaboration. For the macaque Multi-anaesthesia dataset, raw data are
available for access from author B.J. through academic collaboration. For the macaque DBS dataset, raw data are available for access from author B.J. through
academic collaboration. For the mouse dataset, data are available from author A.G. The marmoset fMRI data are available from author K.M. through academic
collaboration. The HCP DWI data in SRC format are available online (http://brain.labsolver.org/diffusion-mri-data/hcp-dmri-data). The macaque structural
connectome is available on Zenodo at https://doi.org/10.5281/zenodo.1471588. The CoCoMac database is also available online at http://cocomac.g-node.org/
main/index.php?. Preprocessed macaque dMRI data in DSI Studio format are available on Zendo (DOI: 10.5281/zenodo.6321168). The mouse connectome is
available from author A.G. The marmoset structural connectivity data are available online at https://doi.org/10.24475/bminds.mri.thj.4624. Human gene expression
data 66 are available from the Allen Human Brain Atlas at http://human.brain-map.org/static/download. Mouse gene expression data 67 are available at https://
mouse.brain-map.org/. Macaque cortical gene expression data from 68 are available at https://macaque.digital-brain.cn/spatial-omics. The dataset is provided by
Brain Science Data Center, Chinese Academy of Sciences (https://braindatacenter.cn/). The macaque gene expression data resampled to the Regional Mapping atlas
are available at https://github.com/netneurolab/luppi-genes-receptors-macaque. Mouse regional PV+ neuron count data from Kim, Yang, et al (2017) are available
at http://mouse.brainarchitecture.org/cellcounts/ost/. Macaque parvalbumin density data from immunohistochemistry for several regions of the macaque cortex
are available from the Supplementary Materials of Burt et al (2018) 90. Immunohistochemically-derived measurements of the relative prevalence of calbindin-
positive and parvalbumin-positive neurons in different thalamic nuclei are available from the Supplementary Material of from Bjerke et al 85. Source Data are
provided with this article.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Each dataset had been previously collected. The human sevoflurane dataset only included male participants. The design is
within-subjects, and our focus was not on comparing groups or inter-individual differences but rather on comparing states of
anaesthesia. The HCP dataset includes both men and women.

Reporting on race, ethnicity, or No grouping by race, ethnicity, or socieconomic status was performed.
other socially relevant
groupings

Population characteristics See Life sciences reporting.

Recruitment Data acquisition took place between June and December 2013. Participants approaches the research team to seek
participation. healthy adult men were recruited through campus notices and personal contact, and compensated for their
participation in the study. Further exclusion criteria were the following: physical status other than
American Society of Anesthesiologists physical status |,
chronic intake of medication or drugs, hardness of hearing
or deafness, absence of fluency in German, known or
suspected disposition to malignant hyperthermia, acute
hepatic porphyria, history of halothane hepatitis, obesity
with a body mass index more than 30 kg/m2, gastrointestinal
disorders with a disposition for gastroesophageal
regurgitation, known or suspected difficult airway, and
presence of metal implants.

HCP dataset: Detailed information about the recruitment, acquisition and imaging is provided in the dedicated HCP
publications.

Ethics oversight All HCP scanning protocols were approved by the local Institutional Review Board at Washington University in St. Louis.
Sevoflurane dataset: The ethics committee of the medical school of the Technische Universitat Munchen (Munchen,
Germany) approved the current study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Randomization

This study used previously collected data. No power analysis was performed prior to data collection, but the sample sizes are within the range
reported in the literature, and each of the datasets included here has been individually published before: Ranft 2016 Anesthesiology (Human);
Uhrig 2018 Anesthesiology (Macaque multi-anaesthesia); Tasserie 2022 Science Advances (macaque DBS); Muta 2023 Cerebral Cortex
(marmoset); Gutierrez-Barragan 2021 Current Biology (mouse).

Human sevoflurane dataset: n=20 participants were recruited; each contributed data for awake, recovery, and 3 different anaesthesia levels

Macaque datasets: Five rhesus macaques were included for analyses (Macaca mulatta, one male, monkey J, and four females, monkey A, K, Ki,
and R, 5-8 kg, 8-12 yr of age). For the DBS dataset, details were provided in (Tasserie et al., 2022). Five male rhesus macaques (Macaca
mulatta, 9 to 17 years and 7.5 to 9.1 kg) were included, three for the awake (non-DBS) experiments (monkeys B, J, and Y) and two for the DBS
experiments (monkeys N and T). No statistical methods were used to determine sample size, but these sample sizes are in line with similar
studies in the field, due to the ethical and practical challenges of neuroscience research with nonhuman primates. Each animal contributed
multiple scans. For the Multi-anaesthesia dataset, after data exclusion (see below), N=24 runs from 3 animals for Awake; 11 runs from 2
animals for Sevoflurane; 23 runs from 3 animals for Propofol; 22 runs from 3 animals for Ketamine anaesthesia, for the Multi-anaesthesia
dataset. For the DBS dataset, after data ezclusions (see below) N=36 runs from 3 animals for Awake; 28 runs from 2 animals for anaesthesia
(DBS-off); 31 runs from 2 animals for low amplitude centro-median thalamic DBS; 25 runs from 2 animals for high amplitude centro-median
thalamic DBS; 18 runs from 1 animal for low amplitude ventro-lateral thalamic DBS; 18 runs from 1 animal for high amplitude ventro-lateral
thalamic DBS.

Marmoset dataset: Three male and one female healthy common marmosets (C. jacchus) between 3 and 6 years of age were included. All
marmosets were examined 12 times to collect functional MRI data in all conditions.

Mouse: N=10 for awake condition; N=19 for halothane; N=14 for med-sio anaesthesia.

Sevoflurane dataset: A total of 16 volunteers completed the full protocol and were included in our analyses; one participant was excluded due
to high motion, leaving N=15 for analysis.

Macaque: See "Noise and artifact removal" section below, for quality control criteria used to exclude individual trials from analysis. Exclusion
was done prior to analysis.

Marmoset: no exclusions
Mouse: no exclusions

We replicated our results 5 times in 4 different mammalian species (human, two macaque datasets; marmoset; mouse), and with different
anaesthetics (human: sevoflurane at 3 different doses; macaque: 3 anaesthetics; marmoset: 3 anaesthetics; mouse: 2 anaesthetics).. We also
replicated results with two different measures of parvalbumin density. Thalamic results in the mouse were replicated between
transcriptomics and immunohistochemistry.

For the human data, each volunteer contributed to 3 different anaesthesia levels. For the Multi-anaesthesia dataset, after data exclusion (see
below), N=24 runs from 3 animals for Awake; 11 runs from 2 animals for Sevoflurane; 23 runs from 3 animals for Propofol; 22 runs from 3
animals for Ketamine anaesthesia, for the Multi-anaesthesia dataset. For the DBS dataset, after data exclusions (see below) N=36 runs from 3
animals for Awake; 28 runs from 2 animals for anaesthesia (DBS-off); 31 runs from 2 animals for low amplitude centro-median thalamic DBS;
25 runs from 2 animals for high amplitude centro-median thalamic DBS; 18 runs from 1 animal for low amplitude ventro-lateral thalamic DBS;
18 runs from 1 animal for high amplitude ventro-lateral thalamic DBS. For the marmoset data, each animal contributed 12 scans for each of
the 3 anaesthetics.

Human sevoflurane data, marmoset data: every individual was included in every condition, so no allocation was required.

Macaque datasets: Three monkeys were used for each condition: awake state (monkeys A, K, and J), ketamine (monkeys K, R and Ki), propofol
(monkeys K, R, and J), sevoflurane (monkeys Ki, R, and J).

For the multi-anaesthesia dataset, the acquisitions were performed over 5 years. Whenever possible, animals were scanned in
different anesthesia (propofol, sevoflurane, ketamine) conditions.

Monkey R: moderate propofol, deep propofol, moderate sevoflurane, deep sevoflurane, ketamine

Monkey K: moderate propofol, deep propofol, ketamine

Monkey K could not be scanned under moderate sevoflurane and deep sevoflurane anesthesia, because this monkey had health
issues not related with this study.

Monkey Ki: moderate sevoflurane, deep sevoflurane, ketamine

Monkey J: moderate propofol, deep propofol, moderate sevoflurane, deep sevoflurane

For the awake condition, monkeys need to have a headpost an be trained for awake fMRI studies. 2 monkeys of the multi-anaesthesia
dataset could be scanned in the awake condition. Monkey K: and monkey J. The third monkey of this group was monkey A.

Regarding the DBS dataset, animals and experimental conditions (different location and stimulation for resting state) were randomly
chosen using a Matlab function.

For the macaque and marmoset datasets, the design involves taking multiple samples from the same animals in different conditions, and we
controlled for this with linear mixed effects modelling.

Mouse dataset: each individual only took part in one condition.. Animals were of the same sex (all male), age, and bred in identical conditions
in the same vivarium. Independent-samples tests were used to account for different identities.

>
Q
Q
c
@
O
]
=
o
=
—
®
©O
]
=
S
(e}
wv
c
3
3
Q
<




Blinding No blinding is possible, since anaesthetised state is tested by means of behavioural responsiveness.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |:| |Z| MRI-based neuroimaging
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Animals and other organisms
Clinical data

Dual use research of concern

OooXood

Plants

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Macaque Multi-anaesthesia dataset: Macaca mulatta (one male and four females, 8-12 yr of age).
Macaque DBS dataset: Macaca mulatta (five males, 9 to 17 years).

Marmoset dataset: Three male and one female healthy common marmosets (C. jacchus) between 3 and 6 years of age were
included. All marmosets were examined 8 times to collect functional MRI data in all conditions.

Mouse: N=10 for awake condition; N=19 for halothane; N=14 for med-sio anaesthesia.

Wild animals No wild animals used.

Reporting on sex For the macaque anaesthesia dataset, five rhesus macaques were included for analyses (Macaca mulatta, one male, monkey J, and
four females, monkey A, K, Ki, and R, 5-8 kg, 8-12 yr of age).

For the macaque DBS dataset, five male rhesus macaques (Macaca mulatta, 9 to 17 years and 7.5 to 9.1 kg) were included, three for
the awake (non-DBS) experiments (monkeys B, J, and Y) and two for the DBS experiments (monkeys N and T).

For the marmoset dataset, three male and one female animals were included.

Mouse dataset: Adult (< 6 months old) male C57BL/6J mice were used throughout the study.

Sex was not considered in this study. Because of the small sample sizes, the sex balance per group could not be secured.
Only males were included in the DBS dataset in order to avoid the menstrual cycle and hormone variations.

Field-collected samples  None

Ethics oversight Human sevoflurane: The ethics committee of the medical school of the Technische Universitat Miinchen (Minchen, Germany)
approved the current study.

Macaque: All procedures are in agreement with the European Convention for the Protection of Vertebrate Animals used for
Experimental and Other Scientific Purposes (Directive 2010/63/EU) and the National Institutes of Health’s Guide for the Care and Use
of Laboratory Animals. Animal studies were approved by the institutional Ethical Committee (Commissariat a I'Energie atomique et
aux Energies alternatives; Fontenay aux Roses, France; protocols CETEA \#10-003 and 12-086). All procedures are in agreement with
2010/63/UE, 86-406, 12-086 and 16-040.

Marmoset: This study was approved by the Animal Experiment Committees at the RIKEN Center for Brain Science (CBS) and was
conducted per the guidelines for Conducting Animal Experiments of RIKEN CBS.

Mouse: In vivo experiments were conducted in accordance with the Italian law (DL 26/214, EU 63/2010, Ministero della Sanita,
Roma) and with the National Institute of Health recommendations for the care and use of laboratory animals 29. The animal research
protocols for this study were reviewed and approved by the Italian Ministry of Health and the animal care committee of Istituto
Italiano di Tecnologia (IIT).




Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks N/A

Novel plant genotypes  N/A

Authentication N/A

Magnetic resonance imaging

Experimental design

Design type

Design specifications

Behavioral performance measures

resting-state for all datasets

Human sevoflurane: : five scanning sessions: awake, 2 vol%, 3 vol% burst-suppression, and recovery. 350 volumes
acquired for each scan.

Macaque multi-anaesthesia: For the anaesthesia dataset, a total of 157 functional magnetic imaging runs were acquired
(Uhrig et al., 2018): Awake, 31 runs (monkey A, 4 runs; monkey J, 18 runs; monkey K, 9 runs), Ketamine, 25 runs
(monkey K, 8 runs; monkey Ki, 7 runs; monkey R, 10 runs), Light Propofol, 25 runs (monkey J, 2 runs; monkey K, 10 runs;
monkey R, 12 runs), Deep Propofol, 31 runs (monkey J, 9 runs; monkey K, 10 runs; monkey R, 12 runs), Light
Sevoflurane, 25 runs (monkey J, 5 runs; monkey Ki, 10 runs; monkey R, 10 runs), Deep Sevoflurane anaesthesia, 20 runs
(monkey J, 2 runs; monkey Ki, 8 runs; monkey R, 11 runs). For details, check the supplementary tables for (Barttfeld et
al., 2015; Uhrig et al., 2018; Signorelli et al., 2021) (http://links.ww.com/ALN/B756).

Macaque DBS: For the DBS dataset, a total of 199 Resting State functional MRI runs were acquired: Awake 47 runs
(monkey B: 18 runs; monkey J: 13 runs; monkey Y: 16 runs), anaesthesia (DBS-off) 38 runs (monkey N: 16 runs,; monkey
T: 22 runs), low amplitude centro-median thalamic DBS 36 runs (monkey N: 18 runs; monkey T: 18 runs), low amplitude
ventro-lateral thalamic DBS 20 runs (monkey T), high amplitude centro-median thalamic DBS 38 runs (monkey N: 17
runs; monkey T: 21 runs), and high amplitude ventro-lateral thalamic DBS 20 runs (monkey T: 20 runs).

Marmoset: Functional imaging was performed 12 times per animal, per condition. After awake data were firstly
collected, and sedate/anesthetic data were done in a random order for sedate/anesthetic condition with an interval of
1 month between each examination in each individual. scan time = 310s.

Mouse: Mice under halothane anesthesia (n = 19) were scanned for a total of 1600 time points, total acquisition time of
32 minutes. Awake and medetomidine-isoflurane rsfMRI scans were acquired for a total time of 32 minutes.

Loss of behavioural responsiveness was used to determine depth of anaesthesia.
Sevoflurane dataset: loss of consciousness was judged by the loss of responsiveness
(LOR) to the repeatedly spoken command “squeeze my hand” two consecutive times.

For the macaque datasets, We used a preclinical behavioural scale adapted from Uhrig et al66 to assess the arousal
levels of the monkeys. This scale, based on the Human Observers Assessment of Alertness and Sedation Scale113 and
previously utilised in non-human primate (NHP) research114, was used consistently across all experimental conditions,
in both datasets.

The assessment encompassed six criteria as follows:

- exploration of the surrounding world, from 0 to 2:

0 = total absence,

1 = small search of external clue,

2 = total investigation of the environment (such as head orientation to a sound);
- spontaneous movements, from O to 2:

0 = total absence,

1 = small torso and/or limb movement,

2= large torso and/or limb movement

- shaking / prodding, from 0 to 2:

0= total absence,

1= small body movement,

2 = large body movement;

- toe pinch, from O to 2:

0 = total absence,

1 = small reflex (weak body movement or eye blinking or cardiac rate change),

2 = clear reaction (strong body movement and eye blinking or eye opening and cardiac rate change);
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Acquisition
Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI Used

- eyes opening, from O to 2:

0 = total absence,

1 = small blinks or eye movements,
2 = full eye opening;

- corneal reflex, from O to 1:

0 = absent,

1 = present.

Functional and anatomical for all datasets
3T for human; 9.4 T for marmoset; 7.0 for mouse; 3T for macaque.

Human sevoflurane: Data acquisition was carried out on a 3-Tesla magnetic resonance imaging scanner (Achieva Quasar
Dual 3.0T 16CH, The Netherlands) with an eight-channel, phased-array head coil. The data were collected using a
gradient echo planar imaging sequence (echo time = 30 ms, repetition time (TR) = 1.838 s, flip angle = 75°, field of view
=220x 220 mm2, matrix = 72 x 72, 32 slices, slice thickness = 3 mm, and 1 mm interslice gap; 700-s acquisition time,
resulting in 350 functional volumes). The anatomical scan was acquired before the functional scan using a T1-weighted
MPRAGE sequence with 240 x 240 x 170 voxels (1x1x1 mm voxel size) covering the whole brain.

Macaque: For the awake condition, monkeys were implanted with a magnetic resonance compatible head post and
trained to sit in the sphinx position in a primate chair (Uhrig, Dehaene and Jarraya, 2014)). For the awake scanning
sessions, monkeys sat inside the dark magnetic resonance imaging scanner without any task and the eye position was
monitored at 120 Hz (Iscan Inc., USA). The eye-tracking was performed to make sure that the monkeys were awake
during the whole scanning session and not sleeping. The eye movements were not regressed out from rfMRI data. For
the anesthesia sessions, animals were positioned in a sphinx position, mechanically ventilated, and their physiologic
parameters were monitored. No eye-tracking was performed in anesthetic conditions. For the anesthesia dataset,
before each scanning session, a contrast agent, monocrystalline iron oxide nanoparticle (Feraheme, AMAG
Pharmaceuticals, USA; 10 mg/kg, intravenous), was injected into the monkey’s saphenous vein (Vanduffel et al., 2001).
Monkeys were scanned at rest on a 3-Tesla horizontal scanner (Siemens Tim Trio, Germany) with a single transmit-
receive surface coil customized to monkeys. Each functional scan consisted of gradient-echo planar whole-brain images
(repetition time = 2,400 ms; echo time = 20 ms; 1.5-mm3 voxel size; 500 brain volumes per run).

For the DBS dataset, monkeys were scanned at rest on a 3-Tesla horizontal scanner (Siemens, Prisma Fit, Erlanger
Germany) with a customized eight-channel phased- array surface coil (KU Leuven, Belgium). The parameters of the
functional MRI sequences were: echo planar imaging (EPI), TR = 1250 ms, echo time (TE) = 14.20 ms, 1.25-mm isotropic
voxel size and 500 brain volumes per run.

Marmoset: An ultra-high field MRI system with a static magnetic field strength of 9.4 T (Bruker BioSpin, Ettlingen,
Germany), a custom-made 8-channel receiver coil for the marmoset head (Takashima Seisakusho Co., Ltd, Tokyo,
Japan), and a 154 mm inner diameter transmitter coil (Bruker BioSpin, Ettlingen, Germany) were used to collect
structural and functional data. Structural data and T2-weighted images were imaged using rapid acquisition with
relaxation enhancement (RARE) sequence with the following conditions and parameters: time repetition

(TR)=4331 ms, time echo (TE) = 15.0 ms, FOV = 42.0 x 28.0 x 36.0 mm, matrix size = 120 x 80 voxels, resolution = 0.35 x
0.35 mm, slice thickness = 0.7 mm, number of slices = 52, scan time = 1 min and 26 s, RARE factor = 4. Functional
images were captured using a gradient

recalled echo-planar imaging (EPI) sequence with the following conditions and parameters: TR = 2,000 ms, TE = 16.0
mm, FOV = 42.0 x 28.0 x 36.0,mm matrix size = 60 x 40 voxels, resolution = 0.7 x 0.7 mm, slice thickness = 0.7 mm,
number of slices = 52, repetition = 155, scan time = 310s.

Mouse: All scans were acquired at the IIT laboratory in Rovereto (ltaly) on a 7.0 Tesla MRI scanner (Bruker Biospin,
Ettlingen) with a BGA-9 gradient set, a 72 mm birdcage transmit coil, and a four-channel (awake, halothane) or three-
channel (medetomidine-isoflurane) solenoid

receive coil. Awake and medetomidine-isoflurane rsfMRI scans were acquired using a single-shot echo planar imaging
(EPI) sequence with the following parameters: TR/TE=1000/15 ms, flip angle=60 degrees, matrix=100 x 100, FOV=2.3 x
2.3 cm, 18 coronal slices (voxel-size 230 x 230 x 600 mm), slice thickness=600 mm and 1920 time points, for a total time
of 32 minutes. Mice under halothane anesthesia (n = 19) were scanned with a TR/TE=1200/15m:s, flip angle=60 degrees,
matrix=100 x 100, 24 coronal slices (voxel-size 200 x 200 x 500 mm), for a total of 1600 time points, total acquisition
time of 32 minutes.

Whole brain for all datasets.

D Not used

Parameters Macaque: Anatomical (structural) connectivity data were derived from the recent macaque connectome of (Shen et al., 2019), which
combines diffusion MRI tractrography with axonal tract-tracing studies, representing the most complete representation of the
macaque connectome available to date. Structural (i.e., anatomical) connectivity data are expressed as a matrix in which the 82
cortical regions of interest are displayed in x-axis and y-axis. Each cell of the matrix represents the strength of the anatomical
connection between any pair of cortical areas.

Human: The dMRI data were from the HCP dataset. The spatial resolution was 1.25 mm isotropic. TR=5500ms, TE=89.50ms. The b-
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values were 1000, 2000, and 3000 s/mm2. The total number of diffusion sampling directions was 90, 90, and 90 for each of the shells
in addition to 6 bO images.

Preprocessing

Preprocessing software

Normalization

Normalization template

Noise and artifact removal

Human: Preprocessing of the functional MRI data for both datasets followed the same standard workflow as in our previous
studies, and was implemented in the CONN toolbox (http://www.nitrc.org/projects/conn), version 17f [81].

Macaque: Images were preprocessed using Pypreclin (Python preclinical pipeline) (Tasserie et al., Neuroimage 2020).
Marmoset: SPM (Wellcome Trust Center for Neuroimaging, London, UK).
Mouse: AFNI, FSL, ANTs

Human: Direct normalisation to MNI space (nonlinear) using the segmented grey matter image from each volunteer’s high-
resolution T1-weighted image, together with an a priori grey matter template.

Macaque: Functional images were reoriented, realigned, and rigidly coregistered to the anatomical template of the monkey
Montreal Neurologic Institute (Montreal, Canada) space with the use of Python programming language and Oxford Centre
Functional Magnetic Resonance Imaging of the Brain Software Library software (United Kingdom, http://www.fmrib.ox.ac.uk/
fsl/; accessed February 4, 2018) (Uhrig, Dehaene and Jarraya, 2014)).

Mouse: spatially registered (ANTs registration suite) to an in-house mouse brain template with a spatial resolution of 0.23 x
0.23 x 0.6mm3.

Marmoset: The voxels were spatially standardized

by normalization, which aligns the voxels to the standard brain image to correct for structural differences between
individuals.. functional data were parcellated into 70 regions in the cerebral cortex, corresponding to regions of the
marmoset MBM atlas

Human: Schaefer-100 parcellation in MNI-152 volumetric template, 2x2x2mm isotropic resolution.

Macaque: Data were parcellated according to the Regional Map parcellation (Kotter and Wanke, 2005). This parcellation
comprises 82 cortical ROIs (41 per hemisphere; Supplementary Table 4).

Marmoset: functional data were parcellated into 70 regions in the cerebral cortex, corresponding to regions of the marmoset
MBM atlas

Mouse: data were parcellated into 162 cortical and subcortical symmetric regions from the Allen Mouse Brain Atlas (CCFv3).

Human: Denoising followed the anatomical CompCor (aCompCor) method of removing cardiac and motion artifacts, by
regressing out of each individual’s functional data the first 5 principal components corresponding to white matter signal, and
the first 5 components corresponding to cerebrospinal fluid signal, as well as six subject-specific realignment parameters
(three translations and three rotations) and their first- order temporal derivatives, and nuisance regressors identified by the
software ART 82. The subject-specific denoised BOLD signal time-series were linearly detrended and band-pass filtered
between 0.008 and 0.09 Hz to eliminate both low-frequency drift effects and high-frequency noise.

Macaque:

Voxel time series were filtered with low-pass (0.05-Hz cutoff) and high-pass (0.0025-Hz cutoff) filters and a zero-phase fast-
Fourier notch filter (0.03 Hz) to remove an artifactual pure frequency present in all the data (Barttfeld et al., 2015; Uhrig et
al., 2018). Furthermore, an extra quality control (QC) cleaning procedure was performed to ensure the quality of the data
after time-series extraction72. This quality control procedure is based on trial-by-trial visual inspection by an expert
neuroimager (C.M.S.), and it is the same as was previously implemented in Signorelli et al72. Its adoption ensures that we
employ consistent criteria across our two datasets, by adopting the more stringent of the two. We plotted the time series of
each region, as well as the static functional connectivity matrix (FC), the dynamic connectivity (dFC) and a Fourier analysis to
detect unconventional spikes of activity. For each dataset, visual inspection was first used to become familiar with the
characteristics of the entire dataset: how the amplitude spectrum, timeseries, FC and dynamic FC look. Subsequently, each
trial was inspected again with particular focus on two main types of potential artefacts. The first one may correspond to
issues with the acquisition and is given by stereotyped sinusoidal oscillatory patterns without variation. The second one may
correspond to a head or other movement not corrected properly by our preprocessing procedure. This last artefact can be
sometimes recognized by bursts or peaks of activity. Sinusoidal activity generates artificially high functional correlation and
peak of frequencies in the Amplitude spectrum plot. Uncorrected movements generate peaks of activity with high functional
correlation and sections of high functional correlations in the dynamical FC matrix. If we observed any of these anomalies we
rejected the trial, opting to adopt a conservative policy. See Figures S17-S19 for examples of artifact-free and rejected trials.

As a result, for the Multi-Anaesthesia data set a total of 119 runs are analysed in subsequent sections (the same as used in
Signorelli et al. 72): awake state 24 runs, ketamine anaesthesia 22 runs, light propofol anaesthesia 21 runs, deep propofol
anaesthesia 23 runs, light sevoflurane anaesthesia 18 runs, deep sevoflurane anaesthesia 11 runs. For the DBS data set, a
total of 156 runs are analysed in subsequent sections: awake state 36 runs, Off condition (propofol anaesthesia without
stimulation) 28 runs, low-amplitude CT stimulation 31 runs, low-amplitude VT stimulation 18 runs, high-amplitude CT
stimulation 25 runs, high-amplitude VT stimulation 18 runs.

Marmoset: Estimation and correction of geometric distortions induced by magnetic susceptibility were performed with the
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top-up tool of the FMRIB Software Library (FSL) software (FMRIB, Oxford, UK) because all cross-sections were imaged with a
single excitation in EPI. Slice timing correction was performed to correct for signal acquisition timing discrepancies in each
section. Realignment was applied to compensate for head movements caused by body movements. The deviations in 6
directions were obtained: x (left/right), y (front/back), z (up/down), pitch (rotational direction of nodding and looking up), roll
(rotational direction of moving the ear closer to the shoulder), and yaw (rotational direction of looking left/right). For each
measurement time point (TR), the deviation from the reference time point, and the first functional brain image, was
determined; and the image was moved and rotated by the rigid body model based on this deviation. The method of finding
the parameters of the linear transformation was used to minimize the difference between the first functional brain image
and the affine transformation of the series of functional brain images to be corrected, by calculating convergence using the
method of least squares.

After correcting the spatial scale error between the structural and functional images with co-registration, segmentation was
performed to provide information on the tissue to which each voxel belongs in terms of brain tissue classification. The voxels
were spatially standardized

by normalization, which aligns the voxels to the standard brain image to correct for structural differences between
individuals. Smoothing was applied to suppress excessive voxel value fluctuations within individuals and apply normal
probability field theory. Functional data were

smoothed using spatial convolution with a Gaussian kernel of 2 voxels (7 mm). Then, physiological noise was denoised using
ordinary least squares regression with cerebrospinal fluid pulsation, heart rate, and respiratory artifacts as regressors.
Temporal band pass filtering was performed by frequency filtering (0.01-0.1 Hz) using the fMRI denoising pipeline of CONN.
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Mouse: the first 2 minutes of the time series were removed to account for thermal gradient equilibration. RsfMRI timeseries
were then time despiked (3dDespike, AFNI), motion corrected (MCFLIRT, FSL), skull stripped (FAST, FSL) and spatially
registered (ANTs registration suite) to an in-house mouse brain template with a spatial resolution of 0.23 x 0.23 x 0.6mm3.
Denoising involved the regression of 25 nuisance parameters. These were: average cerebral spinal fluid signal plus 24 motion
parameters determined from the 3 translation and rotation parameters estimated during motion correction, their temporal
derivatives and corresponding squared regressors. No global signal regression was employed. In-scanner head motion was
guantified via calculations of frame-wise displacement (FD). Average FD levels in awake conditions were comparable to those
obtained in anesthetized animals (halothane) under artificial ventilation (p = 0.13, Student t test) 29. To rule out a
contribution of residual head-motion, we further introduced frame-wise fMRI scrubbing (FD > 0.075 mm). The resulting time
series were band-pass filtered (0.01-0.1 Hz band) and then spatially smoothed with a Gaussian kernel of 0.5 mm full width at
half maximum. Finally, the timeseries were trimmed to ensure that the same number of timepoints were included for all
animals, resulting in 1414 volumes per animal.

Volume censoring Human: the artifact rejection tool (ART), implemented in the CONN toolbox, was used to identify and regress out outlying
volumes, as part of the CompCor denoising procedure described above. The default CONN settings of 5 global signal z-values
and 0.9mm were used.

Mouse: To rule out a contribution of residual head-motion, we further introduced frame-wise fMRI scrubbing (FD > 0.075
mm).

Statistical modeling & inference
Model type and settings We used correlation against an autocorrelation-preserving null distribution to test the spatial association between regional

change in integrated information and gene expression maps. For marmoset and macaque we used linear mixed-effects
modelling. For human we used repeated-measures t-tests. For mouse we used between-subjects t-tests.

Effect(s) tested We tested whether integrated information was different between awake/recovery and anaesthetised conditions. We also

tested whether its regional change was spatially associated with gene expression maps. We also used partial correlation and
linear mixed-modelling, using motion (mean framewise displacement) as covariate of no interest.

Specify type of analysis: [ | whole brain || ROI-based Both

. . Human:M Schaefer fucntional atlas; Macaque: Regional Mapping atlas. Mouse: Allen atlas; Marmoset:
Anatomical location(s)

MBM atlas.
Statistic type for inference Spatial correlation with autocorrelation-preserving nulls. Effect sizes are provided as Hedge’'s measure of standardised
difference g.
(See Eklund et al. 2016)
Correction correction for multiple comparisons against the same condition was carried out using the False Discovery Rate procedure
Models & analysis
n/a | Involved in the study
D Functional and/or effective connectivity
D Graph analysis
IE D Multivariate modeling or predictive analysis
Functional and/or effective connectivity We used Integrated Information obtained from Information Decomposition (see Methods) between each

pair of regions.

Graph analysis We used network-based generative (biophysical) models, and we also used network control energy. Both




Graph analysis were based on the structural connectome.

>
Q
L
C
=
(D
5,
o)
=
o
=
-
@
S,
o)
=
>
@
wv
e
3
=
QO
=
A




	Convergent transcriptomic and connectomic controllers of information integration and its anaesthetic breakdown across mamma ...
	Results

	Integrated information from information dynamics

	Breakdown of integrated information is a convergent effect of diverse anaesthetics across mammalian species

	Integration of information is restored upon re-awakening induced by central thalamic DBS

	Compromised controllability of brain dynamics in the disintegrated mammalian brain

	Transcriptomic underpinnings of regional changes in integrated information

	A transcriptomic gradient mediates increased control cost of brain dynamics under anaesthesia

	Integrating species-specific transcriptomics and connectomics with computational modelling

	Validation and robustness


	Discussion

	Methods

	Measuring integrated information

	Partial information decomposition
	Integrated information decomposition
	Minimum mutual information approximation

	Information decomposition of integrated information

	Additional information-dynamic measures of consciousness

	Network control energy

	Whole-brain computational modelling

	Model with regionally heterogeneous inhibition
	Modelling electrical stimulation of thalamic nuclei

	Statistical reporting

	Reporting summary


	Acknowledgements

	Fig. 1 Integrating neuroimaging and pharmacology with computational modelling across species.
	Fig. 2 Anaesthesia disintegrates the mammalian brain.
	Fig. 3 Integrated information is restored upon DBS-induced recovery of consciousness and tracks behavioural arousal better than alternative information-dynamic measures.
	Fig. 4 Anaesthesia and thalamic DBS exert opposite effects on the controllability of brain dynamics.
	Fig. 5 Regional loss of integrated information under anaesthesia correlates with regional PVALB/Pvalb gene expression across species.
	Fig. 6 Modelling PVALB/Pvalb-mediated increase in the control cost of brain dynamics.
	Fig. 7 Increasing regional inhibition according to the anatomical distribution of PVALB/Pvalb expression disrupts integrated information in species-specific biophysical models.
	Fig. 8 Macaque-specific biophysical model with stimulation of different thalamic nuclei reproduces the greater suitability of the central thalamus for restoring integrated information.
	Extended Data Fig. 1 Integrated information from information decomposition.
	Extended Data Fig. 2 DBS-induced restoration of Integrated Information in the macaque brain mirrors the spatial topography of anaesthetic-induced disintegration and correlates with PVALB expression.
	Extended Data Fig. 3 Species-specific biophysical whole-brain models exhibit significantly lower integrated information when incorporating regionally heterogeneous inhibition according to the empirical distribution of PVALB/Pvalb gene expression, than wit
	Extended Data Fig. 4 Integrated information across a bipartition of 6 channels.




