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The mammalian brain orchestrates the processing and integration 
of information to guide behaviour. Here, to characterize mammalian 
information-processing architecture, we combine functional neuroimaging 
and anaesthesia in humans, macaques, marmosets and mice. We show that 
breakdown of information integration is a convergent effect of diverse 
anaesthetics across mammalian species. As the system disintegrates, 
brain dynamics become more difficult to control. Both effects are reversed 
upon re-awakening induced by thalamic deep-brain stimulation in the 
macaque. Regional breakdown of integrated information coincides with the 
species-specific spatial topography of PVALB/Pvalb gene expression. To provide 
mechanistic insight beyond correlation, we develop computational models for 
humans, macaques and mice that integrate species-specific connectivity and 
transcriptomic gradients, demonstrating their respective roles for controlling 
brain dynamics and information integration. We reveal evolutionarily 
conserved controllers of information integration in the mammalian brain.

To coordinate behaviour in response to a complex environment, the 
central nervous system of humans and other animals must combine the 
information provided by diverse sensory signals1,2. Prominent theoreti-
cal accounts of neural computation, cognition and even consciousness 
converge in attributing a fundamental role to integrative processes in 
the brain3–8. However, understanding how the brain orchestrates the 
integration of information remains a formidable open challenge and 
a focus of intense investigation in neuroscience2,9. Addressing this 

challenge requires a combination of theoretical advances and suitable 
experimental approaches.

On the theoretical front, there is growing recognition that a full 
understanding of neural information processing requires disentan-
gling qualitatively different kinds of information that can co-exist 
in any distributed system, including the brain10–16. In particular, the 
framework of information decomposition has revealed the existence 
of synergy: information that is present in the system as a whole but not 
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stimulation target for restoring integration of information, replicating 
our in vivo deep-brain stimulation (DBS) results and providing mecha-
nistic insight about their connectomic origin. Overall, our multimodal, 
multispecies approach reveals evolutionarily conserved local and global 
controllers of information integration in the mammalian brain.

Results
Integrated information from information dynamics
In a system such as the brain, the spontaneous evolution of regional 
dynamics is not random but is rather partly dependent on its previous 
state. This means that past states hold information about future states2. 
This ‘intrinsic’ information (We also note that Shannon’s well-known 
definition is not the only way to operationalize information; in particu-
lar, a stronger notion of what it means for information to be ‘intrinsic’ 
has been recently formalized, leading to alternative interpretations of 
integrated information that are beyond the scope of classic information 
theory. See Supplementary Discussion for alternative development 
of integrated information beyond IIT 2.0.) contained in the system’s 
spontaneous dynamics can be characterized using information theory 
in the absence of any explicit tasks, by means of the time-delayed mutual 
information (TDMI): mutual information between the past and future 
timeseries of regions X and Y, reflecting the amount of information 
flowing from the system’s past to its future. This approach is fully analo-
gous to how the commonly used functional connectivity (statistical 
correlation between the timeseries of regions X and Y) is used to study 
the brain’s ‘intrinsic connectivity networks’.

Crucially, recent advances in the theory of information decom-
position have demonstrated that brain dynamics carry multiple 
qualitatively different kinds of information, going beyond traditional 
measures of functional connectivity2,17,18,44–46. In particular, two vari-
ables, such as two brain regions, can carry information about a target 
in three fundamentally distinct ways (Fig. 2a): (1) if each variable pro-
vides the same information as the other, this is redundant informa-
tion; (2) unique information refers to information that only one of the 
variables carries and the other does not; and (3), information can be 
carried synergistically, if it is available only when considering both vari-
ables together but not when considering either of them in isolation15,16 
(Fig. 2a). For example, much of human depth perception is conveyed 
synergistically by the eyes, since closing either eye will greatly impair 
depth perception2. When viewed as the information that the past of 
the system provides about its future, the time-delayed mutual infor-
mation can be exhaustively decomposed into a formal taxonomy of 
‘information dynamics’: distinct combinations of synergistic, unique 
and redundant information between X and Y (Extended Data Fig. 1)14,16. 
For example, if there is unique information in region X in the past 
about unique information in region Y at a later point in time, this can 
be described as reflecting ‘information transfer’ from X to Y.

This taxonomy of information dynamics enables a formal char-
acterization of ‘integrated information’ in distributed systems. The 
key insight is that if the elements of a system form a coherent whole, 
then considering the system as a whole should provide additional 
information about its future behaviour, beyond the information that 
is already provided by the individual parts about their own future 
behaviour. This whole-minus-sum information is the ‘difference that 
makes a difference’: information that arises from how the parts of 
the system interact with each other47. However, an initial attempt to 
quantify this whole-minus-sum information (here termed Φ2008) was 
later found to involve subtracting the information that is persistently 
redundant between X and Y (ref. 16). Thus, the lens of information 
dynamics explained why this apparently intuitive measure produced 
such counter-intuitive results, including negative values (which we now 
know would occur whenever the system is redundancy dominated)48. 
An effective solution was therefore proposed in the form of the revised 
measure of integrated information, ΦR, by simply adding back the 
redundancy term16.

in any of its individual components2,14–18. Here we capitalize on these 
recent theoretical developments to obtain a rigorous quantification of 
‘integrated information’ as the information that is present in the whole 
system, over and above the sum of the parts.

On the experimental front, the combination of neuroimaging and 
general anaesthesia provides a powerful avenue to identify neurobio-
logical controllers of the brain’s informational architecture19–22. With-
out altering brain anatomy, anaesthesia induces a drastic breakdown of 
information processing in the brain, as indicated by the suppression of 
both sensory and motor interactions between organism and environ-
ment. Unlike lesions, anaesthesia is fully reversible, making it suitable 
for investigating brain function in healthy humans rather than being 
restricted to patients. Although anaesthetic drugs vary in terms of 
microscale molecular targets, the macroscale effects of anaesthesia are 
highly conserved across evolution, reliably suppressing behavioural 
responsiveness across a wide variety of species including humans, 
non-human primates and rodents19,21,23. Indeed, the effects of anaes-
thesia on brain dynamics are similar both across species, and between 
anaesthesia and patients with disorders of consciousness21,23–32. Thus, 
studying brain activity under anaesthesia provides a powerful oppor-
tunity for translational discovery, by comparing how the same phe-
nomenon manifests in the brains of humans and in other species that 
are more experimentally accessible19,21,23. Here we capitalize on each 
of these advantages.

The consistency of anaesthesia’s behavioural effects across  
species suggests the presence of an evolutionarily conserved archi-
tecture for the integration of information in the mammalian brain, 
representing a common target of diverse anaesthetics. Here we seek 
to uncover this shared architecture, by identifying changes in neural 
activity that are consistently induced by different anaesthetics and in  
different species, upon anaesthetic-induced breakdown of interac-
tion with the environment. To this end, we systematically compare  
functional MRI (fMRI) activity during wakefulness and anaesthesia  
across four mammalian species: human (Homo sapiens); rhesus 
macaque (Macaca mulatta), a gyrencephalic primate; common 
marmoset (Callithrix jacchus), a lissencephalic primate; and mouse 
(Mus musculus)29,31,33,34 (Fig. 1a). Our strategy is threefold. First, we ask 
whether anaesthetic-induced breakdown of the capacity to interact 
with the environment corresponds to a breakdown of information 
integration in the brain, and whether this effect is shared across spe-
cies, similar to the behavioural manifestation of anaesthesia. Second, 
to establish a bidirectional causal link, we combine the specificity of 
deep-brain stimulation with fMRI’s coverage of the entire cortex in the 
macaque30. Leveraging the experimental accessibility of non-human 
animals, we show that neural integration of information is restored 
upon re-awakening from anaesthesia induced by electrical stimulation 
of the macaque central thalamus, thereby demonstrating local control 
over global information processing across brain and behaviour.

Third, we seek to identify shared neurobiological underpinnings 
that control neural integration of information across species. Specifi-
cally, we focus on (1) the anatomical connectivity between brain regions, 
which shapes their ability to interact and exchange information35–37; and 
(2) the genetic make-up of each region’s cyto- and chemo-architecture, 
on which anaesthetics act at the microscale to influence local circuit 
dynamics. To this end, we capitalize on the recent availability of 
species-specific connectomics38 and transcriptomic databases for 
human39, macaque40 and mouse41. To provide insight beyond cor-
relation, we develop in silico computational models that integrate 
species-specific brain activity, structural connectivity and gene 
expression42,43. We show that across species, the regional expression 
of the PVALB/Pvalb gene (a cell-type marker for inhibitory interneurons) 
is especially suitable for controlling brain dynamics and modulating 
the integration of information via regionally heterogeneous inhibi-
tion. In contrast, our model indicates that the structural connectivity 
of the macaque central thalamus makes it especially suitable as a focal 
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Here we demonstrate that ΦR is not just a pragmatic solution to 
the shortcomings of Φ2008: in fact, ΦR represents a conceptually more 
appropriate measure of whole-minus-sum integrated information. This 
is because the subtraction of persistent redundancy involved in Φ2008 
arises from a naïve way of quantifying the sum of the parts. Specifically, 
redundant information (which by definition is present in both X and Y) is 
included both when computing the information in X and when comput-
ing the information in Y, and therefore it ends up being double counted 
in the subtraction from the total information when computing Φ2008. In 
contrast, ΦR corresponds to the total information minus the ‘proper’ sum 
of the parts (that is, without mistakenly double counting the persistent 
redundancy as being independently contributed by both X and Y; see 
Methods for the mathematical formalism and Extended Data Fig. 1 for a 
visual illustration). Thus, the framework of information dynamics reveals 
ΦR as a principled quantification of integrated information (Fig. 2b).

Breakdown of integrated information is a convergent effect of 
diverse anaesthetics across mammalian species
Equipped with ΦR as a rigorous quantification of integrated infor
mation, we systematically investigate integrated information  
between each pair of brain regions in humans, macaques, marmo-
sets and mice, on the basis of their haemodynamic fMRI timeseries. 
This approach is fully analogous to pairwise correlation between 
regional timeseries that is commonly used to quantify ‘functional 
connectivity’ but reflecting a more nuanced set of dynamical phe-
nomena in the system14,16–18. Specifically, our datasets comprise N = 15 
human volunteers undergoing fMRI scanning while awake and during 
deep anaesthesia with sevoflurane, as well as spontaneous recovery  
of responsiveness34; N = 5 macaques undergoing repeated scan-
ning while awake and during anaesthesia with sevoflurane, propo-
fol or ketamine29,49; N = 4 marmoset monkeys each scanned 12 times  
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Fig. 1 | Integrating neuroimaging and pharmacology with computational 
modelling across species. a, Across four mammalian species (human, macaque, 
mouse and marmoset), we consider fMRI data acquired during wakefulness 
and under a variety of anaesthetic regimes (sevoflurane, propofol, ketamine, 
isoflurane, halothane and isoflurane–medetomidine). We also investigate 
spontaneous recovery of consciousness (in humans) and re-awakening induced 
by thalamic deep-brain stimulation (DBS) during continuous anaesthetic 
infusion in the macaque. b, We then use network control theory and biophysical 
computational modelling to provide mechanistic insights by integrating species-

specific structural connectivity and species-specific gene expression in human, 
macaque and mouse. Credits for a: human head icon, walking human silhouette 
and marmoset icon from pixabay.com; macaque and mouse icons adapted from 
ref. 133, published under a CC-BY licence; macaque icon originally designed 
by Freepik.com; mouse icon originally designed by CraftStarters.com; brain 
icons adapted from ref. 38, published under a CC-BY license, and originally from 
SciDraw.io; MRI icon adapted from ref. 134, published under a CC-BY license; 
macaque DBS illustration adapted from ref. 30, published under a CC-BY licence.
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Fig. 2 | Anaesthesia disintegrates the mammalian brain. a, The total 
information jointly carried by two variables X and Y (for example, two brain 
regions) can be exhaustively decomposed into information that is redundantly 
carried by both variables (blue); or uniquely by each (green and orange); 
or synergistically by considering the two variables together (red). Various 
information dynamics phenomena can then take place as the different types of 
information evolve over time from past to future. b, We can obtain ‘integrated 
information’ as the sum of all information-dynamic phenomena that reflect 
interactions between the system’s components16. Equivalently, we can obtain 
integrated information as the difference between information in the whole 
system and information in the sum of the system’s parts considered in isolation 
(that is, any information that remains in the same variable over time). This 
measure of integrated information, termed ΦR, overcomes the limitations of an 
influential early proposal (Φ2008) which was shown to double count the redundant 
information contained in the parts, leading to negative values and other 
paradoxical results16 (see Methods and Extended Data Fig. 1 for an explanation 
of this double counting and how this issue is resolved by the use of information 
decomposition). Intuitively, integrated information will be low if there is little 
differentiation among elements of the system, such that they are just redundant 
copies and considering them together provides no additional advantage; or 
if there is low integration, such that the parts behave independently without 
influencing each other. Supplementary Figs. 1–3 provide examples of different 
systems and their integrated information. For each pair of brain regions, we 
quantify their integrated information by applying information decomposition to 

their fMRI timeseries and summing the values of the corresponding information 
dynamics. A whole-brain value is then obtained by averaging across all pairs 
of brain regions. c, Human sevoflurane anaesthesia (Sevo) versus wakefulness 
(two-sided paired-samples t-test, FDR-corrected for multiple comparisons) 
and versus post-anaesthetic recovery (two-sided paired-samples t-test, FDR-
corrected for multiple comparisons); n = 15. d, Mouse wakefulness (n = 10) 
versus medetomidine–isoflurane (MedIso; n = 14) and halothane (Halo; n = 19) 
anaesthesia data. P values are from two-sided independent-samples t-test, 
FDR-corrected for multiple comparisons against awake condition. e, Macaque 
wakefulness versus anaesthesia with Ppfl, Sevo and Keta. N = 24 runs from  
3 animals for awake; 11 runs from 2 animals for sevoflurane; 23 runs from  
3 animals for propofol; and 22 runs from 3 animals for ketamine anaesthesia.  
P values are from linear mixed-effects models (two-sided), FDR-corrected for 
multiple comparisons against the awake condition (see Methods). Datapoints 
with the same colour indicate the same animal. f, Marmoset wakefulness versus 
anaesthesia with isoflurane (Iso), Sevo and Ppfl. N = 48 runs from 4 animals for 
each condition. P values are from linear mixed-effects models (two-sided), FDR-
corrected for multiple comparisons against the awake condition (see Methods). 
In all boxplots: central line, median; box limits, upper and lower quartiles; 
whiskers, 1.5× interquartile range. Datapoints with the same colour indicate the 
same animal. See Source data for full statistical reporting. Credits: brain icon 
in a from SciDraw.io. Human head icon in c from pixabay.com. Mouse icon in d 
designed by CraftStarters.com. Macaque icon in e designed by Freepik.com. 
Marmoset icon in f from pixabay.com.
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during wakefulness or anaesthesia with sevoflurane, propofol or iso-
flurane33; and N = 43 mice scanned either during wakefulness or during 
anaesthesia with halothane or combined medetomidine–isoflurane31.

We find that anaesthetic-induced disconnection from the environ-
ment significantly reduces the brain’s mean value of integrated infor-
mation across all pairs of regions. This result is consistently observed 
across species and anaesthetics (except for medetomidine–isoflurane 
in the mouse) (Fig. 2c–f). Thus, anaesthesia consistently reduces the 
mammalian brain’s capacity to integrate information at the macroscale. 
However, is integrated information also restored upon awakening 
from anaesthesia? Indeed, we find that this is the case: integrated 
information in the human brain increases significantly upon sponta-
neous recovery of responsiveness following discontinuation of the 
anaesthetic (Fig. 2c).

Integration of information is restored upon re-awakening 
induced by central thalamic DBS
In addition to suppressing responsiveness and presumably conscious-
ness, each anaesthetic is also likely to induce drug-specific side effects 
on physiology, such as changes in breathing, heart rate and vascular 
tone. By identifying changes in neural activity that are consistently 
induced by diverse drugs in different species, we can narrow down how 
anaesthetics act on the brain to induce the same behavioural outcome 
across species (breakdown of interaction with the environment) and 
exclude side effects that are drug or species specific. The combination 
of fMRI and dual causal manipulation with anaesthesia and deep-brain 
stimulation provides a rare opportunity for additional nuance. We can 
single out aspects of brain function that specifically co-vary with the 
anaesthetic’s consciousness-suppressing effects, being not only per-
turbed by anaesthesia but also restored when DBS induces recovery 
of behavioural responsiveness.

We take this approach by considering an independent dataset 
of macaque fMRI acquired during propofol anaesthesia and during 
restoration of behavioural responsiveness induced by deep-brain 
stimulation of the central thalamus (Fig. 3a)30. We first use this inde-
pendent dataset to replicate our observation that propofol anaesthesia 
reduces integrated information in the macaque (Fig. 3b). Crucially, 
we next show that integrated information in the macaque brain is 
significantly increased compared with propofol anaesthesia, upon 
in-scanner electrical deep-brain stimulation of the central thalamus 
(CT) at high (5 V) and even at low (3 V) intensity (Fig. 3b). These results 
go beyond the mere injection of current: the same stimulation proto-
cols were also applied to a control site in the ventrolateral thalamus 
(VT), eliciting no behavioural effect30. Likewise, there is no statistical 
evidence of integrated information being affected by high-intensity 
stimulation of the ventrolateral thalamus, although a smaller but sig-
nificant increase occurs for low-intensity stimulation (Fig. 3b). Notably, 
the greatest restoration of integrated information is observed upon 
CT stimulation at high intensity, which also has the greatest effect on 
behavioural arousal. Overall, breakdown of integrated information 
only occurs when the anaesthetic induces breakdown of interaction 
with the environment, but not when this effect is countered by central 
thalamic stimulation. In other words, integrated information co-varies 
with the consciousness-suppressing effect of anaesthetics, not with 
their mere presence in the system.

To further interrogate the link between integrated information 
and the behavioural effect of anaesthesia, we consider the ability of 
integrated information to track behavioural arousal and its resto-
ration by thalamic DBS across all animals and conditions together. 
Specifically, we use dominance analysis, a multivariate technique that 
distributes the fit of a statistical model across predictors, such that 
the contribution of each predictor can be assessed and compared to 
that of other predictors, reflecting the proportion of the explained 
variance that can be attributed to each predictor. Here, our model’s 
target is the behavioural score on the preclinical arousal scale (see 
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Fig. 3 | Integrated information is restored upon DBS-induced recovery 
of consciousness and tracks behavioural arousal better than alternative 
information-dynamic measures. a, Tasserie and colleagues30 delivered 
deep-brain stimulation to the centro-median thalamus (CT) or ventrolateral 
thalamus (VT) during fMRI scanning in N = 2 anaesthetized macaques at 
either high intensity (5 V) or low intensity (3 V). CT stimulation consistently 
restored behavioural arousal. Panel adapted from ref. 30, published under a 
CC-BY licence. b, Integrated information for macaque across wakefulness and 
propofol anaesthesia with and without deep-brain stimulation of different 
thalamic sites and intensities. P values are from linear mixed-effects models 
(two-sided), FDR-corrected for multiple comparisons against propofol 
anaesthesia without DBS (‘No-DBS’ condition; see Methods). N = 36 runs from 
3 animals for awake; 28 runs from 2 animals for anaesthesia (DBS-off); 31 runs 
from 2 animals for low-amplitude centro-median thalamic DBS; 25 runs from  
2 animals for high-amplitude centro-median thalamic DBS; 18 runs from  
1 animal for low-amplitude ventrolateral thalamic DBS; 18 runs from 1 animal 
for high-amplitude ventrolateral thalamic DBS. Datapoints with the same 
colour indicate the same animal. Boxplots: central line, median; box limits, 
upper and lower quartiles; whiskers, 1.5× interquartile range. See Source 
data for full statistical reporting. c, Dominance analysis determines the 
relative contribution of each independent variable to the overall fit (adjusted 
R2) of a multiple linear regression model54, partitioning the total variance 
explained in the target (here, behavioural arousal score) accounted for by 
each predictor. Here, our predictors are the integrated information (ΦR) from 
ref. 16; the measure of integration-redundancy balance (Φ2008) from ref. 47; 
causal density50,131; and net information flow (see Methods for details of each). 
Regression target is the behavioural arousal score from each animal in the DBS 
macaque dataset29,30. Percentage of relative importance is represented as a 
pie chart, revealing that integrated information is the predictor with highest 
relative importance, accounting for 51% of the total variance explained. We 
establish the statistical significance of the multiple linear regression model 
accounting for arousal score as a function of our fMRI information-dynamic 
measures model using a non-parametric permutation test (one-sided), by 
comparing the empirical variance explained against a null distribution of R2 
obtained from repeating the multiple regression with randomly reassigned 
arousal scores. The empirical variance explained is significantly greater than 
chance (R2 = 0.57; P < 0.001).
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Methods and Supplementary Table 1), which ranges from 0 (complete 
unresponsiveness and lack of arousal) to 11 (fully awake and alert). 
In addition to integrated information, we also consider prominent 
information-dynamic quantities that can be obtained from information 
decomposition. Specifically, we consider (1) the original (that is, uncor-
rected) proposed measure of integrated information, Φ2008, which 
was put forward as a measure of conscious level in the brain47,48,50. As 
shown in Extended Data Fig. 1 (see also Methods), Φ2008 can be more 
properly understood as quantifying the balance between integrated 
information (ΦR) and the persistent redundancy in the system. We also 
consider (2) causal density, another measure that seeks to quantify the 
‘relevant complexity’ in a system in terms of overall (statistical) causal  
interactivity between its elements, and was likewise proposed as a 
candidate measure of conscious level in the brain50. Finally, we consider 
the overall net flow of information, which quantifies the prevalence 
of imbalanced information transfer in the system. Measures of infor-
mation transfer such as transfer entropy can exhibit changes across 
anaesthesia and wakefulness, including due to thalamic stimulation51. 
In addition, presence of a net flow of information indicates an asym-
metry in the system, and therefore information flow as defined here 
is mathematically related to the notion of ‘temporal irreversibility’, 
another measure of brain organization that is often reduced in the 
unresponsive (and presumably unconscious) brain52,53.

Using dominance analysis54 to disentangle the relative importance 
of each predictor, we show that integrated information (ΦR) emerges  
as the predictor with highest relative importance for tracking behav-
ioural arousal in the macaque DBS dataset, alone accounting for 
>50% of the total variance explained (Fig. 3c). This result is also repli
cated when considering both macaque datasets together (DBS and 
multi-anaesthesia), which used the same scale for measuring behav-
ioural arousal and are therefore comparable (Supplementary Fig. 4). 
Altogether, even though each of the other three candidates has been 
associated with consciousness on either theoretical or empirical 
grounds, we find that integrated information is the measure of neural 
information dynamics that most closely tracks the behavioural effects 
of anaesthesia.

Compromised controllability of brain dynamics in the 
disintegrated mammalian brain
How can we understand the anaesthetic-induced reduction in inte-
grated information from the brain’s past to its future? Mechanistically, 
the transition from past to future states of brain activity unfolds over 
the network of physical connections between regions: the structural 
connectome35–37. We therefore turn to ‘network control theory’, which 
provides a framework to understand how the network architecture of 

a system shapes its ability to transition between different activation 
states: here, patterns of regional fMRI signal55–58. Specifically, we can use 
linear control theory to determine the controllability of brain dynamics 
in terms of the ‘control energy’ that would be required to achieve a tran-
sition from one activation pattern to another (Fig. 4a). When it is easy 
to steer the system between different functional configurations, the 
resulting ‘energy landscape’ will be relatively flat. In contrast, a steeper 
landscape indicates that transitions are more effortful, corresponding 
to less controllable dynamics (Fig. 4a). This approach was recently 
used to reveal pharmacologically induced facilitation of brain state 
transitions59,60. Thus, we adopt this framework to ask: does anaesthesia 
induce systematic changes in the controllability of brain dynamics, 
that could explain why we observe a drop in integrated information?

To address this question, we capitalize on the availability of 
species-specific anatomical connectomes: (1) human consensus 
structural connectome from diffusion-weighted MRI tractography; 
(2) macaque structural connectivity combining diffusion-weighted 
MRI tractography and CoCoMac tract tracing61; (3) mouse structural 
connectome from the Allen Institute’s tract-tracing data62; and (4) 
marmoset structural connectome from in vivo diffusion-weighted MRI 
tractography63 (see Methods for details). We use these species-specific 
connectomes to quantify the control energy (operationalized as the 
squared input signal, summed across brain regions and integrated 
across time) required to transition between each pair of successive 
fMRI activation states64 during wakefulness and during anaesthesia.

Across species and across anaesthetics, we show that the con-
trol energy required to transition between successive timepoints of 
brain activity is significantly increased under anaesthesia (except for 
halothane in the mouse) (Fig. 4b–f). This corresponds to the brain 
exhibiting a steeper ‘energy landscape’ and less controllable dynam-
ics under anaesthesia. These results from fMRI are consistent with 
recent modelling of electrodynamics based on the human connectome, 
which indicated that anaesthesia should induce a steepening of the 
energy landscape65,66.

Crucially, we can again demonstrate that this effect is not a mere 
by-product of the presence of anaesthetic in the bloodstream but is 
rather related to anaesthetic-induced suppression of responsiveness 
to the environment: the average transition energy is lowered again 
upon awakening from anaesthesia, whether due to discontinuation of 
the anaesthetic (human data, Fig. 4b), or induced by electrical stimula-
tion of the central thalamus in the macaque (Fig. 4e). However, we note 
that this effect was to some extent also observed with low-intensity 
stimulation of the VT, which did not induce a corresponding restora-
tion of behavioural arousal30 (we return to this point in the Discus-
sion). Across human, both macaque datasets and marmoset, we also 

Fig. 4 | Anaesthesia and thalamic DBS exert opposite effects on the 
controllability of brain dynamics. a, Network control theory quantifies the 
energy (magnitude of input across time) required to transition between brain 
states, here defined as successive fMRI signal timepoints. Higher transition 
energy means that transitions are more difficult, on average, and dynamics 
are less controllable. b, Human sevoflurane data (n = 15), including recovery. 
P values are from two-sided paired-samples t-test, FDR-corrected for multiple 
comparisons against the awake condition, and against the recovery condition. 
Boxplots: central line, median; box limits, upper and lower quartiles; whiskers, 
1.5× interquartile range. c, Mouse wakefulness (n = 10) versus medetomidine-
isoflurane (MedIso; n = 14) and halothane (Halo; n = 19) anaesthesia data. P values 
are from two-sided independent-samples t-test, FDR-corrected for multiple 
comparisons against the awake condition. d, Macaque wakefulness versus 
anaesthesia with propofol (Ppfl), sevoflurane (Sevo) and ketamine (Keta). N = 24 
runs from 3 animals for awake; 11 runs from 2 animals for Sevoflurane; 23 runs 
from 3 animals for Propofol; 22 runs from 3 animals for ketamine anaesthesia. 
P values are from linear mixed-effects models (two-sided), FDR-corrected for 
multiple comparisons against awake condition (see Methods). Datapoints with 
the same colour indicate the same animal. e, Macaque DBS data. CT, centro- 
median thalamus; VT ventrolateral thalamus. P values are from linear  

mixed-effects models (two-sided), FDR-corrected for multiple comparisons  
against propofol anaesthesia with no DBS (see Methods). N = 36 runs from  
3 animals for awake; 28 runs from 2 animals for anaesthesia (DBS-off); 31 runs 
from 2 animals for low-amplitude centro-median thalamic DBS; 25 runs from  
2 animals for high-amplitude centro-median thalamic DBS; 18 runs from 1 animal 
for low-amplitude ventrolateral thalamic DBS; 18 runs from 1 animal for high-
amplitude ventrolateral thalamic DBS. Datapoints with the same colour indicate 
the same animal. f, Marmoset wakefulness versus anaesthesia with propofol 
(Ppfl), sevoflurane (Sevo) and isoflurane (Iso). N = 48 runs from 4 animals for 
each condition. P values are from linear mixed-effects models (two-sided), FDR-
corrected for multiple comparisons against the awake condition (see Methods). 
In all boxplots: central line, median; box limits, upper and lower quartiles; 
whiskers, 1.5× interquartile range. Datapoints with the same colour indicate the 
same animal. See Source data for full statistical reporting. g, Pearson correlation 
(two-sided) between transition energy and integrated information across all 
datapoints within each dataset. Shading indicates 95% confidence intervals (CIs). 
Credits: human head icon (b,g) from pixabay.com; mouse icon (c,g) designed by 
CraftStarters.com; macaque icon (d,g) designed by Freepik.com; DBS icon (e,g) 
adapted from ref. 30, published under a CC-BY licence; marmoset icon (f,g) from 
pixabay.com.
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find a significant negative correlation between individuals’ transition 
energy and the integrated information in their fMRI signals (Fig. 4g). 
In other words, the brain’s capacity to integrate information is sys-
tematically diminished when brain dynamics are less controllable, 
whereupon the organism’s ability to interact with the environment is 
also compromised.

Transcriptomic underpinnings of regional changes in 
integrated information
The analyses carried out up to this point considered integrated infor-
mation at the global level, by averaging this quantity across all brain 
regions in the parcellation. However, to obtain further insight about 
the neurobiological origin of this overall reduction, we can also inter-
rogate changes in integrated information at the regional level. We use 
the Network-Based Statistic (NBS)67 to identify pairs of regions that are 
significantly affected by anaesthesia, compared with either baseline 
wakefulness or recovery. In each species, the NBS reveals widespread 
significant changes in integrated information (ΦR), with the major-
ity being reductions (that is, anaesthetic-induced dis-integration), 
overwhelmingly so in the case of human and macaque where the 
anaesthetic regimen is deepest (Supplementary Fig. 5). We also find 
that in each species, the majority of significant cortical changes occur 
between pairs of regions belonging to different functional systems 
(Supplementary Fig. 6), highlighting their distributed nature, in line 
with growing consensus that ‘anaesthesia and consciousness are 
network-level processes’21.

We then obtain the mean value of each region’s significant 
changes in integrated information with the rest of the cortex, result-
ing in species-specific cortical maps of anaesthetic-induced changes 
in integrated information (Fig. 5). We see that anaesthetic-induced 
changes in integrated information are widely distributed across the 
brain, but not uniformly so, instead displaying prominent patterns 
of regional variation. Specifically, we find that across species, the 
highest prevalence of significant reductions in integrated informa-
tion involves unimodal visual and somatomotor cortices (Fig. 5). We 
emphasize that this finding does not contradict the importance of the 
default mode network (DMN) and association cortex in supporting 
consciousness21, because changes in integrated information are not 
confined to unimodal cortices: across species, our NBS analysis also 
consistently finds significant reductions in integrated information in 
the association cortex (including anterior and posterior midline corti-
cal regions of the human brain belonging to the DMN; Fig. 5). Likewise, 
the present results do not contradict early fMRI studies that showed 
relative preservation of functional connectivity in primary sensory net-
works under anaesthesia34,68,69, because these studies used traditional 

functional connectivity (that is, correlation) which reflects primarily 
redundant information2,17,46 and is therefore fundamentally different 
from the measure of integrated information used in the present study. 
Indeed, the brain-wide but unimodal-dominated spatial topography 
of dis-integration (reduced ΦR) observed in the present study is highly 
consistent with recent findings using another measure intended to 
quantify the balance of integration and segregation in the brain, termed 
integration–segregation difference (ISD)32. Jiang and colleagues32 also 
found distributed dis-integration throughout the human brain under 
anaesthesia, but with the most prominent effects in unimodal regions, 
similar to our own findings with reduced ΦR (ref. 32). Thus, measures 
that are sensitive to the balance of integration and segregation (ΦR, 
ISD), rather than simple correlation, appear to converge on a consistent 
topography of anaesthesia.

The question arises: what is the neurobiological underpinning  
for such a consistent spatial topography? Brain regions exhibit variable 
cytoarchitecture and chemo-architecture, which is going to shape their 
susceptibility to the influence of anaesthetic compounds. Ultimately, 
these microarchitectural properties are shaped by each region’s 
unique profile of gene expression. Therefore, to identify potential 
neurobiological underpinnings of regional changes in integrated 
information, we capitalize on the availability of human and mouse 
transcriptomic databases from the Allen Institute for Brain Science, 
which provide gene expression measures across brain regions from 
microarray probes (human)39 and in situ hybridization (mouse)41. We 
complement these human and mouse databases with a third database 
of gene expression in the macaque cortex from stereo-seq, recently 
released by the Brain Science Data Center of the Chinese Academy 
of Sciences40.

We start by pursuing a data-driven approach. Specifically, we con-
sider a list of evolutionarily conserved brain-related genes pertaining 
to neurotransmitter receptors and cell-type markers70. These human 
genes have orthologues in both mouse and macaque, making them 
comparable across species. From the genes in this list, a total of 81 genes 
are available and pass our quality control criteria in each of the three 
species (human, macaque and mouse) (Supplementary Tables 2 and 
3). To obtain consistent patterns across species, we focus on cortical 
gene expression, for which data are available in all three species. After 
obtaining species-specific spatial correlations between regional loss 
of integrated information and each gene’s expression pattern, we use 
these correlations to rank genes across species to identify the most 
consistent pattern.

Our data-driven approach indicates that the gene with the most 
consistent spatial association with anaesthetic-induced reductions 
in integrated information is PVALB/Pvalb (Fig. 5a). This is noteworthy 

Fig. 5 | Regional loss of integrated information under anaesthesia correlates 
with regional PVALB/Pvalb gene expression across species. a, PVALB/Pvalb is 
the gene whose spatial association with regional loss of integrated information 
is the most consistent across species. Spatial correlations are used to compare 
the 81 genes within each species, ranking them from most negative to most 
positive. To aggregate across species, we then average the three species’ ranks. 
Since both positive and negative correlations are of interest, we z-score the ranks’ 
magnitude such that genes whose correlation is the most extremely ranked 
(in either direction) will have a higher value, indicated by a darker colour. b, 
Regionally defined PVALB gene expression data for the human brain are obtained 
from the Allen Institute for Brain Science (AIBS) transcriptomics database39. 
Across cortical regions, we observe a negative spatial correlation (Spearman’s 
rho, two-sided; significant against a spatial autocorrelation-preserving null 
distribution) between the cortical distribution of PVALB gene expression and 
the mean NBS-derived significant reduction in integrated information from 
comparing anaesthesia against baseline and recovery. Shading indicates 95% 
CI. c, Regionally defined PVALB gene expression data for the macaque brain are 
provided by the Brain Science Data Center of the Chinese Academy of Sciences40 
and translated to the macaque Regional Mapping atlas by ref. 70. Across cortical 
regions, we observe a negative spatial correlation (Spearman’s rho, two-sided; 

significant against a spatial autocorrelation-preserving null distribution) 
between the cortical distribution of PVALB gene expression and the mean 
NBS-derived significant reduction in integrated information from comparing 
anaesthesia against baseline and recovery induced by CT deep-brain stimulation. 
Shading indicates 95% CI. d, Regionally defined Pvalb gene expression data for 
the mouse brain are obtained from the AIBS transcriptomics database41. Across 
cortical regions where integrated information is reduced under anaesthesia, we 
observe a negative spatial correlation (Spearman’s rho, two-sided; significant 
against a spatial autocorrelation-preserving null distribution) between the 
cortical distribution of Pvalb gene expression and the mean NBS-derived 
significant reduction in integrated information from comparing anaesthesia 
against baseline. Across regions where integrated information is increased under 
anaesthesia, we observe a positive spatial correlation (Spearman’s rho, two-
sided; significant against a spatial autocorrelation-preserving null distribution) 
between the cortical distribution of Pvalb gene expression and the mean 
NBS-derived significant increase in integrated information from comparing 
anaesthesia against baseline. See Supplementary Fig. 7 for corresponding results 
with SST/Sst gene expression, another cell-type marker for a different class of 
inhibitory interneurons. Shading indicates 95% CI. Credits: silhouettes and brain 
icons from SciDraw.io.
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because PVALB (Pvalb in the mouse) is a marker gene that is expressed 
by inhibitory interneurons, which are targeted by many anaesthetics71 
and control the onset and duration of cortical ‘down’ states72,73. We 
therefore focus more closely on PVALB/Pvalb. We show that in each of 
human, macaque and mouse datasets, regional anaesthetic-induced 
reductions in integrated information are negatively correlated with 
the regional density of PVALB/Pvalb expression (Fig. 5b–d). In other 
words, the more a region reduces its integrated information under 

anaesthesia, the more it expresses PVALB/Pvalb. We further use Moran 
spectral randomization to implement species-specific null models 
and confirm that the association between regional loss of integrated 
information and regional PVALB/Pvalb gene expression is statistically 
significant beyond what would be expected from random maps with 
preserved spatial autocorrelation74.

Specifically, in humans we observe a significant negative  
correlation (rho(98) = −0.40, P = 0.01, CI = [−0.55, −0.22]) between 
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the cortical distribution of PVALB expression and the distribution 
of anaesthetic-induced loss of integrated information (Fig. 5b). For 
comparison, a significant positive correlation is observed for the 
marker gene for the other main class of inhibitory interneurons, SST 
(rho(98) = 0.27, P = 0.045, CI = [0.09, 0.45]; Supplementary Fig. 7a). For 
the macaque, we also find a significant negative correlation between 
loss of cortical integrated information and cortical expression of PVALB 
(rho(80) = −0.61, P < 0.001, CI = [−0.74, −0.47]; Fig. 5c). However, no 
corresponding significant correlation is observed with the distribu-
tion of macaque SST expression from stereo-seq (rho(80) = −0.01, 
P = 0.477, CI = [−0.21, 0.22]; Supplementary Fig. 7b). Notably, the 
restoration of integrated information induced by CT-DBS (both 
compared against anaesthesia without stimulation, and against 
stimulation of the control site, VT) mirrors the spatial topography  
of anaesthetic-induced dis-integration, and correlates with PVALB 
expression (Extended Data Fig. 2): the more integrated informa-
tion drops under anaesthesia, the more it is restored by DBS of the 
centro-median thalamus. Similar to the anaesthetic-induced loss  
of integrated information, its regionally heterogeneous restoration  
also closely follows the regional expression of PVALB (Extended Data  
Fig. 2). In other words, CT-DBS counteracts the integration-suppressing 
effects of anaesthesia in a way that is regionally specific as a function 
of PVALB expression.

Finally, the correlation between anaesthetic-induced cortical 
changes in integrated information and Pvalb cortical gene expression 
in the mouse follows two opposite patterns: we observe increases in 
regional integrated information, as well as decreases. Across corti-
cal regions where integrated information is reduced under anaes-
thesia, we observe a significant negative correlation with cortical 
Pvalb (rho(24) = −0.28, P = 0.008, CI = [−0.60, 0.13]), similar to that 
in humans and macaques. Conversely, a significant positive corre-
lation with Pvalb becomes apparent for regions whose integrated 
information is increased under anaesthesia (rho(44) = 0.48, P < 0.001; 
CI = [0.22, 0.68]; Fig. 5d). As with the macaque, no significant correla-
tions (for either increases or decreases in integrated information) are 
observed with Sst gene expression in the mouse after accounting for 
spatial autocorrelation (Supplementary Fig. 7c). Thus, in the mouse, 
the direction of the relationship between integrated information 
and Pvalb cortical gene expression depends on whether integrated 
information is increased or decreased: in both cases, more extreme 
changes occur for regions with higher Pvalb gene expression. Many 
differences exist between our primate and murine datasets, includ-
ing acquisition parameters and the anaesthetics used; it is known 
that anaesthetics can differ in their effects on cerebral blood flow 
and fMRI signals21,75. However, perhaps the most likely cause for the 
presence of local increases in integrated information in our mouse 
dataset, alongside the observed reductions, is the use of a lighter 
anaesthetic regimen in the mouse compared with the deep anaesthe-
sia of our human and macaque datasets. Unsurprisingly, anaesthesia 
exerts dose-dependent effects on brain activity and functional con-
nectivity across species76. This interpretation of a role of anaesthetic 
depth on integrated information is further supported by our analyses 
with different depths of anaesthesia in the human data, showing 
greater loss of integrated information at greater doses of anaesthesia 
(Supplementary Fig. 8). Future work with mice under deeper anaes-
thesia will be required to provide a definitive answer to this ques-
tion. Nevertheless, there is a consistent finding in all three species: 
in addition to the global reduction in integrated information, we 
consistently observe a genetic underpinning for anaesthetic-induced 
loss of integrated information, whereby regions that exhibit reduced 
integrated information under anaesthesia do so in proportion to their 
PVALB/Pvalb gene expression.

We also repeat our analysis across subcortical regions for which 
gene expression data are available in both human and mouse39,41. 
Although we find reduced integrated information for most human 

subcortical regions and also several mouse subcortical regions, in 
neither case do we find a significant correlation with PVALB/Pvalb gene 
expression (Supplementary Fig. 9), suggesting that this relationship 
between integrated information and PVALB/Pvalb, although consistent 
across species, may be a primarily cortical phenomenon. Inspired by 
recent work in humans77, we further investigate the specific role of the 
thalamus using the differential mRNA expression of PVALB and CALB1 
to differentiate between thalamic nuclei rich in core versus matrix 
cells77,78. We ask whether a spatial correlation exists between transcrip-
tomically defined core–matrix architecture and anaesthetic-induced 
changes in integrated information. Indeed, we find that loss of inte-
grated information is stronger for human thalamic nuclei rich in matrix 
cells (Supplementary Fig. 10). This prominent role of the matrix thala-
mus aligns with the human functional connectivity results of ref. 77, but 
also with other reports about the importance of the matrix thalamus for 
anaesthesia from the human and non-human primate literature30,66,79–82, 
including our own present result, that deep-brain stimulation of the 
macaque central thalamus reverses the loss of integrated information 
induced by anaesthesia (Fig. 3).

However, this human result is not observed in our mouse data. 
We perform the mouse analysis through two complementary strate-
gies. First, we use the same approach as for the human data, using the 
relative proportion of Calb1 to Pvalb mRNA expression from the Allen 
Mouse Brain Atlas database (Supplementary Fig. 11). Second, since 
mRNA is not always a good proxy for the corresponding protein in 
the brain70,83, we use immunohistochemistry data about the density of 
parvalbumin (the protein coded by Pvalb) and calbindin (the protein 
coded by Calb1) in different nuclei of the mouse thalamus, as provided 
by ref. 84. After ranking regions on the basis of the relative abundance 
of these proteins, we perform the same correlation between regional 
core–matrix prevalence and regional change in integrated informa-
tion (Supplementary Fig. 12). Despite using independent datasets 
and modalities to define mouse thalamic architecture, both analyses 
converge in showing similar, non-significant correlations. On one 
hand, this may be due to the relatively lighter anaesthesia used in 
our mouse datasets (with several nuclei failing to show significant 
NBS-corrected changes in integrated information), compared with 
the deep anaesthesia of our human dataset. Future work with deeper 
levels of anaesthesia will be required to enable formal comparison 
between the two species. On the other hand, we note that thalamic 
cellular architecture also differs between rodents and primates. In 
mice, interneurons represent only 6% of thalamic neurons and are 
largely restricted to the visual thalamus, whereas in primates, thalamic 
interneurons are more prevalent (~30% of the total thalamic neuronal 
population) and can be found throughout the entire thalamus85.

A transcriptomic gradient mediates increased control cost of 
brain dynamics under anaesthesia
Is there also a link between PVALB/Pvalb gene expression and the 
observed increases in transition energy under anaesthesia? Network 
control theory requires a specification of a set of ‘control points’ where 
energy is injected into the system to induce the desired transition. For 
our initial quantification of transition energy, we used a uniform con-
trol strategy, whereby each brain region is given equal control. Next, 
we adopt a heterogeneous control strategy instead, to ask whether 
the increase in transition energy that we observed under anaesthesia 
may be driven by regional differences in PVALB/Pvalb gene expression. 
Given the inhibitory role of parvalbumin-positive interneurons, the 
main type of cell that express the PVALB/Pvalb gene, we model region-
ally heterogeneous inhibition as a reduction in the amount of control 
energy that each region can inject into the system, proportional to 
that region’s PVALB/Pvalb expression. This approach is analogous to 
a recent approach that modelled the effect of engaging the excitatory 
5HT2A receptor as increasing the regional amount of control energy, in 
proportion to each region’s receptor expression60 (Fig. 6a).
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In other words, we seek to determine whether the specific regional 
distribution of PVALB/Pvalb gene expression in the mammalian cortex 
could correspond to especially suitable control points for inducing an 
increase in transition energy (that is, reduced controllability), which 
might then be targeted by anaesthesia. We recalculate the transition 
energy between each pair of successive BOLD signal patterns for the 
awake condition of each dataset, this time downweighting the energy 
injected into every region in proportion to its amount of PVALB/Pvalb 
gene expression (which is sigmoid normalized and thus lies between 0 
and 1 in each species); that is, the more PVALB/Pvalb a region expresses, 
the less control input it will be able to exert on the system. Indeed, we 
find that the PVALB/Pvalb-weighted inputs result in higher transi-
tion energy than the uniform inputs (Supplementary Fig. 13). How-
ever, it could be argued that giving less control to some regions will 
result in higher control energy, regardless of their particular spatial 
arrangement. To demonstrate that our results are specific to the 
spatial distribution of PVALB/Pvalb gene expression, we therefore 
compare the transition energy obtained from heterogeneous con-
trol with the empirical PVALB/Pvalb regional distribution against the 
transition energy obtained from applying heterogeneous control  
with species-specific surrogate maps that preserve the PVALB/Pvalb 
map’s mean and spatial autocorrelation, but are otherwise random. 
Indeed, we find that the true regional distribution of PVALB/Pvalb 
gene expression is significantly better positioned to induce increases 
in transition energy than equivalent surrogate maps (Fig. 6). This 
effect is once again consistent across species: human (n = 15; null 
maps mean = 5.56 × 107 (s.d. = 2.86 × 107); PVALB mean = 1.17 × 108 
(s.d. = 1.06 × 107), Wilcoxon sum of signed ranks = 1, P < 0.001; Hedge’s 
g = 2.76); macaque dataset 1 (n = 24; null maps mean = 4.83 × 107 
(s.d. = 4.04 × 107); PVALB mean = 6.43 × 107 (s.d. = 6.88 × 106), Wilcoxon  
sum of signed ranks = 77, P = 0.037; Hedge’s g = 0.54); macaque dataset 2  
(n = 36; null maps mean = 3.66 × 107 (s.d. = 2.96 × 107); PVALB mean =  
5.37 × 107 (s.d. = 8.58 × 106), Wilcoxon sum of signed ranks = 137, 
P = 0.002; Hedge’s g = 0.77); and mouse (n = 10; null maps mean =  
2.52 × 109 (s.d. = 7.76 × 109); PVALB mean = 6.13 × 1010 (s.d. = 1.90 × 109), 
Wilcoxon sum of signed ranks = 0, P = 0.002; Hedge’s g = 9.82).

Integrating species-specific transcriptomics and 
connectomics with computational modelling
Thus far, in the four mammalian species we find that anaesthesia 
reduces integrated information in the brain. Spatially, the best tran-
scriptomic match for the regional reduction in integrated information 

is the regional expression of the PVALB/Pvalb gene, which we found 
to be especially suitable for inducing increases in transition energy. 
Such increases are indeed observed in our data. Furthermore, less 
controllable dynamics correlate with lower integrated information.

To go beyond correlation and obtain mechanist insights, we turn 
to generative computational modelling: this paradigm provides a 
powerful avenue to integrate multimodal data about brain network 
structure and neurobiology24,42,86. Whole-brain models, including 
the neurobiologically plausible dynamic mean-field (DMF) model 
employed here, represent regional macroscale activity in terms of 
two key ingredients: (1) a biophysical model of each region’s excita-
tory and inhibitory dynamics (see Supplementary Table 4 for model 
parameters); and (2) inter-regional anatomical connectivity. The model 
output consists of simulated BOLD signal timeseries for each region. 
The DMF model can be further enriched with regionally heterogene-
ous dynamics according to an empirical brain map of interest to inter-
rogate its consequences for brain dynamics. Due to its multiplatform 
compatibility, low memory usage and high speed, we use the recently 
developed ‘FastDMF’ library87.

Here we use this model to ask how integrated information in brain 
dynamics is shaped by increasing regional inhibition in accordance 
with the empirical distribution of PVALB/Pvalb gene expression across 
species. For human, macaque and mouse, we develop species-specific 
whole-brain models informed by each species’s own structural  
connectome, tuned to reproduce the empirical functional connecti
vity dynamics (FCD) observed during wakefulness in each species88 
(Methods; see Supplementary Table 5 for species-specific optimal 
working points). Next, we increase regional inhibition in proportion to 
each region’s normalized expression of species-specific PVALB/Pvalb 
gene. Note that this heterogeneous model is not directly fitted to match 
the anaesthesia data. Rather, its goal is to inform us about the dynami-
cal consequences of increasing inhibition according to PVALB/Pvalb 
gene expression.

Compared against the model with regionally homogeneous inhi-
bition, introducing transcriptomics-informed inhibition results in 
simulated BOLD dynamics that exhibit significantly less integrated 
information (Extended Data Fig. 3). This effect is observed consist-
ently in human, macaque and mouse. To further demonstrate that 
this effect is specific to the anatomical distribution of PVALB/Pvalb 
gene expression, we perform the same analysis using spatial 
autocorrelation-preserving null maps. For all three species, we find 
that the reduction in integrated information is significantly more 
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in the amount of control energy that each region can inject into the system, 
proportional to that region’s PVALB/Pvalb expression. b–e, In each dataset, we 
compare the increase in control cost obtained with PVALB/Pvalb expression, 
against the control cost obtained from species-specific surrogate spatial 

gradients with preserved spatial autocorrelation, showing that PVALB/Pvalb 
induces significantly greater increases in transition costs due to its anatomical 
distribution. Human: n = 15; macaque: n = 24 runs from 3 animals; macaque DBS: 
n = 36 runs from 3 animals; mouse: n = 10. P values are from non-parametric 
paired-samples test (two-sided). For b–e boxplots: central line, median; box 
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Fig. 7 | Increasing regional inhibition according to the anatomical distribution 
of PVALB/Pvalb expression disrupts integrated information in species-
specific biophysical models. We start from models fitted to the awake functional 
connectivity dynamics of each species’s fMRI data. Inhibitory tone is then 
increased in a regionally heterogeneous manner, according to each region’s 
normalized PVALB/Pvalb gene expression (which is sigmoid normalized in each 
species and therefore bound between 0 and 1). Integrated information is then 
computed from the resulting simulated BOLD signals and compared against 
those obtained from models with regionally heterogeneous inhibition shaped 
by spatial autocorrelation-preserving null spatial maps. a, Model based on 
human connectome and incorporating human PVALB gene expression from 
the AIBS human transcriptomics database. Null maps (n = 41 simulations) 
mean = 1.03 × 10−2 (s.d. = 3.29 × 10−4); PVALB (n = 41 simulations) mean = 9.98 × 10−3 
(s.d. = 2.38 × 10−4); t(80) = 4.57, P < 0.001 two-sided, Hedges g = 1.00, 95% CI 

[0.60, 1.45]. b, Model based on macaque CoCoMac connectome from DTI and 
tract tracing, and incorporating macaque PVALB gene expression from the 
Brain Science Data Center of the Chinese Academy of Sciences transcriptomics 
database. Null maps (n = 41 simulations) mean = 8.94 × 10−3 (s.d. = 5.85 × 10−4); 
PVALB (n = 41 simulations) mean = 8.28 × 10−3 (s.d. = 1.76 × 10−4); t(80) = 6.95, 
P < 0.001 two-sided, Hedges g = 1.52, 95% CI [1.21, 2.02]. c, Model based on mouse 
tract-tracing connectome and incorporating mouse Pvalb gene expression 
from the AIBS mouse transcriptomics database. Null maps (n = 41 simulations) 
mean = 4.38 × 10−3 (s.d. = 1.68 × 10−4); Pvalb (n = 41 simulations) mean = 4.29 × 10−3 
(s.d. = 8.24 × 10−5); t(80) = 3.18, P = 0.002 two-sided, Hedges g = 0.70, 95% CI [0.34, 
1.07]. For all boxplots: central line, median; box limits, upper and lower quartiles; 
whiskers, 1.5× interquartile range. P values are from independent-samples t-test. 
Credits: silhouettes and brain icons from SciDraw.io.
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pronounced when the regional heterogeneity of inhibition follows the 
empirical distribution of PVALB/Pvalb gene expression rather than an 
autocorrelation-preserving surrogate spatial gradient (Fig. 7).

Finally, we investigate whether we can obtain a model of the 
anaesthesia-reversing effects of thalamic stimulation observed  
in the macaque DBS dataset, and if so, whether the model provides  
a useful in silico indication of which of the two thalamic nuclei  
would be most suitable to stimulate for restoring integrated infor-
mation. We obtain an ‘augmented’ macaque connectome, with 
cortico-cortical connectivity being given by the CoCoMac/DTI con-
nectome previously used for our model61, plus cortical connectivity of 
the central and ventrolateral thalamus defined by diffusion tractogra-
phy between the macaque cortex and thalamic nuclei from the SARM 
macaque subcortical atlas (Supplementary Methods and Fig. 8a). After 
tuning this model to reproduce the dynamics of the anaesthetized 
macaque brain (Supplementary Fig. 14), we then separately increase 
the intrinsic excitatory scaling of CT and VT from 1 (baseline value 
in the DMF model) to 3. This procedure is intended to simulate the 

experimental procedure of injecting input into the anaesthetized brain. 
We find that stimulation of both thalamic regions induces an increase 
in integrated information in the simulated dynamics compared to the 
‘anaesthetized’ model (Fig. 8b). Remarkably, stimulation of the central 
thalamus region of interest (ROI) induces significantly greater recov-
ery of integrated information than stimulation of the ventrolateral 
thalamus (Fig. 8b), in accordance with our empirical observations 
(Fig. 3). This relative advantage of CT over VT stimulation for restoring 
integrated information becomes more pronounced with greater levels 
of stimulation (Supplementary Fig. 15), also in accordance with empiri-
cal observations. Taken together, our computational modelling results 
show that the regional distribution of PVALB/Pvalb gene expression is 
especially suitable for inducing reductions in integrated information 
when used to tune regional inhibition. Conversely, since in our model, 
CT and VT differ only in terms of their empirically derived anatomical 
connectivity, we can infer that the connectivity profile of the CT nucleus 
is especially suitable for inducing increases in integrated information 
when used for stimulation.

Validation and robustness
To ensure that our information-theoretic results are not unduly influ-
enced by estimation bias, we replicate them using a debiased version 
of integrated information. Bias is estimated by computing the same 
information measure on surrogate timeseries data, constrained to 
have the same distribution of values for each region and preserve the 
instantaneous synchrony between regions (thereby preserving the 
functional connectivity) while destroying the past–future relationships 
on which integrated information is predicated. A debiased measure 
is obtained by subtracting the surrogate-derived quantity from the 
empirical quantity. We show that our results are not driven by bias, 
being essentially unchanged after debiasing (Supplementary Fig. 16 
and Tables 6–10).

We also show results for different doses of anaesthesia available in 
human (Supplementary Fig. 8) and macaque (Supplementary Fig. 17) 
datasets. For the human dataset, we further show that consistent results 
are obtained with a different cortical parcellation, combining 200 
cortical regions from the Schaefer atlas and 32 subcortical regions 
from the Tian atlas (Supplementary Fig. 8). We also show that the cor-
relations between integrated information and transition energy remain 
significant in both macaque and human, when these additional data 
are included (Supplementary Fig. 18). We further validate our spatial 
correlations between integrated information and PVALB/Pvalb gene 
expression using (1) immunohistochemically quantified parvalbu-
min protein density in the macaque cortex89; (2) transcriptomically 
defined density of PV+ interneurons in the macaque cortex40; and (3) 
transcriptomically defined density of PV+ interneurons in the mouse 
cortex90 (Supplementary Fig. 19).

Although motion was actively prevented in each of the four animal 
datasets (see Methods) and further eliminated through denoising, we 
deploy three additional strategies to further mitigate any concerns 
about in-scanner motion affecting our measure of transition energy. 
First, we repeat our analyses using mean framewise displacement (FD) 
as a covariate of no interest in each species. We find that although some 
individual results become non-significant in human and marmoset, 
the results nonetheless remain qualitatively similar, and significant 
differences persist in each dataset: human, macaque multi-anaesthesia, 
macaque DBS, marmoset and mouse (Supplementary Tables 11–15). 
Second, as an alternative approach, for the human and marmoset data-
sets we also repeat the original analysis of transition energy, but instead 
of including motion as a covariate, we apply a more stringent thresh-
old for rejection. Namely, we exclude humans with mean FD > 0.30 
(3 exclusions), and we exclude marmosets with mean FD > 0.10 (5 
exclusions; note that this is a conservative threshold adopted from 
the rodent literature). Results remain the same as in the main analyses  
(Supplementary Tables 16 and 17). Note that for the mouse and 
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Fig. 8 | Macaque-specific biophysical model with stimulation of different 
thalamic nuclei reproduces the greater suitability of the central thalamus 
for restoring integrated information. a, Illustration of thalamic ROIs and their 
inclusion in the DMF model; adapted from ref. 30, published under a CC-BY 
licence. Models based on the macaque anatomical connectivity, fitted to the 
empirical anaesthesia condition, are subjected to injection of excitatory current 
on the basis of the structural connectivity of the central thalamus (CT, red) and 
ventrolateral lateral thalamus (VT, green), obtained from diffusion-weighted 
MRI tractography of an independent sample of macaques. b, Simulated CT 
stimulation achieves significantly integrated information in brain dynamics 
than both no-stimulation (CT mean = 1.48 × 10−1 (s.d. = 1.27 × 10−2); No stim 
mean = 4.82 × 10−2 (s.d. = 5.67 × 10−3); t(80) = 45.88, P < 0.001 from independent-
samples t-test (two-sided), Hedges g = 10.04, 95% CI [8.49, 12.70]) and VT 
stimulation (CT mean = 1.48 × 10−1 (s.d. = 1.27 × 10−2); VT mean = 1.35 × 10−1 
(s.d. = 1.23 × 10−2); t(80) = 4.87, P < 0.001 from independent-samples t-test (two-
sided), Hedges g = 1.07, 95% CI [0.64, 1.58]). N = 41 simulations for each condition. 
Boxplots: central line, median; box limits, upper and lower quartiles; whiskers, 
1.5× interquartile range. Credits: macaque DBS illustration adapted from ref. 30, 
published under a CC-BY licence.
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macaque datasets, it is superfluous to perform this analysis because 
all animals in all conditions are already below the stringent threshold 
of mean FD < 0.10. Third, we repeat the correlations between tran-
sition energy and integrated information but using partial correla-
tion to partial out the potential confounding effects of motion (mean 
FD). Our results remain the same, with significant negative correla-
tions between the two measures in each of the four primate datasets 
(Supplementary Fig. 20).

Due to the computational tractability limitations of information 
decomposition, for our main analyses we adopted a pairwise strat-
egy, quantifying ΦR between pairs of regions and then aggregating  
the results. However, to examine the role of integrated information 
generated by systems composed of more than two elements, we con-
sider an alternative, more general strategy: instead of calculating 
ΦR across pairs of regions, we calculate ΦR across a large number of 
randomly sampled sets of K regions split into a bipartition with evenly 
sized parts. This approach (analysing K > 2 regions but divided in a 
bipartition) provides a suitable trade-off between considering truly 
higher-order information without falling victim to the combinatorial 
explosion of possible partitions (and elements in the information 
decomposition lattice). Specifically, to achieve a compromise between 
high order and low bias, we pick K = 6 and randomly sample 2,000 
sets of 6 regions. Each set is divided into 2 groups of 3 regions, and 
we then compute the integrated information (ΦR) between the two 
groups of 3 channels. This method was initially proposed as a practical 
approach for integrated information analysis by ref. 48; it has already 
been used successfully in previous analyses using alternative measures 
of integrated information91; and more recently we have shown (using 
other, non-ΦR measures of high-order information) that considering 
larger sets of regions beyond pairs increases measured effect sizes in 
empirical analyses. Indeed, we find that including a larger number of 
elements to consider beyond pairwise interactions does not qualita-
tively change our results. On the contrary, we consistently observe 
even stronger effect sizes, which now include false discovery rate 
(FDR)-corrected significant reductions in integrated information for 
both mouse anaesthesia conditions (Extended Data Fig. 4). This result 
suggests that anaesthesia may also affect the integrated information 
contained in beyond-pairwise interactions.

To complement our dominance analysis that directly compares 
ΦR against other information-theoretic measures proposed to be 
relevant for consciousness, we show how each of these alternative 
information-theoretic quantities is reshaped by anaesthesia across 
all our datasets. For ease of comparison, their respective decomposi-
tions in terms of integrated information decompositions are shown 
in Supplementary Fig. 21. First, we consider the original proposed 
measure of integrated information, Φ2008, corresponding to the whole 
minus a naive sum of parts. This measure is therefore equivalent to  
the balance between integrated information (ΦR) and persistent 
redundancy. We show that the behaviour of Φ2008 is highly inconsistent  
both within and across species, and does not track loss of responsive-
ness (and presumably consciousness), being unchanged in anaes-
thetized humans or macaques, and even increased in anaesthetized 
mice and marmosets (Supplementary Fig. 22). Crucially, this analy-
sis demonstrates that the possibility of Φ2008 taking negative values  
(paradoxical for a supposed measure of integration) is not only a theo-
retical concern but also a practical one: we see this happen in several 
of our empirical brain datasets (especially prominent in the macaque 
DBS dataset; Supplementary Fig. 22 and Tables 18–22).

Next we consider causal density, which attempts to quantify the 
overall prevalence of causal interactions as an indicator of the system’s 
causal complexity50. Specifically, causal density adopts a statistical 
interpretation of causality in terms of transfer entropy (information 
about Y’s future that is not provided by Y’s past, but only by X’s past). In 
the linear case, transfer entropy is equivalent to the Granger–Weiner 
notion of statistical causality92. Causal density is thus defined as the 

sum of the transfer entropies between elements. However, trans-
fer entropy includes additional information-dynamic phenomena 
beyond pure unique-to-unique transfer, including synergistic effects 
(Supplementary Fig. 23). As a result, causal density shares several atoms 
with ΦR: the two pure transfer terms and all the ‘downward causation’ 
atoms. In a system where these were the only information-dynamic 
phenomena, causal density and ΦR would therefore become equivalent. 
However, each measure also includes information-dynamics phenom-
ena that the other ignores. On one hand, causal density double-counts 
the synergy-to-redundancy atom (being present in both transfer 
entropy from X to Y and transfer entropy from Y to X) and includes the 
two information duplication atoms (which ΦR ignores). On the other 
hand, causal density does not account for any information-dynamics 
phenomena with synergy in the future, which instead are all included 
in ΦR (ref. 16). Empirically, we find that causal density is substantially 
less sensitive to anaesthetic-induced perturbations than ΦR: in humans, 
causal density detects a reduction under anaesthesia but does not 
increase back upon recovery of responsiveness. In the mouse, the 
only significant difference is a paradoxical increase. In macaque and 
marmoset, no significant changes in causal density are observed for 
either anaesthesia or its DBS-induced reversal (Supplementary Fig. 23 
and Tables 23–27).

Third, we consider the net balance (difference in magnitude) 
between the ‘pure’ flow of information from X to Y and from Y to X: 
this measure will be zero if the pure transfer from X to Y and from 
Y to X are equal. In the case of an imbalance (more transfer in one 
direction than the other), this measure is mathematically equivalent  
to the INSIDEOUT measure93, which was recently introduced to  
quantify ‘temporal irreversibility’ in linear systems. Although this 
‘pure flow of information’ was not explicitly derived as a measure 
of consciousness, the INSIDEOUT measure has been repeatedly 
shown to track pharmacological and pathological perturbations 
of consciousness52,53,93, making this a relevant candidate to include. 
Empirically, we show that pure information flow/INSIDEOUT yields 
qualitatively similar results as ΦR for tracking loss of recovery of 
responsiveness, being reduced in anaesthesia across species, and 
increasing again upon both spontaneous and DBS-induced awaken-
ing (Supplementary Fig. 24 and Tables 28–32). Indeed, the informa-
tion flow/INSIDEOUT measure was also the second-best predictor 
of macaque behavioural arousal score in our dominance analysis, 
although ΦR remains the best-performing measure, accounting for 
more than 2× as much variance (Fig. 3).

Finally, we repeat our dominance analysis but including an addi-
tional predictor: the traditional functional connectivity between 
regions which is ubiquitous in the fMRI literature. We find that our 
revised measure of integrated information (ΦR) remains by far the most 
important predictor of macaque behavioural arousal score. Alone, ΦR 
accounts for almost half (46%) of all variance explained: more than 
2× that of the next-best predictor (information flow/INSIDEOUT), 
with ~3× as much importance as either traditional functional connec-
tivity (15%), or the original Φ2008 measure of integrated information 
(Supplementary Fig. 25).

Altogether, these empirical results converge with theoretical 
arguments in supporting the greater suitability of our revised meas-
ure of integrated information over its original formulation and 
alternative information-dynamic quantities for tracking consistent 
changes in neural dynamics under anaesthesia and their reversal with 
deep-brain stimulation.

Discussion
Here we combined functional neuroimaging and causal manipulations 
through pharmacology and deep-brain stimulation to study macro-
scale integration of information in the brains of humans, macaques, 
marmosets and mice. Our main contributions are threefold. First, 
we provided evidence that breakdown of information integration is 

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02381-5

a convergent target of diverse anaesthetics across mammalian spe-
cies. Second, we identified evolutionarily conserved underpinnings 
of anaesthetic-induced breakdown of integrated information in  
the connectivity and genetics of mammalian cortex. Third, we devel-
oped species-specific computational models to go beyond correla-
tion and demonstrate how patterns of thalamic connectivity and 
regional inhibition mediated by PVALB/Pvalb gene expression can exert  
bidirectional control over neural integration of information.

By identifying changes in neural activity that coincide with the 
same behavioural outcome (breakdown of interaction with the envi-
ronment) despite being induced by different anaesthetics, we can 
narrow down anaesthesia’s consciousness-suppressing effects on the 
brain. Across species, we provide evidence that anaesthesia reduces 
both integrated information and the network controllability of brain 
dynamics (indicated by higher transition energy). These effects are 
significantly correlated in all our primate datasets. A similar correlation 
was also found in recent analyses that applied network control theory 
to the structural connectomes of patients suffering from disorders of 
consciousness (DOC), showing that they are less suitable for supporting 
transitions between brain states94. The same patients also exhibited 
a correlated reduction in synergistic dynamics, a key component of 
integrated information94. Indeed, we previously showed that propofol 
anaesthesia and DOC both reduce integrated information between a 
shared set of cortical regions45. The same regions are also among those 
that exhibited reduced integrated information in the present dataset 
of human sevoflurane anaesthesia. Taken together, our results suggest 
that despite their different neurobiological origins (pharmacology and 
brain injury), anaesthesia and DOC-inducing brain lesions may have 
functionally equivalent effects: less controllable dynamics, ultimately 
manifesting in a failure to integrate information.

These results are relevant for potential avenues of treatment for 
DOC patients. On one hand, recent empirical and computational evi-
dence indicates that suitable pharmacological intervention can also 
facilitate brain transitions. In particular, agonists of the serotonergic 
5HT2A receptor such as LSD, psilocybin and DMT induce a ‘flatten-
ing’ of the energy landscape corresponding to easier transitions60, 
and facilitatory effects have also been reported for dopaminergic 
agents59. Such pharmacologically induced facilitatory effects are the 
opposite of what is observed during both anaesthesia and DOC, which 
is encouraging because dopaminergic agents and 5HT2A agonists are 
both being considered as potential pharmacological avenues for restor-
ing consciousness in DOC patients95,96. Taken together, these studies 
provide empirical and computational evidence that the controllability 
of brain dynamics can be bidirectionally manipulated via selective 
pharmacological interventions.

On the other hand, the present work provides evidence that phar-
macology is not the ‘only’ way to restore the controllability of brain 
dynamics. We also achieved the same effect via spatially selective 
deep-brain stimulation of the central thalamic nucleus in the macaque, 
which also restored behavioural arousal and integrated information. 
Indeed, our results converge with a growing literature indicating a 
role of the central thalamus for controlling consciousness and brain 
dynamics on both theoretical and empirical grounds4,30,49,51,77,79–81,97–10

0 (see Supplementary Discussion), including as a potential target for 
deep-brain stimulation in DOC patients96,98.

The dual causal manipulation of anaesthesia and electrical 
stimulation in non-human primates provides a rare opportunity to 
single out neural changes that specifically co-vary with the anaes-
thetic’s consciousness-suppressing effects. Previous work adopted 
this approach to show that integrated information in macaque elec-
trodynamics is reduced by anaesthesia and sleep, and increased 
upon awakening induced by thalamic stimulation80, as are additional 
electrophysiological and fMRI markers of consciousness in the 
macaque30,49,79,81. Combining the specificity of deep-brain stimulation 
with global coverage of the entire cortex through functional MRI, 

the present study represents an extension of those earlier findings 
along multiple dimensions: (1) different neuroimaging modality  
(non-invasive fMRI rather than intracortical electrophysiology), allow-
ing us to measure integrated information across the entire cortex; 
(2) a broader range of anaesthetics; (3) identification of transcrip-
tomic underpinnings; and (4) crucially, generalization of the anaes-
thesia results to humans, mice and a different species of non-human 
primate (marmoset).

In addition, dominance analysis enabled us to directly compare the 
ability of different information-theoretic measures to track changes 
in behavioural arousal. On one hand, the present results consistently 
highlight integrated information (ΦR) as being unequivocally the most 
consistent information-theoretic marker of anaesthesia and its rever-
sal, accounting for over half (51%) of the total variance explained and 
corroborating the susceptibility of integrative processes to loss and 
recovery of responsiveness. On the other hand, they also reveal net 
information flow (which is mathematically equivalent to the INSIDE-
OUT measure of temporal irreversibility93) as the measure that best 
complements ΦR for explaining variance in behavioural arousal (being 
the second-best predictor). It stands to reason that the two meas-
ures should complement each other: ΦR is symmetric and therefore 
insensitive to directionality of interactions in the system, whereas 
the net information flow is asymmetric, being high when the ‘pure’ 
(unique-to-unique) information transfer is greater in one direction 
than the other. Thus, ΦR and net flow may complement each other 
because ΦR cares about the ‘intensity’ of interactions between elements 
of the system (‘how much’ they interact to make an integrated whole) 
but not their direction, whereas net information flow cares about the 
‘imbalance’ of the interactions but not their strength per se. Elucidat-
ing this newfound empirical relationship between ΦR and net transfer/
INSIDEOUT represents a promising avenue for future work.

Likewise, several other measures in the neuroscience literature are 
intended to reflect the balance of integration and segregation, draw-
ing on diverse fields such as network science and dynamical systems 
theory2,16,25,32,101–104. Of particular relevance for the present results is 
the recently introduced measure of integration–segregation differ-
ence, defined as the difference between a network’s global efficiency 
and clustering coefficient32. When applied dynamically to different 
brain states obtained from human fMRI, this measure was found to 
be reduced under anaesthesia32. Thus, both ΦR and ISD converge to 
indicate loss of integration during anaesthetic-induced loss of respon-
siveness, which is then reversed upon recovery. No formal work has 
yet related ΦR and ISD, being both very recent. However, the fact that 
both are intended to reflect integration and segregation, and both 
track the effect of anaesthesia in the brain, suggests that an underlying 
relationship may indeed exist. In fact, an indirect relationship already 
exists in the literature: both ISD and ΦR have shown empirical correla-
tions with a third measure intended to capture integration–segrega-
tion balance: the metastability index32,101 (variability over time of the 
instantaneous synchrony), which will be high when a system is neither 
fully synchronized nor fully desynchronized, but rather alternates 
between states of high and low synchrony102. Nevertheless, it should 
be noted that ΦR and ISD are conceptually distinct: first, ISD uses a 
graph-theoretic definition of integration and segregation, whereas 
ΦR is based on information theory; second, integration–segregation 
difference is an explicit difference between the two quantities (with 
zero indicating perfect balance); whereas ΦR does not subtract one 
from the other, but rather quantifies the presence of both. We look 
forward to future theoretical work that may further explore the links 
between these measures. Notably, similar to our present findings with 
ΦR, the integration–segregation difference of ref. 32 also displayed 
anaesthetic-induced reductions that were widespread across the brain 
but especially prominent in primary cortices (visual, somatomotor): 
‘SMN and attention networks showed larger magnitudes of change 
compared to those of SUB, LIM and transmodal networks (FPN and 
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DMN)’32. Primary visual and somatomotor regions were also the most 
prominent in time, being the first to disintegrate32. Likewise, upon 
recovery, ‘reintegration began with changes in the unimodal (VIS and 
SMN)’32. In other words, recent measures that consider both integration 
and segregation rather than simple correlation, appear to converge 
towards a consistent spatial topography of anaesthesia: widespread 
but unimodal dominated. Our transcriptomic and computational 
modelling results reveal a likely neurobiological reason for this spatial 
topography, arising from the regional prevalence of PVALB, the main 
marker of PV+ interneurons. Further, we showed that this phenomenon 
is under local control by the centro-median thalamus.

Our empirical observation that CT stimulation can counter the 
effects of anaesthesia on consciousness and information integration in 
fMRI signals does not, by itself, provide evidence about the underlying 
neurobiological mechanisms. One way to obtain such insights is via 
computational modelling42. References 65,66 recently used thalamocorti-
cal biophysical models based on human neuroimaging to successfully 
simulate the effects of anaesthesia and its reversal by stimulation 
of matrix (versus core) thalamus on cortical electrodynamics of the  
macaque, as reported by the electrophysiological experiments of  
ref. 79. Here we used a macaque-specific connectome and successfully 
modelled restoration of integrated information in fMRI, including the 
preferential role of CT over VT stimulation for restoring integrated 
information in the macaque. Crucially, in our model, CT and VT differ 
only in terms of their empirically derived patterns of anatomical con-
nectivity with the macaque cortex, suggesting that the CT may achieve 
its role as local controller of global dynamics by virtue of its specific 
structural connectivity profile (although we note that this is likely to 
be only one of several convergent relevant factors, given the complex 
cytoarchitecture and microcircuitry of different thalamic nuclei78,100).

Having demonstrated that regions’ differential suitability as stimu-
lation targets may be predicted from their structural connectivity, our 
computational model offers the potential for systematic screening of 
every region to identify alternative stimulation targets that may be even 
more successful than the central thalamus, or more anatomically acces-
sible (see also Supplementary Discussion). Convergent evidence from 
the present work supports the translational potential of our model for 
DOC patients: both our empirical findings and computational models 
are highly consistent across human and macaque, despite being based 
on species-specific data. Indeed, our integration of species-specific 
connectomics and species-specific gene expression to model empiri-
cal observations in humans, macaques and mice constitutes one of the 
key advances of the present study.

Another key contribution of the present work is the identification 
of potential mechanisms underlying the effects of anaesthesia on 
macroscale information dynamics across species. Among 81 genes, 
the regional breakdown of integrated information induced by anaes-
thesia exhibits the closest cross-species correspondence with the 
spatial distribution of PVALB/Pvalb gene expression across humans, 
macaques and mice. Although regional gene expression data are not 
yet available at present for the marmoset cortex, we expect that future 
work will extend our spatial correlation results to this species, given 
the broader pattern of consistencies observed in the present work. 
PVALB/Pvalb is a cell-type marker for inhibitory interneurons, and 
indeed we validated a spatial association with PV+ interneurons using 
immunohistochemistry and cell-type deconvolution in macaque and 
mouse. Notably, our species-specific computational models confirmed 
that the spatial distribution of PVALB/Pvalb gene expression is espe-
cially suitable for shaping regional inhibition in a way that induces less 
controllable dynamics and less integrated information, both of which 
were reliably observed in our empirical data for almost every combina-
tion of species and anaesthetics.

In contrast to PVALB/Pvalb, no consistent association was observed 
for another prominent marker of inhibitory interneurons, SST/Sst 
gene expression. Of note, recent work in rodents showed that PV+ 

interneurons exert greater effect on cortical state than SST+ interneu-
rons72. Crucially, the cortical pattern of parvalbumin gene expression 
is highly conserved from mice to humans105 and also from macaques 
to humans70, which may make it a plausible candidate underlying the 
effects of anaesthesia, which are also deeply conserved across species19. 
Admittedly, the anaesthetics employed here have widely different 
molecular targets, not all of which are directly known to influence 
inhibition or PV+ interneurons106. However, the brain is a complex 
system with intricate feedback loops and molecular cascades that are 
still far from completely understood. It should not be too surprising 
that drugs with different molecular targets at the microscale may end 
up exhibiting convergent effects on the same macroscale systems  
and physiological properties, beyond what may be apparent from 
in vitro studies. Indeed, ketamine shares effects with other anaes-
thetics such as propofol and isoflurane, not only at the macroscale 
(as reported here and in EEG studies21) but also at the mesoscale, in 
terms of downregulating K+/Cl− co-transporter 2 (KCC2) in the ventral 
posteromedial nucleus of the thalamus107; and at the microscale, induc-
ing decoupling between apical and basal dendritic compartments of 
mouse layer 5 pyramidal neurons, with a recent model showing that 
integrated information can be tuned by thalamic control over the 
coupling between apical and basal dendritic compartments of layer 
5 pyramidal neurons51.

Crucially, apical–basal decoupling was also observed upon inac-
tivation of the higher-order matrix thalamus108. Since cortical ‘down’ 
states during anaesthesia are controlled by thalamic drive to cortical 
PV+ interneurons in rodents73, multiple lines of evidence point to the 
thalamus as a potential convergence target for the results that we 
have reported here, which would also be in line with our empirical and 
computational results about the thalamus’s role in controlling state 
transitions. In particular, intralaminar thalamic nuclei, distinguished 
by ‘matrix’ cells (in opposition to ‘core’), project widely to the cortex, 
including the medial prefrontal and anterior cingulate cortex, as well 
as PV+ rich somatosensory and primary and supplementary motor 
cortices100,109. PV+ interneurons are primarily output modulating, 
whereas SST+ interneurons are mainly input modulating90. Thus, our 
results from empirical cortex-wide correlations and regionally hetero-
geneous computational models suggest that anaesthesia may affect 
macroscale information integration in the mammalian brain by acting 
more closely on output modulation than on input modulation. Future 
studies may investigate this possibility more explicitly by measuring 
changes in integrated information during optogenetic modulation of 
PV+ interneuron activity, with and without anaesthesia. Intriguingly, a 
recent study in the mouse identified PV+ interneurons as being sleep 
active, and selective chemogenetic manipulation further demon-
strated that sleep/wake-dependent cortical ignition (the ability of 
local stimuli to propagate globally) is modulated by PV+ inhibition of 
pyramidal neurons110.

Our focus here was on the brain’s capacity to process environmen-
tal information, which is indexed by loss of behavioural responsiveness, 
a marker that is shared across species19 and also widely used in human 
clinical practice with DOC patients111. Indeed, the generalization of  
our results across four different species is a key strength of the pre-
sent work. However, research with animal models comes with inevi-
table challenges. Since animals cannot provide subjective reports in  
the same way as humans, we need to rely on behavioural markers  
alone. Behavioural unresponsiveness is an imperfect marker of uncon-
sciousness since it can also occur as a result of sensory disconnection  
or motor impairment, neither of which is the same as unconscious-
ness112. More broadly, our analysis is based on fMRI acquired in the 
resting state, that is, in the absence of a stimulus or a task. Responsive-
ness to the environment can also be evaluated in a way that bypasses 
behaviour, by observing the brain’s spontaneous response to natu-
ralistic or synthetic stimuli (for example, suspenseful narratives or 
engaging movies113), as well as examining the neural effects of causal 
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perturbations, used as a probe rather than as a means of inducing 
awakening114–116. Translating these paradigms across species will pro-
vide invaluable insights to dissociate brain and behavioural respon-
siveness, complementing our present identification of integrated 
information as a cross-species neural marker of anaesthesia.

On the theoretical side, it is important to acknowledge that inte-
grated information decomposition is not without limitations (see 
‘Measuring integrated information’ in Methods for a detailed discus-
sion), and information decomposition remains an actively evolving 
field. In particular, computational tractability remains a limitation of 
information decomposition approaches due to combinatorial explo-
sion in the number of terms. Therefore, here we focused on integrated 
information related to the dynamics of pairs of brain regions. Thus, 
our brain-wide estimation of information integration among pairs  
of regions is perhaps best viewed as a lower bound of the global inte-
grated information that can be obtained at the level of macroscopic 
BOLD signals, since it neglects any additional integration between 
groups of three or more regions. However, we sought to mitigate this 
limitation by analysing a bipartition of 6 channels, which revealed 
consistently greater ability to detect anaesthetic-induced differ-
ences, including by identifying significant differences in both mouse 
anaesthesia conditions, one of which was not detected with our main 
analysis. Developing information decomposition approaches that 
scale more gracefully with system size remains an ongoing topic of 
active research in the field. More broadly, here we focused on ‘intrin-
sic’ information in the brain, but a complementary approach is to 
track ‘extrinsic’ task-relevant information from stimulus to behav-
iour across the brain2,117–120, although this approach is challenging to 
apply in the case of anaesthesia, which is operationalized by loss of 
behavioural responsiveness.

On the computational modelling side, it is important to bear in 
mind that computational models vary widely in terms of the inevi-
table trade-off between complexity and neurobiological detail, and 
where our model lies on this continuum. On one hand, our model does 
not incorporate individual neuron types, or layer-specific cytoarchi-
tecture and thalamocortical connectivity51,65,121. On the other hand, 
our dynamic mean-field model represents brain regions as coupled 
excitatory and inhibitory neural masses, which is more biologically 
realistic than the binary spins of an Ising model, or the oscillators of 
Kuramoto and Hopf models, and therefore allowed us to intervene 
directly on a region’s excitation and inhibition. Choices are also inevita-
bly required in terms of which sources of biological detail are relevant 
to include. If the goal were to model the detailed neurobiological 
mechanism of action of a specific drug with known receptor affinity, 
rather than our present goal of intervening directly on inhibition, 
then it would also be possible to implement more neurobiologically 
realistic receptor dynamics, for example, by adding more parameters 
such as regional gain scaling121. Instead, here we incorporate a dif-
ferent source of biological detail: namely, species specificity, in the 
form of species-specific gene expression and species-specific ana-
tomical connectivity. Pertaining to the model of thalamic stimulation, 
our goals were twofold. First, to investigate whether we can obtain a 
species-specific model of integrated information being restored by 
local stimulation. Second, to investigate whether the model provides a 
useful in silico indication of which of the two thalamic nuclei would be 
most suitable to stimulate for restoring integrated information, purely 
on the basis of their relative connectivity profiles. Therefore, for this 
second objective we focused on the ‘relative’ performance of the two 
thalamic nuclei rather than their absolute performance. Indeed, we 
found greater restorative effect of CT over VT stimulation, and more so 
at higher stimulation levels. Both findings are in accordance with our 
empirical results. Nonetheless, we acknowledge that our model is not a 
perfect reflection of all empirical results: in particular, VT stimulation 
achieves greater success in our model than in real data. However, this 
discrepancy does not impinge on our conclusions about the relative 

performance between CT and VT. This partial discrepancy between 
the real and simulated results may arise from many factors; for exam-
ple, our model does not include differential cell-type composition 
and gene expression of different thalamic nuclei66,78,84,100. Rather, we 
modelled the CT and VT as differing only in terms of their empirical 
species-specific profiles of structural connectivity. However, this rela-
tive simplicity has its own merits: it allows us to conclude that anatomi-
cal connectivity, by itself, could be a powerful predictor of a region’s 
suitability for stimulation aimed at restoring integrated information 
(without of course claiming that it is a perfect predictor, let alone the 
‘only’ predictor). Ultimately, no model can ever be a perfect reflection 
of biological reality, and ours is no exception: as the adage goes, ‘all 
models are wrong’. We take the view that different models address 
different desiderata and provide different, complementary insights.

On the empirical side, we also acknowledge that although each 
of our results was repeatedly observed in multiple species and with 
multiple anaesthetics, the consistency was not perfect. Integrated 
information and the controllability of brain dynamics were also partly 
restored by low-intensity VT stimulation in the macaque, which did 
not restore behavioural arousal. We speculate that this discrepancy 
may occur when the neural effects (which must logically precede any 
behavioural ones) have not achieved sufficient prominence to translate 
into behaviour. Indeed, the most extreme effect of DBS on integrated 
information and the controllability of brain dynamics was consist-
ently observed for high-intensity CT stimulation, concomitant with 
re-awakening from anaesthesia. In a similar vein, anaesthetic-induced 
breakdown of integrated information and increased transition energy 
were each absent from one of the anaesthetized mouse conditions 
(but note that neither effect was entirely absent in this species, and 
that reduced integrated information was detected in both datasets 
when accounting for multiple channels). Inclusion of the marmoset 
dataset allowed us to exclude differences in cortical gyrification as 
a candidate explanation for this weaker effect, since marmosets are 
a lissencephalic species similar to mice. As a more plausible explana-
tion, we instead point to the fact that our mouse dataset used different 
anaesthetics and especially a lighter anaesthetic regimen than our 
dataset for the other species, such that interspecies differences may 
be confounded by differences between drugs31. In particular, medeto-
midine–isoflurane is an anaesthetic combination intended to minimize 
the effects of anaesthesia on the rodent brain (by using a smaller dose of 
each drug) while still suppressing motion122. Altogether, these dissocia-
tions open the door for future comparative studies about the specific 
mechanisms that enable different drugs or stimulation protocols to 
selectively suppress only one or the other aspect of brain function.

More broadly, we emphasize that the main focus of this work 
was on ‘commonalities’ rather than differences, both between drugs 
and between species. In this respect, broad convergence of results 
despite differences in species and in the anaesthetics used is an asset 
of our work. The same applies to the differences in acquisition, such as 
different temporal resolution, different scanners and magnetic field 
strength, and adoption of species-specific best practices for fMRI 
preprocessing and denoising. It is reassuring that our results display 
substantial consistency not only across species and anaesthetics, but 
also across these extraneous methodological variations. This consist-
ency can be interpreted as an additional support for the robustness of 
our findings.

Overall, the results presented here offer mechanistic links between 
the shared neural effects of different anaesthetics and shared aspects of 
mammalian neurobiology. Through bidirectional causal manipulations 
that combine pharmacology and electrical deep-brain stimulation dur-
ing functional MRI scanning, we discovered that anaesthetic-induced 
suppression of the mammalian brain’s ability to interact with the envi-
ronment coincides with less controllable dynamics and a breakdown in 
the brain’s capacity to integrate information. We observed these results 
with different anaesthetics across humans, macaques, marmosets and 

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02381-5

mice. Integrating species-specific connectomics and transcriptomics, 
we further identified genetically encoded gradients of heterogeneous 
inhibition as potential neurobiological mechanisms underlying the 
shared neural effects of different anaesthetics. Going forward, our 
connectome-based model of DBS-induced restoration of integrated 
information may hold translational potential for predicting the success 
of stimulating different regions to re-awaken patients suffering from 
disorders of consciousness. Taken together, this work illuminates how 
regional differences in connectivity and genetically encoded circuit 
dynamics can be acted upon by anaesthetics and stimulation to govern 
information integration in the mammalian brain.

Methods
For details of each fMRI dataset and its corresponding preprocessing 
and denoising procedures, see Supplementary Methods.

Measuring integrated information
In this section, we provide a brief description of information decom-
position and formulae required to compute the results. For further 
details, see refs. 16,17.

Partial information decomposition. We begin with Shannon’s mutual 
information (MI), which quantifies the interdependence between two 
random variables X and Y. It is calculated as

I(X;Y) = H(X) − H(X|Y) = H(X) + H(Y) − H(X,Y) (1)

where H(X) stands for the Shannon entropy of a variable X. Above, the 
first equality states that the mutual information is equal to the reduc-
tion in entropy (that is, uncertainty) about X after Y is known. Put simply, 
the mutual information quantifies the information that one variable 
provides about another.

Crucially, ref. 15 observed that the information that two 
source variables X and Y give about a third target variable Z, I(X,Y; 
Z), should be decomposable in terms of different ‘types’ of infor-
mation: information provided by one source but not the other 
(unique information); by both sources separately (redundant infor-
mation); or jointly by their combination (synergistic information; 
Extended Data Fig. 1). Following this intuition, they developed the 
‘partial information decomposition’ (PID)15 framework, which leads 
to the following fundamental decomposition:

I(X,Y;Z ) = Red(X,Y;Z ) + Un(X;Z\Y ) + Un(Y;Z\X ) + Syn(X,Y;Z ). (2)

Above, ‘Un’ corresponds to the unique information one source has 
but the other does not, ‘Red’ is the redundancy between both sources, 
and ‘Syn’ is their synergy: information that neither X nor Y alone can 
provide, but that can be obtained by considering X and Y together:

Syn(X,Y;Z) = I(X,Y;Z) − (Red(X,Y;Z) + Un(X;Z\Y) + Un(Y;Z\X)) (3)

The simplest example of a purely synergistic system is one in 
which X and Y are independent fair coins, and Z is determined by the 
exclusive-OR function Z = XOR(X,Y): that is, Z = 0 whenever X and Y 
have the same value, and Z = 1 otherwise. It can be shown that X and Y  
are both statistically independent of Z, which implies that neither 
of them provide, by themselves, information about Z. However,  
X and Y together fully determine Z, hence the relationship between 
Z with X and Y is purely synergistic. As another example for the case 
of Gaussian variables (as employed here), consider a 2-node coupled 
autoregressive process with two parameters: a noise correlation c and a 
coupling parameter a. As c increases, the system is flooded by ‘common 
noise’, making the system increasingly redundant because the common 
noise ‘swamps’ the signal of each node. As a increases, each node has 
a stronger influence both on the other and on the system as a whole, 

and we expect synergy to increase. Therefore, synergy reflects the joint 
contribution of parts of the system to the whole that is not driven by 
common noise. This can be demonstrated empirically123.

Integrated information decomposition. Dynamical systems can be 
studied via an information-theoretic lens by investigating how they 
process information through time, which can be assessed by charac-
terizing the information flow between past and future. Formally, one 
can calculate the amount of information flowing from the system’s 
past to its future, known as ‘time-delayed mutual information’ (TDMI). 
Furthermore, one can use PID to decompose this information into 
atoms. Specifically, by denoting the past of variables as Xt-τ and Yt-τ and  
treating them as information sources, and their joint future state  
(Xt, Yt), as target, one can apply the PID framework and decompose  
the information flowing from past to future (TDMI) as:

I(Xt−τ,Yt−τ;Xt,Yt) = Red(Xt−τ,Yt−τ;Xt,Yt) + Un(Xt−τ;Xt,Yt\Yt−τ)

+Un(Yt−τ;Xt,Yt\Xt−τ) + Syn(Xt−τ,Yt−τ;Xt,Yt)
(4)

This makes PID applicable to the dynamical systems setting, and 
yields a decomposition with redundant, unique and synergistic com-
ponents in the past and future that can be used as a principled method 
to analyse information flow in neural activity16.

Crucially, the way in which two variables of a dynamical system 
encode information may itself change over time. For instance, infor-
mation that was uniquely provided by one variable at one timepoint 
may become redundantly encoded by two in the future, or vice versa. 
For this reason, adopting a temporal perspective leads to an increased 
number of information atoms. For example, decomposing information 
flow between past and future of two components of a dynamical system 
yields not four, but rather 4 × 4 = 16 distinct information-dynamic phe-
nomena, captured by different information atoms, each corresponding 
to a pair of the original four PID atoms evolving from past to future 
(Fig. 2a and Extended Data Fig. 1)16. To simplify notation, here we use 
the form ‘past atom → future atom’, such that for example, ‘UnX → Red’ 
refers to information that was unique to X in the past and is redundant 
in the future. To aid intuition, minimal examples of 2-element systems 
implementing each of the atoms are provided in Supplementary Fig. 1: 
each system displays only one of the 16 information-dynamic atoms.

This dynamical extension of PID was formally introduced by Medi-
ano and Rosas under the name ‘integrated information decomposi-
tion’16. The 16 atoms that integrated information decomposition yields 
for two interdependent dynamical components can be systematically 
organized into a taxonomy of 6 information-dynamic phenomena (see 
refs. 16,124 for visual illustrations of this taxonomy):

•	 Persistence (also termed ‘storage’16,124): information that remains 
carried in the same way over time: UnX → UnX, UnY → UnY,  
Red → Red, and Syn → Syn;

•	 Copy (also termed ‘duplication’16,124): information that was not 
redundant in the past, but becomes redundantly available from 
both variables in the future; UnX → Red, and UnY → Red;

•	 Pure transfer (also termed ‘migration’16,124): information that was 
uniquely present in a single variable in the past and is uniquely 
present in the other variable in the future; UnX → UnY, and  
UnY → UnX;

•	 Erasure (also termed ‘de-duplication’16,124): information that is 
pruned from duplication, such that it was redundant in the  
past, but is no longer redundant in the future; Red → UnX, and 
Red → UnY;

•	 Upward causation (also termed ‘encryption’16,124): information 
that was entirely present in at least one variable in the past and 
becomes synergistic in the future, such that it can no longer be 
recovered by only considering one variable, but only by consider-
ing them both together: UnX → Syn, UnY → Syn, and Red → Syn.
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•	 Downward causation (also termed ‘decryption’16,124): informa-
tion that was encoded synergistically by both variables in the 
past, but becomes no longer synergistic in the future, such  
that it is fully available from at least one of the two variables:  
Syn → UnX, Syn → UnY, and Syn → Red.

Notably, this framework identifies stronger notions of redun-
dancy, whereby information is present in both X and Y in both past  
and future; and synergy, whereby information is carried synergistically 
at all times14,16.

Minimum mutual information approximation. PID and integrated 
information decomposition are frameworks that formally specify  
the nature of the information atoms and their mutual relationships  
but do not fully specify how they should be estimated in practice. 
Hence, an important limitation of PID, which is inherited by integrated 
information decomposition, is the need to specify a redundancy  
function from which the calculation of all other atoms directly follows. 
A growing number of redundancy functions have been proposed,  
stemming from diverse literatures such as neuroscience, crypto
graphy and game theory, and satisfying different combinations 
of desiderata2,125.

For the case of univariate Gaussian variables, several decompo-
sitions converge into the same simple form126. Known as ‘minimum 
mutual information PID’ (MMI-PID), this decomposition quantifies 
redundancy in terms of the minimum mutual information of each 
individual source with the target; synergy then becomes identified 
with the additional information provided by the weaker source once 
the stronger source is known. Crucially, this has been shown to be 
the most ‘conservative’ way of defining redundancy in the sense that 
it ensures that one does not underestimate its relevance, being an 
upper bound to other possible definitions127. An attractive feature 
of MMI is that it makes the redundancy only depend on the marginal 
distributions between individual sources and target. However, a limi-
tation of MMI is that it calculates redundancy solely on the basis of 
the amount of information that each variable has about the target, 
which does not necessarily imply that this information comprises 
the same ‘content’10. In addition, a peculiarity of MMI is its stringent 
definition of unique information, which is always zero for one of the 
two variables under the MMI definition of redundancy. By identifying 
redundancy with the minimum of the MIs between each source and 
the target, the source whose MI is the minimum will have redundancy 
equal to its MI with the target. Since a source’s unique and redundant 
information must sum up to its MI with the target, this means that 
this source’s unique information will be zero. In other words, the 
liberal definition of redundancy under MMI is at the expense of a 
stringent interpretation of unique information. Relatedly, in PID, 
MMI is a totally monotonic function on the redundancy lattice and 
therefore yields a non-negative decomposition. It is worth noting 
that this does not hold in integrated information decomposition: the 
MMI double redundancy is monotonic (but not totally monotonic) on 
the double-redundancy lattice and can thus lead to negative-signed 
atoms. In practice, many PID formulations have been shown to agree 
in various empirical scenarios16,128, and consistent results have also 
been observed between different redundancy functions for integrated 
information decomposition16,17. Nonetheless, it should be borne in 
mind that they obey different theoretical desiderata and hence may 
be more or less suitable for specific types of analysis.

Since linear-Gaussian models are sufficiently good descriptors 
of functional MRI timeseries, here we adopt this MMI-PID decomposi-
tion, following our own and others’ previous applications of informa-
tion decomposition to neuroscientific data16,17,45. Specifically, we used 
the Gaussian solver implemented in the JIDT toolbox (https://github.
com/jlizier/jidt) to obtain TDMI, and subsequently applied the MMI 
decomposition as described in ref. 16. Moreover, following ref. 16, we 

employed the natural extension of MMI for dynamical settings, which 
leads to the estimation of the double-redundancy atom as:

Red→ Red = min{I(Xt−τ;Xt), I(Xt−τ;Yt), I(Yt−τ;Xt), I(Yt−τ;Yt)} (5)

Information decomposition of integrated information
Through the framework of information decomposition, we can obtain 
an information-dynamic recipe for ‘integrated information’ in a system: 
information about the system’s future behaviour that becomes avail-
able when considering the system as a whole, beyond the information 
that is already provided by the individual parts. This whole-minus-sum 
information is the ‘difference that makes a difference’: information 
that arises from how the parts of the system interact with each other47.

The original formulation of ref. 47, which we here term Φ2008, is 
computed as follows:

Φ2008 = I(Xt−τ,Yt−τ;Xt,Yt) − (I (Xt−τ;Xt) + I (Yt−τ;Yt)) (6)

However, once the original formulation from ref. 47 is rendered 
suitable for practical empirical application48, the resulting mathemati-
cal formulation has known shortcomings, including the fact that it can 
yield negative values in some cases, which are hard to interpret and 
seemingly paradoxical, as it does not seem plausible for a system to 
be ‘negatively integrated’ or an organism to have negative conscious-
ness48. As a result, several alternative operationalizations of integrated 
information have been proposed over the years (see Supplementary 
Discussion for alternative development of ‘Integrated information 
beyond IIT 2.0’; note that our intention here is ‘not’ to test integrated 
information theory (in any of its versions: 2.0, 3.0 or 4.0)).

Crucially, with information decomposition, it can be formally 
demonstrated that Φ2008 is not a single information-dynamic quantity, 
but rather an aggregation of several distinct information-dynamic 
phenomena16: it contains all the synergistic information in the system, 
the unique information transferred from X to Y and vice versa, and 
importantly, the subtraction of persistent redundancy.

This insight resolves the paradox of why Φ2008 can return nega-
tive values: this will occur whenever the system is dominated by the 
persistent redundancy16.

Importantly, information decomposition also provides an expla-
nation for why this subtraction of redundancy occurs. Based on the 
formula for Φ2008, the information in each of the parts is given by 
I (Xt−τ;Xt) , which corresponds to information about the future of X  
that is fully provided by its past without the need for reference to  
any other parts of the system. In terms of information dynamics, the 
information provided by variable X, I (Xt−τ;Xt), is obtained by summing 
the four possible combinations of redundant information and X-unique 
information across past and future (recalling that redundancy is  
information that is present in both X and Y):

I (Xt−τ;Xt) = UnX → UnX + UnX → Red + Red→ UnX + Red→ Red (7)

where the shorthand notation used in the last expression is as explained 
in the previous subsection. A similar decomposition can be calculated 
for I (Yt−τ;Yt). Using these expressions, we obtain that the information 
contained in the sum of the parts is given by:

I(Xt−τ;Xt) + I(Yt−τ;Yt)

=

UnX → UnX + UnX → Red + Red→ UnX + Red → Red

+

UnY → UnY + UnY → Red + Red→ UnY + Red → Red

(8)

The Red → Red atom is therefore double counted in the formula-
tion of the sum of the parts as I (Xt−τ;Xt) + I (Yt−τ;Yt) . When subtracting 
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this quantity from the total information about the system’s future that 
is provided by its past (that is, I(Xt−τ, Yt−τ;Xt,Yt) , which is the TDMI  
and therefore simply the sum of all atoms, each counted once) to  
obtain Φ2008, the result is that we are left with a sum of all the synergy- 
containing atoms, plus UnX→ UnY and UnY→ UnX, minus Red → Red.

In terms of the taxonomy from integrated information decom-
position, this means that Φ2008 is made up of the two atoms of pure 
transfer (UnX → UnY, and UnY → UnX), synergistic storage (Syn → Syn), 
encryption/upward causation (UnX → Syn, UnY → Syn, and Red → Syn) 
and decryption/downward causation (Syn → UnX, Syn → UnY, and  
Syn → Red), minus the persistent redundancy (Red → Red). Thus, Φ2008 
double counts the persistent redundancy when computing the sum  
of the parts that it subtracts from the whole.

Once this issue has been identified as the source of the conceptual 
difficulties of Φ2008, it becomes straightforward to develop a revised 
‘whole-minus-sum’ measure of integrated information (termed ΦR) that 
does not double count the persistent redundancy when computing the 
sum of the information held in the parts16.

The following formulations are therefore equivalent:

ΦR = I (Xt−τ,Yt−τ;Xt,Yt) − (I (Xt−τ;Xt) + I (Yt−τ;Yt)) + Red→ Red

ΦR = Φ2008 + Red→ Red

ΦR = Syn→ Syn + Syn→ UnX + Syn→ UnY + Syn→ Red

+Red→ Syn + UnX → Syn + UnY → Syn+

UnX → UnY + UnY → UnX

(9)

Thus, we can obtain integrated information by adding all 
information-dynamic phenomena where information is not persis-
tently present in the same individual variable: the sum of all synergy- 
containing atoms and the two transfer terms (Fig. 2a and Extended Data  
Fig. 1). This is the measure of integrated information that we used 
throughout this work (with Red→ Red defined as in equation (4), using 
the minimum mutual information formalism). This measure is com-
putationally tractable and properly reflects the original intuition of 
integrated information as measuring the extent to which ‘the whole is 
greater than the sum of its parts’, while also demonstrably yielding 
non-negative results even in a redundancy-dominated Gaussian system, 
thereby avoiding a major conceptual limitation of the original 
whole-minus-sum formulation of Φ2008 (ref. 16). In turn, this means that 
we can re-express Φ2008 as the balance between integrated information 
(ΦR) and the persistent redundancy.

To provide additional intuition about ΦR and its relationship to 
the underlying network organization of a system, we provide a series 
of progressively more complex examples.

(1) Supplementary Fig. 1 shows the amount (in bits) of ΦR gener-
ated by the minimal system implementing each information-dynamic 
atom. The results align with the theoretical decomposition of ΦR  
(ref. 16), such that non-zero ΦR is observed for all and only the systems 
whose atom is a constituent of ΦR. (2) Next, Supplementary Fig. 2 shows 
how much ΦR is generated by each of the 13 possible 3-node motifs 
that can occur in a network, corresponding to the network’s elemen-
tary computational circuits129. Notably, we find higher ΦR for motifs 
exhibiting recurrent connectivity, whether direct (that is, reciprocal 
connections between two nodes) or indirect (that is, a 3-node cycle). 
This link between integrated information and recurrent connectivity 
is intriguing, given the central role that both recurrent processing 
and integration of information play in many prominent theoretical 
accounts of consciousness130. (3) Finally, Supplementary Fig. 3 shows 
the mean amount of ΦR between pairs of regions in a biophysically 
realistic network-based computational model (dynamic mean-field), 
whereby the wiring between regions is either the empirical human 
connectome from diffusion tractography, or one of several rewired 
network models. All null networks preserve the network size, density 
and weight distribution, thereby only varying in their topology: lattice, 

fully random topology, random but preserving the degree (number of 
connections) of each node, and random but preserving the degree and 
also the strength (sum of connections’ weights) of each node. We find 
that integrated information (ΦR) is lowest for the two most extreme 
topologies (lattice and fully random) and progressively increases as 
more features of human brain connectivity are introduced in the net-
work, reaching its highest value for the empirical human connectome 
(Supplementary Fig. 3).

To  sum mar i ze:  co m put i n g  i n teg rated i nformation 
(whole-minus-sum) requires computing both the information in the 
whole and in the sum of the parts. However, if we try to quantify the 
information contained in the sum of the parts by simply summing 
the information that can be found in part X without reference to Y, 
and the information that can be found in part Y without reference to 
X, then this ‘naïve sum of the parts’ will double count the information 
that is redundantly present in both X and Y across past and future 
(persistent redundancy). Use of this naïve sum of parts is what leads 
to the well-known conceptual difficulties of the original proposal for 
integrated information as ‘whole minus sum’ (Φ2008), including negative 
values for redundancy-dominated systems16. This issue is resolved in 
the revised measure of integrated information from ref. 16, ΦR, which 
does not double count the persistent redundancy when computing 
the sum of the information held in the parts. In turn, this means that 
we can re-express Φ2008 as the balance (difference) between integrated 
information (ΦR) and the persistent redundancy.

For our main analysis, we compute ΦR between pairs of regions and 
then aggregate the results by averaging across all pairs. This approach is 
computationally tractable, but neglects interactions among more than 
two regions at a time. To achieve a compromise between high order and 
low bias, we adopt the same approach as48,91: instead of calculating ΦR 
across pairs of regions, we calculate ΦR across a large number of ran-
domly sampled sets of K regions split into a bipartition with evenly-sized 
parts. Concretely, we pick K = 6 and randomly sample 2,000 sets of 
6 regions. Each set is divided into 2 groups of 3 regions, and we then 
compute the integrated information (ΦR) between the two groups of 3 
channels, finally aggregating across all sets to obtain a single estimate.

Additional information-dynamic measures of consciousness
As described above (and shown in Extended Data Fig. 1 and Supple-
mentary Fig. 21), the Φ2008 measure from ref. 47 can be obtained as the 
balance (difference) between integrated information (ΦR) and the 
persistent redundancy:

Φ2008 = ΦR − Red→ Red (10)

Causal density50,131 corresponds to the sum of transfer entropies 
from X to Y, and from Y to X. Transfer entropy132 from X to Y is intended 
to quantify the information about Y’s future that is not provided by Y’s 
past, but only by X’s past. It is therefore intended to reflect the (statisti-
cal) influence of X on Y, being equivalent to the econometric measure 
of statistical causal influence known as Granger causality92, hence the 
name ‘causal density’ for the sum of transfer entropies. As demon-
strated in ref. 16, transfer entropy from X to Y can be decomposed in 
terms of integrated information atoms as follows:

TEXY = Syn→ Red + Syn→ UnY + UnX → Red + UnX → UnY (11)

Thus, as shown in Supplementary Fig. 21, the causal density is 
computed as

CD = 2(Syn→ Red) + Syn→ UnY + UnX → Red + UnX → UnY

+Syn→ UnX + UnY → Red + UnY → UnX
(12)

The net information flow can be obtained from information 
decomposition of the fMRI signal timeseries between pairs of regions, 
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as the sum of the absolute difference between information that was in 
region X and is then in region Y (unique X to unique Y), and the infor-
mation that was in region Y and is then in region X (unique Y to unique 
X) (Supplementary Fig. 21). These two information-dynamic terms 
correspond to the ‘pure transfer’ between X and Y (disregarding any 
synergistic phenomena or duplication of information). Information 
flow is zero when the two terms are equal in sign and magnitude, that 
is, X and Y are in balance. A positive value reflects the presence of a 
net flow of information between the two. Presence of a net flow of 
information indicates an asymmetry in the system, and therefore 
information flow as defined here is mathematically related to the notion 
of ‘temporal irreversibility’, as quantified by the recently introduced 
INSIDEOUT measure93.

As with integrated information, for all information-theoretic meas-
ures, a single overall value for the entire brain is obtained by averaging 
across all pairs of regions. This pairwise approach is necessary because 
information decomposition scales super-exponentially with the num-
ber of elements in the system; overcoming this limitation remains an 
area of active research.

Network control energy
Network control theory allows us to probe the constraints of 
white-matter connectivity on dynamic brain activity and to calculate 
the minimum energy required for the brain to transition from one 
activation pattern to another58,60. The model of brain dynamics used 
for network controllability analysis is based on extensive previous 
work demonstrating its wide applicability in health and disease55–57,60. 
In effect, there exists substantial evidence that linear models provide an 
adequate description of the brain dynamics measured with fMRI, such 
that more complicated nonlinear models only capture little additional 
variance. On the basis of this literature and the well-known tractabil-
ity of linear models, here we follow previous work on network control 
theory applications to structural brain networks55.

While this procedure has been detailed elsewhere60, we briefly 
summarize it here, following the same wording as in our previous work. 
For each species, we obtained an N × N structural connectome A as 
described above, where N is the number of regions (100 for human, 82 
for macaque, 70 for marmoset and 162 for mouse). We then employed 
a linear time-invariant model:

̇x(t) = Ax(t) + Bu(t) (13)

where x is a vector of length N containing the regional activity at time t. 
B is an N × N matrix that contains the control input weights, and is other-
wise known as the control strategy. Here, B is the identity matrix, reflect-
ing uniform control from all regions. To compute the minimum control 
energy required to drive the system (network) from an initial activity 
pattern (x0) to a final activity pattern (xf) over some finite amount of 
time (T), we minimize the inputs (u(t)) subject to equation (13):

u(t)∗ = min∫
T

0
u⊤(t)u(t)dt (14)

where T is the time horizon that specifies the time over which input to 
the system is allowed. Here, a common choice of T = 1 was used. The 
minimum control energy for a single brain region is then:

E∗i = ∫
T

0
||u(t)∗i ||

2
2dt (15)

Finally, the global minimum control energy for a transition sums 
over each node:

Emin =
N
∑
i=1

E∗i (16)

This quantity (Emin) was calculated for each pair of initial x0 and final 
xf brain states (that is, adjacent fMRI signal volumes in each individual’s 
fMRI scans) and then averaged across the whole timeseries duration to 
obtain an overall estimate of transition energy under each condition.

Network control theory requires a specification of a set of ‘control 
points’ where energy is injected into the system to induce the desired 
transition: this control strategy is formalized in the matrix of control 
input weights B. For our initial quantification of transition energy, we 
used a uniform control strategy whereby equal inputs are provided 
at each brain region, such that B is the identify matrix. To model the 
potential role of regionally heterogeneous inhibition, we reduce the 
amount of control energy that each region can inject into the system, 
proportional to that region’s PVALB/Pvalb normalized gene expres-
sion. Concretely, this is implemented as subtracting from the identity 
matrix of uniform control input weights B, a diagonal matrix where each 
entry is the normalized gene expression (whose values lie in the range 
[0,1]). Thus, entries along the diagonal of the heterogeneous control 
matrix B are not all 1s anymore but lie in the range [0,1]. This approach 
for modulating the control strategy is analogous to a recent approach 
that modelled the effect of engaging the excitatory 5HT2A receptor as 
increasing the regional amount of control energy in proportion to each 
region’s receptor expression60.

Whole-brain computational modelling
The whole-brain computational modelling framework, as used in 
our previous work88,94 and implemented in the ‘FastDMF’ library87, is 
described in detail in the Supplementary Methods. Below we describe 
the main innovations specific to the present work.

Model with regionally heterogeneous inhibition. To interrogate the 
effect of providing additional inhibition in a regionally heterogeneous 
way as a simplified model of what might occur under anaesthesia, we 
increase the value of local inhibitory input according to the value of 
each region’s normalized PVALB/Pvalb gene expression quantified from 
species-specific transcriptomics. Specifically, regional inhibitory input 
was increased by its original value (0.7 for every region) multiplied by 
the region’s normalized gene expression. Since in each species, the gene 
expression values are sigmoid normalized and therefore lie in the range 
[0,1], the values of inhibition in the regionally heterogeneous models 
range from 0.7 (original value) to 1.4 (that is, doubled inhibition). The 
DMF model was then run as described above, and the corresponding 
functional measures were computed. To dissociate the effects of a het-
erogeneous distribution of inhibition from those of neuroanatomy, we 
also repeated the above process with uncorrelated surrogate versions 
of the species-specific gene expression maps (see ‘Null models’ section 
of the Supplementary Methods).

Modelling electrical stimulation of thalamic nuclei. Stimulation pro-
tocol. Based on the augmented macaque thalamocortical connectome, 
the DMF model was used to simulate 41 instances of BOLD timeseries 
using the G parameter that best reproduced the empirical dynam-
ics observed in the macaque under anaesthesia. This corresponds  
to simulation of the anaesthetized condition. To simulate DBS-induced 
awakening, thalamic stimulation was modelled by increasing the  
excitatory scaling of the external input current to the CT or VT from  
1 (baseline value) to 3, and then generating 41 instances of BOLD signals 
for each condition. In Supplementary Fig. 15, we also report results  
for alternative values of excitatory scaling (1.5× and 2×).

Statistical reporting
See Supplementary Methods for full statistical reporting information.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Data availability
For the human sevoflurane dataset, data are available from author D.G. 
through academic collaboration. For the macaque multi-anaesthesia 
dataset, raw data are available for access from B.J. through academic 
collaboration. For the macaque DBS dataset, raw data are available for 
access from B.J. through academic collaboration. For the mouse data-
set, data are available from A.G. The marmoset fMRI data are available 
from K.M. through academic collaboration. The HCP DWI data in SRC 
format are available online (http://brain.labsolver.org/diffusion-mri-
data/hcp-dmri-data). The macaque structural connectome is available 
on Zenodo at https://doi.org/10.5281/zenodo.1471588. The CoCoMac 
database is also available online at http://cocomac.g-node.org/main/
index.php?. Preprocessed macaque dMRI data in DSI Studio format are 
available on Zenodo (https://doi.org/10.5281/zenodo.6321168). The 
mouse connectome is available from A.G. The marmoset structural 
connectivity data are available online at https://doi.org/10.24475/
bminds.mri.thj.4624. Human gene expression data39 are available from 
the Allen Human Brain Atlas at http://human.brain-map.org/static/
download. Mouse gene expression data41 are available at https://mouse.
brain-map.org/. Macaque cortical gene expression data from ref. 40 
are available at https://macaque.digital-brain.cn/spatial-omics. The 
dataset is provided by Brain Science Data Center, Chinese Academy of 
Sciences (https://braindatacenter.cn/). The macaque gene expression 
data resampled to the Regional Mapping atlas are available at https://
github.com/netneurolab/luppi-genes-receptors-macaque. Mouse 
regional PV+ neuron count data are from Table S3 in ref. 90. Macaque 
parvalbumin density data from immunohistochemistry for several 
regions of the macaque cortex are available in the Supplementary 
Materials of ref. 89. Immunohistochemically derived measurements of 
the relative prevalence of calbindin-positive and parvalbumin-positive 
neurons in different thalamic nuclei are available from the Supple-
mentary Material of ref. 84. Source data are provided with this paper.

Code availability
Analysis was performed in MTLAB v.2019a and 2024b, and Python 3.11. 
The Python processing for PreClinical data pipeline, Pypreclin v.1.0.1, 
is freely available at https://github.com/neurospin/pypreclin. FMRIB 
Software Library (FSL) is freely available online (http://www.fmrib.
ox.ac.uk/fsl/; version accessed 4 February 2018). The CONN toolbox 
v.17f is freely available at http://www.nitrc.org/projects/conn/. DSI 
Studio (v.2022) is freely available at https://dsi-studio.labsolver.org/. 
The ‘abagen’ toolbox (v.0.1.4) is available at https://github.com/rmar-
kello/abagen. The RheMap toolbox (v.1.4) is available at https://doi.org/ 
10.5281/zenodo.3668510. The BrainSpace toolbox for generation of 
Moran spectral surrogates is available at https://brainspace.readthe-
docs.io/en/latest/. The Python toolbox for Dominance Analysis is freely 
available at https://github.com/dominance-analysis/dominance-anal-
ysis. The Brain Connectivity Toolbox is available online at https://sites.
google.com/site/bctnet/. The JIDT toolbox is available at https://github.
com/jlizier/jidt. FastDMF toolbox whole-brain modelling is available at 
https://www.gitlab.com/concog/fastdmf. MATLAB/Octave and Python 
code to compute measures of integrated information decomposition 
of timeseries with the Gaussian MMI solver is available at https://github.
com/Imperial-MIND-lab/integrated-info-decomp.
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Extended Data Fig. 1 | Integrated information from information 
decomposition. (a) Partial information decomposition distinguishes 
information that is uniquely provided by variable X or by variable Y; redundant 
information that is equally available from either variable; and synergistic 
information, which is only available when considering both variables jointly, but 
not either of them in isolation. (b) Information decomposition enables tracking 
how information from the system’s past to its future is carried by its constituent 
elements, corresponding to each of the 4×4 = 16 combinations of redundancy, 
X-unique information, Y-unique information, and synergy. (c) Naïve sum of 
the parts. Some information can be obtained by considering element X alone, 
without reference to any other parts of the system. This information corresponds 
to the 4 possible combinations of redundant information and X-unique 
information across past and future. Likewise, some information can be obtained 
by considering element Y alone, given by the combinations of redundancy and 
Y-unique information. However, if we simply sum the information that can be 

found in X without reference to Y, and the information that can be found in Y 
without reference to X, then this ‘naïve sum of the parts’ will double-count the 
information that is redundantly present in both X and Y across past and future 
(persistent redundancy). (d) Integrated information is the information that 
is present in the system as a whole, over and above the sum of the information 
provided by each of the parts. However, attempting to quantify this ‘whole 
minus sum’ by subtracting the naïve sum of the parts from the total information 
flowing between past and future of the system, yields the original measure of 
integrated information from Balduzzi and Tononi (Φ2008), which has well-known 
conceptual difficulties including negative values for redundancy-dominated 
systems (Mediano et al., 2025). If instead the proper sum of the parts is used 
(that is, without double-counting the persistent redundancy), we obtain the 
revised measure of integrated information from (Mediano et al., 2025), ΦR. In 
turn, this means that we can re-express Φ2008 as the balance (difference) between 
integrated information (ΦR) and the persistent redundancy.
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Extended Data Fig. 2 | DBS-induced restoration of Integrated Information in 
the macaque brain mirrors the spatial topography of anaesthetic-induced 
disintegration and correlates with PVALB expression. (a) We observe a negative 
spatial correlation (Spearman’s rho, two-sided; significant against a spatial 
autocorrelation-preserving null distribution) between the cortical distribution 
of macaque PVALB gene expression, and the mean change in integrated 
information from comparing anaesthesia against baseline wakefulness in the 
macaque. Shading indicates 95% confidence intervals. (b) We observe a negative 
spatial correlation (Spearman’s rho, two-sided; significant against a spatial 
autocorrelation-preserving null distribution) between the cortical distribution 

of PVALB gene expression, and the mean change in integrated information from 
comparing anaesthesia against reawakening induced by CT stimulation. Shading 
indicates 95% confidence intervals. (c) We observe a negative spatial correlation 
(Spearman’s rho, two-sided; significant against a spatial autocorrelation-
preserving null distribution) between the cortical distribution of PVALB gene 
expression, and the mean change in integrated information from comparing VT 
stimulation (which does not re-awaken the animal from anaesthesia) against CT 
stimulation. Shading indicates 95% confidence intervals. Credits: Macaque icon 
designed by Freepik.com. DBS and macaque thalamus illustrations adapted from 
Tasserie et al (2022), published under CC-BY license.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Species-specific biophysical whole-brain models exhibit 
significantly lower integrated information when incorporating regionally 
heterogeneous inhibition according to the empirical distribution of PVALB/
Pvalb gene expression, than with homogeneous inhibition. (a) Model based 
on human connectome and incorporating human PVALB gene expression from 
the Allen Institute for Brain Science human transcriptomics database. N = 41 
simulations for each condition. Box plots: central line, median; box limits, upper 
and lower quartiles; whiskers, 1.5× interquartile range. (b) Model based on 
macaque connectome from DTI and tract-tracing, and incorporating macaque 

PVALB gene expression from the Brain Science Data Center of the Chinese 
Academy of Sciences transcriptomics database. N = 41 simulations for each 
condition. Box plots: central line, median; box limits, upper and lower quartiles; 
whiskers, 1.5× interquartile range. (c) Model based on mouse tract-tracing 
connectome and incorporating mouse Pvalb gene expression from the Allen 
Institute for Brain Science mouse transcriptomics database. N = 41 simulations 
for each condition. Box plots: central line, median; box limits, upper and lower 
quartiles; whiskers, 1.5× interquartile range. All p < 0.001 from independent-
samples t-test (two-sided).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Integrated information across a bipartition of 6 channels. 
(a) Human (n = 15) sevoflurane anaesthesia (Sevo) versus wakefulness (p < 0.001 
from two-sided paired-samples t-test, FDR-corrected for multiple comparisons 
against Awake condition) and recovery (p < 0.001 from two-sided paired-samples 
t-test, FDR-corrected for multiple comparisons against Recovery condition). 
Box plots: central line, median; box limits, upper and lower quartiles; whiskers, 
1.5× interquartile range. (b) Mouse wakefulness (n = 10) versus medetomidine-
isoflurane (MedIso; n = 14) and halothane (Halo; n = 19) anaesthesia data. P-values 
are from two-sided independent-samples t-test, FDR-corrected for multiple 
comparisons against Awake condition. Box plots: central line, median; box 
limits, upper and lower quartiles; whiskers, 1.5× interquartile range. (c) Macaque 
wakefulness versus anaesthesia with propofol (Ppfl), sevoflurane (Sevo), and 
ketamine (Keta). N = 24 runs from 3 animals for Awake; 11 runs from 2 animals 
for Sevoflurane; 23 runs from 3 animals for Propofol; 22 runs from 3 animals for 
Ketamine anaesthesia. P-values are from linear mixed effects models (two-sided), 
FDR-corrected for multiple comparisons against Awake condition (see Methods). 
Box plots: central line, median; box limits, upper and lower quartiles; whiskers, 
1.5× interquartile range. (d) Macaque DBS stimulation. N = 36 runs from 3 animals 
for Awake; 28 runs from 2 animals for anaesthesia (DBS-off); 31 runs from 2 

animals for low amplitude centro-median thalamic DBS; 25 runs from 2 animals 
for high amplitude centro-median thalamic DBS; 18 runs from 1 animal for low 
amplitude ventrolateral thalamic DBS; 18 runs from 1 animal for high amplitude 
ventrolateral thalamic DBS. P-values are from linear mixed effects models (two-
sided), FDR-corrected for multiple comparisons against propofol anaesthesia 
with no DBS (see Methods). Box plots: central line, median; box limits, upper and 
lower quartiles; whiskers, 1.5× interquartile range. Data-points with the same 
colour indicate the same animal. (e) Marmoset wakefulness versus anaesthesia 
with isoflurane (Iso), sevoflurane (Sevo) and propofol (Ppfl). N = 48 runs from  
4 animals for each condition. P-values are from linear mixed effects models  
(two-sided), FDR-corrected for multiple comparisons against Awake condition 
(see Methods). Box plots: central line, median; box limits, upper and lower 
quartiles; whiskers, 1.5× interquartile range. Data-points with the same colour 
indicate the same animal. See Source Data for full statistical reporting. Credits: 
Human head icon from pixabay.com. Mouse icon designed by CraftStarters.com. 
Macaque icon designed by Freepik.com. DBS and macaque thalamus illustrations 
adapted from Tasserie et al (2022), published under CC-BY license. Marmoset 
icon from pixabay.com.
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