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A programmable topological photonic chip

Tianxiang Dai    1,8  , Anqi Ma    1,8, Jun Mao1,8, Yutian Ao2,3, Xinyu Jia1, 
Yun Zheng1, Chonghao Zhai1, Yan Yang    4  , Zhihua Li4, Bo Tang4, Jun Luo    4, 
Baile Zhang    2,3, Xiaoyong Hu    1,5,6,7  , Qihuang Gong    1,5,6,7 & 
Jianwei Wang    1,5,6,7 

Controlling topological phases of light allows the observation of abundant 
topological phenomena and the development of robust photonic devices. 
The prospect of more sophisticated control with topological photonic 
devices for practical implementations requires high-level programmability. 
Here we demonstrate a fully programmable topological photonic 
chip with large-scale integration of silicon photonic nanocircuits and 
microresonators. Photonic artificial atoms and their interactions in our 
compound system can be individually addressed and controlled, allowing 
the arbitrary adjustment of structural parameters and geometrical 
configurations for the observation of dynamic topological phase transitions 
and diverse photonic topological insulators. Individual programming of 
artificial atoms on the generic chip enables the comprehensive statistical 
characterization of topological robustness against relatively weak 
disorders, and counterintuitive topological Anderson phase transitions 
induced by strong disorders. This generic topological photonic chip can 
be rapidly reprogrammed to implement multifunctionalities, providing a 
flexible and versatile platform for applications across fundamental science 
and topological technologies.

Topological insulators (TIs) have garnered significant interest because 
of the abundant physical mechanisms underlying non-trivial bands 
and potential applications of topological boundary modes1. Since the 
discovery of the quantum Hall effect2, the intricate diagrams of topo-
logical phases have developed as a sprawling tree with intertwined 
branches, encompassing dimensionality3, symmetry4, non-Hermiticity5 
and defects6. One leap recently happened when topology met pho-
tonics7–10. Photonic systems provide numerous advantages for topo-
logical physics and technologies, such as noise-free environment, few 
constraints on lattice geometry, large diversity of optical materials, 
high controllability of optical devices and widely adoptable nonlin-
ear optical effects8–11. Topological photonics, initially proposed as an 

extension of topological materials in optical artificial structures, is 
emerging as an independent field and is revolutionizing optical sci-
ence and technologies. For examples, integer quantum Hall TIs12–14, 
quantum spin Hall TIs15,16, Floquet TIs17,18, non-Hermitian TIs19,20 and 
many other interesting topological phenomena have been observed in 
various photonic systems. Practical topological photonic devices—for 
example, topological optical delay lines13, topological lasers21,22 and 
topological single-photon23,24 and entangled-photon sources25,26—have 
been intensively developed and explored.

These observations of topological effects and demonstrations of 
topological devices are reported on a large variety of optical devices 
with specifically designed periodic structures or geometries. It is 
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coupled-microring resonators and nanophotonic circuits, as shown in 
Fig. 1a. Our topological chip is based on recirculating photonic circuits 
with unique capabilities of operating light states both forwards and 
backwards52–54. One microring emulates one atom, a Mach–Zehnder 
interferometer (MZI) emulates tunable atom–atom interaction and 
the photonic chip emulates the artificial atom lattice. In experiment, 
we use a square lattice of six unit cells by six unit cells, embedding 
a total of 96 microrings with identical perimeters of 1,234.4 μm, 
each of which has an intrinsic quality factor of the order of 105. The 
propagation loss of the silicon nanowaveguides is 2.4 dB cm−1. As 
shown in Fig. 1e, the resonance of each microring can be individually 
controlled, and the coupling between microrings (both strength 
and phase) can be arbitrarily controlled by MZIs with an ultrahigh 
extinction ratio of about 50 dB and ultralow loss of about 0.07 dB. 
Each phase shifter is thermo-optically driven by 30 mW power for 2π 
modulation, and accessed by electronic routing circuits. Character-
istics of microrings and interferometers such as loss and crosstalk are 
provided in Supplementary Notes 2.1 and 2.2. The device operates at 
the wavelength of 1,525 nm. The device properties (for example, loss 
and power consumption) fall within the average range for silicon 
photonic technologies at this wavelength. From the technological 
perspective, the demonstration of the topological chip is the result 
of fabrication, controlling and packaging of large-scale photonic 
circuits, and the completeness of measurements. One fabricated and 
packaged chip is shown in Fig. 1b–d. The high-level controllability and 
programmability of the generic photonic chip enable sophisticated 
implementations of dynamic TPTs, statistical topological processes 
and diverse topological lattices (Fig. 1g). As an initial test of the flexible 
and fast programmability of the generic chip, Fig. 1f shows imaged field 
distributions of ‘@PKU’ symbols, and Supplementary Video 1 shows 
real-time modulations of the letters ‘HELLO’.

We first report arbitrary controls of the band structure of Flo-
quet TIs in the three-particle model, which has been proposed to 
study non-Hermiticity in Floquet TIs55. The famous Floquet theory 
provides an effective temporal approach for TIs with no need to truly 
break time-reversal symmetry18,56. Demonstrating the full modulation 
capability requires comprehensive controls of structural parameters, 
which remain experimentally exclusive. A zoom-in view of a three-ring 
unit is shown in Fig. 2a and the real structure is shown in Fig. 1d. By 
reconfiguring four parameters on the coupling strength (θ1−4) and 
five parameters on the phase (φL1−L4 and φS) in a three-ring unit cell, 
arbitrary topology in the three-band structure can be constructed on 
the basis of the Floquet band theory. We experimentally characterize 
two types of Floquet TPT, which are driven by the coupling strength 
(θ) and resonant phase (φS), respectively.

For θ-driven TPTs, simultaneously tuning all coupling parameters 
θ1−4 = θ and across the TPT critical point (θ= 2 arcsin(√2 − 1) ≈ 0.272π), 
the bandgaps close and reopen, resulting in disappearance of the 
topological edge modes (indicated by ❶ in Fig. 2b) and the phase 
transition at bandgap ❶ from a topological phase to a trivial phase. 
The topologically invariant winding number (𝒲𝒲) is used to explicitly 
portray the topology (that is, 𝒲𝒲 𝒲 1  for the non-trivial phase,  
while 𝒲𝒲 𝒲 0 for the trivial phase). Topological invariants are also intui-
tively reflected in transport properties. Figure 2b shows the theoretical 
and experimental transmission spectra with a fine tuning of θ  
from 0 to π (that is, transmittance of MZIs from 1 to 0). The flat and 
high-transmission regimes (outlined by dashed lines) indicate topo-
logical edge modes in one free spectral range (FSR). One FSR corre-
sponds to one 2π/T period in quasienergy ϵ, where T is the period of 
Floquet evolution. Figure 2c,d shows two measured spectra before and 
after the TPT point, corresponding to the calculated projected bands 
plotted in Fig. 2e,f. At certain typical points in the spectra, real-space 
distributions of electromagnetic fields are imaged using an infrared 
camera (see examples in Fig. 2g–j). Figure 2g,h records light distribu-
tions before and after TPTs, while Fig. 2i displays an always existing 

essential to flexibly and precisely control topological phases of light 
in programmable topological photonic devices at the levels of both fun-
damental and applied science. First, the dynamics of topological phase 
transition (TPT) relies on strong reconfiguring of structural parameters 
of the devices. Topological invariants persist until bands cross so that 
a marked altering of parameters is required. In typical measurements, 
TPTs are observed in several different devices, or a joint multivariate 
effort may even be necessary27–29. Though TPTs can be enabled by glob-
ally tailoring the devices with an adoption of nonlinear effects20,30,31 or 
mechanical displacement32, portrayal of TPTs using more direct and 
accurate approaches is demanded. Individually programming each 
artificial atom as well as the atom–atom interactions may represent 
the ultimate control of the system. This however remains challenging in 
many natural and artificial topological systems, and also in photonics. 
Second, most previous observations of topological phenomena rely on 
static analysis of single or several samples. Comprehensively certificat-
ing topological robustness by statistical measurements, and probing 
interesting statistical topological phenomena such as topological 
Anderson insulators (TAIs)33–35 and amorphous TIs36,37, requires the abil-
ity to individually programme artificial atoms and their interactions to 
control disorder. Fabricating a large number of samples with precisely 
controlled disorder for such statistical analysis is impractical. Third, 
as topology in matter derives from the collective behaviour of atoms 
in the lattice, the lattice geometry determines the interrelationships 
between neighbouring atoms and the overall topological properties. 
The topology of bands varies in dimensions3, and lattices with various 
geometries also give different symmetries4, resulting in TIs in different 
classes. Previous investigations of TIs in diverse lattices however rely 
on completely different samples, which necessitates custom design 
and fabrication of samples.

Programmable photonic integrated circuits38–40 across a broad 
spectrum of advanced optical waveguide materials have been recog-
nized as highly controllable, dynamic and scalable platforms. These 
are impactful in the realms of both fundamental science and practical 
applications, including telecommunication and interconnection41,42, 
optical information processing43,44, light detection and ranging45,46 
and quantum information processing and communication47–49. Unlike 
conventional linear-optical circuits that allow merely forward opera-
tions of classical43,44,50 and quantum47,48,51 states of light, a new variety 
of recirculating photonic networks52–54 that allow both forward and 
backward operations of light has been proposed and demonstrated, 
marking a departure from previous models. These recirculating pho-
tonic circuits intrinsically integrate two types of key photonic com-
ponent—interferometers and resonators, hence serving as a genetic 
platform for photonic classical and quantum science technologies. In 
particular, these systems may even support the emulation of rich topo-
logical physics in quantum materials in a fully programmable manner.

In this work, we report a highly programmable topological pho-
tonic chip. The chip has generically integrated a lattice of large-scale 
silicon photonic nanowaveguide circuits and microring resonators, and 
is fabricated using complementary metal–oxide–semiconductor pro-
cesses. When we consider each ring as an artificial atom, our photonic 
chip can be regarded as an artificial lattice that allows arbitrary indi-
vidual control of atoms as well as the coupling strength and hopping 
phase between atoms. The generic chip can be rapidly reprogrammed 
to implement different functionalities: for example, to dynamically 
transform topological phases of Floquet TIs, observe statistical topo-
logical phenomena (statistical analysis of topological robustness 
and topological Anderson phase transitions) and realize a diverse 
class of TIs with various lattices (for example, one-dimensional (1D) 
Su–Schrieffer–Heeger TIs, and two-dimensional Floquet TIs in square 
and honeycomb lattices). Our work prototypes a flexible, versatile and 
instantly reprogrammable topological photonic platform.

Figure 1 illustrates an overall concept. The photonic topo-
logical insulating chip is devised on a two-dimensional lattice of 
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edge mode at bandgaps ❷. In bulk modes, light dissipates into the  
bulk (Fig. 2j). Topological immunity against structural defects is tested 
in Fig. 2k, where one cell is removed by adjusting its coupling to the bar 
state forming a lattice defect. This indicates an unique ability to with-
stand and tolerate structure defects. Our topological chip could pro-
vide fertile ground for studying the critical conditions for the 
emergence of defect-induced states6.

For φS-driven TPTs, in typical Floquet TIs, introducing local phase 
modulations is challenging, owning to the globally consistent Floquet 
period in the time domain. On our chip, Floquet TPTs also can be real-
ized by finely altering φS in all the site rings. In Fig. 3a, by turning φS from 

0 to π, we continue to reduce the number of non-trivial bandgaps in 
one FSR from two to one in the φS-TPT (when we set θ = 0.4π and phase 
in link rings φL1−L4 = 0). Band deformations and changes of topological 
invariants are shown in the calculated band structures. Bandgaps ❸ 
become trivial after the critical point φS = 0.58π. As there is a 2π period 
on resonant phases, it is expected that the spectrum will return to its 
original state when φS = 2π. Consequently, there must be another TPT 
to regenerate topological edge modes at the forbidden bandgaps 
when increasing φS from π to 2π. Figure 3b displays consistent spectra 
between theory and experiment, showing the disappearance of edge 
states at bandgaps ❸ within [0, π] evolution and the re-emergence of 
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Fig. 1 | A fully programmable topological photonic chip. a, Conceptual 
diagram. It integrates large-scale photonic nanowaveguide circuits and 
microring resonators. In total, 96 microrings with high quality factors are 
regularly positioned in a square lattice of six unit cells by six unit cells. All rings 
(artificial atoms) can be individually controlled by integrated thermo-optical 
phase shifters (gold parts), achieving arbitrary resonant phases in all rings, phase 
differences between the two paths of link rings and coupling strength between 
neighbouring rings. At the boundaries, 24-in-by-24-out ports are connected to 
the lattice. b, Photograph of a fabricated topological chip. The silicon chip is 
fabricated using complementary metal–oxide–semiconductor processes and 
it monolithically integrates 2,712 components in an 11 mm × 7 mm footprint, 

including 408 low-loss directional couplers, 300 phase shifters with 528 thermal 
isolators, 48 grating couplers for optical access, 120 tapping ports for light field 
imaging and 600 electronic access and 708 transmission lines. c, Photograph of 
a packaged chip. The chip is wire bonded on a multilayer printed circuit board 
(PCB). External electronic drivers with 600 channels are used to individually 
control 300 phase shifters. d, Optical microscopy image of a three-ring unit cell. 
e, Diagrams of reconfigurable optical components, including MZIs and phase 
shifters. f, Imaging of real-space distributions of electromagnetic field. As an 
example, the chip is flexibly reprogrammed to display @PKU. g, The generic chip 
is reprogrammed to implement multifunctionalities: dynamic TPTs, observation 
of statistical topological phenomena and benchmarking of TIs in various lattices.
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edge states at bandgaps ❶ within [π, 2π] evolution. Interestingly, the 
seemingly negligible 2π phase in site rings in fact leads to a reversal 
of band structure and a global phase shift to lower quasienergy that 
corresponds to longer wavelength. That being said, the non-trivial 
bandgaps ❷ and ❸ at φS = 0 correspond to non-trivial bandgaps ❶ 
and ❷ at φS = 2π, respectively.

Robustness, as the most intriguing property of topological edge 
modes, allows protection of transport immune to imperfections.  

As long as the presence of disorder does not interrupt the band struc-
ture and the bandgaps remain open, the topological invariants are 
always constant and light transport along the edge modes is robust. 
This property has led to many potential applications13,21–26. Previously, 
single or several samples are fabricated, sometimes together with 
numerical simulation, to verify topological robustness. By harness-
ing the individual programmability, we experimentally validate the 
robustness of topological edge modes by statistical measurements. 
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Fig. 2 | Coupling-strength-controlled TPTs in Floquet TIs. a, A three-ring 
model for Floquet TIs. Using nine parameters in a single unit cell, it fully 
describes the quasienergy band structure. b, TPTs driven by coupling strength. 
Transmission spectra as functions of wavelength λ and the parameter θ on 
coupling strength are shown, where θ is negatively correlated with the coupling 
strength and the amplitude transmittance of an MZI is cos(θ/2). The boundaries 
of non-trivial bandgaps in one FSR are indicated by purple dashed lines. 
Theoretical results are in good agreement with experimental results. Boundary 
states at bandgaps ❶ disappear with a continuous variation of θ near the critical 
point at θ = 0.272π, while edge modes in bandgaps ❷ and ❸ exist throughout 
the entire range of θ variation. The attenuation of light for large θ in experiment 
is due to resonant enhancement in rings, which increases the effective optical 
length and thus the loss. c–f, Measured spectra at θ = 0.1π (strong coupling, c) 

and θ = 0.32π (weak coupling, d) and their respective calculated band structures 
(e,f). The windows of edge modes are visually enhanced. g–j, Imaged real-space 
distributions of electromagnetic field under different points marked in spectra in 
c,d: TPT from topological edge modes (g) to forbidden bandgaps (h) at bandgap 
❶, edge modes at bandgaps ❷ in weak-coupling regime (i) and randomly 
distributed bulk mode from the non-degenerate bulk bands (j). k, A boundary cell 
in Floquet topological insulators (FTIs) is removed by adjusting its coupling to 
the ‘bar’ state, which forms a lattice defect. High-transmission topological edge 
modes bypass the hole and present its robustness against atomic vacancies. Note 
that on the link ring paths we tapped out −35 dB light using diffractive grating 
couplers for better imaging of light fields, which results in the appearance 
of regularly distributed bright spots. Noise at the top right arises from light 
reflection from the input fibre.
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Random perturbations on resonant phases with a uniform distribution 
of δ[−0.5, 0.5], in which the probability density is 1/δ, are added to all 
microrings. We consider a non-trivial device with an initial configura-
tion of φS = 0.8π; see its band structure in Fig. 3c. A set of 100 samples 
with precisely controlled disorder at δ = 0.1π is generated and tested on 
a single chip. The collections of these statistical measurements (grey 
lines) are shown in Fig. 3d. The spectrum for an ideal device with no 
disorder (blue line), in which the topological edge modes in bandgaps 
❷ are wide and flat high-transmission plateaus, is plotted for com-
parison. In the presence of disorder, the high-transmittance plateaus 
exhibit only small fluctuations in topological edge modes, but large 
fluctuations in bulk modes. We then estimate the normalized s.d. of 
transmittance over 100 samples for different levels of disorder (Fig. 3). 
With these statistical measurements, the observation of low-noise 
windows for topological edge modes unambiguously confirms the 
topological robustness against a certain degree of disorder. Moreover, 
despite the presence of crosstalk when operating a large-scale photonic 
chip (Supplementary Note 2.3), such inherent topological robustness 
provides substantial protection. This chip is inherently protected 
against crosstalk that may take place in real controls and fabrication 
disorder that may occur in a clean room.

Despite the superiority of topological transport, strong disorder 
may lead to marked deformation of bands and even disrupt the band 
topology, but this does not mean the properties of the original TI will 
completely disappear. Interestingly, under specific conditions, the 
unidirectional transport of the boundary states will still occur in the 
presence of strong disorder or even amorphous structures33–37. 
Exploring order within areas of disorder is the charm of topology, 
which particularly requires a highly programmable platform with 
individual controllability. Recently, the emergence of counterintui-
tive TAIs from trivial phases has been successfully observed, by 

inducing sufficiently strong areas of disorder in one sample33. Similar 
to Anderson localization57, topological Anderson insulation is also a 
statistical phenomenon for waves in disordered lattices. Such statisti-
cal measurement and verification of TAIs have not been reported in 
optical systems, to the best of our knowledge. Figure 4b illustrates 
the random phase distribution in the TAI lattice in the presence of 
strong disorder. We first consider an ideal lattice in the absence of 
disorder; θ is set as 0.3π, constructing one trivial bandgap within one 
FSR. We are interested here in the bandgaps that used to be forbidden, 
that is, the dips of blue spectra in Fig. 4c,d. Experiment and simulation 
results of averaged transmission spectra over 100 samples with dif-
ferent levels of disorder in the resonant phase are reported in Fig. 4c,d, 
respectively. A peak gradually emerges at the windows of forbidden 
bandgaps (indicated by the red arrow) as the strength of disorder 
reaches a sufficiently large value, indicating the occurrence of topo-
logical Anderson phase transitions. The emergence of the TAI phase 
can be portrayed by real-space topological invariants18,58,59. Analogous 
to the winding number 𝒲𝒲ϵ in momentum space, the real-space 𝒲𝒲real 
related to non-trivial bandgaps approaches unity, while it fluctuates 
around zero for trivial bandgaps. According to the averaged 𝒲𝒲real  
in Supplementary Fig. 23, a non-zero plateau obviously arises from 
the ordinary zero dip in forbidden bandgaps. Moreover, Fig. 4e shows 
the imaged real-space field distributions with an increase of disorder, 
each of which is an overlaid distribution of all 100 samples for better 
characterization of the dynamics of phase transitions. The TAI bound-
ary modes break free from the localization near the input, and unidi-
rectionally move along boundaries with an exponential decay into 
the bulk lattice. In contrast, the same measurements were conducted 
in trivial coupled resonators of optical waveguides (CROW) (Fig. 4f,g 
inset). The shape of the spectra remains unchanged and no TAI bound-
ary modes are observed, as shown in Fig. 4f,g.
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Fig. 3 | Resonant-phase-controlled TPTs and statistical verification of 
topological robustness. a, Calculated band structures in φS-controlled TPT. 
Starting from the weak coupling regime (θ = 0.4π), by increasing φS from 0 to 
π, site rings and link rings become detuned, reaching a maximum detuning at 
φS = π. TPT occurs at bandgap ❸ when φS = 0.58π, making it a trivial forbidden 
bandgap. b, Theoretical and experimental transmission spectra as functions of  
λ and φS. As a global phase shift is introduced by φS, TPT occurs at bandgap ❶.  
The mapping of bandgaps changes from {❶, ❷, ❸} to {❸, ❶, ❷} after a 2π 
evolution of phase φS. c, Calculated projected band structures at φS = 0.8π, 
plotted as a reference to demonstrate the robustness of topological edge 
modes. d,e, Experimental verification of topological robustness with statistical 
measurements by individually controlling the phase disorders in all rings. The 

generated random phase obeys the same uniform distribution in the range of 
δ[−0.5, 0.5]. d, A set of 100 samples with uniformly distributed random phases 
is chosen at δ = 0.1π in measurement. Measured transmission spectra for the 
disordered devices are shown as the grey background, and the spectrum for an 
ideal device without disorder is plotted as a blue line. In the topological edge 
modes the flat plateaus with high transmission are only slightly influenced, while 
in all other regimes severe broadening and small dips owing to obstruction from 
random local modes appear. e, The measured s.d. (normalized) of transmission 
spectra under different strengths of disorder. Evident windows with low 
fluctuations correspond exactly to the regimes of topological edge modes.  
δ increases from 0 to 0.2π with an interval of 0.01π. S.d. is colour coded and the 
key is provided at the bottom right.
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We further benchmark photonic TIs in various lattice structures. 
Experimental results for the well known Su–Schrieffer–Heeger 1D TIs 
are shown in Supplementary Fig. 20. The redundant dimension for 
the 1D models in a two-dimensional lattice allows observations of the 
non-Hermitian skin effect in Supplementary Fig. 21, and other unordi-
nary experiments such as non-reciprocity and next-nearest-neighbour 
coupling are implementable. Moreover, it is also possible to achieve 
other two-dimensional lattice geometries beyond the inherent square 
lattice by reprogramming microrings. Figure 5 illustrates an exam-
ple of equivalent Floquet TIs in the honeycomb lattice. A perfect 

correspondence between the measured transmission spectra and 
simulated projected band structures in the strong-coupling regime 
(θ = 0.08π) and weak-coupling regime (θ = 0.24π) is shown in Fig. 5e–h.  
When θ is larger than 0.19π, TPTs occur at the bandgaps across ϵ = π/T 
and the flat high-transmission plateau turns into a blocked dip. Dis-
tinct real-space field distributions for different modes are shown 
in Fig. 5b–d, including topological edge modes conducting along 
the honeycomb boundaries, dissipatively distributed bulk modes 
and inhibitively forbidden bandgaps. By distinguishing the winding 
number, we observe phase transitions in a five-bulk-band structure.  
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Fig. 4 | Observation of topological Anderson phase transitions with 
statistical measurements on individually programming the TI with strong 
disorder. a, Ideal Floquet TI in weak-coupling regime(θ = 0.3π) with no disorder. 
All microrings are matched to resonance. There is a forbidden bandgap within 
one FSR. b, TAI induced by strong disorder. Topological Anderson phase 
transitions occur at the forbidden bandgaps and connect them with TAI 
boundary modes. Statistical measurements of the TAI with a large variety of 
disorder are necessary to observe the topological Anderson phase transitions, 
which are realized on a single device by individually controlling phase disorder 
in all rings in our experiment. c,d, Measured (c) and simulated (d) transmission 
spectra of the TAI with different levels of disorder. For each level of disorder, 
100 samples are generated on the chip for statistical measurements, and the 
mean spectrum is plotted. With an increase of disorder, an intriguing peak 

that represents the TAI boundary mode (indicated by the red arrow) gradually 
emerges at the low-transmission dip where the forbidden bandgap used to be in 
the ideal lattice with no disorder. e, Imaging the dynamic process of topological 
Anderson phase transitions. Each image is an accumulated field distribution 
of 100 samples. The phase transition from a forbidden mode to a TAI boundary 
mode transported along the upper boundary is observed. Simulation results are 
shown for comparison, and are in good agreement with experimental results. 
In contrast to random diffusions of bulk modes, the TAI boundary modes 
propagate along the boundary and rapidly decay into the bulk. f,g, Measured 
(f) and simulated (g) transmission spectra of a 1D trivial device. The shape of 
the transmission spectra does not change with increasing disorder, and the 
low-transmission dip corresponding to the forbidden bandgap remains a dip 
(indicated by the blue arrow); that is, no phase transition occurred.
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Such multiple non-trivial topological phases in standard honeycomb 
lattices have been achieved in another recent work60, using chain-driven 
laser-written waveguides. This effectively validates the correctness 
and reliability of our programmable topological chip. In addition, the 
results show that, by reconfiguring the device, a squared mesh-based 
TI can be equivalently translated into a TI based on the hexagonal 
mesh53,54. Such topological equivalence is also indicated in a scheme 
shown in Supplementary Fig. 25.

This work has demonstrated a flexibly and rapidly programmable 
topological photonic chip. Multifunctionalities are benchmarked by 
reprogramming the generic chip, including dynamic TPTs, realiza-
tions of diverse topological lattices and implementations of statistical 
measurement of topological processes. Our generic chip could be 
directly used to discover topological phases of light and understand 
exotic phenomena. The chip possesses unique backward operations 
in a large-scale lattice of optical resonators and it may provide an 
alternative solution for classical38–40 and quantum47–49 information 
processing and computing tasks. It could provide flexible hardware 
to model the lattice of topological materials and predict their physi-
cal properties. Such reprogrammability could even allows dynamic 
simulation of real-world materials, where disorder, inhomogeneity 
and anisotropy are commonly present. To emulate these complex 
topological materials and matter, a larger-scale lattice is required. 
Further scaling of the topological chip is achievable by delicate 
design of the recirculating photonic circuits and electrical routing 
circuits. Advanced silicon-based integrated photonic technologies 
may provide the ultimate solutions for very-large-scale integrated 
programmable TIs, using heterogeneous integration of different 
optical materials on silicon61 and photonics–electronics packaging 
or co-integration62. Programmable topological photonic chips may 

provide one generic platform for fundamental science and topologi-
cal technologies.
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