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Systematic analysis of drug combinations 
against Gram-positive bacteria
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Joel Selkrig1,9, Ana Rita Brochado    1,7,10, Oscar P. Kuipers    8, Morten Kjos    6, 
Georg Zeller4, Mikhail M. Savitski    1, Stephan Göttig    3, Wolfgang Huber1 & 
Athanasios Typas    1,4 

Drug combinations can expand options for antibacterial therapies but 
have not been systematically tested in Gram-positive species. We profiled 
~8,000 combinations of 65 antibacterial drugs against the model species 
Bacillus subtilis and two prominent pathogens, Staphylococcus aureus and 
Streptococcus pneumoniae. Thereby, we recapitulated previously known 
drug interactions, but also identified ten times more novel interactions 
in the pathogen S. aureus, including 150 synergies. We showed that two 
synergies were equally effective against multidrug-resistant S. aureus 
clinical isolates in vitro and in vivo. Interactions were largely species-specific 
and synergies were distinct from those of Gram-negative species, owing to 
cell surface and drug uptake differences. We also tested 2,728 combinations 
of 44 commonly prescribed non-antibiotic drugs with 62 drugs with 
antibacterial activity against S. aureus and identified numerous antagonisms 
that might compromise the efficacy of antimicrobial therapies. We identified 
even more synergies and showed that the anti-aggregant ticagrelor 
synergized with cationic antibiotics by modifying the surface charge of  
S. aureus. All data can be browsed in an interactive interface (https://apps.
embl.de/combact/).

Antibacterial agents have been used in combination for dec-
ades for different purposes: to achieve synergy (for example, 
sulfamethoxazole-trimethoprim), to limit resistance (for example, 
combinations of beta-lactams and beta-lactamase inhibitors, or 
antitubercular regimens) and/or to broaden the spectrum of action of 

anti-infective treatments (for example, empiric treatments of sepsis)1. 
With antimicrobial resistance (AMR) posing a global threat to public 
health, which permeates all domains of modern medicine2,3, the use 
of drug combinations to re-sensitize resistant strains has emerged as 
a promising means to bypass the stagnant drug discovery pipeline4.
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and shaking conditions were different for each species (Methods). 
Drug concentrations were tailored after measuring minimal inhibi-
tory concentrations (MICs) and the drug concentrations causing 50% 
growth inhibition (IC50s) for each drug in the four strains, with the 
highest concentration corresponding to the MIC in most cases, and 
the intermediate and lowest concentration corresponding to half and 
a quarter of the highest concentration, respectively (Methods and 
Supplementary Table 2). We derived fitness values in the presence of 
single drugs and drug combinations, dividing single-timepoint OD595 
values upon drug treatment by the corresponding values of no-drug 
controls at the same timepoint. This timepoint was different for each 
strain and corresponded to the entry to stationary phase in the absence 
of drugs, allowing us to capture drug effects on both growth rate and 
yield (Methods and Extended Data Fig. 1). We conducted all experi-
ments in biological (that is, different overnight cultures) and technical 
(that is, inoculated wells in the same plate) duplicates, achieving high 
replicate correlations (average Pearson correlation of 0.84–0.89 for 
biological (Extended Data Fig. 2a,b) and 0.91 for technical replicates 
(Extended Data Fig. 2c)). Fitness based on single-timepoint OD595 and 
area under the growth-curve (AUC) led to very similar results, with the 
former being more accurate (Extended Data Fig. 2d,e). In contrast, fit-
ness values based only on growth rate had a lower correlation to the 
two other metrics, overestimating fitness for some drug treatments 
(Extended Data Fig. 2f,g). For single-drug fitness, we used estimated 
values derived from the combination experiments, as they were con-
cordant with experimental measurements and were derived from more 
data points (Extended Data Fig. 2h,i and Methods). From the 4 × 4 con-
centration matrices of fitness values, we calculated interaction scores 
using the Bliss interaction model19 (Methods and Extended Data Fig. 1). 
A single effect-size value was derived from the distribution of interac-
tion scores for each drug pair (at least 72 scores, including all replicates 
of individual concentration combinations). The first and third quartile 
values of this distribution were taken as effect-size values for synergies 
and antagonisms, respectively, with negative values corresponding to 
synergies and positive values to antagonisms (Methods, Extended Data 
Fig. 1 and Supplementary Table 3)11. All interaction data are available for 
browsing in a user-friendly interface (https://apps.embl.de/combact/).

To calibrate hit scoring, as well as to assess the high-throughput 
screen data quality, we benchmarked the screen data against a valida-
tion set of 161 combinations (2% of screened combinations), equally 
representing the four strains probed. These combinations were tested 
in the same growth conditions as our high-throughput screen, but over 
a highly resolved dose space (8 × 8 matrix) of linearly spaced concentra-
tion gradients (Methods, Extended Data Fig. 3a,b and Supplementary 
Table 4). The precision–recall curves were comparable to the previ-
ous Gram-negative screen11, with highest precision (0.87) and recall 
(0.68) observed for a threshold on absolute effect size of >0.1 and on 

Although a few antibacterial combinations are used in clinics, and 
screens for approved compounds as adjuvants for antibiotics have 
been increasingly conducted in the past decade5–10, the full poten-
tial of drug combinations for treating bacterial pathogens remains 
underexplored. This is because the combinatorial space is vast and 
drug interactions are rare and concentration-, drug-, time-, species- 
and even strain-specific11–13, making systematic testing necessary, yet  
highly demanding. As a result, drug interactions have not yet been 
systematically profiled in many clinically relevant bacterial species. 
In addition, with the increase of polypharmacy14, antibiotics are  
often prescribed in combination with other medications15. While 
pharmacokinetic interactions between antibiotics and non-antibiotic 
drugs are well-known for the host (for example, dependencies on  
drug metabolism and excretion by the liver and the kidney)16, they are 
poorly characterized at the level of bacterial physiology.

Here we used an automated platform to systematically profile drug 
interactions against three Gram-positive bacterial species: the patho-
gens Staphylococcus aureus and Streptococcus pneumoniae, two of  
the most prominent antibiotic-resistant bacteria2,17 and the model 
organism Bacillus subtilis. Compared with previous studies7,9,18, this 
vastly increased the number of drugs, concentrations and strains 
tested. By probing all main classes of antibiotics, we could relate inter-
action outcomes to bacterial structural features, cellular network 
architecture, as well as drug target conservation. When comparing the 
drug interaction networks to those of three Gram-negative pathogens 
obtained with a similar setup11, we could highlight clear differences 
driven by the distinct drug permeability barriers across this divide. 
Moreover, we profiled the interactions of antibiotics with a large panel 
of non-antibiotic drugs in S. aureus to investigate the impact of com-
monly administered medications on antibiotic efficacy. Thereby, 
we uncovered both strong synergies that proved effective against 
multidrug-resistant clinical S. aureus isolates and widespread antago-
nisms that could compromise the efficacy of antibiotic treatments.

Results
Automated high-throughput testing of drug combinations
We profiled 1,891–2,070 drug combinations in a 4 × 4 dose matrix  
(2-fold dilution gradient) in S. aureus, S. pneumoniae and B. subtilis  
(Fig. 1a and Supplementary Table 1). For S. aureus, two strains (Newman 
and DSM 20231) were probed to assess within-species conservation.  
The drug panel (n = 65) included antibiotics (n = 57) used against infec-
tions with Gram-positive bacteria, belonging to all main classes and 
targeting different bacterial processes, and eight other bioactive mole
cules, such as antifungals, drugs with human targets and food additives, 
depicted as non-antibiotics (Fig. 1a and Supplementary Table 2).

We measured growth in a broth microdilution format in micro
titre plates using optical density at 595 nm (OD595) as a readout. Media 

Fig. 1 | Drug–drug interactions are species-specific in Gram-positive 
bacteria. a, Schematic representation of the high-throughput screen. Pairwise 
combinations of 65 drugs belonging to several chemical classes and targeting 
different cellular processes (Supplementary Table 2) were tested at three 
concentrations in S. aureus (two strains), B. subtilis and S. pneumoniae. For each 
strain, 1,891–2,070 combinations were tested in broth microdilution in 384-well 
plates, measuring OD595 over time. Normalized fitness values were calculated 
and used to obtain 4 × 4 checkerboards and assign interactions as synergistic, 
antagonistic or neutral (Methods, Extended Data Fig. 1 and Supplementary  
Table 3). PMF, proton-motive force. b, Interaction abundance in each strain 
separately and altogether. Synergy and antagonism frequencies were obtained 
by dividing their absolute counts by the number of combinations for which  
the probed fitness space allows detection of synergy (fitness upon combination 
≥0.1) or antagonism (fitness upon combination ≤0.9) discovery (Methods).  
Total numbers of combinations tested (n) and detected interactions (i) are  
shown for each set. c, Conservation of interactions among the four strains 
tested. All unique interactions detected in the screen (n = 725) were considered 

to calculate intersection sets between strains. The total number of interactions 
dependent on whether conserved or unique to each strain/species are shown.  
A total of 81 interactions (i), involving 47 drugs (d), are conserved across species 
(dark red). The total number of interactions in each strain is indicated as set 
size (bottom right), adding up to 945 total interactions in all strains. d, Network 
of conserved interactions between Gram-positive species. Drugs are grouped 
according to their targeted cellular process (Supplementary Table 2).  
Edge thickness is proportional to the number of drug–drug interactions for 
each class–class pair. Node size is proportional to the number of drugs in each 
class. Only drugs involved in this interaction set are considered (d = 47). Nodes 
are coloured according to the targeted cellular processes as in Fig. 1a. e, Drug 
interaction conservation between species recapitulates phylogeny. Pearson 
correlation between sequence identity (based on 40 conserved marker genes) 
and drug interaction conservation rate is between pairs of species tested here 
and previously11. The P value was obtained from a two-tailed one-sample t-test 
assessing the significance of the Pearson correlation (H0: {t = 0, R = 0}).
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Benjamini–Hochberg adjusted P value of <0.05 (resampling procedure 
with 10,000 repetitions for each combination tested, comparison with 
resampled Bliss scores using Wilcoxon rank-sum test in each itera-
tion) (Methods and Extended Data Fig. 3c). The lower recall was linked  
to our increased ability to detect mild interactions in the extended 
8 × 8 concentration matrices of the benchmarking dataset and  
is a direct trade-off for the high precision cut-off we set in the screen 
to limit false positives. We were able to increase the recall to 0.72  
by relaxing the effect-size thresholds for interactions found in  
both S. aureus strains, using within-species conservation as an addi-
tional parameter to confirm interactions11 (Methods, Extended Data 
Fig. 3c,d and Supplementary Table 3).

Although the Loewe interaction model20 was inadequate for the 
main screen (Methods), the extended concentration space probed in 
the benchmarking set allowed us to assess interactions also using this 
model. After excluding drug pairs for which the Loewe interaction 
model could not be used (n = 24; single drugs had no inhibitory effect) 
or was unreliable (n = 69; Methods and Supplementary Information), 
we found that the two models mostly agreed in assessing interac-
tions (n = 46/68, Extended Data Fig. 4a–d and Supplementary Infor-
mation). Importantly, the overall interaction scores of two models 
were significantly correlated, even for drug pairs for which the Loewe 
model was deemed unreliable (Extended Data Fig. 4b), and was con-
siderably higher than in previous reports21,22. Only three interactions 
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were captured just by the Loewe model (Supplementary Information), 
none of which were detected in the screen (Extended Data Fig. 4e). In 
contrast, out of the 19 interactions captured only by the Bliss model, 
15 were concordant with the Loewe model in the sign of interaction 
but were missed due to the arbitrary confidence threshold (Methods 
and Supplementary Information). In agreement with arbitrary confi-
dence thresholds driving the residual disagreement between the two 
models, concordant interactions were overall stronger in both models 
(Extended Data Fig. 4f,g and Supplementary Table 5).

Drug interactions are rare and species-specific
Antagonisms and synergies were detected to be equally prevalent 
across the three species, accounting for ~12% of all combinations tested 
(Fig. 1b). This interaction rate, corrected by our ability to detect syner-
gies or antagonisms based on the concentration space probed for each 
combination (Methods), is lower and less skewed towards antagonisms 
as compared with Gram-negative species (15% altogether considering  
E. coli, S. Typhimurium and P. aeruginosa)11. This could be due to techni-
cal (drug or strain selection biases, testing one strain in B. subtilis and  
S. pneumoniae, which prevents the use of within-species conservation  
to retrieve more interactions11) or biological reasons (Gram-positive  
bacteria having a lower drug permeability bottleneck than Gram- 
negative bacteria and hence less antagonisms; see also Discussion).

Species-specificity of drug interactions has long been assumed23 
and recently systematically demonstrated for Gram-negative spe-
cies, with 30% of detected interactions shared between at least two of 
the three species tested and 5% conserved in all three species (E. coli,  
S. Typhimurium, P. aeruginosa)11. In Gram-positive species, we  
observed an even lower conservation rate (Fig. 1c), with only 81 out of 725 
unique interactions (11.2%) conserved in at least two species (Fig. 1d).  
Some 29 interactions were conserved in all three species (4%) (Supple-
mentary Table 3). We reasoned that the lower interspecies conservation 
in our screen could be driven by the strain and species selection in  
the two screens. For Gram-negative species, two closely related  
Enterobacteriaceae, E. coli and S. Typhimurium, exhibited the high-
est overlap of interactions11, but the interaction conservation rate of  
either of these two species with P. aeruginosa is similar to the 
cross-species conservation rates we detected for Gram-positive  
bacteria. Indeed, when we compared the interaction conservation 
rate and genome sequence percentage identity (based on 40 universal 
single-copy marker genes24), the two were significantly correlated 
(Methods and Fig.1e).

In contrast to Gram-negative bacteria11, we could not observe a 
significant enrichment for synergies among conserved interactions, 
even after removing non-antibiotic drugs for which intracellular targets  
and their conservation are unknown (Extended Data Fig. 5a). Conserved 
synergies were mostly driven by drugs targeting the same essential 
and highly conserved cellular processes, such as DNA biosynthesis 
and translation (Fig. 1d and Extended Data Fig. 5b). Some of these 
interactions, such as the synergy between macrolides and tetracyclines 
or between quinolones of different generations, have been observed 
before in Gram-negative species11,25, pointing towards conserved  
relationships between the targets of these compounds. Similarly, the 
broad antagonism between drugs targeting DNA and protein synthe-
sis (Fig. 1d) is conserved in Gram-negative bacteria and is due to the  
alleviation of protein–DNA imbalance after treatment with any of  
the two antibiotics alone26. Overall, we detected 52 synergies and 
66 antagonisms shared across the Gram-positive/-negative divide 
(Extended Data Fig. 5c–e and Supplementary Table 6).

Numerous previously unknown drug synergies for S. aureus
We built separate interaction networks for each of the three species 
tested and grouped drugs according to their class or cellular target  
(Fig. 2a,b and Extended Data Fig. 6). Although individual drug–drug 
interactions were rarely conserved (Fig. 1c), interactions between 

drug classes or targeted processes were more coherent in all three 
species. This functional concordance became even clearer when com-
paring drugs on the basis of all their interactions with other drugs. 
Interaction-based clustering better recapitulated drug functional 
classes (Extended Data Fig. 7a and Methods) than clustering on the 
basis of chemical structures (Extended Data Fig. 7b and Methods), 
suggesting that drug interactions capture more information on drug 
mode of action than their chemical features.

Since S. aureus is the most relevant Gram-positive species with 
respect to AMR-attributable deaths2, we systematically screened litera-
ture for reported drug interactions in this species. Out of 331 unique 
interactions detected across the two S. aureus strains in our study, we 
could find only 31 that have been previously reported, to the best of our 
knowledge (Fig. 2c and Supplementary Table 7). Some 55 further inter-
actions have been reported in other bacterial species (Supplementary 
Table 7). Even when excluding those, our dataset revealed 127 novel syn-
ergies for S. aureus (and 118 antagonisms), a third of which (n = 39) was 
conserved in both strains. This confirms that the combinatorial space 
is a largely unexplored reservoir for improving antimicrobial efficacy.

Known interactions include many conserved synergies between 
drugs with the same targets (Fig. 1d), such as synergies between 
DNA biosynthesis inhibitors, protein synthesis inhibitors and 
cell-wall-targeting antibiotics (Fig. 2a,b). Among these latter, we 
confirmed the strong and previously reported synergy between two 
widely used antibiotics for S. aureus, cefepime and teicoplanin27,28, 
and validated it against several MRSA (methicillin-resistant S. aureus) 
clinical isolates belonging to worldwide prevalent clonal complexes 
and different infection sources (Supplementary Table 1), including 
a strain resistant to the last-resort antibiotic tigecycline (Fig. 2d and 
Supplementary Information). When we infected larvae of the greater 
wax moth Galleria mellonella with this MRSA strain, the combination 
protected the animals from succumbing to the infection in contrast 
to single drug treatments (Fig. 2e), confirming that the synergy works 
also in vivo.

Synergies between cell-wall-targeting drugs and translation inhibi-
tors are cornerstones of anti-infective therapy against Gram-positive 
bacteria29–32. We could recapitulate some of these synergies: for example,  
conserved synergies between bacitracin or oritavancin and amino-
glycosides in S. aureus. In line with current literature and concerns 
on general effectiveness33–36, we could not detect synergies between 
beta-lactams and aminoglycosides in any of the three species tested. 
Despite the prevalent assumption that these combinations are highly 
effective, synergies occur only for specific species (or strains) and 
depend on dosage, infection site and specific antimicrobial agents33–36. 
In contrast, fosfomycin strongly synergized with a diverse range of pro-
tein synthesis inhibitors (Supplementary Table 7) and could present an 
underexploited therapeutic resource against S. aureus (see Discussion).

Among the 300 previously unknown interactions we detected, 19 
out of 23 tested were further confirmed in the extended 8 × 8 checker-
board benchmarking assays (9 of which were in both S. aureus strains) 
(Supplementary Table 4). Interestingly, adjuvants, such as clavulanic 
acid, or antibiotics used in clinics only in fixed-concentration com-
binations (trimethoprim and sulfonamides), exhibited a number of 
previously unknown synergies with other drugs, unveiling a so-far 
unexplored space for new combinations. As an example, we validated 
the strong synergy of teicoplanin with trimethoprim against several 
MRSA clinical isolates in vitro (Fig. 2d and Supplementary Information) 
and in vivo in a G. mellonella infection model (Fig. 2e).

Target-specific synergies in Gram-positive/-negative species
Drugs belonging to the same class or targeting the same cellular process 
exhibited mainly synergistic interactions in all three species (Fig. 2a,b, 
and Extended Data Figs. 6 and 8a). Indeed, synergies between drugs 
targeting the same process were significantly enriched (Fig. 3a), in 
agreement with previous data on Gram-negative bacteria11. Targeting 
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different facets of the same cellular process can bypass the inbuilt 
redundancy and robustness of biological processes37. Importantly, 
the targeted cellular processes that were more prone to synergies 
were distinct when comparing Gram-positive and Gram-negative 
species (Extended Data Fig. 8a,b). Synergies between protein  
synthesis inhibitors were specifically prevalent in Gram-positive spe-
cies, whereas Gram-negative species were dominated by synergies 
between cell-wall inhibitors (Fig. 3b and Extended Data Fig. 8c–f). 

Since the drugs between the two screens largely overlapped and their 
targets are conserved in bacteria, we decided to further investigate 
the underlying reason for this difference.

Protein synthesis inhibitors are mostly used against Gram-positive 
bacteria, as they often cannot cross the outer membrane (OM) of 
Gram-negative bacteria. We reasoned that in Gram-positive species 
with no such permeability bottleneck, these drugs could synergize at 
their target level, the ribosome, as previously shown by combinations 
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infection model (e). Teicoplanin (TEC) synergies with cefepime (FEP) and 
trimethoprim (TMP) were validated against a tigecycline-resistant MRSA clinical 
isolate (Supplementary Table 1) in 8 × 8 broth microdilution checkerboards 
(d) and in the G. mellonella infection model (e). For checkerboards, the median 
fitness (OD595 at 7.5 h normalized by no-drug controls) across two biological 
replicates is shown (Supplementary Information). For G. mellonella experiments, 
larvae were infected with the same MRSA isolate and treated with single drugs 
or combinations. The percentage of surviving larvae after treatment and in 
the untreated controls was monitored over time. Uninfected and untreated 
(vehicle only) controls are shown. Drugs were tested in combination at the same 
concentration indicated for each drug. Data indicate mean ± s.e. (n = 10 for each 
condition, three independent experiments).
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of genetic perturbations of translation38. By contrast, in Gram-negative 
bacteria, the OM permeability bottleneck probably masks such  
synergistic interactions and enriches for antagonisms, which are  
often due to a decrease in drug intracellular concentration(s)11. We 
confirmed this hypothesis by using the OM-defective E.coli mutant 
lptD4213, which is hyperpermeable to hydrophobic antibiotics and 
detergents39,40. Many of the interactions between macrolides and  
different classes of protein synthesis inhibitors became synergistic 
in this E. coli mutant background (Fig. 3c and Supplementary Infor-
mation), demonstrating that drug uptake bottlenecks can change 
antibiotic interactions.

Interactions between beta-lactams were prominent in Gram- 
negative species, but rare in Gram-positive species (Extended Data 
Fig. 8e,f). Beta-lactams have different affinities to penicillin-binding 
proteins (PBPs)41. Interestingly, the number and type of PBP are largely 
different across bacterial species41,42, leading us to hypothesize that  
this redundancy (number of PBP paralogues) drives the observed  
difference. Indeed, the number of synergies in each strain tested  
correlated with the number of PBPs encoded in their genomes (Fig. 3d,  
and Supplementary Tables 8 and 9). The higher the number of  
PBPs, the higher the probability that combining beta-lactams with  
different affinities to the various PBPs will lead to a synergistic 
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Fig. 3 | Synergies between drugs targeting the same cellular process.  
a, Drugs targeting the same biological process often interact synergistically, 
whereas antagonisms are prevalent between drugs targeting different processes 
(S. aureus: ****P = 9.9 × 10−7, χ2 test; S. pneumoniae: ****P = 4.7 × 10−8, χ2 test). 
Interaction numbers are indicated in white inside the bars. Non-antibiotic 
drugs (n = 8) are excluded from this analysis, as their targeted processes 
are heterogeneous or unknown. b, Gram-positive species exhibit frequent 
synergistic interactions between protein synthesis inhibitors, whereas cell-wall 
biosynthesis inhibitors predominantly synergize in Gram-negative species11. 
Prevalence of interactions between protein synthesis inhibitors and between 
cell-wall-biosynthesis inhibitors in Gram-negative and Gram-positive species is 
indicated as in Fig. 3a (for protein synthesis inhibitors: ****P = 1.8 × 10−8; for cell-
wall biosynthesis inhibitors: **P = 0.0038, χ2 test). c, Protein synthesis inhibitors 
can also synergize in Gram-negative species when the drug permeability 
bottleneck is abolished. Synergistic combinations in Gram-positive species were 
tested in 8 × 8 broth microdilution checkerboards in wild-type E. coli and in the 
OM-defective E.coli lptD4213 strain40. Interaction score distributions for each 

combination are significantly different between the two strains. Interactions 
were assigned with the same criteria used in the screen, with synergies 
corresponding to distributions with first quartile <−0.1. The first quartile value 
is shown in all cases. CLR, clarithromycin; CLI, clindamycin; AZM, azithromycin; 
LZD, linezolid; CHL, chloramphenicol (CLR + CLI: ****P = 2.2 × 10−16; CLR + AZM: 
****P = 5.3 × 10−13; CLR + CHL: ****P = 2.2 × 10−16; CLR + LZD: ****P = 4.4 × 10−8, 
two-sided Wilcoxon test; box limits correspond to first and third quartiles, with 
the median marked, and whiskers extending to the most extreme data points up 
to 1.5 times the interquartile range (IQR). d, Differences in beta-lactam synergy 
prevalence between Gram-negative and Gram-positive species are related to 
differences in drug target redundancy, that is, the penicillin-binding proteins 
(PBPs) they encode in their genomes. Pearson correlation between number of 
PBPs and the frequency of synergies between beta-lactams for each strain tested 
(Supplementary Tables 8 and 9) and the P value of a two-sided permutation test 
(100,000 permutations) are shown. Correlations and P values when using one 
strain per species are shown in Supplementary Table 10.
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bypassing of the redundancy. Although this trend is based on a lim-
ited number of strains, it holds even when considering only one strain  
per species (Supplementary Table 10). While further studies are 
needed, we hypothesize that this target redundancy drives the syn-
ergies between beta-lactam antibiotics and that the difference we 
observed here between Gram-positive and -negative species probably 
depends on the number of PBPs in the species tested.

Altogether, these results support the known concept that  
drug interactions mirror key properties of cellular networks43, such  
as their functional modularity and redundancy, and reflect fundamental 
differences in cellular architecture across the Gram-positive/-negative 
divide.

Interactions between non-antibiotics and antibiotics
Our drug interaction screen included eight non-antibiotic drugs, 
which exhibited a similar interaction frequency (11%) as antibiotics 
(13%) (Fig. 4a). This motivated us to expand the panel of non-antibiotic 
drugs tested and to explore the range of synergies and antagonisms 
antibiotics exhibit with commonly used non-antibiotic medications 
in S. aureus. We selected 44 drugs to include pharmaceuticals that 
can be co-administered with antibiotics in S. aureus infections or 
non-antibiotics with previously reported antibacterial activity against  
S. aureus (Supplementary Table 11). Altogether, we covered 19 thera-
peutic classes (Extended Data Fig. 9a and Supplementary Table 11),  
testing each drug in a range of three concentrations and against  
the panel of 62 drugs of the initial screen (2,728 drug–drug interac-
tions, 4 × 4 dose matrix) in S. aureus DSM 20231. Concentrations were  
selected to fall within therapeutic plasma concentrations44, except  
for drugs with possible topical use, where higher concentrations  
were used. Interactions were scored and benchmarked as in the main 
screen (Methods, Supplementary Tables 12 and 13, and Extended  
Data Fig. 9a–d).

We confidently detected 197 interactions in this extended 
screen (Fig. 4b and Supplementary Table 12), an interaction fre-
quency that was lower (7.8%) than that of the initial screen or the 
set of eight non-antibiotic drugs included therein (Fig. 4a). Since all  
eight non-antibiotic drugs included in the main screen were selected 
because they had reported antibacterial activity, we reasoned that  
this could account for their higher interaction rate. Indeed, for  
those drugs that had antibacterial activity on their own, the interaction 
frequency was double (12% vs 5.9%) (Fig. 4c). For all non-antibiotics 
tested in this work (n = 52), we detected 140 synergies and 105  
antagonisms mainly with antibiotics (Fig. 4d). A small number of  
interactions (22 synergies and 23 antagonisms) were found  
between two non-antibiotics. Synergies offer a so-far unexploited 
potential for drug repurposing, whereas antagonisms expose  
risks of decreasing the efficacy of antimicrobial treatments.

The therapeutic classes that exhibited the highest number of 
interactions were anti-inflammatory drugs (n = 7, 4 of which were non-
steroidal anti-inflammatory drugs, or NSAIDs) and hormone analogues 
(n = 6) (Fig. 4d, Extended Data Fig. 9e and Supplementary Table 12),  
whereas for antibiotics, protein synthesis inhibitors dominated  

the interactions (Fig. 4d, Extended Data Fig. 9f and Supplementary 
Table 12). Interestingly, selective oestrogen-receptor modulators, 
such as the two triphenylethylene compounds tamoxifene and  
clomifene, shared their synergies with cell-wall-acting drugs and their 
antagonism with streptomycin. Hormone analogues engaged in several 
synergies (n = 11) and antagonisms (n = 17), suggesting an understudied  
impact that such commonly used drugs and potentially their  
natural counterparts, may have on the efficacy of antibacterial thera-
pies14,45. For the anti-inflammatory drugs, only four interactions with 
acetylsalicylic acid were previously known: its synergy with cefuro-
xime46 and its antagonisms with ciprofloxacin, oxacillin and azithromy-
cin47–49. We validated the synergy between ibuprofen and gentamicin 
also against MRSA clinical isolates, including a strain resistant to 
linezolid (a last-resort antibiotic for MRSA), in vitro and in vivo in a  
G. mellonella infection model (Fig. 4e,f and Supplementary 
Information).

Ticagrelor has multiple effects on S. aureus physiology
Ticagrelor, a purine analogue anti-aggregant acting on the adenosine 
P2Y12 receptor50, had the highest number of interactions (n = 27) among 
the 44 non-antibiotics tested (Fig. 4d). Ticagrelor has been shown to 
improve clinical outcomes in patients with pneumonia and sepsis 
caused by Gram-positive bacteria51,52. Supported by different degrees 
of evidence, this effect can be because ticagrelor activates platelets 
upon systemic infection52, protects them from S. aureus toxin-mediated 
damage53, modulates their antibacterial properties54 and has direct 
bactericidal activity on S. aureus at high concentrations55. However, 
the mode of action of ticagrelor on S. aureus and its interactions with 
other drugs are largely uncharacterized.

To gain insights into the mode of action of ticagrelor and its  
interactions with other drugs, we used two-dimensional ther-
mal proteome profiling (2D-TPP)56–58 in both lysate and whole-cell  
samples to investigate the direct and indirect effects of the drug, 
respectively (Methods). We observed a destablization of several ATP- 
and GTP-binding enzymes and transporters in both the whole cell and 
the lysate (Fig. 5a,b, Extended Data Fig. 10a, and Supplementary Tables 
14 and 15) and the induction of many purine biosynthesis enzymes 
(PurC, PurD, PurE, PurF, PurH, PurK, PurL, PurM, PurN, PurQ) in live 
cells (Fig. 5a and Extended Data Fig. 10a,b). This is in agreement with 
ticagrelor being a purine analogue (Extended Data Fig. 10c). Further-
more, the MIC of ticagrelor increased upon supplementation of defined 
media with adenosine, inosine or their combination (Extended Data 
Fig. 10d), confirming that ticagrelor indeed interferes with purine 
metabolism in S. aureus.

The clinically observed effects of ticagrelor during S. aureus  
infection have not been linked so far to a direct effect of ticagrelor on 
S. aureus virulence. We discovered a pervasive impact of ticagrelor 
on S. aureus virulence determinants and regulators, many of which 
were downregulated and others destabilized (Fig. 5a, Extended Data  
Fig. 10a, and Supplementary Tables 14 and 15). In particular, we 
observed destablization in lysate and downregulation in whole- 
cell samples of key clotting factors secreted by S. aureus (ClfA, ClfB), 

Fig. 4 | Interactions between non-antibiotic and antibiotic drugs in S. aureus. 
a, Interactions of non-antibiotic drugs between themselves and antibiotics are 
as common as interactions between two antibiotics. This motivated us to expand 
the non-antibiotic panel tested. Synergy and antagonism frequencies were 
calculated as in Fig. 1b. b, Interactions between non-antibiotics and antibiotics 
in the extended non-antibiotic screen in S. aureus DSM 20231. Additional non-
antibiotic drugs (44) were screened in combination with 62 drugs belonging to 
the original drug panel, using the same experimental setup and the same data 
analysis pipeline, in S. aureus DSM 20231 (Methods). Synergy and antagonism 
frequencies were calculated as in Fig. 1b. c, Non-antibiotics with antibacterial 
activity, for which the MIC was among tested concentrations (n = 13), engage 
in more interactions than non-antibiotics for which there is no MIC or 

concentration was out of the tested range (n = 31). d, All interactions between 
non-antibiotics and antibiotics detected in S. aureus DSM 20231 in the original 
(i = 87) and in the extended (i = 197) non-antibiotic screen. PPI, proton pump 
inhibitors; CCB, calcium channel blockers; EGCG, epigallocatechin gallate.  
e,f, The non-steroidal anti-inflammatory ibuprofen (IBU) synergizes with 
gentamicin (GEN) in an MRSA clinical isolate with additional resistance to 
linezolid (Supplementary Table 1) in 8 × 8 broth microdilution checkerboards 
(e) and in the G. mellonella infection model (f). For checkerboards, the median 
fitness (OD595 at 7.5 h normalized by no-drug controls) across two biological 
replicates is shown (Supplementary Information). For G. mellonella experiments, 
results were obtained as in Fig. 2e. Data represent mean ± s.e. (n = 10 for each 
condition, three independent experiments).
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Fig. 5 | Ticagrelor alters S. aureus surface charge and potentiates cationic 
antibiotics. a,b, Volcano plots highlighting abundance or stability hits in 
whole-cell (a) and lysate 2D-TPP (b) data. The x axis represents the effect size of 
protein abundance or stability change72 (Methods) and the y axis corresponds to 
the statistical significance (log2(F-statistic)). For visualization purposes, when 
the F-statistic was 0, it was transformed to 1. c–e, Ticagrelor synergizes with 
gentamicin in vitro at growth inhibition (c, median fitness across two biological 
replicates, results obtained as in Fig. 2d, Supplementary Information), at killing 
level (d, mean ± s.e. of four biological replicates; drugs tested in combination 
at same concentration indicated for single drug treatments) and in vivo (e) 
against an MRSA isolate resistant to tigecycline (Supplementary Table 1). For 
G. mellonella experiments, results were obtained as in Fig. 2e. Data represent 
mean ± s.e. (n = 10 for each condition, three independent experiments). f, Growth 
(endpoint OD595nm, corresponding to the beginning of stationary phase for the 

control strain MM76, Methods and Supplementary Information) measured in the 
presence of serial 2-fold dilutions of gentamicin normalized by no-drug controls 
in the S. aureus IPTG-inducible knockdown mutants dltABCD and tagG and their 
control strain MM76 (Methods and Supplementary Table 1) in the presence or 
absence of 500 µM IPTG to induce maximal knockdown of the gene targeted 
(mean ± s.e. across four biological replicates). All strains were grown in the 
presence of 5 µg ml−1 erythromycin and 10 µg ml−1 chloramphenicol to maintain 
the CRISPRi plasmids73 (Methods). For all controls and full growth curves see 
Supplementary Information. g, S. aureus Newman surface charge changes upon 
exposure to ticagrelor. The fraction of positively charged unbound cytochrome 
c was measured after incubation of drug-treated and untreated samples 
(Methods); n = 4, mean ± s.e.; a two-sided Welch’s t-test was used to determine 
significance using the untreated samples as reference group. For all controls and 
cytochrome c standard curve, see Extended Data Fig. 10h.
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the coagulase Coa and the von Willebrand-factor binding protein 
(vWBP) NWMN_0757 (ref. 59). These effects, evident at a clinically 
relevant ticagrelor concentration55, offer an alternative explanation 
for the beneficial effect of anti-aggregant therapy as an adjuvant in  
S. aureus systemic infection.

Ticagrelor exhibited a number of synergies and antagonisms with 
antibiotics in MSSA (methicillin-sensitive S. aureus; Fig. 4d). Interest-
ingly, it broadly sensitized MSSA and MRSA to both cationic peptides 
(nisin; Extended Data Fig. 10e) and antibiotics (aminoglycosides, such 
as gentamicin; Fig. 5c and Supplementary Information). This potentia-
tion effect of aminoglycosides occurred at low ticagrelor concentra-
tions and was also evident at the killing level (Fig. 5d) and in vivo, during 
infection of G. mellonella (Fig. 5e). Since aminoglycosides need energy 
to cross the bacterial membrane60, we wondered whether ticagrelor 
acted at that level, for example, by modulating the cell surface charge 
and increasing aminoglycoside uptake. Consistent with this hypoth-
esis, two proteins involved in the lipoteichoic acid (LTA) d-alanylation61, 
DltC and DltD, were destabilized in the TPP lysate data, and TagG, a 
subunit of the cell wall teichoic acid (WTA) translocase, was destabilized 
in the whole-cell sample (Fig. 5a,b and Extended Data Fig. 10f). Disrup-
tion of teichoic acids and specifically, inactivation of dltA, dltB and  
dltC have been shown to sensitize S. aureus to cationic compounds 
because of an increase in the net negative charge of S. aureus 
surface62–64. We detected a decrease in the MIC of the aminogly-
coside gentamicin and the cationic antibiotic nisin in isopropyl 
β-D-1-thiogalactopyranoside (IPTG)-inducible CRISPRi knockdown 
mutants of both the dltABCD operon and tagG (Methods, Fig. 5f and 
Extended Data Fig. 10g). Ticagrelor treatment also increased the bind-
ing of positively charged cytochrome c to intact S. aureus cells (Fig. 5g 
and Extended Data Fig. 10h). Thus, ticagrelor treatment impacts the  
thermal stability and presumably the activity of proteins involved 
in WTA flipping and LTA d-alanylation, leading to an increase in the 
surface net negative charge of S. aureus. This leads to potentiation of 
the uptake of cationic antibiotics, such as aminoglycosides and nisin.

Discussion
In this study, we systematically profiled drug combinations against 
three Gram-positive bacterial species. We tested multiple compounds 
from each of the main antibiotic classes used to treat infections caused 
by Gram-positive pathogens, as well as neglected antibiotics, com-
monly used antibiotic adjuvants and promising non-antibiotic drugs 
with reported antibacterial activity. Combinations were tested in a 
dose-dependent manner and interactions were assessed in a quantita-
tive manner. We report a plethora of drug–drug interactions, most of 
which have not been reported before. Some identified synergies were 
also effective against multiple MDR clinical isolates that we tested and 
during infections in vivo. It should be noted that this does not mean 
that such synergies will be effective against all MDR isolates (as we show 
here and have shown before11, interactions can be strain-specific) and 
combinations should be tested on the particular clinical isolate they 
are targeted to before their use, as done in the clinic for single drugs.

The dataset generated here can form the basis for future experi-
ments to mechanistically dissect key interactions or assess potential 
for clinical application. For example, some of the synergies and antago-
nisms identified may guide future broad-spectrum empiric treatments, 
when antibiotic regimens are started without knowledge of the patho-
gen in time-sensitive contexts (for example, sepsis). Fosfomycin syner-
gies that are strong and conserved across the Gram-positive/-negative 
divide are good candidates, as they are more likely to be broadly effec-
tive. Fosfomycin is increasingly used in clinics65, but rarely in combina-
tions. To enable further use of this resource, we made it browsable in a 
user-friendly interface.

We compared results with those we obtained previously using a 
similar screen with three Gram-negative species11. The confidence and 
depth level of these comparisons are high, since the two studies have 

similar experimental and data analysis design, including the drugs 
tested. As for Gram-negative species, we found that drug interactions 
were largely species-specific for Gram-positive species, with syner-
gies tending to be more conserved than antagonisms and driven by 
antibiotics sharing general cellular targets. In contrast, antagonisms 
were more common between antibiotics of different cellular targets 
and are less conserved, presumably because they are driven by interac-
tions at the level of drug concentration11. Overall, only a small number 
of interactions is conserved across Gram-positive and -negative spe-
cies. Such interactions are more likely to be driven by interactions 
at the drug target and may thus hold true for strains and species not 
tested here, providing a high-confidence set for future exploitation. 
Differences in cell surface organization (for example, the outer mem-
brane posing a permeability barrier for hydrophobic compounds) or 
in the degree of redundancy in cell-wall-building enzymes can explain 
some of the strong synergies observed specifically in Gram-positive or 
Gram-negative species. Our ability to replicate Gram-positive-specific 
synergies in hyperpermeable Gram-negative bacteria, together with 
previous evidence on the strong dependence of antagonisms on drug 
permeability11, suggests that synergies rely more on drug targets and 
antagonisms more on drug intracellular concentrations. The exact 
degree to which this is true and whether this makes antagonisms less 
conserved (drug cellular targets are more conserved than their trans-
port mechanisms) remain to be systematically assessed. In any case, 
this is presumably the reason why antagonisms were more frequent 
than synergies in Gram-negative species11 but not here: synergies 
based on drug target are easier to detect in Gram-positive bacteria, 
and antagonisms are less common, as there are fewer permeability 
bottlenecks to overcome.

We also assessed combinations of approved non-antibiotic  
drugs with antibiotics in a dose-dependent manner in S. aureus. 
Although the interaction potential was lower for drugs without anti-
bacterial activity, the vast majority of synergies that we detected were  
previously unknown. Although non-antibiotic drugs have been 
proposed as anti-infective adjuvants for decades4,5, their in vivo  
efficacy and molecular basis of action are only known for a few  
examples5,7,18,55,66,67. We focused on the anti-aggregant ticagrelor,  
whose repurposing as an anti-infective adjuvant for Gram-positive 
bacteria has been recently proposed53,68. While the in vivo benefit  
of ticagrelor for systemic infections has been documented51,55, we  
identified 13 additional synergies with antibiotics in S. aureus, and 
provided molecular insights into how ticagrelor affects S. aureus 
physiology and potentiates positively charged antibiotics, such as 
aminoglycosides or nisin.

Drugs are regularly combined to treat patients in the clinic, not 
only in rationally designed therapeutic schemes, but also extemporar-
ily in poly-treated patients14. Although known pharmacokinetic inter
actions that have been documented in humans are routinely avoided, it 
is assumed that interactions between drugs in bacteria will not impact 
anti-infective efficacy. We detected both synergies and antagonisms 
between commonly administered non-antibiotic drugs and antibiotics 
against S. aureus. These antagonisms could potentially decrease the 
efficacy of antibiotic therapies and increase the probability of emer-
gence of resistance. Overall, it is important that drug interactions are 
investigated not only at the level of growth inhibition, but also at the 
levels of killing and clearing of an infection, as the interaction outcome 
might differ10.

It has recently been proposed that the attenuation of antibiotic 
efficacy (antagonism) could be used to reduce the collateral damage of 
antibiotics on commensal bacteria69. In our screen, loperamide had the 
most interactions with antibiotics. Although its potential use as an adju-
vant for specific antibiotics and its antibacterial mode-of-action are 
known5, we detected an additional broad antagonism with macrolides. 
Loperamide and macrolides are often co-administered for travellers’ 
diarrhoea66, which is caused by Gram-negative enteric pathogens. It 
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is tempting to speculate that part of the beneficial effect of this com-
bination results from the protection of Gram-positive commensal gut 
species from macrolide action.

In summary, we present a systematic and quantitative account of 
drug interactions against important Gram-positive species. Thereby, 
we discovered a number of potent synergistic combinations that are 
effective against clinical MDR isolates. We also investigated mecha-
nisms of selected interactions. In an era where novel antibiotic devel-
opment faces technical and economic hurdles, and new antimicrobial 
strategies are urgently needed, we propose that systematic drug inter-
action profiling might offer alternative solutions to treat bacterial 
infections. Extending the systematic testing of drug (antibiotic or 
non-antibiotic) interactions to additional bacterial species will improve 
our understanding of drug interaction conservation and mechanisms, 
and inform tailored treatments for bacterial infections.

Methods
Strains and growth conditions
All strains used in this study are listed in Supplementary Table 1.  
B. subtilis subsp. subtilis 168 (ref. 70) was kindly provided by C. A. Gross, 
all MRSA clinical isolates by S. Göttig, S. pneumoniae D39V71 by J.-W. 
Veening and S. aureus USA300 by D. Lopez. Staphylococcus aureus 
subsp. aureus Newman72 was purchased from NCTC (NCTC 8178) and 
DSM 20231 (ref. 73) (ATCC 12600 T, NCTC 8532) from DSMZ.

For all experiments and unless otherwise specified, S. aureus 
strains were grown in tryptic soy broth (TSB, 22092, Merck-Millipore), 
B. subtilis in LB Lennox and S. pneumoniae in CY medium, as adapted 
from ref. 74. All species were grown at 37 °C with vigorous shaking 
(850 r.p.m.), except for S. pneumoniae, which was grown without shak-
ing. The ticagrelor purine supplementation experiments in S. aureus 
Newman were conducted in SSM9PR-defined medium supplemented 
with 1% glucose75.

Inducible knockdown strain construction
A two-plasmid CRISPR interference system was used to knock down 
gene expression of selected genes in S. aureus Newman76. In these 
strains, dcas was expressed from an IPTG-inducible promoter on plas-
mid pLOW, while single guide RNAs (sgRNAs) were expressed from a 
constituted promoter on a plasmid derived from pCG248. The sgRNA 
target sequences were TGTCTAACAGCAATGCTTTG for dltABCD and 
AAACCATAATTTGCATAACA for tagG, and ATAGAGGATAGAATGGCGCC 
for the non-target control MM76 (Supplementary Table 1).

MIC and IC50 determination
MICs and IC50s were tested in all strains for the main screen (Sup-
plementary Tables 1 and 2). Drugs were 2-fold serially diluted in 11 
concentrations, and 32 no-drug control wells were included in each  
plate. Experiments were conducted in flat, clear-bottom 384-well  
plates (781271, Greiner BioOne), with a total volume of 30 µl for  
S. aureus and B. subtilis and 55 µl for S. pneumoniae. Volumes were 
optimized for each strain to achieve good dynamic range for growth 
and minimize risk of cross-contamination between wells. Plates were 
inoculated with a starting OD595 of 0.01 from an overnight culture. 
All liquid handling was performed using a Biomek FX liquid handler 
(Beckman Coulter). Plates were sealed with breathable membranes 
and incubated at 37 °C. OD595 was measured every 30 min for 14 h using 
a Filtermax F5 multimode plate reader (Molecular Devices). OD595 
values were background subtracted (using the OD595 value at the first 
timepoint). The timepoint corresponding to entry into stationary 
phase in no-drug control wells was selected for each strain: 8 h for both 
S. aureus strains, 5.5 h for B. subtilis and 3.7 h for S. pneumoniae. For 
each drug concentration and strain, the OD595 value at this timepoint 
was then divided by the robust mean77 of the corresponding values 
of the no-drug controls for each strain. For each drug, IC50s were then 
calculated after fitting a four-parameter log-logistic model using the 

R package drm78. The MIC was considered as the lowest concentra-
tion at which growth was inhibited. Experiments were conducted in 
biological duplicates.

High-throughput screen of drug combinations
Sixty-two drugs, hereafter designated as recipients, were arrayed in 
flat, clear-bottom 384-well plates in three 2-fold serial dilutions and 
2 technical replicates (up to 2 recipient drugs were removed from the 
data of the different strains for quality control reasons). Concentra-
tions were selected according to MICs, with the highest concentration 
corresponding to the MIC, and the intermediate and lowest concentra-
tion corresponding to half and a quarter of MIC, respectively (Sup-
plementary Table 2). Plates were kept frozen and were defrosted upon 
each experimental run, when the same 62 drugs and in the same three 
concentrations were added as donor drugs (one drug at one concentra-
tion for each recipient plate). A few drugs were screened only as donors: 
the combinations co-amoxiclav and cotrimoxazole in B. subtilis and  
S. aureus DSM 20231; co-amoxiclav, clavulanic acid, pseudomonic acid 
and cefuroxime in S. aureus Newman. All donor drugs were tested in 
two biological replicates. Control wells were included in each plate  
(6 no-drug wells, 3 plain medium wells and 3 wells containing only the 
donor drug). After the addition of donor drugs, plates were inoculated 
with cells. Handling, inoculation, growth conditions, plate incubation 
and OD595 measurements were performed as in MIC determination.

For the adjuvant screen, 44 non-antibiotic drugs (Supplemen-
tary Table 11) were tested against the same 62 recipient drugs of the 
main screen for S. aureus DSM 20231. Antibiotics were tested at the 
same concentrations as in the main screen. Non-antibiotics concentra-
tions were selected to fall within therapeutic plasma concentrations44  
(Supplementary Table 11).

Data analysis
Data analysis was adapted from ref. 11. Growth curves were processed 
as described in Extended Data Fig. 1: the background was subtracted 
from all OD595 measurements on a well-by-well basis using the first 
measurement obtained. Abnormal spikes in OD values of the first three 
timepoints occurred in S. pneumoniae in a small fraction of wells due 
to bubble formation in the medium or plate condensation. These early 
local peaks in OD curves were identified and replaced with the median 
of OD values (of corresponding timepoints) estimated from the wells 
not affected by such artefacts within the same plate. When more than 
one in the first four timepoints was affected, those wells were identi-
fied as non-monotonically increasing OD595 values across the first 
four timepoints, and their background was estimated as the median 
first-timepoint OD595 of artefact-free wells (monotonically increasing 
across the first four timepoints).

A single-timepoint OD595 value was selected at the transition 
between exponential and stationary phase as in the IC50 determina-
tion and used to derive fitness measurements that captured effects  
both on growth rate and maximum yield. OD-based endpoints  
correlated well with AUC-based fitness measurements (Pearson  
correlation 0.96) (Extended Data Fig. 2e), whereas fitness based on 
growth rate alone (calculated by fitting a Baranyi model79) correlated 
worse with either AUC- or endpoint OD-based measurements (Pearson 
correlation 0.68 and 0.75, respectively) (Extended Data Fig. 2f,g). We 
then verified which measurement between AUC and endpoint OD was 
most accurate as compared to the screen benchmarking and ultimately 
chose the latter, which led to higher precision and recall (Extended 
Data Fig. 2d).

This value was then divided, per plate, by the robust mean77 of the 
6 no-drug controls (no-drug control hereafter), obtaining 3 fitness 
measures for each drug concentration pair: f1, fitness upon exposure 
to drug 1; f2, fitness upon exposure to drug 2; and f1,2, fitness in pres-
ence of drug 1 + drug 2. On the basis of these values, further quality 
control was again performed, correcting fitness increase artefacts 
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(maximum fitness was set to 1) and removing plates with poor tech-
nical replicate correlation (Pearson correlation <0.7). f1, f2 and f1,2 
were used to calculate interaction scores using the Bliss model19. The 
choice of this model over other available quantification methods was  
driven by the following considerations: (1) the three measurements 
obtained for drug dose responses are not sufficient for accurate quanti-
fication using alternative models (for example, the Loewe model80) and 
(2) the Bliss model can more accurately account for single drugs with 
no effect (such as most non-antibiotic drugs included in the screen).

Bliss (ε) scores were calculated as follows:

ε = fd1,d2 − fd1 × fd2 (1)

where fd1d2 corresponds to the observed fitness in the presence of the 
drug combination, and fd1 and fd2 correspond to the fitness in the pres-
ence of drug 1 and drug 2, respectively.

Assuming that most drugs interact neutrally, single drug fitness 
for both donor and recipient drugs can also be inferred from combi-
nation fitness, by minimizing the sum of squared residuals of the Bliss 
independence model as follows:

{ fd1, fd2} = argmin ∑
d1,d2

‖
‖fd1,d2 − fd1 × fd2‖‖

2
(2)

Experimentally measured and estimated fitness values were very 
similar for donor (Extended Data Fig. 2h) and recipient (Extended  
Data Fig. 2i) drugs, and we used the estimated measures since those 
were more robust to noise; experimental controls were limited for 
donor drugs (3 single-drug control wells) and sometimes biased for 
recipient drugs, as a single problematic plate in the batch was sufficient 
to generate noise.

When no data were discarded upon quality control, the number of 
Bliss scores obtained for each combination was 72, composed of 3 × 3 
(in the 2D concentration space) × 2 technical replicates × 2 biological 
replicates × 2 replicates with drugs tested as donor or recipient. Hit 
calling was performed using a resampling procedure with 10,000 
repetitions for each combination tested, where the ε distribution 
for each combination was compared with the resampled Bliss scores 
using Wilcoxon rank-sum test in each iteration11. Hits correspond to 
combinations with False Discovery Rate (FDR) < 0.05.

As before11, we coupled this significance threshold to an effect-size 
threshold. For each combination, we defined a cumulative score using 
the quartiles of its distribution of ε scores. We tested the performance 
of different thresholds in precision and recall upon screen benchmark-
ing, and identified |0.1| as the best threshold, with precision of 0.87 
and recall of 0.68 (Extended Data Fig. 3c,d). Accordingly, synergies 
were assigned if the first quartile of the ε distribution was <−0.1 and 
antagonisms if the third quartile exceeded 0.1. We could increase the 
screen recall by leveraging the presence of two strains belonging to 
the same species in the case of S. aureus, as previously described for 
Gram-negative species11. We defined an additional set of hits (weak 
and conserved), meeting significance and effect-size thresholds in 
one strain, but with lower effect size in the other strain. A cut-off of 
|0.08| allowed us to maintain the same precision and increase the 
recall to 0.72.

Data analysis was implemented in R (v.4.1.2)81 and RStudio 
(v.2021.09.1)82, and networks were created with Cytoscape (v.3.8.2)83.

Interaction detection calculation
Interaction detection rates were calculated by dividing the number of 
detected interactions by the number of combinations for which inter-
actions could be observed according to the mapped fitness space11. 
Synergies could not be observed when the expected fitness of a drug 
combination (defined as the product of single-drug fitness values 
in equation (1)) was lower than 0.1, while antagonisms could not be 

detected for expected combination fitness higher than 0.9 (2.1 and 
3.3% of the 7,986 combinations tested, respectively).

Screen benchmarking and 8 × 8 checkerboard assays
Combinations were tested in the same experimental conditions as in 
the screen, but at higher concentration resolution. Drugs were diluted 
in 8 concentrations spanning linearly spaced gradients to assemble 
8 × 8 checkerboards for each combination tested (the highest con-
centration used can be found in Supplementary Table 4). All experi-
ments were conducted in at least 2 technical and 2 biological replicates. 
Data were analysed with the same pipeline as in the screen (Methods). 
For this concentration-resolved set, we also calculated interactions 
according to the Loewe additivity model using the BIGL R package84. 
Using fitness (relative growth) as a response variable, dose responses 
of monotherapies were fit with a four-parameter logistic regression, 
with upper and lower boundaries set at 1 and 0, respectively. The null 
model for the expected response surface was the alternative Loewe 
generalization84. The prediction covariance matrix was estimated 
using 200 bootstrap iterations, and the interaction sign and signifi-
cance were assessed for each concentration combination using the 
average deviation from the null model as previously described84. The 
errors for drug combination effects were assumed to be normally 
distributed. For 24 combinations where one of the drugs had no effect, 
Loewe could not be applied. Combinations for which the Loewe model 
could be applied but was unreliable were removed from later analyses. 
The model was deemed unreliable when: (1) an interaction effect was 
estimated outside of its confidence interval (due to bias in the Shannon 
entropy estimate85) and (2) the majority of individual dose combina-
tions deviating from the Loewe null hypothesis disagreed with the 
direction of an overall global deviation. A separate analysis was carried 
out to visualize Loewe isoboles. At each concentration of one of the 
drugs in combination, an individual four-parameter log-logistic model 
was fit to the dose response of the other drug. To visualize the lines of 
additive (according to Loewe’s model) and experimentally observed 
effects, for each combination, an appropriate magnitude of drug effect 
was chosen according to the relevant effect sizes (that is, using lower or 
higher fitness values for stronger or weaker drug effects, respectively) 
(Extended Data Fig. 4c,d and Supplementary Information).

Drug clustering
Drug–drug interaction profiles were clustered according to the cosine 
similarity of quartile-based Bliss interaction scores of each drug pair in 
each strain. Scores from all interactions were considered, regardless 
of their statistical significance. For the clustering based on chemical 
structures, drugs were clustered according to their Tanimoto similar-
ity86 using 1,024-bit ECFP4 fingerprints87.

Phylogeny analysis
To calculate the percentage sequence identity between bacterial spe-
cies, the genomes of B. subtilis 168, S. aureus Newman, S. aureus DSM 
20231, S. pneumoniae D39, E. coli K-12, S. enterica serovar Typhimurium 
LT and P. aeruginosa PAO1 were downloaded from NCBI and 40 universal 
single-copy marker genes were extracted using the fetchMG script88. 
The 40 marker genes were selected from a previous publication for 
their ability to characterize prokaryotic species24, and they encode 
for ubiquitous functions similar to transfer RNA synthetases or are 
ribosomal proteins (EggNOG COGs: COG0012, COG0016, COG0018, 
COG0048, COG0049, COG0052, COG0080, COG0081, COG0085, 
COG0087, COG0088, COG0090, COG0091, COG0092, COG0093, 
COG0094, COG0096, COG0097, COG0098, COG0099, COG0100, 
COG0102, COG0103, COG0124, COG0172, COG0184, COG0185, 
COG0186, COG0197, COG0200, COG0201, COG0202, COG0215, 
COG0256, COG0495, COG0522, COG0525, COG0533, COG0541, 
COG0552). The concatenated sequences (all 6 genomes contained 
exactly 40 marker genes) were used to calculate percentage nucleotide 
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sequence identity with vsearch89 and to create a phylogenetic tree. To 
this end, a multiple sequence alignment was created using MUSCLE 
(v.3.8.1551)90 with default parameters. Finally, a maximum-likelihood 
phylogenetic tree was constructed using the online tool PhymL (v.3.0)91 
with default parameters. To evaluate interaction conservation, only 
the 46 drugs tested both in Gram-positive and Gram-negative species 
(Supplementary Table 2) were considered.

Evaluation of drug combination therapy using the  
G. mellonella infection model
Larvae of the greater wax moth (Galleria mellonella) at their final instar 
larval stage were used for evaluation of selected drug combinations 
to assess their efficacy against MRSA in vivo. Larvae were purchased 
from UK Waxworms and Mucha Terra. Stock solutions of cefepime, 
gentamicin, ibuprofen, teicoplanin and trimethoprim were freshly 
prepared as described for the in vitro experiments (Supplementary 
Tables 2 and 11), except for ticagrelor which was dissolved in 50 mM 
ethanol and diluted in distilled water to the required concentration. 
We opted for moderately virulent MRSA isolates in the larva model 
to be able to detect both the therapeutic effects of the antibiotic and 
possible synergies or antagonisms. Drug toxicity was preliminar-
ily assessed by injecting larvae with serial dilutions of single drugs  
and combinations. Concentrations at which no toxicity was observed 
(that is, ≥90% survival rate at 72 h post injection) were selected  
for further experiments. The MRSA strains were cultivated in brain 
heart infusion medium and collected at an OD600 of 0.5. Bacteria  
were washed twice with PBS and adjusted to an OD600, which 
corresponded to a lethal dose of ~75% (LD75) of the larvae after 24 h 
(~107 colony-forming units, CFUs). Ten larvae per condition were 
injected with 10 µl of the bacterial cell suspension or PBS (referred to 
as uninfected control) into the haemocoel via the last left proleg using 
Hamilton precision syringes. After 1 h, 10 µl of single drug combina-
tions or vehicle were injected into the last right proleg at the following 
drug concentrations: teicoplanin 1 µg ml−1, trimethoprim 250 µg ml−1, 
cefepime 0.025 µg ml−1, gentamicin 2 µg ml−1, ibuprofen 4 µg ml−1, 
ticagrelor 100 µg ml−1. The survival of Galleria larvae was monitored at 
the indicated timepoints by two observers independently. Each strain–
drug combination was evaluated in three independent experiments.

Time-kill experiments
Overnight cultures of S. aureus USA300 were diluted 1:100 in 20 ml  
of TSB medium, incubated for 1 h in flasks at 37 °C with continu-
ous shaking and diluted again 1:100 in 20 ml prewarmed TSB with  
ticagrelor (5 µg ml−1), gentamicin (1.5 µg ml−1), their combination  
or without drugs. Of serial 10-fold dilutions of cultures, 50 µl were 
plated on TSA plates every 30 min for 2 h. Cell viability was determined 
by counting CFUs after plates were incubated overnight in four inde-
pendent experiments.

2D-TPP
Bacterial cells were grown overnight at 37 °C in TSB and diluted  
1,000‐fold into 50 ml of fresh medium. Cultures were grown at 37 °C 
with shaking until OD578 ~ 0.6. Ticagrelor at the desired concentra-
tions (0.04, 0.16, 0.8 and 4 µg ml−1) or vehicle was added and cultures  
were incubated at 37 °C for 10 min. Cells were then pelleted at 4,000 × g 
for 5 min, washed with 10 ml PBS containing the drug at the appropri-
ate concentrations, resuspended in the same buffer to an OD578 of 10  
and aliquoted to a PCR plate. The plate was then exposed to a tempera-
ture gradient for 3 min in a PCR machine (Agilent SureCycler 8800), 
followed by 3 min at room temperature. Cells were lysed with lysis  
buffer (final concentration: 50 μg ml−1 lysostaphin, 0.8% NP‐40, 1x 
protease inhibitor (Roche), 250 U ml−1 benzonase and 1 mM MgCl2 
in PBS) for 20 min with shaking at room temperature, followed  
by five freeze–thaw cycles. Protein aggregates were then removed 
by centrifuging the plate at 2,000 × g and filtering the supernatant at 

500 × g through a 0.45 µm filter plate for 5 min at 4 °C. Protein diges-
tion, peptide labelling and MS-based proteomics were performed as 
previously described57.

2D-TPP data analysis
Data were pre-processed and normalized as previously described56. 
Raw MS files were processed using isobarQuant92. Peptide and pro-
tein identification were performed using Mascot 2.4 (Matrix Science) 
against the S. aureus Newman strain Uniprot FASTA (Proteome ID: 
UP000006386), modified to include known contaminants and the 
reversed protein sequences. Data analysis was performed in R using 
the package TPP2D93 as previously described94. Briefly, to identify 
stability changes, a null model allowing the soluble protein fraction to 
depend only on temperature, and an alternative model corresponding 
to a sigmoidal dose-response function for each temperature step were 
fitted to the data. For each protein, the residual sums of squares (RSS) 
of the two models were compared to obtain an F-statistic. FDR control 
was performed with a bootstrap procedure as previously described94. 
The abundance or thermal stability effect size was calculated for each 
protein as follows:

sign (κ) • √RSS0 − RSS1 (3)

where κ is the slope of the dose-response model fitted across tempera-
tures and drug concentrations, and RSS0 and RSS1 correspond to the 
residual sums of squares of the null (pEC50, i.e., the negative logarithm 
of the EC50, linearly scaling with temperature) and alternative models, 
respectively95.

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment
The S. aureus Newman proteome was annotated using KEGG96 (release 
100.0, 1 October 2021). Proteins with missing KEGG annotation  
were preliminarily removed. A one-sided Fisher’s exact test was  
then used to test the enrichment of input protein sets (hits corre-
sponding to FDR < 0.05) against the background (all detected proteins)  
for each term. The P values were corrected for multiple testing  
using the Benjamini–Hochberg procedure. The analysis was per-
formed in R using the packages KEGGREST97, EnrichmentBrowser98 
and clusterProfiler99.

Ticagrelor MIC upon purine depletion and supplementation
Ticagrelor (SML2482, Sigma-Aldrich) MIC was measured upon 
purine supplementation in S. aureus Newman as described above in 
SSM9PR-defined medium supplemented with 1% glucose75 in flat, 
clear-bottom 384-well plates with a final volume of 30 µl. Adenine 
and inosine were added at 20 and 100 µg ml−1, respectively, or in 
combination, both at 100 µg ml−1. Experiments were conducted in 
four biological replicates. A single-timepoint OD595 at the transition 
between exponential and stationary phase (13.5 h) was used to derive 
dose-response curves after normalization to the respective no-drug 
control for each condition.

Gentamicin and nisin MIC measurements in dltABCD and tagG 
knockdown mutants
For gentamicin and nisin MIC measurements, dltABCD and tagG 
IPTG-inducible knockdown mutants (Methods and Supplementary 
Table 1) were grown in 2-fold dilutions of nisin and gentamicin in the 
presence of erythromycin (5 µg ml−1) and chloramphenicol (10 µg ml−1) 
for plasmid maintenance. IPTG (500 µM) was used to achieve maximal 
dCas9 expression and thereby, knockdown of the targeted gene. The 
parent S. aureus Newman and the control strain MM76 (containing the 
two vectors with dCas9 and a non-targeting sgRNA) were included in 
all experiments and experiments were conducted in four biological 
replicates in 384-well plates. For each plate, we identified the timepoint 
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when the control strain MM76 (in the presence of erythromycin, 
chloramphenicol and IPTG at the above-mentioned concentrations) 
reached plateau, defined as the first timepoint before no increase was 
detected in log10(OD595) values of two consecutive timepoints. This 
timepoint was then used for all wells to derive dose-response curves 
after normalization to the respective no-drug control for each strain 
and biological replicate. Full growth curves annotated with the time-
point used for the dose-response curves and dose-response curves with 
all controls are included in Supplementary Information.

Determination of cell surface charge
The cytochrome c binding assay was conducted as previously 
described100. Briefly, overnight cultures of S. aureus Newman were 
diluted 1:1,000 in 20 ml of TSB medium and grown in flasks at 37 °C with 
continuous shaking until they reached OD578 of ~0.45. Samples were 
then incubated in the same conditions with or without 10 and 5 µg ml−1 
ticagrelor for 20 min. Samples were centrifuged at 10,000 g for 15 min 
at room temperature, washed twice with 20 mM MOPS buffer (pH 7) 
and concentrated to reach a final A578 of 10 in a 96-well plate (4483481, 
Applied Biosystems) containing cytochrome c (0.25 mg ml−1, 101467, 
MP Bio) or MOPS buffer (Fig. 5g). The plate was incubated in the dark 
at room temperature for 10 min. The cell pellets were collected and the 
amount of cytochrome c in the supernatant was determined spectro-
photometrically at OD410. Two-fold dilutions of cytochrome c in the 
same plate, starting from 256 µg ml−1, were used to obtain a standard 
curve onto which a linear model was fitted to calculate cytochrome c 
concentrations in the other wells. Results are expressed as unbound 
cytochrome c fraction in the supernatants. Experiments were con-
ducted in four biological replicates.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Drug combination data, including raw OD595 measurements and growth 
rates, are available on GitHub at https://github.com/vladchimescu/
comBact. An interactive interface to navigate the screen data is avail-
able at https://apps.embl.de/combact/. The mass spectrometry prot-
eomics data have been deposited to the ProteomeXchange Consortium 
via the PRIDE partner repository with the dataset identifier PXD036188. 
Source data are provided with this paper.

Code availability
The computational pipeline used to analyse the screen data is available 
on GitHub at https://github.com/vladchimescu/comBact.
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Extended Data Fig. 1 | Data analysis pipeline. Raw growth curves based on 
measurement of OD595nm over 14 h were processed as depicted. Background was 
removed by subtracting the OD595nm at the first time point (when this was not 
affected by artefacts) from all the following measurements (Methods). All curves 
within a plate were trimmed beyond the point that the no-drug controls within 
the plate (6 wells) entered stationary phase. The OD595nm measurement at this 
time-point was then normalised per plate by the robust mean (via smoothed 
Huber estimator71) of the no-drug control wells (6 per plate), resulting in fitness 
values (Methods) for 4 × 4 concentration checkerboards for each combination. 
Bliss (ε) scores were then calculated as follows: ε = fd1,d2 – fd1 * fd2, where fd1,d2 

corresponds to the observed fitness in the presence of the drug combination, 
and fd1 and fd2 correspond to the fitness in the presence of each single drug at the 
concentration in combination. Single-drug fitness values were estimated from 
drug-combination fitness by minimizing the sum of residuals squared of the 
Bliss independence model (Methods, [Eq. 2]). Interactions fulfil two criteria: (i) 
FDR < 0.05, after applying a resampling procedure (10,000 repetitions of a two-
sided Wilcoxon rank-sum test) to compare the ε distribution of each combination 
tested to the overall ε distribution; and (ii) a quartile-based effect size threshold 
examining the ε distribution of each combination, with synergies assigned if first 
quartile (green line) < −0.1 and antagonisms if third quartile > 0.1 (yellow line).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Quality control of the main interaction screen and 
assessment of fitness calculation methods. a-b, Donor (a) and recipient (b) 
drug fitness correlation between biological replicates. Pearson correlation 
(R = 0.84 and 0.89, respectively, p < 2.2e-16) is calculated between biological 
replicates, corresponding to different experimental runs/batches. P-values are 
obtained from a two-tailed one-sample t-test assessing the significance of the 
Pearson correlation (H0 ∶ {t = 0,R = 0}). c, Technical replicate correlation. 
Pearson correlation is calculated between replicate wells within the same plate 
for combination plates (where donor drugs were added) and control recipient 
plates (where no donor drug was added), for the four strains screened. Plates for 
which technical plate correlation was < 0.7 (red) were removed from the data.  
Box limits correspond to first and third quartiles, with the median marked, and 
whiskers to the most extreme data points up to 1.5 times the IQR. d, Performance 
of endpoint OD- and AUC-based measurements against the benchmarking set. 

Precision-recall curves are shown for q-value intervals increasing by 0.01. Curves 
highlighted correspond to the effect-size cut-off selected for the screen 
(interaction score = |0.1|). The significance cut-off (FDR < 0.05) is marked.  
e-g, Endpoint-OD- and AUC-based fitness values for all strains are highly 
correlated (e; Pearson correlation, R = 0.96, p < 2.2e-16, obtained from a 
two-tailed one-sample t-test assessing the significance of the Pearson 
correlation, n = 270189), whereas fitness values only based on growth rate 
correlated worse with either AUC- (f) or OD-based (g) fitness values (Pearson 
correlation, R = 0.68 and 0.75, respectively, p < 2.2e-16, obtained as in e, 
n = 270189). h-i, Comparison between estimated and experimentally measured 
single-drug fitness for donor (h) (Pearson correlation, R = 0.98, p < 2.2e-16, 
obtained as in e, n = 5208) and recipient (i) drugs (Pearson correlation, R = 0.96, 
p < 2.2e-16, obtained as in e, n = 1718).
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Extended Data Fig. 3 | Screen benchmarking. a, 161 drug combinations 
were selected for benchmarking, including hits and neutral interactions, and 
tested in extended concentration checkerboards (8 x 8). Fitness values and 
interaction scores were calculated as in the high-throughput screen (Methods). 
b, Combinations were selected to equally represent the four strains tested. 
c, Screen precision and recall against the benchmarking set are assessed for 
different effect-size thresholds. Precision-recall curves are shown for FDR 

intervals ranging from 0 to 1, increasing by 0.005. The chosen significance value 
for the screen (FDR < 0.05) is highlighted for the effect-size curve (|0.1|) providing 
best precision and recall. The addition of weak interactions (effect-size threshold 
|0.08|, Methods) increases slightly the recall. |efsize| = effect size. d, True-positive 
(TP), true-negative (TN), false-positive (FP) and false-negative (FN) abundance in 
the benchmarking set for optimal thresholds. As for most screens, conservative 
cutoffs for interactions minimize FPs with a cost on the number of FNs.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Interactions according to the Loewe model. a, High 
concordance when assessing interactions with the Loewe or Bliss model for the 
benchmarking set (8x8 checkerboards). Comparison results are shown only for 
drug pairs which both models could be reliably applied (n = 68; Methods, 
Supplementary Table 2). Interaction sign is shown as calculated according to the 
Bliss model (left), the Loewe model (middle), and the original screen (right).  
b, Pearson correlation between interaction scores calculated according to the 
Loewe and Bliss models for the 68 interactions for which both models could be 
reliably calculated (left) or the 69 for which Loewe was unreliable (right, see also 
Methods). Interactions are color-coded according to the Bliss model sign. 
P-values are obtained from a two-tailed one-sample t-test assessing the 
significance of the Pearson correlation (H0 ∶ {t = 0, R = 0}). c-d, Synergies (c) 
and antagonisms (d) identified by both the Loewe and Bliss models depicted as 
8x8 checkerboards with overlaid lines connecting points of equal growth 
inhibition, representing deviations from Loewe additivity (straight line). The 
fitness value (top, next to the strain) chosen for the overlaid lines, and the 

interaction effect size (top-right, above) as a fitness difference from additivity 
with its 95% confidence interval (top-right, below) according to the Loewe model, 
are indicated for each checkerboard. Each checkerboard is the average of at least 
two biological replicates, color-coded according to their Bliss-model sign.  
e, Relationship between interactions according to Loewe and Bliss models and 
screen benchmarking analysis according to Bliss model. TP, true positive; TN, 
true negative; FP, false positive; FN, false negative. f, Distribution of interaction 
effect size according to the Loewe (left) and Bliss (right) models for concordant 
or discordant interactions across the two models (using interactions for which 
Loewe can be reliably applied; n = 68). Interaction effect size according to Loewe 
model is estimated using the meanR statistic72 (Methods). Interaction effect size 
according to Bliss model is calculated as in the screen. Sample size of each set is 
indicated below each boxplot; a two-sided Welch’s t-test was used to determine 
significance – n.d. = not determined (not enough data points); n.s. = not 
significant. Box plots are depicted as in Extended data Fig. 2c.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Interaction conservation within Gram-positive species 
and across the Gram-positive/-negative divide. a, There is no significant 
difference between synergy and antagonism prevalence among conserved 
and non-conserved interactions, regardless of whether non-antibiotic drugs, 
whose targets are multiple or unknown, are considered (p = 0.592, χ2 test) or not 
(p = 0.327, χ2 test). Only interactions conserved across at least two species are 
considered (n = 81, Fig. 1c). b, Drugs targeting more conserved cellular processes 
tend to have more conserved interactions. Interaction conservation ratio for 
each drug class across species is calculated as the ratio between conserved 

and non-conserved interactions. c, Synergy and antagonism abundance of 
unique interactions shared by at least one Gram-negative and Gram-positive 
strain – edges are colour-coded according to whether interaction is synergistic 
(green) or antagonistic (yellow). d, Conserved interactions across at least one 
Gram-negative and Gram-positive strain. EC, E.coli; PA, P. aeruginosa; ST, S. 
Typhimurium; SA, S. aureus; SP, S. pneumoniae; BS, B. subtilis. e, Heatmap 
of conserved interactions across Gram-positive and Gram-negative bacteria. 
Interactions that are also conserved across multiple Gram-positive species are 
highlighted.
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Extended Data Fig. 6 | Drug interaction networks grouped according to drug class or targeted cellular processes for B. subtilis (a, c) and S. pneumoniae (b, d). 
Node size and colour and edge thickness are depicted as in Fig. 2a,b. i, number of interactions; d, drugs involved in the interactions (may differ from number of drugs 
tested in screen).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Drug interaction fingerprint recapitulates their 
functional and chemical classes. a, Drugs clustered according to their 
interactions with all other drugs in main screen. For each drug, quartile-based 
Bliss interaction scores (Methods) with all the other drugs (n = 65) in all four 
strains (x-axis) are considered; drug interaction fingerprints are then clustered 
according to their cosine similarity. All interaction cumulative scores are 
considered, regardless of their significance. Clusters enriched in drugs belonging 

to the same classes, targeting the same processes, and/or chemically similar, are 
highlighted. Negative, positive and neutral Bliss scores are depicted in shades of 
green, yellow, and in white, respectively. Combinations that were not tested in a 
given strain are in grey. b, Drug clustering according to their chemical structure 
similarity (Methods). In both panels, drugs are coloured according to their 
targeted cellular process (colour code as in Fig. 1).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Interactions between drug functional classes in Gram-
positive and Gram-negative species. a, Interactions between all drug classes 
(based on cellular target) in Gram-positive (a) and Gram-negative (b) species. 
The absolute count for each class-class interaction is indicated. PMF = proton-
motive force. Interactions between drugs tested in all strains are considered. 
Interactions conserved across different strains are considered as distinct 

occurrences. c-f, Heatmaps of interactions between protein synthesis inhibitors 
(c-d) and between cell-wall biosynthesis inhibitors (e-f). Bliss interaction scores 
are averaged across strains if the same interaction is found in more than one 
strain. In rare cases in which opposite interactions are found in two different 
strains (n = 4, c; n = 2, d; n = 2, e; n = 8, f), the strongest one is shown here.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Non-antibiotic drug screen and benchmarking. a, 
Schematic representation of non-antibiotic drug high-throughput screen. 44 
drugs belonging to different therapeutic classes (Supplementary Table 6) were 
tested in combination with 62 antibiotics at three concentrations in S. aureus 
DSM 20231. The resulting 2728 combinations were tested in broth microdilution 
(Methods). b, 37 drug combinations (Supplementary Table 6) were selected for 
benchmarking and tested in 8 x 8 concentration checkerboards (Methods). c, 
True-positive (TP), true-negative (TN), false-positive (FP) and false-negative (FN) 
abundance in the benchmarking set for optimal thresholds shown in d. d, Screen 
precision and recall against the benchmarking set are assessed for different 

effect-size thresholds. Precision-recall curves are shown for FDR intervals 
ranging from 0 to 1, increasing by 0.005. The chosen significance value for the 
screen (FDR < 0.05) is highlighted for the effect-size curve (|0.1|) providing best 
precision and recall. e-f, Interaction abundance for classes of non-antibiotics 
(e) and classes of antibiotics (f). Interactions detected in S. aureus DSM 20231 
between antibiotics classes and 52 non-antibiotics tested in both the original 
screen (n = 8) and the extended screen (n = 44) were considered (n = 245). 
PMF, Proton-motive force; CCB, calcium-channel blocker; PPI, proton-pump 
inhibitors; ARB, angiotensin-receptor blocker. Synergies are depicted in green, 
antagonisms in yellow.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Ticagrelor affects purine and teichoic acid 
biosynthesis. a, KEGG enrichment of hits at 5% FDR from whole-cell or lysate 
samples. Only sets yielding significant enrichments (whole-cell down- and 
up-regulation, and lysate stabilization) are shown (Supplementary Table 7). 
The first 15 terms in order of significance are shown. The dashed lines mark the 
enrichment significance cut-off (adjusted p-value < 0.05, one-sided Fisher’s 
exact test). The number of protein hits is annotated for each term. b, Thermal 
stability profiles of members of the purine biosynthesis pathway. Protein fold 
change is shown for each temperature and ticagrelor concentration. c, Chemical 
structure of ticagrelor. d, Growth (endpoint OD595nm after 11 h, corresponding 
to the beginning of stationary phase for the untreated control, Methods) 
measured in the presence of serial two-fold dilutions of ticagrelor in presence 
or absence of purines at the indicated concentration, normalised by no-drug 
controls, in S. aureus Newman in SSM9PR-defined medium (mean across four 
biological replicates; error bars represent standard error; Methods). e, Ticagrelor 
synergizes with nisin in vitro (median fitness across two biological replicates, 
results obtained as in Fig. 2d, Supplementary File). f, Thermal stability profiles 

of proteins involved in teichoic acid biosynthesis, represented as in b. g, Growth 
(endpoint OD595nm, corresponding to the beginning of stationary phase for the 
control strain MM76, Methods, Supplementary File) measured in the presence of 
serial two-fold dilutions of nisin, normalised by no-drug controls, in the S. aureus 
IPTG-inducible knockdown mutants dltABCD and tagG and their control strain 
MM76 (Methods), in presence or absence of 500 µM IPTG to induce maximal 
knockdown of the gene targeted (mean across four biological replicates; error 
bars represent standard error). All strains are grown in presence of 5 µg/ml 
erythromycin and 10 µg/ml chloramphenicol to maintain the CRISPRi plasmids76 
(Methods). For all controls and full growth curves see Supplementary File.  
h, Raw data (OD410nm) from Fig. 5g are shown alongside all controls (samples not 
incubated with 250 µg/ml cytochrome c, cytochrome c standard curve including 
buffer control). The linear fit for the cytochrome c standard curve used to infer 
the unbound cytochrome C fraction in supernatants is shown (n = 4, mean 
and standard error of the mean are shown. Data points represent reads (n = 4 
biological replicates for each condition, Methods).
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