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Systematic analysis of drug combinations
against Gram-positive bacteria
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Drug combinations can expand options for antibacterial therapies but

have not been systematically tested in Gram-positive species. We profiled
~-8,000 combinations of 65 antibacterial drugs against the model species
Bacillus subtilis and two prominent pathogens, Staphylococcus aureus and
Streptococcus pneumoniae. Thereby, we recapitulated previously known
druginteractions, but also identified ten times more novel interactions
inthe pathogen S. aureus, including 150 synergies. We showed that two
synergies were equally effective against multidrug-resistant S. aureus
clinicalisolatesinvitro andin vivo. Interactions were largely species-specific
and synergies were distinct from those of Gram-negative species, owing to
cell surface and drug uptake differences. We also tested 2,728 combinations
of 44 commonly prescribed non-antibiotic drugs with 62 drugs with
antibacterial activity against S. aureus and identified numerous antagonisms
that might compromise the efficacy of antimicrobial therapies. We identified
even more synergies and showed that the anti-aggregant ticagrelor
synergized with cationic antibiotics by modifying the surface charge of

S. aureus. All data can be browsed in aninteractive interface (https://apps.
embl.de/combact/).

Antibacterial agents have been used in combination for dec- anti-infective treatments (for example, empiric treatments of sepsis)".
ades for different purposes: to achieve synergy (for example, With antimicrobial resistance (AMR) posing a global threat to public
sulfamethoxazole-trimethoprim), to limit resistance (for example, health, which permeates all domains of modern medicine??, the use
combinations of beta-lactams and beta-lactamase inhibitors, or  of drug combinations to re-sensitize resistant strains has emerged as
antitubercular regimens) and/or to broaden the spectrum of actionof ~ a promising means to bypass the stagnant drug discovery pipeline*.
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Although afew antibacterial combinations are used in clinics, and
screens for approved compounds as adjuvants for antibiotics have
been increasingly conducted in the past decade®, the full poten-
tial of drug combinations for treating bacterial pathogens remains
underexplored. This is because the combinatorial space is vast and
drug interactions are rare and concentration-, drug-, time-, species-
and even strain-specific'?, making systematic testing necessary, yet
highly demanding. As a result, drug interactions have not yet been
systematically profiled in many clinically relevant bacterial species.
In addition, with the increase of polypharmacy™, antibiotics are
often prescribed in combination with other medications”. While
pharmacokineticinteractions between antibiotics and non-antibiotic
drugs are well-known for the host (for example, dependencies on
drug metabolism and excretion by the liver and the kidney)', they are
poorly characterized at the level of bacterial physiology.

Here we used an automated platform to systematically profile drug
interactions against three Gram-positive bacterial species: the patho-
gens Staphylococcus aureus and Streptococcus pneumoniae, two of
the most prominent antibiotic-resistant bacteria*’ and the model
organism Bacillus subtilis. Compared with previous studies”, this
vastly increased the number of drugs, concentrations and strains
tested. By probing allmain classes of antibiotics, we could relate inter-
action outcomes to bacterial structural features, cellular network
architecture, as well as drug target conservation. When comparing the
druginteraction networks to those of three Gram-negative pathogens
obtained with a similar setup”, we could highlight clear differences
driven by the distinct drug permeability barriers across this divide.
Moreover, we profiled the interactions of antibiotics with alarge panel
of non-antibiotic drugs in S. aureus to investigate the impact of com-
monly administered medications on antibiotic efficacy. Thereby,
we uncovered both strong synergies that proved effective against
multidrug-resistant clinical S. aureusisolates and widespread antago-
nisms that could compromise the efficacy of antibiotic treatments.

Results
Automated high-throughput testing of drug combinations
We profiled 1,891-2,070 drug combinations in a 4 x 4 dose matrix
(2-fold dilution gradient) in S. aureus, S. pneumoniae and B. subtilis
(Fig.1aand Supplementary Table1). For S. aureus, two strains (Newman
and DSM 20231) were probed to assess within-species conservation.
Thedrugpanel (n = 65) included antibiotics (n = 57) used against infec-
tions with Gram-positive bacteria, belonging to all main classes and
targeting different bacterial processes, and eight other bioactive mole-
cules, such as antifungals, drugs with human targets and food additives,
depicted as non-antibiotics (Fig. 1a and Supplementary Table 2).

We measured growth in a broth microdilution format in micro-
titre plates using optical density at 595 nm (ODs;) as areadout. Media

and shaking conditions were different for each species (Methods).
Drug concentrations were tailored after measuring minimal inhibi-
tory concentrations (MICs) and the drug concentrations causing 50%
growth inhibition (ICs,,) for each drug in the four strains, with the
highest concentration corresponding to the MIC in most cases, and
theintermediate and lowest concentration corresponding to halfand
a quarter of the highest concentration, respectively (Methods and
Supplementary Table 2). We derived fitness values in the presence of
single drugs and drug combinations, dividing single-timepoint ODsq;
values upon drug treatment by the corresponding values of no-drug
controls at the same timepoint. This timepoint was different for each
strainand correspondedto the entry to stationary phase in the absence
of drugs, allowing us to capture drug effects on both growth rate and
yield (Methods and Extended Data Fig. 1). We conducted all experi-
mentsin biological (thatis, different overnight cultures) and technical
(thatis, inoculated wellsin the same plate) duplicates, achieving high
replicate correlations (average Pearson correlation of 0.84-0.89 for
biological (Extended Data Fig. 2a,b) and 0.91 for technical replicates
(Extended DataFig. 2c)). Fitness based on single-timepoint ODs,s and
areaunder the growth-curve (AUC) led to very similar results, with the
former being more accurate (Extended DataFig.2d,e). In contrast, fit-
ness values based only on growth rate had a lower correlation to the
two other metrics, overestimating fitness for some drug treatments
(Extended Data Fig. 2f,g). For single-drug fitness, we used estimated
values derived from the combination experiments, as they were con-
cordant with experimental measurements and were derived from more
data points (Extended Data Fig. 2h,iand Methods). From the 4 x 4 con-
centration matrices of fitness values, we calculated interaction scores
using the Blissinteraction model” (Methods and Extended DataFig. 1).
Asingle effect-size value was derived from the distribution of interac-
tionscores for each drug pair (at least 72 scores, including all replicates
ofindividual concentration combinations). The first and third quartile
values of this distribution were taken as effect-size values for synergies
and antagonisms, respectively, with negative values corresponding to
synergies and positive values to antagonisms (Methods, Extended Data
Fig.1and Supplementary Table 3)". Allinteraction dataare available for
browsinginauser-friendly interface (https://apps.embl.de/combact/).

To calibrate hit scoring, as well as to assess the high-throughput
screen data quality, we benchmarked the screen data against a valida-
tion set of 161 combinations (2% of screened combinations), equally
representing the four strains probed. These combinations were tested
inthe same growth conditions as our high-throughput screen, but over
ahighly resolved dose space (8 x 8 matrix) of linearly spaced concentra-
tiongradients (Methods, Extended DataFig.3a,b and Supplementary
Table 4). The precision-recall curves were comparable to the previ-
ous Gram-negative screen”, with highest precision (0.87) and recall
(0.68) observed for a threshold on absolute effect size of >0.1and on

Fig.1|Drug-druginteractions are species-specificin Gram-positive
bacteria. a, Schematic representation of the high-throughput screen. Pairwise
combinations of 65 drugs belonging to several chemical classes and targeting
different cellular processes (Supplementary Table 2) were tested at three
concentrationsin S. aureus (two strains), B. subtilis and S. pneumoniae. For each
strain, 1,891-2,070 combinations were tested in broth microdilution in 384-well
plates, measuring ODs,; over time. Normalized fitness values were calculated
and used to obtain 4 x 4 checkerboards and assign interactions as synergistic,
antagonistic or neutral (Methods, Extended Data Fig. 1and Supplementary
Table 3). PMF, proton-motive force. b, Interaction abundance in each strain
separately and altogether. Synergy and antagonism frequencies were obtained
by dividing their absolute counts by the number of combinations for which

the probed fitness space allows detection of synergy (fitness upon combination
>0.1) or antagonism (fitness upon combination <0.9) discovery (Methods).
Total numbers of combinations tested (n) and detected interactions (i) are
shown for each set. ¢, Conservation of interactions among the four strains
tested. Allunique interactions detected in the screen (n = 725) were considered

to calculate intersection sets between strains. The total number of interactions
dependent on whether conserved or unique to each strain/species are shown.
Atotal of 81linteractions (i), involving 47 drugs (d), are conserved across species
(darkred). The total number of interactions in each strain is indicated as set
size (bottomright), adding up to 945 total interactions in all strains. d, Network
of conserved interactions between Gram-positive species. Drugs are grouped
accordingto their targeted cellular process (Supplementary Table 2).

Edge thickness is proportional to the number of drug-drug interactions for
each class—-class pair. Node size is proportional to the number of drugs in each
class. Only drugsinvolved in this interaction set are considered (d = 47). Nodes
are coloured according to the targeted cellular processes as in Fig. 1a. €, Drug
interaction conservation between species recapitulates phylogeny. Pearson
correlation between sequence identity (based on 40 conserved marker genes)
and druginteraction conservation rate is between pairs of species tested here
and previously”. The Pvalue was obtained from a two-tailed one-sample ¢-test
assessing the significance of the Pearson correlation (H,: {t =0, R = 0}).
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Benjamini-Hochbergadjusted Pvalue of <0.05 (resampling procedure
with10,000 repetitions for each combination tested, comparison with
resampled Bliss scores using Wilcoxon rank-sum test in each itera-
tion) (Methods and Extended Data Fig. 3¢c). The lower recall was linked
to our increased ability to detect mild interactions in the extended
8 x 8 concentration matrices of the benchmarking dataset and
is a direct trade-off for the high precision cut-off we set in the screen
to limit false positives. We were able to increase the recall to 0.72
by relaxing the effect-size thresholds for interactions found in
both S. aureus strains, using within-species conservation as an addi-
tional parameter to confirm interactions” (Methods, Extended Data
Fig.3c,d and Supplementary Table 3).

Although the Loewe interaction model*® was inadequate for the
main screen (Methods), the extended concentration space probed in
thebenchmarking set allowed us to assess interactions also using this
model. After excluding drug pairs for which the Loewe interaction
model could notbe used (n = 24; single drugs had no inhibitory effect)
orwas unreliable (n = 69; Methods and Supplementary Information),
we found that the two models mostly agreed in assessing interac-
tions (n=46/68, Extended Data Fig. 4a-d and Supplementary Infor-
mation). Importantly, the overall interaction scores of two models
were significantly correlated, even for drug pairs for which the Loewe
model was deemed unreliable (Extended Data Fig. 4b), and was con-
siderably higher than in previous reports**2. Only three interactions
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were captured just by the Loewe model (Supplementary Information),
none of which were detected in the screen (Extended Data Fig. 4e). In
contrast, out of the 19 interactions captured only by the Bliss model,
15 were concordant with the Loewe model in the sign of interaction
but were missed due to the arbitrary confidence threshold (Methods
and Supplementary Information). In agreement with arbitrary confi-
dence thresholds driving the residual disagreement between the two
models, concordantinteractions were overall stronger in both models
(Extended DataFig. 4f,g and Supplementary Table 5).

Druginteractions are rare and species-specific

Antagonisms and synergies were detected to be equally prevalent
acrossthe three species, accounting for ~12% of all combinations tested
(Fig.1b). Thisinteractionrate, corrected by our ability to detect syner-
gies or antagonisms based on the concentration space probed for each
combination (Methods), islower and less skewed towards antagonisms
as compared with Gram-negative species (15% altogether considering
E.coli,S. Typhimuriumand P. aeruginosa)". This could be due to techni-
cal (drug or strain selection biases, testing one strain in B. subtilis and
S.pneumoniae, which prevents the use of within-species conservation
to retrieve more interactions") or biological reasons (Gram-positive
bacteria having a lower drug permeability bottleneck than Gram-
negative bacteria and hence less antagonisms; see also Discussion).

Species-specificity of drug interactions has long been assumed®
and recently systematically demonstrated for Gram-negative spe-
cies, with30% of detected interactions shared between at least two of
the three species tested and 5% conserved in all three species (E. coli,
S. Typhimurium, P. aeruginosa)". In Gram-positive species, we
observedanevenlower conservationrate (Fig.1c), withonly 81 out of 725
uniqueinteractions (11.2%) conserved in at least two species (Fig. 1d).
Some29interactions were conservedinall three species (4%) (Supple-
mentary Table 3). Wereasoned that the lower interspecies conservation
in our screen could be driven by the strain and species selection in
the two screens. For Gram-negative species, two closely related
Enterobacteriaceae, E. coli and S. Typhimurium, exhibited the high-
est overlap of interactions", but the interaction conservation rate of
either of these two species with P. aeruginosa is similar to the
cross-species conservation rates we detected for Gram-positive
bacteria. Indeed, when we compared the interaction conservation
rateand genome sequence percentage identity (based on 40 universal
single-copy marker genes®*), the two were significantly correlated
(Methods and Fig.1e).

In contrast to Gram-negative bacteria", we could not observe a
significant enrichment for synergies among conserved interactions,
even after removing non-antibiotic drugs for whichintracellular targets
andtheir conservation are unknown (Extended DataFig. 5a). Conserved
synergies were mostly driven by drugs targeting the same essential
and highly conserved cellular processes, such as DNA biosynthesis
and translation (Fig. 1d and Extended Data Fig. 5b). Some of these
interactions, such as the synergy between macrolides and tetracyclines
or between quinolones of different generations, have been observed
before in Gram-negative species™*, pointing towards conserved
relationships between the targets of these compounds. Similarly, the
broad antagonism between drugs targeting DNA and protein synthe-
sis (Fig. 1d) is conserved in Gram-negative bacteria and is due to the
alleviation of protein-DNA imbalance after treatment with any of
the two antibiotics alone®. Overall, we detected 52 synergies and
66 antagonisms shared across the Gram-positive/-negative divide
(Extended Data Fig. 5c-e and Supplementary Table 6).

Numerous previously unknown drug synergies for S. aureus

We built separate interaction networks for each of the three species
tested and grouped drugs according to their class or cellular target
(Fig. 2a,b and Extended Data Fig. 6). Although individual drug-drug
interactions were rarely conserved (Fig. 1c), interactions between

drug classes or targeted processes were more coherentin all three
species. This functional concordance became even clearer when com-
paring drugs on the basis of all their interactions with other drugs.
Interaction-based clustering better recapitulated drug functional
classes (Extended Data Fig. 7a and Methods) than clustering on the
basis of chemical structures (Extended Data Fig. 7b and Methods),
suggesting that drug interactions capture more information on drug
mode of action than their chemical features.

Since S. aureus is the most relevant Gram-positive species with
respect to AMR-attributable deaths?, we systematically screened litera-
ture for reported drug interactions in this species. Out of 331 unique
interactions detected across the two S. aureus strains in our study, we
couldfind only 31that have been previously reported, to the best of our
knowledge (Fig. 2c and Supplementary Table 7). Some 55 further inter-
actionshavebeenreported in other bacterial species (Supplementary
Table 7). Even when excluding those, our dataset revealed 127 novel syn-
ergiesforS. aureus (and 118 antagonisms), a third of which (n =39) was
conserved inbothstrains. This confirms that the combinatorial space
isalargely unexplored reservoir forimproving antimicrobial efficacy.

Known interactions include many conserved synergies between
drugs with the same targets (Fig. 1d), such as synergies between
DNA biosynthesis inhibitors, protein synthesis inhibitors and
cell-wall-targeting antibiotics (Fig. 2a,b). Among these latter, we
confirmed the strong and previously reported synergy between two
widely used antibiotics for S. aureus, cefepime and teicoplanin®?®,
and validated it against several MRSA (methicillin-resistant S. aureus)
clinical isolates belonging to worldwide prevalent clonal complexes
and different infection sources (Supplementary Table 1), including
a strain resistant to the last-resort antibiotic tigecycline (Fig. 2d and
Supplementary Information). When we infected larvae of the greater
wax moth Galleria mellonella with this MRSA strain, the combination
protected the animals from succumbing to the infection in contrast
tosingle drugtreatments (Fig.2e), confirming that the synergy works
alsoinvivo.

Synergies between cell-wall-targeting drugs and translationinhibi-
tors are cornerstones of anti-infective therapy against Gram-positive
bacteria®~*2, We could recapitulate some of these synergies: forexample,
conserved synergies between bacitracin or oritavancin and amino-
glycosides in S. aureus. In line with current literature and concerns
on general effectiveness®°, we could not detect synergies between
beta-lactams and aminoglycosides in any of the three species tested.
Despite the prevalent assumption that these combinations are highly
effective, synergies occur only for specific species (or strains) and
depend on dosage, infection site and specific antimicrobial agents® ¢,
In contrast, fosfomycin strongly synergized with a diverse range of pro-
teinsynthesisinhibitors (Supplementary Table 7) and could present an
underexploited therapeutic resource against S. aureus (see Discussion).

Amongthe 300 previously unknowninteractions we detected, 19
out of 23 tested were further confirmed in the extended 8 x 8 checker-
board benchmarking assays (9 of which were inboth S. aureus strains)
(Supplementary Table 4). Interestingly, adjuvants, such as clavulanic
acid, or antibiotics used in clinics only in fixed-concentration com-
binations (trimethoprim and sulfonamides), exhibited a number of
previously unknown synergies with other drugs, unveiling a so-far
unexplored space for new combinations. Asanexample, we validated
the strong synergy of teicoplanin with trimethoprim against several
MRSA clinicalisolates in vitro (Fig. 2d and Supplementary Information)
andinvivoinaG. mellonellainfection model (Fig. 2e).

Target-specific synergies in Gram-positive/-negative species

Drugsbelonging to the same class or targeting the same cellular process
exhibited mainly synergisticinteractionsin all three species (Fig. 2a,b,
and Extended Data Figs. 6 and 8a). Indeed, synergies between drugs
targeting the same process were significantly enriched (Fig. 3a), in
agreement with previous data on Gram-negative bacteria". Targeting
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infection model (e). Teicoplanin (TEC) synergies with cefepime (FEP) and
trimethoprim (TMP) were validated against a tigecycline-resistant MRSA clinical
isolate (Supplementary Table 1) in 8 x 8 broth microdilution checkerboards

(d) and inthe G. mellonellainfection model (e). For checkerboards, the median
fitness (ODsosat 7.5 h normalized by no-drug controls) across two biological
replicates is shown (Supplementary Information). For G. mellonella experiments,
larvae were infected with the same MRSA isolate and treated with single drugs
or combinations. The percentage of surviving larvae after treatment and in

the untreated controls was monitored over time. Uninfected and untreated
(vehicle only) controls are shown. Drugs were tested in combination at the same
concentration indicated for each drug. Dataindicate mean + s.e. (n =10 for each
condition, three independent experiments).

different facets of the same cellular process can bypass the inbuilt
redundancy and robustness of biological processes”. Importantly,
the targeted cellular processes that were more prone to synergies
were distinct when comparing Gram-positive and Gram-negative
species (Extended Data Fig. 8a,b). Synergies between protein
synthesis inhibitors were specifically prevalent in Gram-positive spe-
cies, whereas Gram-negative species were dominated by synergies
between cell-wall inhibitors (Fig. 3b and Extended Data Fig. 8c-f).

Since the drugs between the two screens largely overlapped and their
targets are conserved in bacteria, we decided to further investigate
the underlying reason for this difference.

Protein synthesisinhibitors are mostly used against Gram-positive
bacteria, as they often cannot cross the outer membrane (OM) of
Gram-negative bacteria. We reasoned that in Gram-positive species
with no such permeability bottleneck, these drugs could synergize at
their target level, the ribosome, as previously shown by combinations
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Fig.3|Synergies between drugs targeting the same cellular process.

a, Drugs targeting the same biological process often interact synergistically,
whereas antagonisms are prevalent between drugs targeting different processes
(S. aureus:***P=9.9 x107, x* test; S. pneumoniae: ***P=4.7 x 1078, y* test).
Interaction numbers are indicated in white inside the bars. Non-antibiotic

drugs (n = 8) are excluded from this analysis, as their targeted processes

are heterogeneous or unknown. b, Gram-positive species exhibit frequent
synergistic interactions between protein synthesis inhibitors, whereas cell-wall
biosynthesis inhibitors predominantly synergize in Gram-negative species™.
Prevalence of interactions between protein synthesis inhibitors and between
cell-wall-biosynthesis inhibitors in Gram-negative and Gram-positive species is
indicated as in Fig. 3a (for protein synthesis inhibitors: ***P=1.8 x 10°%; for cell-
wall biosynthesis inhibitors: **P = 0.0038,  test). ¢, Protein synthesis inhibitors
can also synergize in Gram-negative species when the drug permeability
bottleneckis abolished. Synergistic combinations in Gram-positive species were
tested in 8 x 8 broth microdilution checkerboards in wild-type E. coliand in the
OM-defective E.coli [ptD4213 strain*’. Interaction score distributions for each

combination are significantly different between the two strains. Interactions
were assigned with the same criteria used in the screen, with synergies
corresponding to distributions with first quartile <-0.1. The first quartile value
isshowninall cases. CLR, clarithromycin; CLI, clindamycin; AZM, azithromycin;
LZD, linezolid; CHL, chloramphenicol (CLR + CLL:***P=2.2 x107'%; CLR + AZM:
wxp=53 %1073 CLR + CHL: ***P=2.2 x107"%; CLR + LZD: ***P=4.4 x 105,
two-sided Wilcoxon test; box limits correspond to first and third quartiles, with
the median marked, and whiskers extending to the most extreme data points up
to1.5times the interquartile range (IQR). d, Differences in beta-lactam synergy
prevalence between Gram-negative and Gram-positive species are related to
differences in drug target redundancy, that s, the penicillin-binding proteins
(PBPs) they encode in their genomes. Pearson correlation between number of
PBPs and the frequency of synergies between beta-lactams for each strain tested
(Supplementary Tables 8 and 9) and the P value of a two-sided permutation test
(100,000 permutations) are shown. Correlations and Pvalues when using one
strain per species are shown in Supplementary Table 10.

of genetic perturbations of translation®. By contrast, in Gram-negative
bacteria, the OM permeability bottleneck probably masks such
synergistic interactions and enriches for antagonisms, which are
often due to a decrease in drug intracellular concentration(s)". We
confirmed this hypothesis by using the OM-defective E.coli mutant
IptD4213, which is hyperpermeable to hydrophobic antibiotics and
detergents®**°. Many of the interactions between macrolides and
different classes of protein synthesis inhibitors became synergistic
in this E. coli mutant background (Fig. 3¢ and Supplementary Infor-
mation), demonstrating that drug uptake bottlenecks can change
antibiotic interactions.

Interactions between beta-lactams were prominent in Gram-
negative species, but rare in Gram-positive species (Extended Data
Fig. 8e,f). Beta-lactams have different affinities to penicillin-binding
proteins (PBPs)*.. Interestingly, the number and type of PBP are largely
different across bacterial species**?, leading us to hypothesize that
this redundancy (number of PBP paralogues) drives the observed
difference. Indeed, the number of synergies in each strain tested
correlated with the number of PBPsencoded in their genomes (Fig. 3d,
and Supplementary Tables 8 and 9). The higher the number of
PBPs, the higher the probability that combining beta-lactams with
different affinities to the various PBPs will lead to a synergistic
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bypassing of the redundancy. Although this trend is based on a lim-
ited number of strains, it holds even when considering only one strain
per species (Supplementary Table 10). While further studies are
needed, we hypothesize that this target redundancy drives the syn-
ergies between beta-lactam antibiotics and that the difference we
observed here between Gram-positive and -negative species probably
depends on the number of PBPs in the species tested.

Altogether, these results support the known concept that
drug interactions mirror key properties of cellular networks*’, such
astheir functional modularity and redundancy, and reflect fundamental
differencesin cellular architecture across the Gram-positive/-negative
divide.

Interactions between non-antibiotics and antibiotics

Our drug interaction screen included eight non-antibiotic drugs,
which exhibited a similar interaction frequency (11%) as antibiotics
(13%) (Fig. 4a). This motivated us to expand the panel of non-antibiotic
drugs tested and to explore the range of synergies and antagonisms
antibiotics exhibit with commonly used non-antibiotic medications
in S. aureus. We selected 44 drugs to include pharmaceuticals that
can be co-administered with antibiotics in S. aureus infections or
non-antibiotics with previously reported antibacterial activity against
S. aureus (Supplementary Table 11). Altogether, we covered 19 thera-
peutic classes (Extended Data Fig. 9a and Supplementary Table 11),
testing each drug in a range of three concentrations and against
the panel of 62 drugs of the initial screen (2,728 drug-drug interac-
tions, 4 x 4 dose matrix) in S. aureus DSM 20231. Concentrations were
selected to fall within therapeutic plasma concentrations**, except
for drugs with possible topical use, where higher concentrations
were used. Interactions were scored and benchmarked as in the main
screen (Methods, Supplementary Tables 12 and 13, and Extended
DataFig.9a-d).

We confidently detected 197 interactions in this extended
screen (Fig. 4b and Supplementary Table 12), an interaction fre-
quency that was lower (7.8%) than that of the initial screen or the
set of eight non-antibiotic drugs included therein (Fig. 4a). Since all
eight non-antibiotic drugs included in the main screen were selected
because they had reported antibacterial activity, we reasoned that
this could account for their higher interaction rate. Indeed, for
those drugs that had antibacterial activity on their own, the interaction
frequency was double (12% vs 5.9%) (Fig. 4¢). For all non-antibiotics
tested in this work (n=52), we detected 140 synergies and 105
antagonisms mainly with antibiotics (Fig. 4d). A small number of
interactions (22 synergies and 23 antagonisms) were found
between two non-antibiotics. Synergies offer a so-far unexploited
potential for drug repurposing, whereas antagonisms expose
risks of decreasing the efficacy of antimicrobial treatments.

The therapeutic classes that exhibited the highest number of
interactions were anti-inflammatory drugs (n = 7,4 of which were non-
steroidal anti-inflammatory drugs, or NSAIDs) and hormone analogues
(n=46) (Fig. 4d, Extended Data Fig. 9e and Supplementary Table 12),
whereas for antibiotics, protein synthesis inhibitors dominated

the interactions (Fig. 4d, Extended Data Fig. 9f and Supplementary
Table 12). Interestingly, selective oestrogen-receptor modulators,
such as the two triphenylethylene compounds tamoxifene and
clomifene, shared their synergies with cell-wall-acting drugs and their
antagonism with streptomycin. Hormone analogues engaged in several
synergies (n =11) and antagonisms (n = 17), suggesting an understudied
impact that such commonly used drugs and potentially their
natural counterparts, may have on the efficacy of antibacterial thera-
pies*. For the anti-inflammatory drugs, only four interactions with
acetylsalicylic acid were previously known: its synergy with cefuro-
xime*¢ and its antagonisms with ciprofloxacin, oxacillin and azithromy-
cin*, We validated the synergy between ibuprofen and gentamicin
also against MRSA clinical isolates, including a strain resistant to
linezolid (a last-resort antibiotic for MRSA), in vitro and in vivoin a
G. mellonella infection model (Fig. 4e,f and Supplementary
Information).

Ticagrelor has multiple effects on S. aureus physiology
Ticagrelor,apurine analogue anti-aggregant acting on the adenosine
P2Y,,receptor®’, had the highest number of interactions (n = 27) among
the 44 non-antibiotics tested (Fig. 4d). Ticagrelor has been shown to
improve clinical outcomes in patients with pneumonia and sepsis
caused by Gram-positive bacteria®*%. Supported by different degrees
of evidence, this effect can be because ticagrelor activates platelets
uponsystemicinfection®, protects them fromS. aureus toxin-mediated
damage’®, modulates their antibacterial properties®* and has direct
bactericidal activity on S. aureus at high concentrations®. However,
the mode of action of ticagrelor on S. aureus and its interactions with
other drugs are largely uncharacterized.

To gain insights into the mode of action of ticagrelor and its
interactions with other drugs, we used two-dimensional ther-
mal proteome profiling (2D-TPP)**~*% in both lysate and whole-cell
samples to investigate the direct and indirect effects of the drug,
respectively (Methods). We observed a destablization of several ATP-
and GTP-binding enzymes and transportersin both the whole celland
thelysate (Fig. 5a,b, Extended Data Fig.10a, and Supplementary Tables
14 and 15) and the induction of many purine biosynthesis enzymes
(PurC, PurD, PurE, PurF, PurH, PurK, PurL, PurM, PurN, PurQ) in live
cells (Fig. 5a and Extended Data Fig. 10a,b). This is in agreement with
ticagrelor being a purine analogue (Extended Data Fig. 10c). Further-
more, the MIC of ticagrelor increased upon supplementation of defined
media with adenosine, inosine or their combination (Extended Data
Fig. 10d), confirming that ticagrelor indeed interferes with purine
metabolismin S. aureus.

The clinically observed effects of ticagrelor during S. aureus
infection have not been linked so far to a direct effect of ticagrelor on
S. aureus virulence. We discovered a pervasive impact of ticagrelor
on S. aureus virulence determinants and regulators, many of which
were downregulated and others destabilized (Fig. 5a, Extended Data
Fig. 10a, and Supplementary Tables 14 and 15). In particular, we
observed destablization in lysate and downregulation in whole-
cell samples of key clotting factors secreted by S. aureus (CIfA, CIfB),

Fig. 4 |Interactions between non-antibiotic and antibiotic drugsin S. aureus.
a, Interactions of non-antibiotic drugs between themselves and antibiotics are
ascommon as interactions between two antibiotics. This motivated us to expand
the non-antibiotic panel tested. Synergy and antagonism frequencies were
calculated as in Fig. 1b. b, Interactions between non-antibiotics and antibiotics
inthe extended non-antibiotic screenin S. aureus DSM 20231. Additional non-
antibiotic drugs (44) were screened in combination with 62 drugs belonging to
the original drug panel, using the same experimental setup and the same data
analysis pipeline, in S. aureus DSM 20231 (Methods). Synergy and antagonism
frequencies were calculated asin Fig. 1b. ¢, Non-antibiotics with antibacterial
activity, for which the MIC was among tested concentrations (n =13), engage
inmore interactions than non-antibiotics for which thereis no MIC or

concentration was out of the tested range (n = 31). d, Allinteractions between
non-antibiotics and antibiotics detected in S. aureus DSM 20231 in the original
(i=87) and inthe extended (i = 197) non-antibiotic screen. PPI, proton pump
inhibitors; CCB, calcium channel blockers; EGCG, epigallocatechin gallate.
e,f, The non-steroidal anti-inflammatory ibuprofen (IBU) synergizes with
gentamicin (GEN) inan MRSA clinical isolate with additional resistance to
linezolid (Supplementary Table 1) in 8 x 8 broth microdilution checkerboards
(e) and in the G. mellonellainfection model (f). For checkerboards, the median
fitness (ODs,s at 7.5 h normalized by no-drug controls) across two biological
replicates is shown (Supplementary Information). For G. mellonella experiments,
results were obtained as in Fig. 2e. Data represent mean = s.e. (n =10 for each
condition, three independent experiments).
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Fig. 5| Ticagrelor alters S. aureus surface charge and potentiates cationic
antibiotics. a,b, Volcano plots highlighting abundance or stability hitsin
whole-cell (a) and lysate 2D-TPP (b) data. The x axis represents the effect size of
protein abundance or stability change’* (Methods) and the y axis corresponds to
the statistical significance (log,(F-statistic)). For visualization purposes, when
the F-statistic was O, it was transformed to 1. c-e, Ticagrelor synergizes with
gentamicinin vitro at growth inhibition (¢, median fitness across two biological
replicates, results obtained as in Fig. 2d, Supplementary Information), at killing
level (d, mean + s.e. of four biological replicates; drugs tested in combination
atsame concentration indicated for single drug treatments) and in vivo (e)
againstan MRSA isolate resistant to tigecycline (Supplementary Table 1). For

G. mellonella experiments, results were obtained as in Fig. 2e. Datarepresent
mean ts.e. (n =10 for each condition, three independent experiments). f, Growth
(endpoint ODss,,,, corresponding to the beginning of stationary phase for the

control strain MM76, Methods and Supplementary Information) measured in the
presence of serial 2-fold dilutions of gentamicin normalized by no-drug controls
intheS. aureusIPTG-inducible knockdown mutants dltABCD and tagG and their
control strain MM76 (Methods and Supplementary Table 1) in the presence or
absence of 500 uM IPTG to induce maximal knockdown of the gene targeted
(mean +s.e. across four biological replicates). All strains were grown in the
presence of 5 ug ml™ erythromycin and 10 pg ml™ chloramphenicol to maintain
the CRISPRi plasmids” (Methods). For all controls and full growth curves see
Supplementary Information. g, S. aureus Newman surface charge changes upon
exposure to ticagrelor. The fraction of positively charged unbound cytochrome
cwas measured after incubation of drug-treated and untreated samples
(Methods); n =4, mean +s.e.; atwo-sided Welch'’s t-test was used to determine
significance using the untreated samples as reference group. For all controls and
cytochrome cstandard curve, see Extended Data Fig. 10h.
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the coagulase Coa and the von Willebrand-factor binding protein
(VWBP) NWMN_0757 (ref. 59). These effects, evident at a clinically
relevant ticagrelor concentration®, offer an alternative explanation
for the beneficial effect of anti-aggregant therapy as an adjuvant in
S. aureus systemic infection.

Ticagrelor exhibited anumber of synergies and antagonisms with
antibiotics in MSSA (methicillin-sensitive S. aureus; Fig. 4d). Interest-
ingly, it broadly sensitized MSSA and MRSA to both cationic peptides
(nisin; Extended DataFig.10e) and antibiotics (aminoglycosides, such
asgentamicin; Fig. 5c and Supplementary Information). This potentia-
tion effect of aminoglycosides occurred at low ticagrelor concentra-
tionsand was also evident at the killing level (Fig. 5d) and in vivo, during
infection of G. mellonella (Fig. 5e). Since aminoglycosides need energy
to cross the bacterial membrane®, we wondered whether ticagrelor
acted atthatlevel, for example, by modulating the cell surface charge
and increasing aminoglycoside uptake. Consistent with this hypoth-
esis, two proteins involved in the lipoteichoic acid (LTA) p-alanylation®,
DItC and DItD, were destabilized in the TPP lysate data, and TagG, a
subunitof the cell wall teichoicacid (WTA) translocase, was destabilized
inthe whole-cellsample (Fig. 5a,b and Extended Data Fig. 10f). Disrup-
tion of teichoic acids and specifically, inactivation of dltA, dltB and
dltC have been shown to sensitize S. aureus to cationic compounds
because of an increase in the net negative charge of S. aureus
surface® **. We detected a decrease in the MIC of the aminogly-
coside gentamicin and the cationic antibiotic nisin in isopropyl
B-D-1-thiogalactopyranoside (IPTG)-inducible CRISPRi knockdown
mutants of both the dltABCD operon and tagG (Methods, Fig. 5f and
Extended Data Fig.10g). Ticagrelor treatment also increased the bind-
ing of positively charged cytochrome ctointactS. aureus cells (Fig. 5g
and Extended Data Fig. 10h). Thus, ticagrelor treatment impacts the
thermal stability and presumably the activity of proteins involved
in WTA flipping and LTA p-alanylation, leading to an increase in the
surface net negative charge of S. aureus. This leads to potentiation of
the uptake of cationic antibiotics, such as aminoglycosides and nisin.

Discussion
In this study, we systematically profiled drug combinations against
three Gram-positive bacterial species. We tested multiple compounds
from each of the main antibiotic classes used to treat infections caused
by Gram-positive pathogens, as well as neglected antibiotics, com-
monly used antibiotic adjuvants and promising non-antibiotic drugs
with reported antibacterial activity. Combinations were tested in a
dose-dependent manner and interactions were assessed in a quantita-
tive manner. We report a plethora of drug-drug interactions, most of
which have not beenreported before. Some identified synergies were
also effective against multiple MDR clinical isolates that we tested and
during infections in vivo. It should be noted that this does not mean
thatsuch synergies will be effective against all MDRisolates (as we show
here and have shown before", interactions can be strain-specific) and
combinations should be tested on the particular clinical isolate they
are targeted to before their use, as done in the clinic for single drugs.

The dataset generated here can form the basis for future experi-
ments to mechanistically dissect key interactions or assess potential
for clinical application. For example, some of the synergies and antago-
nismsidentified may guide future broad-spectrum empiric treatments,
whenantibiotic regimens are started without knowledge of the patho-
genintime-sensitive contexts (for example, sepsis). Fosfomycin syner-
giesthatarestrongand conserved across the Gram-positive/-negative
divide are good candidates, as they are more likely to be broadly effec-
tive. Fosfomycinisincreasingly used in clinics®, but rarely in combina-
tions. Toenable further use of thisresource, we made it browsableina
user-friendly interface.

We compared results with those we obtained previously using a
similar screen with three Gram-negative species”. The confidence and
depth level of these comparisons are high, since the two studies have

similar experimental and data analysis design, including the drugs
tested. As for Gram-negative species, we found that druginteractions
were largely species-specific for Gram-positive species, with syner-
gies tending to be more conserved than antagonisms and driven by
antibiotics sharing general cellular targets. In contrast, antagonisms
were more common between antibiotics of different cellular targets
andareless conserved, presumably because they are driven by interac-
tions at the level of drug concentration®. Overall, only asmall number
of interactions is conserved across Gram-positive and -negative spe-
cies. Such interactions are more likely to be driven by interactions
at the drug target and may thus hold true for strains and species not
tested here, providing a high-confidence set for future exploitation.
Differencesin cell surface organization (for example, the outer mem-
brane posing a permeability barrier for hydrophobic compounds) or
inthe degree of redundancy in cell-wall-building enzymes can explain
some of the strong synergies observed specifically in Gram-positive or
Gram-negative species. Our ability to replicate Gram-positive-specific
synergies in hyperpermeable Gram-negative bacteria, together with
previous evidence on the strong dependence of antagonisms on drug
permeability”, suggests that synergies rely more on drug targets and
antagonisms more on drug intracellular concentrations. The exact
degree to which this is true and whether this makes antagonisms less
conserved (drug cellular targets are more conserved than their trans-
port mechanisms) remain to be systematically assessed. In any case,
this is presumably the reason why antagonisms were more frequent
than synergies in Gram-negative species” but not here: synergies
based on drug target are easier to detect in Gram-positive bacteria,
and antagonisms are less common, as there are fewer permeability
bottlenecks to overcome.

We also assessed combinations of approved non-antibiotic
drugs with antibiotics in a dose-dependent manner in S. aureus.
Although the interaction potential was lower for drugs without anti-
bacterial activity, the vast majority of synergies that we detected were
previously unknown. Although non-antibiotic drugs have been
proposed as anti-infective adjuvants for decades*”, their in vivo
efficacy and molecular basis of action are only known for a few
examples®”'8556¢7 We focused on the anti-aggregant ticagrelor,
whose repurposing as an anti-infective adjuvant for Gram-positive
bacteria has been recently proposed®“®. While the in vivo benefit
of ticagrelor for systemic infections has been documented®*, we
identified 13 additional synergies with antibiotics in S. aureus, and
provided molecular insights into how ticagrelor affects S. aureus
physiology and potentiates positively charged antibiotics, such as
aminoglycosides or nisin.

Drugs are regularly combined to treat patients in the clinic, not
onlyinrationally designed therapeutic schemes, but also extemporar-
ilyin poly-treated patients™. Although known pharmacokineticinter-
actionsthat have been documented in humans are routinely avoided, it
isassumed thatinteractions between drugs inbacteria willnotimpact
anti-infective efficacy. We detected both synergies and antagonisms
between commonly administered non-antibiotic drugs and antibiotics
against S. aureus. These antagonisms could potentially decrease the
efficacy of antibiotic therapies and increase the probability of emer-
gence of resistance. Overall, itisimportant that druginteractions are
investigated not only at the level of growth inhibition, but also at the
levels of killing and clearing of an infection, asthe interaction outcome
might differ'.

It has recently been proposed that the attenuation of antibiotic
efficacy (antagonism) could be used to reduce the collateral damage of
antibiotics on commensal bacteria®. In our screen, loperamide had the
mostinteractions withantibiotics. Althoughits potential use as anadju-
vant for specific antibiotics and its antibacterial mode-of-action are
known’, we detected an additional broad antagonism with macrolides.
Loperamide and macrolides are often co-administered for travellers’
diarrhoea®®, which is caused by Gram-negative enteric pathogens. It
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is tempting to speculate that part of the beneficial effect of this com-
bination results from the protection of Gram-positive commensal gut
species from macrolide action.

Insummary, we present a systematic and quantitative account of
druginteractions againstimportant Gram-positive species. Thereby,
we discovered a number of potent synergistic combinations that are
effective against clinical MDR isolates. We also investigated mecha-
nisms of selected interactions. In an era where novel antibiotic devel-
opment faces technicaland economic hurdles, and new antimicrobial
strategies are urgently needed, we propose that systematic drug inter-
action profiling might offer alternative solutions to treat bacterial
infections. Extending the systematic testing of drug (antibiotic or
non-antibiotic) interactions to additional bacterial species willimprove
our understanding of druginteraction conservation and mechanisms,
and inform tailored treatments for bacterial infections.

Methods

Strains and growth conditions

All strains used in this study are listed in Supplementary Table 1.
B.subtilissubsp. subtilis 168 (ref. 70) was kindly provided by C. A. Gross,
all MRSA clinical isolates by S. Gottig, S. pneumoniae D39V by J.-W.
Veening and S. aureus USA300 by D. Lopez. Staphylococcus aureus
subsp. aureus Newman’>was purchased from NCTC (NCTC 8178) and
DSM 20231 (ref. 73) (ATCC 12600 T, NCTC 8532) from DSMZ.

For all experiments and unless otherwise specified, S. aureus
strains were grownin tryptic soy broth (TSB, 22092, Merck-Millipore),
B. subtilisin LB Lennox and S. pneumoniae in CY medium, as adapted
from ref. 74. All species were grown at 37 °C with vigorous shaking
(850 r.p.m.), except for S. pneumoniae, which was grown without shak-
ing. The ticagrelor purine supplementation experiments in S. aureus
Newman were conducted in SSM9PR-defined medium supplemented
with1% glucose”.

Inducible knockdown strain construction

A two-plasmid CRISPR interference system was used to knock down
gene expression of selected genes in S. aureus Newman’. In these
strains, dcaswas expressed from an IPTG-inducible promoter on plas-
mid pLOW, while single guide RNAs (sgRNAs) were expressed from a
constituted promoter on a plasmid derived from pCG248. The sgRNA
target sequences were TGTCTAACAGCAATGCTTTG for dltABCD and
AAACCATAATTTGCATAACA for tagG, and ATAGAGGATAGAATGGCGCC
for the non-target control MM76 (Supplementary Table 1).

MIC and IC,, determination

MICs and IC,,, were tested in all strains for the main screen (Sup-
plementary Tables 1and 2). Drugs were 2-fold serially diluted in 11
concentrations, and 32 no-drug control wells were included in each
plate. Experiments were conducted in flat, clear-bottom 384-well
plates (781271, Greiner BioOne), with a total volume of 30 pl for
S. aureus and B. subtilis and 55 pl for S. pneumoniae. Volumes were
optimized for each strain to achieve good dynamic range for growth
and minimize risk of cross-contamination between wells. Plates were
inoculated with a starting ODs,s of 0.01 from an overnight culture.
Allliquid handling was performed using a Biomek FX liquid handler
(Beckman Coulter). Plates were sealed with breathable membranes
andincubated at 37 °C. OD,,s was measured every 30 min for 14 h using
a Filtermax F5 multimode plate reader (Molecular Devices). OD;y
values were background subtracted (using the ODs,; value at the first
timepoint). The timepoint corresponding to entry into stationary
phaseinno-drug control wells was selected for each strain: 8 hfor both
S. aureus strains, 5.5 h for B. subtilis and 3.7 h for S. pneumoniae. For
each drug concentration and strain, the ODy; value at this timepoint
was then divided by the robust mean” of the corresponding values
of the no-drug controls for each strain. For each drug, IC,,, were then
calculated after fitting a four-parameter log-logistic model using the

R package drm’®. The MIC was considered as the lowest concentra-
tion at which growth was inhibited. Experiments were conducted in
biological duplicates.

High-throughput screen of drug combinations
Sixty-two drugs, hereafter designated as recipients, were arrayed in
flat, clear-bottom 384-well plates in three 2-fold serial dilutions and
2technical replicates (up to 2 recipient drugs were removed from the
data of the different strains for quality control reasons). Concentra-
tions were selected according to MICs, with the highest concentration
correspondingto the MIC, and the intermediate and lowest concentra-
tion corresponding to half and a quarter of MIC, respectively (Sup-
plementary Table 2). Plates were kept frozen and were defrosted upon
eachexperimental run, whenthe same 62 drugs and in the same three
concentrations were added as donor drugs (one drug at one concentra-
tion for eachrecipient plate). A few drugs were screened only as donors:
the combinations co-amoxiclav and cotrimoxazole in B. subtilis and
S.aureus DSM 20231; co-amoxiclav, clavulanicacid, pseudomonicacid
and cefuroxime in S. aureus Newman. All donor drugs were tested in
two biological replicates. Control wells were included in each plate
(6 no-drug wells, 3 plain medium wells and 3 wells containing only the
donordrug). After the addition of donor drugs, plates were inoculated
with cells. Handling, inoculation, growth conditions, plate incubation
and OD;,s measurements were performed as in MIC determination.
For the adjuvant screen, 44 non-antibiotic drugs (Supplemen-
tary Table 11) were tested against the same 62 recipient drugs of the
main screen for S. aureus DSM 20231. Antibiotics were tested at the
same concentrations asin the main screen. Non-antibiotics concentra-
tions were selected to fall within therapeutic plasma concentrations**
(Supplementary Table 11).

Data analysis

Data analysis was adapted fromref. 11. Growth curves were processed
as described in Extended Data Fig. 1: the background was subtracted
from all ODs,s measurements on a well-by-well basis using the first
measurement obtained. Abnormal spikes in OD values of the first three
timepoints occurred in S. pneumoniae in a small fraction of wells due
tobubble formationinthe medium or plate condensation. These early
local peaksin OD curves were identified and replaced with the median
of OD values (of corresponding timepoints) estimated from the wells
not affected by such artefacts within the same plate. When more than
onein the first four timepoints was affected, those wells were identi-
fied as non-monotonically increasing ODs,s values across the first
four timepoints, and their background was estimated as the median
first-timepoint ODs,; of artefact-free wells (monotonically increasing
across the first four timepoints).

A single-timepoint ODsy value was selected at the transition
between exponential and stationary phase as in the IC;, determina-
tion and used to derive fitness measurements that captured effects
both on growth rate and maximum yield. OD-based endpoints
correlated well with AUC-based fitness measurements (Pearson
correlation 0.96) (Extended Data Fig. 2e), whereas fitness based on
growth rate alone (calculated by fitting a Baranyi model”) correlated
worse with either AUC- or endpoint OD-based measurements (Pearson
correlation 0.68 and 0.75, respectively) (Extended Data Fig. 2f,g). We
then verified which measurement between AUC and endpoint OD was
mostaccurate as compared to the screenbenchmarking and ultimately
chose the latter, which led to higher precision and recall (Extended
DataFig. 2d).

This value was then divided, per plate, by the robust mean’” of the
6 no-drug controls (no-drug control hereafter), obtaining 3 fitness
measures for each drug concentration pair: f;, fitness upon exposure
to drug1; f;, fitness upon exposure to drug 2; and f; ,, fitness in pres-
ence of drug 1+ drug 2. On the basis of these values, further quality
control was again performed, correcting fitness increase artefacts
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(maximum fitness was set to 1) and removing plates with poor tech-
nical replicate correlation (Pearson correlation <0.7). f,, f; and f ,
were used to calculate interaction scores using the Bliss model”. The
choice of thismodel over other available quantification methods was
driven by the following considerations: (1) the three measurements
obtained for drug dose responses are not sufficient for accurate quanti-
fication usingalternative models (for example, the Loewe model®*°) and
(2) the Bliss model can more accurately account for single drugs with
no effect (such as most non-antibiotic drugs included in the screen).
Bliss (¢) scores were calculated as follows:

€ = faa2 —fa X fa2 1

wheref,4, corresponds to the observed fitness in the presence of the
drug combination, and f;; and f;, correspond to the fitness in the pres-
enceof druglanddrug?2, respectively.

Assuming that most drugs interact neutrally, single drug fitness
for both donor and recipient drugs can also be inferred from combi-
nation fitness, by minimizing the sum of squared residuals of the Bliss
independence model as follows:

{far.fa2} = argmin dz;'z ”fdl,dz —fa ><fa|2||2 )
L

Experimentally measured and estimated fitness values were very
similar for donor (Extended Data Fig. 2h) and recipient (Extended
Data Fig. 2i) drugs, and we used the estimated measures since those
were more robust to noise; experimental controls were limited for
donor drugs (3 single-drug control wells) and sometimes biased for
recipient drugs, asasingle problematic platein the batch was sufficient
to generate noise.

When no datawere discarded upon quality control, the number of
Bliss scores obtained for each combination was 72, composed of 3 x 3
(in the 2D concentration space) x 2 technical replicates x 2 biological
replicates x 2 replicates with drugs tested as donor or recipient. Hit
calling was performed using a resampling procedure with 10,000
repetitions for each combination tested, where the € distribution
for each combination was compared with the resampled Bliss scores
using Wilcoxon rank-sum test in each iteration™. Hits correspond to
combinations with False Discovery Rate (FDR) < 0.05.

Asbefore", we coupled this significance threshold to an effect-size
threshold. For each combination, we defined acumulative score using
the quartiles of its distribution of e scores. We tested the performance
of different thresholdsin precision and recall upon screenbenchmark-
ing, and identified |0.1| as the best threshold, with precision of 0.87
and recall of 0.68 (Extended Data Fig. 3¢,d). Accordingly, synergies
were assigned if the first quartile of the £ distribution was <-0.1and
antagonisms if the third quartile exceeded 0.1. We could increase the
screen recall by leveraging the presence of two strains belonging to
the same species in the case of S. aureus, as previously described for
Gram-negative species”. We defined an additional set of hits (weak
and conserved), meeting significance and effect-size thresholds in
one strain, but with lower effect size in the other strain. A cut-off of
|0.08] allowed us to maintain the same precision and increase the
recallto 0.72.

Data analysis was implemented in R (v.4.1.2)® and RStudio
(v.2021.09.1)*, and networks were created with Cytoscape (v.3.8.2)%.

Interaction detection calculation

Interaction detection rates were calculated by dividing the number of
detectedinteractions by the number of combinations for whichinter-
actions could be observed according to the mapped fitness space™.
Synergies could not be observed when the expected fitness of a drug
combination (defined as the product of single-drug fitness values
in equation (1)) was lower than 0.1, while antagonisms could not be

detected for expected combination fitness higher than 0.9 (2.1 and
3.3% of the 7986 combinations tested, respectively).

Screenbenchmarkingand 8 x 8 checkerboard assays

Combinations were tested in the same experimental conditions as in
thescreen, butathigher concentration resolution. Drugs were diluted
in 8 concentrations spanning linearly spaced gradients to assemble
8 x 8 checkerboards for each combination tested (the highest con-
centration used can be found in Supplementary Table 4). All experi-
ments were conducted inatleast 2 technical and 2 biological replicates.
Datawere analysed with the same pipeline asin the screen (Methods).
For this concentration-resolved set, we also calculated interactions
according to the Loewe additivity model using the BIGL R package®*.
Using fitness (relative growth) as aresponse variable, dose responses
of monotherapies were fit with a four-parameter logistic regression,
with upper and lower boundaries set at 1and O, respectively. The null
model for the expected response surface was the alternative Loewe
generalization®’. The prediction covariance matrix was estimated
using 200 bootstrap iterations, and the interaction sign and signifi-
cance were assessed for each concentration combination using the
average deviation from the null model as previously described®. The
errors for drug combination effects were assumed to be normally
distributed. For 24 combinations where one of the drugs had no effect,
Loewe could notbe applied. Combinations for which the Loewe model
couldbe applied but was unreliable were removed from later analyses.
The model was deemed unreliable when: (1) an interaction effect was
estimated outside of its confidence interval (due to bias in the Shannon
entropy estimate®) and (2) the majority of individual dose combina-
tions deviating from the Loewe null hypothesis disagreed with the
direction of an overallglobal deviation. A separate analysis was carried
out to visualize Loewe isoboles. At each concentration of one of the
drugsincombination, anindividual four-parameter log-logistic model
was fit to the dose response of the other drug. To visualize the lines of
additive (according to Loewe’s model) and experimentally observed
effects, for each combination, an appropriate magnitude of drug effect
was chosenaccordingto therelevant effect sizes (that is, using lower or
higher fitness values for stronger or weaker drug effects, respectively)
(Extended DataFig. 4c,d and Supplementary Information).

Drug clustering

Drug-druginteraction profiles were clustered according to the cosine
similarity of quartile-based Bliss interaction scores of each drug pairin
each strain. Scores from all interactions were considered, regardless
of their statistical significance. For the clustering based on chemical
structures, drugs were clustered according to their Tanimoto similar-
ity* using 1,024-bit ECFP4 fingerprints®.

Phylogeny analysis

To calculate the percentage sequence identity between bacterial spe-
cies, the genomes of B. subtilis 168, S. aureus Newman, S. aureus DSM
20231, 8. pneumoniae D39, E. coliK-12, S. enterica serovar Typhimurium
LT and P. aeruginosa PAO1were downloaded from NCBIand 40 universal
single-copy marker genes were extracted using the fetchMG script®.
The 40 marker genes were selected from a previous publication for
their ability to characterize prokaryotic species*, and they encode
for ubiquitous functions similar to transfer RNA synthetases or are
ribosomal proteins (EggNOG COGs: COG0012, COG0016, COGO0O018,
C0OG0048, C0OG0049, COG0052, COG0080, COG0081, COGOO08S,
COG0087, COG0088, COG0090, COG0091, COG0092, COG0093,
COG0094, COG0096, COG0O097, COGO098, COG0099, COGO100,
C0OGO0102, COGO103, COGO0124, COGO172, COGO184, COGO185,
COGO0186, COGO197, COG0200, COG0201, COG0202, COGO215,
C0G0256, COG0495, COG0522, COGO525, COG0533, COGO0541,
COGO0552). The concatenated sequences (all 6 genomes contained
exactly 40 marker genes) were used to calculate percentage nucleotide
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sequence identity with vsearch® and to create a phylogenetic tree. To
this end, a multiple sequence alignment was created using MUSCLE
(v.3.8.1551)°° with default parameters. Finally, a maximum-likelihood
phylogenetic tree was constructed using the online tool PhymL (v.3.0)*!
with default parameters. To evaluate interaction conservation, only
the 46 drugstested bothin Gram-positive and Gram-negative species
(Supplementary Table 2) were considered.

Evaluation of drug combination therapy using the

G. mellonellainfection model

Larvae of the greater wax moth (Galleria mellonella) at their final instar
larval stage were used for evaluation of selected drug combinations
to assess their efficacy against MRSA in vivo. Larvae were purchased
from UK Waxworms and Mucha Terra. Stock solutions of cefepime,
gentamicin, ibuprofen, teicoplanin and trimethoprim were freshly
prepared as described for the in vitro experiments (Supplementary
Tables 2 and 11), except for ticagrelor which was dissolved in 50 mM
ethanol and diluted in distilled water to the required concentration.
We opted for moderately virulent MRSA isolates in the larva model
to be able to detect both the therapeutic effects of the antibiotic and
possible synergies or antagonisms. Drug toxicity was preliminar-
ily assessed by injecting larvae with serial dilutions of single drugs
and combinations. Concentrations at which no toxicity was observed
(that is, 290% survival rate at 72 h post injection) were selected
for further experiments. The MRSA strains were cultivated in brain
heart infusion medium and collected at an OD,,, of 0.5. Bacteria
were washed twice with PBS and adjusted to an OD,, which
corresponded to a lethal dose of -75% (LD5s) of the larvae after 24 h
(-107 colony-forming units, CFUs). Ten larvae per condition were
injected with 10 pl of the bacterial cell suspension or PBS (referred to
asuninfected control) into the haemocoel via the last left proleg using
Hamilton precision syringes. After 1 h, 10 pl of single drug combina-
tions or vehicle wereinjected into the last right proleg at the following
drug concentrations: teicoplanin1 pg ml™, trimethoprim 250 pg ml™,
cefepime 0.025 pg ml™, gentamicin 2 ug ml™, ibuprofen 4 pg mi?,
ticagrelor 100 pg ml™. The survival of Gallerialarvae was monitored at
theindicated timepoints by two observersindependently. Each strain-
drug combination was evaluated in three independent experiments.

Time-kill experiments

Overnight cultures of S. aureus USA300 were diluted 1:100 in 20 ml
of TSB medium, incubated for 1h in flasks at 37 °C with continu-
ous shaking and diluted again 1:100 in 20 ml prewarmed TSB with
ticagrelor (5 pg ml™?), gentamicin (1.5 pg ml™?), their combination
or without drugs. Of serial 10-fold dilutions of cultures, 50 pl were
plated on TSA plates every 30 min for 2 h. Cell viability was determined
by counting CFUs after plates were incubated overnight in four inde-
pendent experiments.

2D-TPP

Bacterial cells were grown overnight at 37 °C in TSB and diluted
1,000-fold into 50 ml of fresh medium. Cultures were grown at 37 °C
with shaking until OD;,5 ~ 0.6. Ticagrelor at the desired concentra-
tions (0.04, 0.16, 0.8 and 4 pug ml™) or vehicle was added and cultures
were incubated at 37 °Cfor 10 min. Cells were then pelleted at 4,000 x g
for 5 min, washed with 10 ml PBS containing the drug at the appropri-
ate concentrations, resuspended in the same buffer to an ODg,5 of 10
and aliquoted to a PCR plate. The plate was then exposed to atempera-
ture gradient for 3 min in a PCR machine (Agilent SureCycler 8800),
followed by 3 min at room temperature. Cells were lysed with lysis
buffer (final concentration: 50 pg ml™ lysostaphin, 0.8% NP-40, 1x
protease inhibitor (Roche), 250 U ml™ benzonase and 1 mM MgCl,
in PBS) for 20 min with shaking at room temperature, followed
by five freeze-thaw cycles. Protein aggregates were then removed
by centrifuging the plate at 2,000 x g and filtering the supernatant at

500 x g through a 0.45 pm filter plate for 5 min at 4 °C. Protein diges-
tion, peptide labelling and MS-based proteomics were performed as
previously described”.

2D-TPP data analysis

Data were pre-processed and normalized as previously described*.
Raw MS files were processed using isobarQuant®*. Peptide and pro-
teinidentification were performed using Mascot 2.4 (Matrix Science)
against the S. aureus Newman strain Uniprot FASTA (Proteome ID:
UP000006386), modified to include known contaminants and the
reversed protein sequences. Data analysis was performed in R using
the package TPP2D® as previously described’. Briefly, to identify
stability changes, anullmodel allowing the soluble protein fraction to
depend only ontemperature, and an alternative model corresponding
toasigmoidal dose-response function for each temperature step were
fitted tothe data. For each protein, the residual sums of squares (RSS)
of the two models were compared to obtain an F-statistic. FDR control
was performed withabootstrap procedure as previously described®.
The abundance or thermal stability effect size was calculated for each

protein as follows:
sign (k) + \/ RSS® — RSS! 6)

where kis the slope of the dose-response model fitted across tempera-
tures and drug concentrations, and RSS° and RSS' correspond to the
residual sums of squares of the null (pEC50, i.e., the negative logarithm
ofthe EC50, linearly scaling with temperature) and alternative models,
respectively®.

Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment

TheS. aureus Newman proteome was annotated using KEGG’® (release
100.0, 1 October 2021). Proteins with missing KEGG annotation
were preliminarily removed. A one-sided Fisher’s exact test was
then used to test the enrichment of input protein sets (hits corre-
spondingto FDR < 0.05) against the background (all detected proteins)
for each term. The P values were corrected for multiple testing
using the Benjamini-Hochberg procedure. The analysis was per-
formed in R using the packages KEGGREST”, EnrichmentBrowser®®
and clusterProfiler®.

Ticagrelor MIC upon purine depletion and supplementation
Ticagrelor (SML2482, Sigma-Aldrich) MIC was measured upon
purine supplementation in S. aureus Newman as described above in
SSM9PR-defined medium supplemented with 1% glucose” in flat,
clear-bottom 384-well plates with a final volume of 30 pl. Adenine
and inosine were added at 20 and 100 pg ml™, respectively, or in
combination, both at 100 pg ml™. Experiments were conducted in
four biological replicates. A single-timepoint ODs; at the transition
between exponential and stationary phase (13.5 h) was used to derive
dose-response curves after normalization to the respective no-drug
control for each condition.

Gentamicin and nisin MIC measurements in dltABCD and tagG
knockdown mutants

For gentamicin and nisin MIC measurements, dl{tABCD and tagG
IPTG-inducible knockdown mutants (Methods and Supplementary
Table 1) were grown in 2-fold dilutions of nisin and gentamicin in the
presence of erythromycin (5 pg mI™) and chloramphenicol (10 pg mi™)
for plasmid maintenance. IPTG (500 puM) was used to achieve maximal
dCas9 expression and thereby, knockdown of the targeted gene. The
parentS. aureus Newman and the control strain MM76 (containing the
two vectors with dCas9 and a non-targeting sgRNA) were included in
all experiments and experiments were conducted in four biological
replicatesin384-well plates. For each plate, we identified the timepoint
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when the control strain MM76 (in the presence of erythromycin,
chloramphenicol and IPTG at the above-mentioned concentrations)
reached plateau, defined as the first timepoint before no increase was
detected in log;,(ODs,s) values of two consecutive timepoints. This
timepoint was then used for all wells to derive dose-response curves
after normalization to the respective no-drug control for each strain
and biological replicate. Full growth curves annotated with the time-
point used for the dose-response curves and dose-response curves with
all controls are included in Supplementary Information.

Determination of cell surface charge

The cytochrome ¢ binding assay was conducted as previously
described'’°. Briefly, overnight cultures of S. aureus Newman were
diluted1:1,000in 20 ml of TSB medium and grownin flasks at 37 °C with
continuous shaking until they reached OD;,5 of ~0.45. Samples were
thenincubated in the same conditions with or without 10 and 5 pg miI™
ticagrelor for 20 min. Samples were centrifuged at 10,000 gfor 15 min
at room temperature, washed twice with 20 mM MOPS buffer (pH 7)
and concentrated toreach afinal As;s0f 10in a 96-well plate (4483481,
Applied Biosystems) containing cytochrome c (0.25 mg ml™, 101467,
MP Bio) or MOPS buffer (Fig. 5g). The plate was incubated in the dark
atroomtemperature for 10 min. The cell pellets were collected and the
amount of cytochrome cin the supernatant was determined spectro-
photometrically at OD,,,. Two-fold dilutions of cytochrome c in the
same plate, starting from 256 pg ml™, were used to obtain a standard
curve onto which a linear model was fitted to calculate cytochrome ¢
concentrations in the other wells. Results are expressed as unbound
cytochrome c fraction in the supernatants. Experiments were con-
ductedin four biological replicates.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Drug combinationdata, including raw OD,; measurements and growth
rates, are available on GitHub at https://github.com/vladchimescu/
comBact. Aninteractive interface to navigate the screen datais avail-
ableathttps://apps.embl.de/combact/. The mass spectrometry prot-
eomics data have been deposited to the ProteomeXchange Consortium
viathe PRIDE partner repository with the datasetidentifier PXD036188.
Source data are provided with this paper.

Code availability
The computational pipeline used to analyse the screen datais available
on GitHub at https://github.com/vladchimescu/comBact.
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Extended Data Fig. 1| Data analysis pipeline. Raw growth curves based on
measurement of ODs,s,,, over 14 h were processed as depicted. Background was
removed by subtracting the ODs,s,,, at the first time point (when this was not
affected by artefacts) from all the following measurements (Methods). All curves
within a plate were trimmed beyond the point that the no-drug controls within
the plate (6 wells) entered stationary phase. The ODsys,,, measurement at this
time-point was then normalised per plate by the robust mean (via smoothed
Huber estimator™) of the no-drug control wells (6 per plate), resulting in fitness
values (Methods) for 4 x 4 concentration checkerboards for each combination.
Bliss (€) scores were then calculated as follows: € = £y, 4, = fa * fi Where fy 4

corresponds to the observed fitness in the presence of the drug combination,
andf;; andf;, correspond to the fitness in the presence of each single drug at the
concentration in combination. Single-drug fitness values were estimated from
drug-combination fitness by minimizing the sum of residuals squared of the
Blissindependence model (Methods, [Eq. 2]). Interactions fulfil two criteria: (i)
FDR < 0.05, after applying aresampling procedure (10,000 repetitions of a two-
sided Wilcoxon rank-sum test) to compare the € distribution of each combination
tested to the overall e distribution; and (ii) a quartile-based effect size threshold
examining the e distribution of each combination, with synergies assigned if first
quartile (greenline) < -0.1and antagonisms if third quartile > 0.1 (yellow line).
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Extended Data Fig. 2| Quality control of the main interaction screenand
assessment of fitness calculation methods. a-b, Donor (a) and recipient (b)
drug fitness correlation between biological replicates. Pearson correlation
(R=0.84and 0.89, respectively, p < 2.2e-16) is calculated between biological
replicates, corresponding to different experimental runs/batches. P-values are
obtained from a two-tailed one-sample ¢-test assessing the significance of the
Pearson correlation (Hy : {t = 0,R = 0}). ¢, Technical replicate correlation.
Pearson correlation is calculated between replicate wells within the same plate
for combination plates (where donor drugs were added) and control recipient
plates (where no donor drug was added), for the four strains screened. Plates for
which technical plate correlation was < 0.7 (red) were removed from the data.
Box limits correspond to first and third quartiles, with the median marked, and
whiskers to the most extreme data points up to 1.5 times the IQR. d, Performance
of endpoint OD- and AUC-based measurements against the benchmarking set.

Precision-recall curves are shown for g-value intervals increasing by 0.01. Curves
highlighted correspond to the effect-size cut-off selected for the screen
(interaction score =|0.1|). The significance cut-off (FDR < 0.05) is marked.

e-g, Endpoint-OD- and AUC-based fitness values for all strains are highly
correlated (e; Pearson correlation, R=0.96, p <2.2e-16, obtained froma
two-tailed one-sample ¢-test assessing the significance of the Pearson
correlation, n = 270189), whereas fitness values only based on growth rate
correlated worse with either AUC- (f) or OD-based (g) fitness values (Pearson
correlation, R=0.68 and 0.75, respectively, p <2.2e-16, obtained asine,

n =270189). h-i, Comparison between estimated and experimentally measured
single-drug fitness for donor (h) (Pearson correlation, R=0.98, p < 2.2e-16,
obtained asin e, n =5208) and recipient (i) drugs (Pearson correlation, R = 0.96,
p<2.2e-16,obtained asine, n=1718).
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Extended DataFig. 3 | Screen benchmarking. a, 161 drug combinations

were selected for benchmarking, including hits and neutral interactions, and
tested in extended concentration checkerboards (8 x 8). Fitness values and
interaction scores were calculated as in the high-throughput screen (Methods).
b, Combinations were selected to equally represent the four strains tested.

¢, Screen precision and recall against the benchmarking set are assessed for
different effect-size thresholds. Precision-recall curves are shown for FDR
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intervalsranging from O to 1, increasing by 0.005. The chosen significance value
for the screen (FDR < 0.05) is highlighted for the effect-size curve (|0.1]) providing
best precision and recall. The addition of weak interactions (effect-size threshold
|0.08|, Methods) increases slightly the recall. [efsize| = effect size. d, True-positive
(TP), true-negative (TN), false-positive (FP) and false-negative (FN) abundance in
the benchmarking set for optimal thresholds. As for most screens, conservative
cutoffs for interactions minimize FPs with a cost on the number of FNs.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Interactions according to the Loewe model. a, High
concordance when assessing interactions with the Loewe or Bliss model for the
benchmarking set (8x8 checkerboards). Comparison results are shown only for
drug pairs which both models could be reliably applied (n = 68; Methods,
Supplementary Table 2). Interaction sign is shown as calculated according to the
Bliss model (left), the Loewe model (middle), and the original screen (right).

b, Pearson correlation between interaction scores calculated according to the
Loewe and Bliss models for the 68 interactions for which both models could be
reliably calculated (left) or the 69 for which Loewe was unreliable (right, see also
Methods). Interactions are color-coded according to the Bliss model sign.
P-values are obtained from a two-tailed one-sample t-test assessing the
significance of the Pearson correlation (H, : {t = 0, R = 0}). c-d, Synergies (c)
and antagonisms (d) identified by both the Loewe and Bliss models depicted as
8x8 checkerboards with overlaid lines connecting points of equal growth
inhibition, representing deviations from Loewe additivity (straight line). The
fitness value (top, next to the strain) chosen for the overlaid lines, and the

interaction effect size (top-right, above) as a fitness difference from additivity
with its 95% confidence interval (top-right, below) according to the Loewe model,
areindicated for each checkerboard. Each checkerboard is the average of at least
two biological replicates, color-coded according to their Bliss-model sign.

e, Relationship between interactions according to Loewe and Bliss models and
screen benchmarking analysis according to Bliss model. TP, true positive; TN,
true negative; FP, false positive; FN, false negative. f, Distribution of interaction
effect size according to the Loewe (left) and Bliss (right) models for concordant
or discordantinteractions across the two models (using interactions for which
Loewe canbereliably applied; n = 68). Interaction effect size according to Loewe
modelis estimated using the meanR statistic’> (Methods). Interaction effect size
accordingto Bliss model is calculated as in the screen. Sample size of each set is
indicated below each boxplot; a two-sided Welch'’s t-test was used to determine
significance - n.d.=not determined (not enough data points); n.s.=not
significant. Box plots are depicted as in Extended data Fig. 2c.
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Extended Data Fig. 5| Interaction conservation within Gram-positive species
and across the Gram-positive/-negative divide. a, There is no significant
difference between synergy and antagonism prevalence among conserved

and non-conserved interactions, regardless of whether non-antibiotic drugs,
whose targets are multiple or unknown, are considered (p = 0.592, 2 test) or not
(p=0.327,x2 test). Only interactions conserved across at least two species are
considered (n =81, Fig.1c). b, Drugs targeting more conserved cellular processes
tend to have more conserved interactions. Interaction conservation ratio for
each drug class across species is calculated as the ratio between conserved

and non-conserved interactions. ¢, Synergy and antagonism abundance of
unique interactions shared by at least one Gram-negative and Gram-positive
strain - edges are colour-coded according to whether interaction is synergistic
(green) or antagonistic (yellow). d, Conserved interactions across at least one
Gram-negative and Gram-positive strain. EC, E.coli; PA, P. aeruginosa; ST, S.
Typhimurium; SA, S. aureus; SP, S. pneumoniae; BS, B. subtilis. e, Heatmap

of conserved interactions across Gram-positive and Gram-negative bacteria.
Interactions that are also conserved across multiple Gram-positive species are
highlighted.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Drug interaction fingerprint recapitulates their
functional and chemical classes. a, Drugs clustered according to their
interactions with all other drugs in main screen. For each drug, quartile-based
Bliss interaction scores (Methods) with all the other drugs (n = 65) inall four
strains (x-axis) are considered; drug interaction fingerprints are then clustered
according to their cosine similarity. All interaction cumulative scores are
considered, regardless of their significance. Clusters enriched in drugs belonging

to the same classes, targeting the same processes, and/or chemically similar, are
highlighted. Negative, positive and neutral Bliss scores are depicted in shades of
green, yellow, and in white, respectively. Combinations that were not tested in a
givenstrainareingrey. b, Drug clustering according to their chemical structure
similarity (Methods). Inboth panels, drugs are coloured according to their
targeted cellular process (colour code asin Fig. 1).
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Extended Data Fig. 8 | Interactions between drug functional classes in Gram-
positive and Gram-negative species. a, Interactions between all drug classes
(based on cellular target) in Gram-positive (a) and Gram-negative (b) species.
The absolute count for each class-class interaction is indicated. PMF = proton-
motive force. Interactions between drugs tested in all strains are considered.
Interactions conserved across different strains are considered as distinct

occurrences. c-f, Heatmaps of interactions between protein synthesis inhibitors
(c-d) and between cell-wall biosynthesis inhibitors (e-f). Bliss interaction scores
are averaged across strains if the same interaction is found in more than one
strain. Inrare cases in which opposite interactions are found in two different
strains(n=4,c;n=2,d;n=2,e;n=_8,f), thestrongest one is shown here.
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Extended Data Fig. 9 | Non-antibiotic drug screen and benchmarking. a,
Schematic representation of non-antibiotic drug high-throughput screen. 44
drugs belonging to different therapeutic classes (Supplementary Table 6) were
tested in combination with 62 antibiotics at three concentrations in S. aureus
DSM 20231. The resulting 2728 combinations were tested in broth microdilution
(Methods). b, 37 drug combinations (Supplementary Table 6) were selected for
benchmarking and tested in 8 x 8 concentration checkerboards (Methods). c,
True-positive (TP), true-negative (TN), false-positive (FP) and false-negative (FN)
abundance in the benchmarking set for optimal thresholds shownind.d, Screen
precision and recall against the benchmarking set are assessed for different

effect-size thresholds. Precision-recall curves are shown for FDR intervals
ranging from 0 to 1, increasing by 0.005. The chosen significance value for the
screen (FDR < 0.05) is highlighted for the effect-size curve (|0.1|) providing best
precisionand recall. e-f, Interaction abundance for classes of non-antibiotics
(e) and classes of antibiotics (). Interactions detected in S. aureus DSM 20231
between antibiotics classes and 52 non-antibiotics tested in both the original
screen (n=8) and the extended screen (n = 44) were considered (n = 245).

PMF, Proton-motive force; CCB, calcium-channel blocker; PPI, proton-pump
inhibitors; ARB, angiotensin-receptor blocker. Synergies are depicted in green,
antagonismsin yellow.
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Extended Data Fig. 10 | Ticagrelor affects purine and teichoic acid
biosynthesis. a, KEGG enrichment of hits at 5% FDR from whole-cell or lysate
samples. Only sets yielding significant enrichments (whole-cell down-and
up-regulation, and lysate stabilization) are shown (Supplementary Table 7).
Thefirst15 termsin order of significance are shown. The dashed lines mark the
enrichment significance cut-off (adjusted p-value < 0.05, one-sided Fisher’s
exact test). The number of protein hits is annotated for each term. b, Thermal
stability profiles of members of the purine biosynthesis pathway. Protein fold
change is shown for each temperature and ticagrelor concentration. ¢, Chemical
structure of ticagrelor. d, Growth (endpoint ODsys,,, after 11 h, corresponding

to the beginning of stationary phase for the untreated control, Methods)
measured in the presence of serial two-fold dilutions of ticagrelor in presence
orabsence of purines at the indicated concentration, normalised by no-drug
controls, in S. aureus Newman in SSM9PR-defined medium (mean across four
biological replicates; error bars represent standard error; Methods). e, Ticagrelor
synergizes with nisin in vitro (median fitness across two biological replicates,
results obtained as in Fig. 2d, Supplementary File). f, Thermal stability profiles

of proteins involved in teichoic acid biosynthesis, represented asin b. g, Growth
(endpoint ODsys,,, corresponding to the beginning of stationary phase for the
control strain MM76, Methods, Supplementary File) measured in the presence of
serial two-fold dilutions of nisin, normalised by no-drug controls, in the S. aureus
IPTG-inducible knockdown mutants dltABCD and tagG and their control strain
MM76 (Methods), in presence or absence of 500 pM IPTG to induce maximal
knockdown of the gene targeted (mean across four biological replicates; error
barsrepresent standard error). All strains are grown in presence of 5 pg/ml
erythromycin and 10 pg/ml chloramphenicol to maintain the CRISPRi plasmids™
(Methods). For all controls and full growth curves see Supplementary File.

h, Raw data (OD ) from Fig. 5g are shown alongside all controls (samples not
incubated with 250 pg/ml cytochrome ¢, cytochrome c standard curve including
buffer control). The linear fit for the cytochrome c standard curve used to infer
the unbound cytochrome C fraction in supernatants is shown (n = 4, mean

and standard error of the mean are shown. Data points represent reads (n = 4
biological replicates for each condition, Methods).
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