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Despite ongoing antibiotic development, evolution of resistance may
render candidate antibiotics ineffective. Here we studied in vitro emergence
of resistance to 13 antibiotics introduced after 2017 or currently in

development, compared with in-use antibiotics. Laboratory evolution
showed that clinically relevant resistance arises within 60 days of antibiotic
exposurein Escherichia coli, Klebsiella pneumoniae, Acinetobacter
baumannii and Pseudomonas aeruginosa, priority Gram-negative ESKAPE
pathogens. Resistance mutations are already present in natural populations
of pathogens, indicating that resistance in nature can emerge through
selection of pre-existing bacterial variants. Functional metagenomics
showed that mobile resistance genes to antibiotic candidates are prevalent
inclinical bacterial isolates, soil and human gut microbiomes. Overall,
antibiotic candidates show similar susceptibility to resistance development
asantibiotics currently in use, and the corresponding resistance
mechanisms overlap. However, certain combinations of antibiotics and
bacterial strains were less prone to developing resistance, revealing
potential narrow-spectrum antibacterial therapies that could remain
effective. Finally, we develop criteria to guide efforts in developing effective
antibiotic candidates.

Multidrug-resistant (MDR) bacterial infections are a major public health
concern and are responsible for a substantial proportion of morbid-
ity and mortality worldwide'. Paradoxically, many pharmaceutical
companies have discontinued their antibiotic research programs?.
This may be linked to the rapid spread of MDR bacteria, which makes
the commercial success of new antimicrobial drugs unpredictable®*.
For example, GlaxoSmithKline (GSK) spent US$15 million to acquire
the GSK2251052 molecule and invested further money inits develop-
ment; however, resistance to GSK2251052 emerged and the project
was cancelled’. Antibiotics released to the market can also lose utility
and revenue in only a few years due to resistance. Dalbavancin is one
of the few therapies available for treatment of methicillin-resistant
Staphylococcus aureusinfections®’ but resistance emerged after 2 years
of commercialization.

Bacteriaacquireresistance through diverse genetic mechanisms,
including point mutations, amplification of genomic segments and
horizontal transfer of resistance genes®. The ability to predict the
possible evolutionary routes towards resistance is clearly needed,
especially atanearly stage of antibacterial drug discovery, to develop
antibiotics with limited susceptibility to resistance. However, this is
a complex problem for three main reasons: (1) multiple and varied
molecular mechanisms contribute to antimicrobial resistance, (2)
numerous pathogenic bacteria need to be considered and (3) many
potential antibacterial compounds need to be tested.

Here we asked whether antibiotic candidates show differencesin
their susceptibility to the development of resistance compared with
antibiotics that are currently in use. By combining laboratory evolu-
tion and functional metagenomics, we studied in vitro emergence
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Table 1| Antibiotics used in this study

Antibiotic Abbreviation Antibiotic class Generation Date of approval/clinical phase
Omadacycline OMA Recent 2018
Eravacycline ERA Tetracyclines Recent 2018
Doxycycline DOX Control 1967
Ceftobiprole CTO Recent 2019
Cefiderocol CID Cephalosporins Recent 2019
Cefepime CEP Control 1994
Delafloxacin® DEL Recent 2017
Gepotidacin® GEP Recent Phase 3
Topoisomerase inhibitors
Zoliflodacin Z0L Recent Phase 3
Moxifloxacin® MOX Control 1999
Apramycin APR Recent Phase1
Aminoglycosides
Gentamicin GEN Control 1964
Sulopenem SUO Recent Phase 3
Carbapenems
Meropenem MER Control 1996
Tridecaptin M152-P3? TRD Recent Preclinical
POL-7306° POL Recent Preclinical
SCH-79797° SCH Membrane-targeting Recent Preclinical
SPR-206 SPR Recent Phase 1
Polymyxin B PMB Control 1964

This table shows the antibiotics used in this study, including control and recent antibiotics. Notably, apramycin sulfate has been used in veterinary medicine for more than 10 years; its current
focus lies in clinical trials for the treatment of systemic Gram-negative bacterial infections in humans. ®Multitarget antibiotics.

of resistance to antibiotics either introduced after 2017 or currently
in development, compared with antibiotics that are currently in use.

Onthebasis of the 2021 World Health Organization (WHO) pipeline
report’ and reviews on the subject'*"?, we selected antimicrobial com-
pounds that have beenintroduced into clinical practice recently (after
2017) or that are currently in development (that is, recent antibiotics;
Table 1). The selected compounds are generally small molecules and
directly target Gram-negative bacteria. Most of the candidate antibi-
otics analysed are intended to be used as monotherapies, mostly via
intravenous or oral administration; however, previous knowledge on
de novo emergence of resistance is limited (Supplementary Table 2).
We considered lead compounds that are in clinical trials or have at
least established efficacy against Gram-negative ESKAPE pathogens,
including Escherichia coli, Klebsiella pneumoniae, Acinetobacter bau-
manniiand Pseudomonas aeruginosain mouse infectionmodels. These
antibiotics include multitargeting compounds that are considered
to be less prone to resistance™. Similarly, compounds that attack
essential components of the outer cellmembrane have previously been
suggested to be immune to bacterial resistance'®" because potential
resistance mutationsto these drugs would seriously compromise nor-
mal cellular functioning. As the evolutionary dynamics of resistance to
antibioticcombinations can be very different from that of monothera-
pies, we examine recent advances inadjuvant therapies (for example,
B-lactamase inhibitors) in a separate study. For more information on
antibiotic choices, see Supplementary Note 1.

Our main goal was to compare the resistance profiles of these
‘recent’ antibiotics with antibiotics established for clinical use (that
is, control). The control antibiotics belong to distinct major classes of
antibiotics and they have allbeenin clinical use for over 25 years (Sup-
plementary Table 3). To systematically characterize the bacterial capac-
ity forresistance and the molecular mechanisms conferring resistance,
we combined laboratory evolution, functional metagenomic screens
and targeted mutagenesis. To explore the potential clinical relevance of
our findings, we examined whether the identified resistance mutations

and antibiotic resistance genes (ARGs) canbe found in natural bacterial
isolates and in human-associated microbiomes (Extended Data Fig. 1).

We found that critical Gram-negative pathogens develop resist-
ance within a short time frame after antibiotic exposure in vitro. The
mutations driving this resistance, found in laboratory-evolved strains,
are already present in natural pathogen populations, suggesting that
resistance can rapidly emerge through the selection of pre-existing
variants. In addition, we identified mobile resistance genes to antibiotic
candidates across clinical isolates and in environmental and human
microbiomes.

Results

Resistance to in-use and in-development antibiotics overlaps
We selected 40 representative strains from 4 Gram-negative bacterial
pathogens, including Escherichia coli, K. pneumoniae, A. baumannii
and P. aeruginosa (Supplementary Table 4), and measured their in vitro
susceptibilities to 22 clinically in-use antibiotics (control) and 13 anti-
biotics thatarein development or were introduced post-2017 (recent;
Supplementary Table 3). Of the 40 strains with clinical origins, 8 were
confirmed tobe extensively drugresistant (XDR) because the minimum
inhibitory concentrations (MICs) for nearly all clinically recommended
antibiotics were above the established clinical breakpoints (Extended
DataFig.2). For these 40 strains, recent antibiotic candidates, such as
cefiderocol, SPR-206, eravacycline and delafloxacin, have on average
significantly higher efficacy (that is, a lower average MIC) compared
with control antibiotics with similar modes of action (Fig. 1a). Indeed,
hierarchical clustering based on the heat map of antibiotic suscepti-
bility profiles showed that control and recent antibiotics with related
modes of action cluster together (Fig. 1b). Moreover, MDR and XDR
bacterial strains generally showed reduced sensitivity to both control
andrecentantibiotics compared with antibiotic-sensitive (SEN) strains
belonging to the same species (Extended Data Fig. 3a). Together, these
results indicate an overlap in resistance profiles for antibiotics that
have been in clinical use and antibiotic candidates in development.
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Fig. 1| Susceptibility profiling of bacterial isolates to control and recent
antibiotics. a, Comparison of MIC for control and recent antibiotics. The

figure shows the median MIC values (on alog,, scale) of control and recent
antibiotics across all tested bacterial strains. Each plot represents a specific
recent antibiotic, along with the corresponding control antibiotics belonging

to the same class (indicated and colour coded at the top of each plot). Individual
points depict median MIC values of strain-antibiotic pairs, with lines connecting
paired data points representing MIC values of the specific recent and within-class
control antibiotic for the same strain. Blue points and lines indicate cases where
the MIC of arecent antibiotic is lower compared with the corresponding control
antibiotics for the same strain, whereas red indicates cases in which the MIC is
not lower. Median MIC values are based on two biological and three technical
replicates for each bacterial strain-antibiotic combination. Box plots show

the median, first and third quartiles, with whiskers indicating the 5th and 95th
percentiles of the median MIC values per investigated group. Paired Wilcoxon
rank-sum analysis (two-sided test) was performed to assess significant difference
between control and recent antibiotics within each class. ****P < 0.0001,
***P<0.001,**P<0.01,*P<0.05. For antibiotic abbreviations, see Table 1.

The antibiotic classes are as follows: aminoglycosides (AMIN), carbapenems
(CARB), cephalosporins (CEPH), membrane-targeting antibiotics (MEMB),
topoisomerase inhibitors (TOPO) and tetracyclines (TETR). b, Recent antibiotics
cluster together with control antibiotics based on sensitivity testing of a panel
ofbacterial strains. The heat map shows the antibiotic susceptibility profiles of
bacterial strains (columns) belonging to four bacterial species, including E. coli,
K. pneumoniae, A. baumannii and P. aeruginosa. In the x-axis labels, the first two
letters represent the species (AB, A. baumannii; EC, E. coli; KP, K. pneumoniae;

PA, P. aeruginosa), the next three letters indicate strain categorization based

on susceptibility profiling (see Methods), while the final numbers serve as
unique identifiers (please note that only strains without numeric identifiers
were used for further experiments). The bacterial strains are ordered by the
fraction of control antibiotics (red gradient panel on the top) to which they are
resistant, as defined by the corresponding species-specific clinical breakpoint
values. For more details on the abbreviations, see Table 1 (for antibiotics) and
Supplementary Table 4 (species and strains). The antibiotic panel consists of 22
control (blue) and 13 recent (orange) antibiotics (rows). Antibiotic generations
and classes are indicated on the left. Antibiotic clustering was based on
calculating Spearman’s rank correlation of median MIC values and using the
complete hierarchical clustering method. The bacterial strains are ordered by
the fraction of control antibiotics (top) to which they are resistant (defined by the
corresponding species-specific clinical breakpoint values). Median MIC values
arebased on two biological and three technical replicates for each bacterial
strain—-antibiotic combination. AMI, amikacin; AMP, ampicillin; APR, apramycin-
sulphate; CEP, cefepime; CID, cefiderocol; CIP, ciprofloxacin; COL, colistin; CTO,
ceftobiprole; CTZ, ceftazidime; CZA, ceftazidime-avibactam; DEL, delafloxacin;
DHFR, dihydrofolate reductase inhibitor; DOR, doripenem; DOX, doxycycline;
ERA, eravacycline; GEN, gentamicin; GEP, gepotidacin; IMI,imipenem; I-R,
imipenem-relebactam; LEV, levofloxacin; MER, meropenem; MOX, moxifloxacin;
NS, not significant; OMA, omadacycline; PIP, piperacillin; PMB, polymyxin

B; POL, POL-7306; SCH, SCH-79797; SPR, SPR-206; SUO, sulopenem; TIC,
ticarcillin; TIG, tigecycline; TOB, tobramycin; TRD, tridecaptin M152-P3; TRM,
trimethoprim; TRS, trimethoprim-sulfamethoxazole; ZOL, zoliflodacin.

However, certain membrane-targeting antibiotics, such as POL-7306
and SPR-206, were as effective in targeting MDR and XDR strains as
they wereintargeting SEN strains (Extended DataFig. 3b), highlighting
their antibacterial potential.

Species-specific evolution of resistance in the laboratory

Next, we asked whether antibiotic resistance evolvesin bacterial patho-
gens, rendering the two groups of antibiotics less effective inthe long
term. Here we selected one MDR and one SEN strain each of E. coli, K.
pneumoniae, A. baumannii and P. aeruginosa (Supplementary Table 4).
Of all antibiotic-strain combinations, 32% were excluded from the
analysis due to relatively low initial antibiotic susceptibility (that is,
MIC >4 pgml™).

To characterize first-step resistance, we used a standard protocol
for spontaneous frequency-of-resistance (FoR) analysis'®"? at multiple
concentrations of each antibiotic. Approximately 10'° bacterial cells
were exposed to each antibiotic on agar plates for 2 days at concentra-
tions towhich the given strainis susceptible. Mutants with decreased
antibiotic sensitivity, that is, with at least a 4-fold increase in MIC fold
change, were detected in 49.8% of the populations. Although clinical
breakpoints are unknown for most of the recent antibiotics studied,
recommended dosing for intravenous use is available in all cases.
Therefore, data on the highest available peak plasma concentrations
of the drugs (measured atintravenous administration) were used as a
proxy to estimate potential clinical relevance of the MIC changesin the

evolved strains (Supplementary Table 3). Within the short 48 h time
frame, MICs were either equal to or above the peak plasma concentra-
tioninup to18.7% of the mutant lines (Extended DataFig. 4a). For 30%
of the FoR-adapted lines, MICs surpassed the clinical breakpoint at
which such data were available (Extended Data Fig. 4b). On average,
recent and control antibiotics were equally prone to bacterial resist-
ance because neither the frequency of appearance per generation of
mutants (Wilcoxon rank-sum test, P= 0.9; Extended Data Fig. 4c) nor
the fold change in resistance were statistically different (paired ¢-test,
P=0.68).

As FoR assays cannot detect very rare mutations either alone or
in combination®” and can underestimate bacterial potential for resist-
ance, we used the same eight ancestral strains (Supplementary Table 4)
toinitiate adaptive laboratory evolution (ALE) with two goals. First, we
aimed to maximize the level of antibiotic resistance in the populations
achieved during a longer, fixed time period (for up to ~120 genera-
tions; Methods). Second, we aimed to characterize the mechanisms
associated with resistance. Ten parallel-evolving populations of each
strain were exposed to increasing concentrations each of the recent or
control antibiotics. The level of resistance was estimated by comparing
MICs of the evolved lines with those of their corresponding ancestral
strains (Fig. 2a).

Ingeneral, 120 generations (60 days) of laboratory evolution was
sufficient for the bacterial strains to develop resistance; the median
antibiotic-resistance level in the evolved lines was ~64 times higher

Fig. 2| Adaptation to antibiotics by ALE. a, Changesin MICs after ALE. Each
point represents the median MIC values of alaboratory-evolved line and the
corresponding ancestor (log,, scale). Median MIC values are based on two
biological and three technical replicates for each bacterial strain-antibiotic
combination. Control and recent antibiotics are indicated by blue and orange
plots, respectively. Each group of plots represents a specific antibiotic class
(indicated at the top of each plot). The colour of the data points represents the
bacterial species. The black dashed line indicates y = x (thatis, no changes in MIC
during the course of laboratory evolution), whereas the red dashed line shows
the antibiotic-specific peak plasma concentration. For abbreviations, see Table 1.
Due to low stability in the liquid laboratory medium used, cephalosporin
antibiotics were not subjected to ALE. b, Relative MIC of laboratory-evolved
lines across all antibiotic-ancestor strain combinations. In the x-axis labels,

thefirst two letters represent the species, the next three letters represent the
strain and the last three letters represent the antibiotics. For more details on the
abbreviations, see Table 1 (for antibiotics) and Supplementary Table 4 (species
and strains). Relative MIC is the median MIC of the evolved line divided by the
median MIC of the corresponding ancestor. Each point is a laboratory-evolved
line from ALE and the colours indicate the bacterial species. Each point is the
median MIC value of a strain-antibiotic pair. Median MIC values are based on
two biological and three technical replicates for each bacterial strain-antibiotic
combination. Box plots show the median, first and third quartiles, with whiskers
indicating the 5th and 95th percentiles of the MIC values per investigated group.
Thereis a highly significant heterogeneity in relative MIC across antibiotic-strain
combinations (Kruskal-Wallis x* = 630.43, d.f. =80, P < 2.2 x107%).
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compared with that of the ancestor. MICs were either equal to or above
the peak plasma concentrationin 87% of all studied populations. More-
over, MICs surpassed the clinical breakpoint, where such data were
available, for 88.3% of the ALE-adapted lines (Extended Data Fig. 4b). On
average, recent and control antibiotics were equally prone to bacterial
resistance (paired t-test, one-sided, P= 0.37). Resistance also emerged
torecent antibiotics (Fig. 2a), with potent antibacterial activities target-
ing the MDR and XDR clinical isolates tested (Extended Data Fig. 3b).

Given the large heterogeneity observed in the capacity to evolve
resistance across antibiotic-strain combinations, spanninga 65,000-fold
range between the observed minimum and maximum MIC fold changes
(Fig. 2b), we investigated possible reasons for this variation. We first
analysed whether initial antibiotic susceptibility predicts long-term
drugefficacy against bacteria. We found asignificant positive correlation
betweeninitial MIC and theincreaseinresistance level across antibiotics
in ALE-derived lines in two of the four species (Extended Data Fig. 5a)
andfive of the eight bacterial strains studied (Extended DataFig. 5b). We
also analysed whether initial MIC correlates with the increase in resist-
ancelevel across strains when each antibioticis analysed separately. We
foundasignificant positive trendin 5 of the 16 antibiotics (Extended Data
Fig. 5¢). These results show that initial MIC is predictive of long-term
efficacy of anantibioticin a strain- and antibiotic-specific manner.

Previous work?*?indicates that certain antibiotics are more sus-
ceptible to resistance evolution for particular bacterial strains and
species compared with others. Accordingly, we used multiple linear
regression to investigate the global influence of both antibiotic and
strain genetic background on the increase in resistance level, while
also considering the resistance level of the ancestor (Extended Data
Fig. 5d). When examining these factors separately, the antibiotic and
strain genetic background explained 24.4% and 8.9%, respectively,
of the variation in the increase of resistance levels, with the initial
antibiotic susceptibility level (MIC) contributing 0.9% to the variance.
In an additive model, combining the antibiotic, the initial MIC and
genetic background explained approximately 33% of the variation.
Importantly,amodel that allows aninteraction term between genetic
background and antibiotic combination explains an additional ~26%
of variation in the increase of resistance compared with the simple
additive model (that is, 58.6% versus 32.6%; Extended Data Fig. 5d).

Together, theseresultsindicate that the initial genetic makeup of
the bacterial population has a large impact on resistance evolution,
but predominantly in an antibiotic-specific manner. Detailed analysis
of two antibiotic candidates, SCH-79797 and SPR-206, highlight this
point further (Supplementary Note 2).

Overlap in mutational profiles across antibiotic treatments
To identify mutations underlying resistance, resistant lines derived
from laboratory evolution (n=381) and FoR assays (n =135) were

subjected to whole-genome sequencing (Supplementary Data1). We
implemented an established computational pipeline to identify muta-
tions relative to the corresponding ancestral genomes. Ten evolved
lines accumulated exceptionally large numbers of mutations (n > 18),
many of which are probably functionally irrelevant. These lines have
elevated genomic mutationrates; indeed six of the ten lines have muta-
tions in methyl-directed mismatch repair (mutS, mutL or mutY).Such
mutator bacteria frequently arise in response to antibiotic stress in
clinical and laboratory settings®. For the remaining 506 lines, we identi-
fied 1,817 unique mutational events, including 1,212 single nucleotide
polymorphisms (SNPs) and 605 insertions or deletions (Extended
Data Fig. 6a). We found a significant excess of non-synonymous over
synonymous mutations, indicating that the accumulation of the SNPs
in protein-coding regions was largely driven by selection towards
increased resistance (Extended Data Fig. 6b). Of the observed muta-
tions, 19.7% generated in-frame stop codons, frameshifts or disrup-
tionofthe start codon, which are probably loss-of-function mutations
(Extended DataFig. 6¢). This result is consistent with previous studies
onthe role of inactivating mutations in antibiotic resistance?.

In total, 604 mutated protein-coding genes were detected, 193
of which were mutated in at least 2 independently evolved lines per
species. Of all parallel-mutated genes, 69.4% carried mutationsinlines
adaptedtodifferent antibiotics. These results indicate that despite dif-
ferencesinantibiotic treatments, there is considerable overlap in the
setof mutated genes (Fig.3a,b). Further resultsindicate thatadaptation
during the course of laboratory evolutionin the presence of antibiotics
was largely unrelated to the growth medium (Supplementary Note 3).

To explore cross-resistance explicitly, we focused ontopoisomer-
aseinhibitors because this drug class includes asubstantial proportion
of the antibiotics currently in clinical trials, and resistance is usually
encoded by resistance mutations. We performed deep-scanning
mutagenesis in genes encoding the targets of moxifloxacin (gyrA and
parC). Moxifloxacin resistance-conferring mutation combinations
reduced susceptibility to topoisomerase inhibitors under clinical
development, including delafloxacin and gepotidacin (Supplemen-
tary Note 4). The result with gepotidacin is unexpected because it is
anew topoisomerase inhibitor in development, featuring innovative
target sites and modes of action®. Previous studies reported that
fluoroquinolone-resistant clinical isolates showed no cross-resistance
to this antibiotic but the data were limited*.

Mutations to recent antibiotics are present in the environment
Given the overlap observed in mutational targets associated with
resistance to antibioticsin clinical use and antibiotics in development
(Fig. 3a,b), we hypothesized that mutations arising during labora-
tory evolution may already be present in environmental and clinical
bacterial isolates. To investigate this hypothesis, we analysed the

Fig. 4| Exploration of mobile resistance genes using functional
metagenomics. a, Overview of the sequencing results of antibiotic-resistant
bacteria generated by functional metagenomics. Functional selection of
metagenomic libraries with 18 antibiotics resulted in numerous distinct
resistance-conferring DNA contigs, with the only exception of tridecaptin
M152-P3 (TRD). The top bar plot shows the number of unique DNA fragments
(contigs) that confer resistance to control (blue) and recent (orange) antibiotics,
respectively, whereas the bottom bar plots show the distribution of the
identified resistance-conferring contigs across metagenomic libraries and the
percentage of mobile ORFs per antibiotic, respectively. ORF mobility was defined
by evidence for recent horizontal gene transfer events or presence on mobile
plasmids (Methods). The row below the bar plots denote the class of antibiotics
analysed. We observed no significant difference in the number of contigs
between recent antibiotics and their corresponding within-class controls (paired
Wilcoxon signed-rank test, two-sided, P= 0.4973). The same patternis true for
the percentage of mobile ORFs (paired signed-rank Wilcoxon test, P = 0.576).

For antibiotic abbreviations, see Table 1. b, Overlap in the set of resistance-

conferring DNA fragments (contigs) across antibiotics. Each node represents
arecent (orange) or control (blue) antibiotic, and the links indicate overlap in
the resistance-conferring DNA contigs identified in functional metagenomic
screens. The thickness of the link indicates the extent of overlap (calculated

by Jaccard similarity) between antibiotic treatments. The size of the nodes
corresponds to the total number of detected DNA fragments per antibiotic.
The class to which a given antibiotic belongs is also indicated. ¢, Risk analysis of
putative ARGs. The figure shows the total number (top) and fraction (bottom)
of health-risk ARGs across functional screens to different antibiotics. ARGs were
designated as potential risk if they fulfilled at least two of the following three
criteria: if they were (1) mobile, (2) present in human-associated microbiomes,
and (3) human pathogens. Blue and orange colours depict control and recent
antibiotics, respectively. The analysis revealed a significant variation in the
fraction of potential-risk ORFs across the antibiotics tested (proportion test,
two-sided, P< 0.05), indicating that certain antibiotics are more likely to be
associated with potential-risk ORFs compared with others.
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prevalence of the observed mutations from laboratory-evolved £. coli
and A. baumanniilines in a publicly available catalogue of genomes
derived from natural isolates of E. coli (n = 20,786) and A. baumannii
(n=15,185) (Fig. 3c). We focused on non-synonymous mutations in
protein-coding sequences and estimated their frequencies in the
genomes of environmental isolates in these two species. For E. coli,
up to 31.4% of the 245 laboratory-observed non-synonymous muta-
tionswereidentified inat least1of the genomes from natural isolates,
whereas for A. baumannii, 27.3% of 216 mutations were found in at
least1naturalisolate. Although the majority of mutations foundin E.
coliwere relatively rare (that is, typically found in less than 1% of the
isolates), they were more enriched among pathogenicisolates thanin
other natural isolates (Fisher’s test, P < 2.2 x 107, odds ratio = 3.16).
Several adaptive mutations were as abundant as, or even more abun-
dantthan, canonical antibiotic resistance mutationsin clinical isolates
(Extended Data Fig. 7).

Mobile resistance genes targeting recent antibiotics are diverse
ALE does not allow for the analysis of horizontally transferable resist-
ance mechanisms. Therefore, we next analysed the abundance of
mobile ARGs from environmental and clinical resistomes. We previ-
ously created metagenomic libraries from (1) anthropogenic soil micro-
biomes, thatis, river sediment and soil samples at 7 antibiotic-polluted
industrial sites in the close vicinity of antibiotic production plantsin
India; (2) human gut microbiomes, that s, stool samples from 10 Euro-
peanindividuals who had not taken any antibiotics for at least 1 year
before sample donation; and (3) clinical microbiome samples from a
pool of 68 MDR bacteriaisolated in healthcare facilities or obtained
from strain collections” (Supplementary Table 5). Each library con-
tained up to 5 million DNA fragments (contigs), corresponding to a
total coverage of 25 Gb (that s, the size of ~5,000 bacterial genomes).
Established functional metagenomic protocols were used to detect
small DNA fragments (-1.7 kb long on average) in these libraries that
conferresistanceinintrinsically susceptible clinical £. coliand K. pneu-
moniaestrains”. Specifically, these DNA fragments were heterologously
expressed in these two strains.

A total of 690 independent DNA fragments conferred increased
resistance, by up to256-fold, against the recent and control antibiotics
testedintheir bacterial hosts (Supplementary Data2). Overall, thereis
nosignificant difference in the number of contigs conferring resistance
between the antibiotics under development and their corresponding
within-class controls (paired Wilcoxon signed-rank test, P=0.791;
Fig.4a). However, we detected no resistance-conferring DNA fragment
against tridecaptin M152-P3 in any of the metagenomic libraries and
hostspecies (Fig.4a). The clinical microbiome contributed as much as
57.8% of the antibiotic-resistance-conferring DNA segments (Fig. 4a),
more than2x the contributions of the soil and gut microbiomes (25.5%
and 24.8%, respectively). In total, 642 non-redundant open reading
frames (ORFs) were detected, many of which were present in multiple
DNA fragments (Supplementary Data 2). Of the 690 DNA fragments,
77% showed close sequence similarity to known resistance genes (that
is, ARGs) inrelevant databases (Supplementary Data 2). These ARGs
areinvolved in antibiotic inactivation, antibiotic efflux or protection
of the antibiotic targets and they have a diverse phylogenetic origin
(Supplementary Data 2).

The putative resistance mechanisms associated with genomic
mutations and ARGs differed substantially from each other (Extended
Data Fig. 8). In particular, antibiotic efflux and target alteration were
the two most ubiquitous resistance mechanisms derived from genomic
mutations (Extended Data Fig. 9a), whereas antibiotic inactivation
was more prominent among hits derived from functional genomic
screens (Extended DataFig. 9b). For a detailed comparison of genomic
mutations and mobile resistance genes, see Supplementary Note 5.
In addition, our analysis revealed the contribution of non-canonical
resistance mechanisms (Supplementary Note 6).

Prevalence of MDR-conferring DNA segments

We observed overlap in the set of DNA fragments conferring resist-
ance to recent and control antibiotics (Fig. 4b), including antibiotic
pairs with different modes of action. For example, 69 contigs confer-
ring resistance to both the topoisomerase inhibitor moxifloxacinand
the tetracycline antibiotic omadacycline were detected. The analysis
identified 2 key genes, baeR and ramA, carried by 73.9% of these con-
tigs. BaeR and RamA induce expression of the MdtABC/AcrD* and
AcrAB-TolC efflux pump complexes®, respectively, with RamA also
downregulating expression of the porin OmpF*°. The fact that some
DNA fragments confer resistance to multiple antibiotics may reflect
similarities in chemical structure or mechanism of action. Therefore,
we investigated the impact of chemical similarity on co-resistance by
quantifying the structural similarity of antibiotic pairs using SMILES
(Simplified Molecular Input Line Entry System) identifiers and examin-
ing their correlation with profile similarity based on detected DNA frag-
ments. We found that overlap in resistance-conferring DNA fragments
is more likely for antibiotic pairs with similar structures (Spearman’s
rank correlation, two-sided test, R= 0.43, P < 0.01). This pattern holds
when only antibiotic pairs belonging to different antibiotic classes
were considered (Spearman’s rank correlation, two-sided test, R = 0.31,
P<0.01). However, there are notable deviations from this general pat-
tern. For instance, although SPR-206 is a derivative of polymyxin B,
there are no DNA fragments able to confer resistance to both antibi-
otics. Similarly, although cefiderocol shares structural similarity to
other cephalosporinsstudied, the addition of achlorocatechol group
transforms it into a siderophore® and the majority of DNA fragments
conferring resistance to cefiderocol are unique to this antibiotic. In
summary, these analyses indicate that certain alterations in chemical
structure that affect the mode of action or uptake of the antibiotic
can lead to major changes in the associated resistance mechanisms.

Health-risk analysis of resistance genes

Next, we used a previously developed omics-based framework for
assessing the health risk of ARGs*”. We considered three major ARG
criteria: (1) gene mobility, (2) presence in microbiomes associated with
the humanbody, and (3) bacterial host pathogenicity. ARGs were desig-
nated as ‘potential risk’ if they fulfilled at least two of the three criteria.

Using established methods, gene mobility was defined by evidence
for recent horizontal gene transfer events in nature and the presence
of the ARGs on natural plasmids derived from diverse environments
(Methods). Of the putative ARGs, 20.7% were found to be carried by
plasmids or to have been subjected to recent horizontal gene transfer
events (Fig. 4a, Extended Data Fig. 10a and Supplementary Data 2).
Next, we analysed putative ARG abundance in human microbiomes. We
identified close homologues of the ARGS detected by our functional
metagenomic screen in the non-redundant Global Microbial Gene
Catalog (GMGCv1). The catalogue summarizes results fromover 13,000
publicly available metagenomes across 14 major habitats, including
microbiomes from the human body, domestic animals, wastewater,
fresh water and built environments.

Most microbial genes in the catalogue are specific to a single
habitat®. In contrast, 27.6% of the putative ARGs detected in the resist-
ance screenstorecent antimicrobials were found in multiple habitats,
further indicating their potential mobility. In addition, when only
habitats associated with the human body (humangut, oral, skin, nose,
blood plasma or vaginamicrobiomes) were considered, this figure rises
to 32.7%, indicating that these microbiomes could be arich source of
resistance genes to new antibiotics (Extended Data Fig.10b). Reassur-
ingly, ARGs associated with the human body were also more prevalent
in human-related abiotic habitats (wastewater or built environment)
than other ARGs (Fisher’s test, odds ratio =125, P < 0.0001). Of the
ARGs, 36.6% are already presentin the genomes of bacterial pathogens
with critical clinicalimportance (Extended Data Fig.10b, Methods and
Supplementary Data 2). The detected ARGs are also prevalent in the

Nature Microbiology | Volume 10 | February 2025 | 313-331

321


http://www.nature.com/naturemicrobiology

Article

https://doi.org/10.1038/s41564-024-01891-8

Average metric value

Prevalence of resistant panel strains
Tendency for resistance evolution
Diversity of genes with mutations

Mutation prevalence in natural A. baumannii

Metrics

Mutation prevalence in natural E. coli
Diversity of horizontally transferred contigs

Prevalence of potential-risk ARGs

MER

Metric value
1.00

= 075
0.50
0.25

0

[21] =z < >

S @ 0 o

o O] a =
Antibiotics

Fig. 5| Resistance landscape for each antibiotic studied in this work. The
heat map shows various metrics for each antibiotic studied in this work. The
metricsinclude: (1) prevalence of panel strains with reduced susceptibility—the
fraction of bacterial strains from a selected pathogen panel with high initial MIC
values (Methods); (2) tendency for resistance—the fraction of adapted lines
with arelative MIC exceeding 16, representing the 25% quantile of all relative
MIC values; (3) diversity of genes with mutations—the fraction of orthogroups
showing mutations during ALE or FoR assays with each antibiotic, adjusted

by the total number of mutated orthogroups; (4 and 5) mutation prevalence
innatural E. coli or A. baumannii strains—the fraction of laboratory-observed

adaptive mutations that are already present in natural £. coliand A. baumannii
strains, respectively; (6) diversity of horizontally transferred contigs—the count
of unique DNA fragments per antibiotic, normalized by the total contig countin
functional metagenomics studies; and (7) prevalence of potential-risk ARGs—the
ratio of ARGs considered potential risk, based on meeting at least two of three
specified health-risk criteria (Methods), among all ARGs detected for each
antibiotic. Grey colours denote missing values due to initial resistance in the
studied species. Antibiotics are ordered by the average metric value. Blue and
orange indicate control and recent antibiotics, respectively. The row below the
heat map denotes the class of the antibiotics analysed.

genomes of E. coli strains isolated from three main habitats (agricul-
ture, human or wild animal hosts; Supplementary Note 7).

Of the 642 ARGs, 24.5% were designated as potential risk (Sup-
plementary Data 2). These ARGs are anticipated to have the greatest
potential for catalysing multidrug resistance in pathogens through a
combination of hazardous traits: broad host compatibility enabled
by mobility, alongside enrichmentin human microbiomes andin bac-
terial pathogens. However, a significant variation was observed in
the frequency of potential-risk ARGs across antibiotics (Fig. 4c). A
notable example is apramycin sulfate, an antibiotic extensively used
in veterinary medicine for decades that is now in clinical trials for
human applications. Only 2 of the 63 putative ARGs (3.2%) associated
with this antibiotic were designated as potential risk due to ashortage
of evidence for their mobility and presence in bacterial pathogens.

By contrast, several potential-risk ARGs were detected for recent
antibiotics, such as sulopenem (N =16), cefiderocol (N =22) and
ceftobiprole (N =26). These potential-risk ARGs included several
B-lactamases, such as New-Delhi-metallo (NDM) and Veronaintegron
metallo-f-lactamases (Extended Data Fig. 10b). Given the previous
expectation of cefiderocol’s lower propensity for resistance develop-
ment, the high number of potential-risk ARGs to cefiderocol is notable.

Integrating evidence on resistance to new antibiotic
candidates

Anideal antibiotic candidate is expected to meet several essential crite-
ria: (1) abroad antibacterial spectrum to ensure effectiveness against a
widearray of pathogens, (2) low tendency for development of resistance
through genomic mutations, (3) scarcity of intrinsic and horizontally
transferred mobile ARGs, and (4) alow prevalence of associated resist-
ance mechanisms in human-associated microbiomes and bacterial
pathogens. Unfortunately, none of the compounds investigated in
this study simultaneously satisfied all these requirements (Fig. 5). By

synthesizing several collected data, we calculated an average metric
value that served for the ranking of new antibiotic candidates based
ontheirresistance profiles and that showed significant heterogeneity
across antibiotic classes (Kruskal-Wallis test, P < 0.05; Fig. 5). According
to this ranking, recent antibiotics targeting bacterial membranes are
anticipated to show reduced susceptibility to resistance development
in natural settings compared with tetracyclines and topoisomerase
inhibitors (Dunn post hoc test with Benjamini-Hochberg correction
for multiple comparisons, P < 0.05). However, there remains consider-
able room forimprovement in their efficacy.

Discussion
Inthis work, we showed that bacterial resistance to antibiotics currently
indevelopment generally evolves rapidly in vitro. These patterns also
hold for compounds that have new or dual modes of action and that
were previously thought to be relatively immune to bacterial resist-
ance in the laboratory (Fig. 2a and Extended Data Fig. 4a). Notably,
genomic mutations that accumulated during laboratory evolution
may prove to be clinically relevant because they are also prevalent in
the genomes of clinical bacterial isolates (Fig. 3¢c). These results pre-
dict that resistance to new antibiotics could arise through selection
for pre-existing resistant strains via mutations and with horizontally
transferable genetic elements. These results suggest that overlap in
resistance mechanisms and prolonged antibiotic exposure in clinics
and agriculture have selected for resistance mechanisms that reduce
susceptibility to both antibacterial compounds in use and those still
indevelopment. Given that overlap wasincreased for antibiotics with
structural similarity (Fig. 4b), these observations suggest that minor
chemical modifications are insufficient to circumvent established
resistance mechanisms.

Antibiotics targeting multiple cellular functions are generally
expected to be less prone to bacterial resistance. For example, it has
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been stated that SCH-79797, a dual-targeting antibiotic, effectively kills
awide range of bacterial pathogens without detectable resistance™ but
the underlying data were limited. In contrast to these claims, we found
that arelatively low but notable resistance emerged via mutations of
regulatory genes of effluxmechanisms (acrR, adeN and adeS). Similarly,
previous studies claimed that the chance of high-level delafloxacin
and gepotidacin resistance via target mutations is limited due to the
dual-targeting nature of these antibiotics*?*. In addition, these anti-
biotics were supposed to be poor substrates for established bacterial
efflux pumps™®. In our studies, however, high levels of resistance to
these antibiotics evolved via target mutations and mutations often
occurred in established efflux pumps (acrB) or their corresponding
regulatory genes (acrR, adeN and nfxB).

Omadacycline was previously thought to evade resist-
ance via tetracycline-specific efflux pumps based on the lack
of cross-resistance®. In our study, however, contigs containing
tetracycline-specific efflux pump genes tetA and tetX came up as hits
against omadacycline.

Duetoits unique mechanism of uptake, resistance to cefiderocol
was supposed to be relatively immune to the development of resist-
ance”. However, baeSand crP, two regulatory genes involved in antibi-
otic efflux, were mutated in response to cefiderocol. Indeed, previous
work showed that mutations in these genes constitutively activate the
BaeSR two-component regulatory system to increase the expression
of the MdtABC efflux pump?. In addition, in our functional metagen-
omicscreen, carbapenemases NDM-15, NDM-22 and NDM-27 provided
resistance to cefiderocol. Similarly, sulopenem is a broad-spectrum
thiopenem B-lactam antibiotic being developed to treat infections
caused by MDR and cephalosporin-resistant bacteria belonging to
the Enterobacteriales group®®. However, it was prone to resistance in
multiple screens. In particular, functional metagenomics identified
several DNA fragments carrying NDM 3-lactamase genes as able to
conferresistance (Supplementary Table 6 and Supplementary Data 2).

Eravacycline was specifically designed to overcome resistance
to common tetracycline-specific efflux and ribosomal protection
mechanisms™. Although eravacycline has a relatively broad antimi-
crobial spectrum, resistance to this compound evolves rapidly in the
laboratory through modification of efflux pump activities.

Resistance to the peptide-based antibiotic, SPR-206, readily
emerged through genomic mutations. SPR-206 isin clinical trials and
has potent activity against a wide range of MDR bacteria*°. However,
anincrease in resistance level as high as 128-fold emerged in K. pneu-
moniae because of single mutations in the BasS/BasR 2-component
regulatory system.

Our work highlights the concern that antibiotic development is
currently dependent solely on susceptibility indicators in various bac-
terial pathogens. Although many of the new antibioticsindeed have an
improved antibacterial spectrum compared with their predecessors,
our studies show that this is rarely paired with favourable resistance
properties. Specifically, eravacycline shows improved antibacterial
activity against a panel of bacterial pathogens; however, itis especially
pronetoresistance viagenomic mutations and horizontal gene transfer
(Figs.2aand 4a).

Future application of the same antibiotic to initially susceptible
pathogens can have different outcomes depending on their capacity
to evolve resistance”*.. Indeed, we have found that the level of resist-
ance achieved during ALE was contingent on the bacterial species
and strains studied, in an antibiotic-specific manner (Extended Data
Fig. 5¢). This variability may stem from strain-specific differences in
initial susceptibility to a given antibiotic, presence of efflux pumps
and/or the influence of specific ‘potentiator’ genes, which facilitate
unconventional mutational pathways towards resistance through
epistatic interactions with resistance mutations. These hypotheses
will be studied thoroughly in future work, which might aid in devel-
oping species-specific therapeutic options to counter the rapid

development of resistance*’. Our work also highlights the risk that
antibiotic development programmes waste considerable resources
on antibiotic candidates prone to resistance if they concentrate only
on a single bacterial species or only on resistance emergence arising
from genomic mutations. An important limitation of this study is the
lack of systematic investigation of trade-offs of antibiotic resistance,
especially on bacterial fitness and virulence—anissue that will be cov-
eredinfuture work. Future studies should also decipher the exactrole
of theidentified mutations by reintroducing themindividually andin
combinationsinto wild-type geneticbackgrounds, and studying their
impact on the susceptibility of the resulting mutant strains to new
antibiotics. Inaddition, resistance to Gram-positive-specific antibiotic
candidates and combination therapies involving new antibiotics will
be studied elsewhere.

In sum, the framework provided here highlights the importance
of testing the evolution and mechanisms underlying resistance with
complementary methods and in multiple relevant bacterial species.
We argue that applying this framework is feasible and advisable for
candidate antibiotics before acceptance for clinical use, as it enables
amore accurate assessment of their immediate efficacy, long-term
utility and potential for resistance emergence. Although our findings
indicate that none of the compounds tested meets all the criteriafor an
ideal future antibiotic, they also highlight opportunities forimproving
certain critical properties (Fig. 5). This underscores the pressing need
for innovative approaches in the discovery and optimization of new
antibiotics, particularly those that address the challenges of efficacy
and resistance.

Methods

Strains, antibiotics and media

This study focused on multiple bacterial strains. We tested the activity
spectrumoftheantibioticsinthis study onaset of 40 clinically relevant
pathogenic strains of 4 species (E. coli, K. pneumoniae, A. baumannii
and P. aeruginosa; see the whole list of pathogens in Supplementary
Table 4). For the FoR and ALE experiments, two strains per species
were chosen: for SEN strains, E. coli ATCC 25922, K. pneumoniae ATCC
10031, A. baumannii ATCC 17978 and P. aeruginosa ATCC BAA-3107;
and for MDR strains, E. coliNCTC 13846, K. pneumoniae ATCC 700603,
A.baumannii ATCC BAA-1605 and P. aeruginosa LESB58. For E. coli, we
chose the ATCC 25922 strain as a SEN strain due to its widespread use
inthe literature, and an mcrI-carrying NCTC 13846 strain as the MDR
strain due to the high interest in the impact of this mobile resistance
geneon colistinresistance®. For the other three species, SENand MDR
strains were selected based on the highest number of control antibiot-
icstowhich they showed sensitivity or resistance, respectively, with the
additional criterion for MDR strains that they should be part of an offi-
cial strain collection (Extended DataFig. 3). Functional metagenomic
screens were performed with E. coli ATCC 25922 and K. pneumoniae
ATCC 10031 strains. Deep-scanning mutagenesis (DIVERGE) was per-
formed with E. coli K12 MG1655 and K. pneumoniae ATCC 10031 strains.
The collection of clinical samples was performed in a previous study**.
No new samples were collected for the current study. The collection of
clinical samples complies with all relevant ethical regulations and was
approved by the Scientific and Research Ethics Committee of the Hun-
garian Health Science Council (BMEU /271-3/2022/EKU). As specified
in Material Transfer Agreements, these isolates and their derivatives
cannot be transferred to a third party as they can be used only at the
recipientorganizations and only in the recipient scientists’laboratories
under the direction of the recipient scientists or others working under
their direct supervision.

Atotal of 19 antibiotics were applied in this study from 6 different
antibiotic families: 13 newly developed (recent) antibiotics, whicharein
different phases of clinical trials, and 6 conventional (control) antibiot-
ics with along clinical history from each antibiotic family. For names,
abbreviations and further details, see Table 1 and Supplementary
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Table 3. Antibiotics were custom-synthesized or purchased from sev-
eral distributors (Supplementary Table 3). For preparation, each antibi-
oticstock solution wasfilter-sterilized and kept at -20 °C until use. For
moredetailsonrecentand control antibiotics, see Supplementary Note
1, Table1and Supplementary Table 3. For data on clinical breakpoints
and peak plasma concentrations, see Supplementary Table 3. Tridecap-
tin M152-P3 was synthesized using standard Fmoc-based solid-phase
peptide synthesis. The process began with resin preparation, followed
by iterative Fmoc deprotection and amino acid coupling steps using
HBTU as the coupling reagent. After assembly of the peptide chain,
the product was cleaved from the resin using a TFA-based cocktail,
precipitated with cold isopropyl ether, and dried under vacuum. The
crude peptide was then purified using preparative HPLC, yielding 233.4
mg of the product with 98.17% purity as confirmed by LC-MS and HPLC.

The synthesis of POL7306 involved three main stages: the prepa-
ration of two intermediate peptides (Compound 1and Compound 2)
and their subsequent connection. Fmoc-based solid-phase peptide
synthesis was used, beginning with the attachment of amino acids to
aresin, followed by deprotection and coupling steps. After peptide
assembly, the crude peptides were cleaved from the resin and purified
by precipitation and washing withisopropyl ether. The final connection
of the two peptides was performed on a Rink Amide resin, followed
by cleavage with TFA and purification through prep-HPLC. The final
product, POL7306, was obtained with 96.71% purity and confirmed
by LCMS and HPLC.

For detailed synthesis route see Supplementary information.

Unless otherwiseindicated, cation-adjusted Mueller-Hintonbroth
2 (MHB; Millipore) medium was used throughout the study, except for
cefiderocol and the folate biosynthesis inhibitor SCH-79797. Following
the European Committee on Antimicrobial Susceptibility Testing’s
(EUCAST) recommendation on cefiderocol, iron-depleted MHB media
was used”. To maximize antibacterial activity of SCH-79797, based on
previous experience with folate biosynthesis inhibitor antibiotics*®,
Minimal Salt (MS) medium was used (1g 1" (NH,),SO,, 3 g "' KH,PO,
and 7 gI"'K,HPO, supplemented with 1.2 mM Na,C,H;0,-2H,0, 0.4 mM
MgS0,, 0.54 pg ml™* FeCl,, 1 pg ml™ thiamine hydrochloride, 0.2%
casamino acids and 0.2% glucose).

High-throughput MIC measurements
A standard serial broth microdilution technique®” was used to deter-
mine MICs, as suggested by the Clinical and Laboratory Standards
Institute guidelines. A robotic liquid-handling system was used to
automatically prepare 11-16 step serial dilutions in 384 well microtiter
plates. A total of 5 x 10° bacterial cells per ml were inoculated into each
well containing 60 pl medium. Bacterial cultures were incubated at
37 °C with continuous shaking (300 rpm) for 18 h (2 replicates from
each). Cell growth was monitored by measuring the optical density
(optical density at 600 nm (ODy,,) values using a Biotek Synergy micro-
platereader). MIC was defined as the antibiotic concentration of com-
plete growth inhibition (thatis, OD,, < 0.05). The same protocol was
used to estimate antibiotic susceptibility of laboratory-evolved line-
ages. Relative MIC was calculated as follows: 1og,(MIC,o1ea/MICjncestor) -
Increase in MIC was calculated as follows: 10g,,(MIC.,qveqd = MIC,ncestor)-
We aimed to perform both FoR and ALE assays with all selected 8
bacterial strains; however, 34% of all antibiotic-strain combinations
(N=52)were excluded from further experiments due to modest initial
drugefficacy (thatis, MIC >4 ng ml™), rendering them less relevant for
clinicaluse. The prevalence of panel strains with reduced susceptibility
toacertain antibiotic was estimated by calculating the fraction of panel
strains with high initial MIC values.

FoR assays

To estimate the frequency of spontaneous mutations that confer
resistance in a microbial population, the FoR assay was used. Using
standard protocols'®™", approximately 10™ cells from stationary-phase

cultures were plated to antibiotic-containing MHB plates. Before plat-
ing, bacteria were grown overnightin MHB mediumat37 °C, 250 rpm,
collected by centrifugation (3,880g for 10 min) and washed once in
equal volumes of MHB. From this concentrated bacteria suspension,
~10'° cells were plated to agar plates containing the selective drug at
the desired concentration (thatis, 2x,4x,8xand 20x MIC of each given
antibiotic). Unless otherwise indicated (see ‘High-throughput MIC
measurements’ above), MHB agar medium was used throughout the
study. Allexperiments were performed inthree replicates. Plates were
grown at 37 °C for 48 h. Total colony-forming units were determined
simultaneously in each experiment by plating appropriate dilutions
to antibiotic-free MHB agar plates. Resistance frequencies for each
bacterial strain were calculated by dividing the number of emergent
colonies by the initial viable cell count. Ten bacterial colonies from
the highest antibiotic concentration were selected for further MIC
measurements and whole-genome sequence analysis.

High-throughput ALE

Apreviously established protoco was used for ALE, with the aim to
ensure that populations with the highest level of resistance were propa-
gated further. Starting with an antibiotic concentration resulting in
~50% growthinhibition, 10 parallel populations per antibiotic-ancestor
strain combination were grown for 72 hat 37 °C with continuous shak-
ing (300 rpm). Asrapid degradation has been observed for 3-lactams
and cephalosporins in liquid laboratory media®, ceftobiprole, cefi-
derocol and cefepime were not subjected to ALE. Unless otherwise
indicated, MHB medium was used. After eachincubation period, 20 pl
of each bacterial culture was transferred to 4 new independent wells
containing freshly prepared medium containing different antibiotic
concentrations (0.5%,1x,1.5x and 2.5x the concentration of the previous
step). A chessboard layout was used on the plate to monitor potential
cross-contamination events. Cell growth was monitored before each
transfer by measuring the OD,, value (Biotek Synergy 2 microplate
reader). Only populations with the highest drug concentration (and
reaching OD,, > 0.2) were selected for further transfer. The evolution
experiment was generally continued for 20 transfers, resultinginatotal
of 728 evolved lines (78 lines were omitted because of limited growth).

148,49

Whole-genome sequencing

To identify potential antibiotic-resistance-conferring mutations, we
generally selected two to five lines from FoR and ALE experiments,
respectively, for whole-genome sequencing. Resistant populations
were grown overnight in antibiotic-free medium. DNA isolation from
overnight cultures was performed with the GenElute Bacterial Genomic
DNA Kit (Sigma), according to the manufacturer’s instructions. DNA
was eluted with 120 pl RNAse-free sterile water in 2 elution steps. The
eluted DNA (60 pl) was then concentrated using the DNA Clean and
ConcentratorKit (Zymo), according to the manufacturer’sinstructions.
The final DNA concentration was measured using a Qubit Fluorometer
and concentration was set to 1 ng ml™ in each sample. Sequencing
libraries fromisolated genomic DNA were prepared usingthe Nextera
XTDNA Library PreparationKit (Illumina) following the manufacturer’s
instructions. The sequencinglibraries were sequenced onanlllumina
NextSeq 500 sequencer using mid or high output flow cells to generate
2x150 bp paired-end reads.

To determine and annotate the variants, we mapped the sequenc-
ing reads to their corresponding reference genomes using an estab-
lished method (Burrows-Wheeler Aligner)*'. From the aligned reads,
PCR duplicates were removed with the Picard MarkDuplicates tool
(http://broadinstitute.github.io/picard/). Weremoved every read that
had been aligned with more than six mismatches (disregarding inser-
tions and deletions). The SNPs and insertions or deletions were called
using Freebayes™ with the following parameters: -p 5-min-base-quality
28. The identified variants were filtered using the vcffilter tool from
vcflib® using the following parameters: —f ‘QUAL >100’. To avoid
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missing rare but valid hits, we did not set alower limit for the prevalence
of rarevariants. If necessary, mutations were also manually inspected
within the aligned reads using IGV** to reduce Burrows-Wheeler align-
ment or freebayes artefacts. Finally, the variants were annotated with
SnpEfand we only kept those that were not presentin the ancestor. We
filtered out mutations that appeared in more than nine lines because
these variants are probably already present in the ancestor. Further-
more, mutations that appeared in less than nine but more than six
lines were manually inspected to exclude sequencing artefacts. We
also excluded mutations that affect 40 bp or longer repetitive regions,
resulting in a filtered set of mutations. Lines containing mutations in
the mutL, mutS or mutY genes, or lines with more than 19 mutations,
defined by outlier filtering (third quartile + (3 x interquartile range)),
were considered hypermutators and were subsequently discarded.

To analyse the presence or absence of mutations across genes
and strain backgrounds, we first complemented the existing gene
functional annotation for the eight bacterial strain backgrounds as
follows. Nucleotide sequence and annotation files of six strains (£. coli
ATCC 25922, K. pneumoniae ATCC10031, A. baumannii ATCC17978, P.
aeruginosa ATCC BAA-3107, K. pneumoniae ATCC 700603 and A. bau-
mannii ATCC BAA-1605) were downloaded from the ATCC database
(https://www.atcc.org/). For P. aeruginosa LESB58 and E. coli NCTC
13846 strains, genomic data were downloaded from NCBI Nucleotide
(accession numbers FM209186.1 and GCA_900448335.1). Next, all
genes in the GeneBank files, including hypothetical ones, were func-
tionally annotated using PANNZER2 (refs. 55,56). To compare the sets
of mutated genes across strain backgrounds, we determined genes that
areshared across different strains by identifying groups of orthologous
genes using OrthoFinder (v.2.5.4)°",

Bioinformatic analysis of mutations promoting growth in the
laboratory based on previous work

We compiled acomprehensive list of 104 genes associated with medium
adaptation in E. coli, as identified in 2 previous studies®*°. First, we
examined our evolved £. coli strains for mutations within these genes.
The DNA sequences of these genes fromthe E. coli strain MG1655 were
retrieved from EcoCyc (v.26.0)%". We then aligned the sequences to the
amino acid sequences of proteins in our reference genomes (SEN and
MDR, separately) using the BLASTX tool (implemented in the rBLAST
Rpackage®).Foreach gene, we selected the alignment with the highest
bit score, requiring a sequence identity of at least 80% and coverage
of at least 80%. This approach resulted in 92 of the 104 genes being
matchedineachreference genome. Amongthese, 8 genesinthe MDR
strains showed 13 mutations and 7 genes in the SEN strains contained 15
mutations, totalling 11genes with 28 mutationsin atleast 1strain.Asa
next step, we investigated non-coding mutations in our evolved strains
toascertainif any were located in or adjacent to operons overlapping
with the genesimplicated in medium adaptation. This analysis did not
reveal any non-coding mutations associated with the genes of interest.

Comparison of variants to public genomes of bacterial isolates
We assessed whether amino acid substitutions occurring in the FoR
and ALE samples are presentin natural populations of £. coliand A. bau-
mannii as follows. We compiled acomprehensive genomic dataset for
E. colistrains by downloading assembled genome sequences or unas-
sembled reads and metadata, from four sources: (1) the JGl Integrated
Microbial Genomes and Microbiomes (IMG) database® (on 29 January
2020), (2) the NCBI Prokaryotic RefSeq collection (available at https://
www.ncbi.nlm.nih.gov/refseq/; on29 January 2020), (3) genomes that
were analysedinref. 64, and (4) genomes that were analysed inref. 65.

After trimming the adaptors with the Cutadapt v.3.2 program®®,
we de novo assembled the next-generation sequencing short reads
(downloaded from the Sequence Read Archive database®) of genomes
from sources (3) and (4) using the SPAdes v.3.14.1 software®®. Then we
applied the BUSCO v.5.0.0. workflow®’ to exclude genome sequences

with less than 95% of the BUSCO genes, indicating inadequate com-
pleteness or quality. When multiple genome sequences belonged to
the same BioSample identifier, only the one with the highest BUSCO
score, longest sequence and fewest contigs were kept, and all meta-
data of the original sequences were merged. This resulted in 20,786
E.coligenomes (Supplementary Datal) for which gene prediction was
performed using Prodigal (v.2.6.3)° to obtain protein-coding gene
annotations that are consistent across the genomes. ORFs with less than
100 amino acids were filtered out. Strains were classified as pathogens
and non-pathogens based on their genomic metadata. For A. bauman-
niistrains, we downloaded all available assembled genome sequences
from the NCBI Prokaryotic RefSeq genome collection (https://www.
ncbi.nlm.nih.gov/refseq/) on 12 September 2022. Then we applied
genome filtering with 95% completeness using BUSCO v.5.4.6. and
protein prediction using Prodigal as described above for E. coli. This
resulted in 15,185 A. baumannii genomes (Supplementary Data1).

Next, we searched for the presence of each amino-acid-changing
SNP across the E. coli and Acinetobacter genome collections as follows.
First, we performed a sequence similarity search of each gene carry-
ing a given variant using DIAMOND BLAST (v.2.0.2)" using an e-value
(expect-value) of 0.00001 with 90% coverage and 90% identity toiden-
tify homologues among the genomes. In the next step, we performed
multiple sequence alignment using MAFFT (v.7.475)with the -retree
2option. Then we analysed the amino acid frequency across the align-
mentsinall mutated positions. All E. coliand A. baumannii variants that
were present in the corresponding species’ genome collection and
appeared more than once in our FoR and ALE samples were selected
for further analysis.

Functional metagenomic screens

Resistance-conferring DNA fragments in the environment were iden-
tified by functional selection of metagenomic libraries. In a previous
study”, we created metagenomic libraries to obtain environmental and
clinical resistomes, including (1) river sediment and soil samples from
7 antibiotic-polluted industrial sites in the close vicinity of antibiotic
production plantsiniIndia’ (anthropogenic soil microbiome), (2) faecal
samples from 10 Europeanindividuals who had not taken any antibiot-
icsforatleast1yearbefore sample donation (thatis, gut microbiome),
and (3) samples from a pool of 68 MDR bacteria isolated in healthcare
facilities or obtained from strain collections (Supplementary Table 5).
For full details on library construction, see ref. 27.

Briefly, environmental and genomic DNA was isolated using the
DNeasy PowerSoil Kit (Qiagen) and the GenElute Bacterial Genomic DNA
Kit (Sigma), respectively. Environmental and genomic DNA was enzy-
matically fragmented, followed by size selection of 1.5-5 kb long frag-
ments. Metagenomicinserts were cloned into a medium-copy-number
plasmid and flanked by two 10 nt-long barcodes (referred to as uptag
and downtag). Library sizes ranged from 2 to 6 million clones with an
average insert size of 2 kb.

Libraries were introduced into K. pneumoniae ATCC 10031 and
E. coli ATCC 25922 by bacteriophage transduction (DEEPMINE)?’
and electroporation, respectively. DEEPMINE uses hybrid T7
bacteriophage-transducing particles to alter phage host specificity
and efficiency for functional metagenomics in target clinical bacte-
rial strains.

Inthis study, we followed previously described protocols with two
minor modifications. First, transducing hybrid phages were generated
witha T7 phage lacking the gp11, gp12 and gp17 genes, constructed as
previously described™. Second, we used a new phage tail donor plas-
mid for complementing the deleted phage tail genes. This plasmid
was cloned using the ®SG-JL2 phage tail coding genes, the packaging
signal region of T7 phage and the pK19 plasmid backbone based on
previous work”,

Functional selections for antibiotic resistance were performed
on MHB agar plates containing a concentration gradient of the
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antimicrobial compounds’”. Cells containing the metagenomic
libraries were plated in a cell number covering at least 10x the size of
the corresponding metagenomic library. Plates wereincubated at 37 °C
for 24 h. For each functional selection, a control plate was prepared
with the same number of cells containing the metagenomic plasmid
withoutacloned DNA fragmentin its multicloning site. These control
plates showed the inhibitory zone of the antimicrobial compound. To
isolate the resistant clones from the libraries, sporadic colonies were
identified above the inhibitory zone based on the control plate by visual
inspection. Colonies were then collected for plasmidisolation (Thermo
Scientific GeneJET Plasmid Miniprep Kit). Metagenomicinsertsin the
resistant hits were sequenced using two complementary sequencing
methods. First, random 10 nt barcodes flanking the metagenomic
inserts (pZET_bc_F_Srfl_v2, pZET_bc_R; Supplementary Table 7) on the
resistant plasmids from each selection experiment were PCR amplified.
For this, we used primers that contain 2x 8-nt-long barcodes specific
for each selection experiment (with codes starting with Uptag-UF,
Uptag-UR, pZET_Down_F and pZET_Down_R; Supplementary Table 7).
Amplicons were pooled, size-selected on agarose gel and sequenced by
lllumina. Second, metagenomicinserts and their flanking 10 nt uptag
and downtag barcodes were sequenced by Nanopore.

Annotation of ARGs

Consensusinsert sequences from Nanopore sequencing were matched
with therespective selection experiment using the datafrom Illumina
sequencing. First, sequencing reads from Illumina sequencing were
demultiplexed using the 2x 8-nt-long barcodes specificto the selection
experiment, and then the demultiplexed reads were matched with the
consensusinsertsequences using the random10-nt-long barcodes spe-
cificto the metagenomicinserts. Toreduce redundancy and spurious
matches, the list of metagenomic contigs were filtered (1) to unique
barcodes, keeping barcodes with the highest Nanopore read count; and
(2) to contigs that were supported by at least eight Nanopore reads and
five llluminareads. Prediction of ARGs within these contigs was based
on ORF prediction using Prodigal v.2.6.3 (ref. 70), followed by search-
ing the annotated ORFs within the CARD and ResFinder databases’””.
Searches were performed using BLASTX from NCBI BLAST v.2.12.0
(ref. 80) with a 107 e-value threshold and otherwise default settings.
ORFswereclustered at 95% identity and coverage using CD-HIT v.4.8.1
(ref. 81) and only 1 representative ORF was kept for each cluster. The
inserts were classified based on whether or not any ARGs were found
inthem, and whether or not at least one of these ARGs was associated
withthe antibioticbeing tested in that particular selection experiment.
Close orthologues of the host-specific proteins were excluded from
further analyses by performing a BLASTP search of each ORF on host
proteomes (https://www.uniprot.org/proteomes/UP000001734,
https://www.uniprot.org/proteomes/UP000029103, downloaded
on 24 November 2022) and removing each ORF with higher than 80%
sequence similarity. The potential origin of the inserts was assessed by
searching the Nanopore contigs within the NCBI Prokaryotic RefSeq
Genomes database®” using BLASTN from NCBI BLAST v.2.12.0 with
default settings and resolving taxids to hierarchical classifications
using R¥ and the taxizedb package®* .

Catalogue of mobile ARGs

A mobile gene catalogue (that is, a database of recently transferred
DNA sequences between bacterial species®’) was created previously”.
Briefly, 1,377 genomes of diverse human-related bacterial species
from the Integrated Microbial Genomes and Microbiomes database®
and 1,417 genomes of Gram-negative ESKAPE pathogens from the
NCBI RefSeq database were downloaded. Using NCBIBLASTN 2.10.1+
(ref. 80), we searched the nucleotide sequences shared between
genomes belonging to different species. The parameters for filtering
the NCBI BLASTN 2.10.1+ BLAST results were as follows: minimum
percentage of identity, 99%; minimum alignment length, 500; and

maximumalignmentlength,20,000. Then, to generate the mobile gene
catalogue, we compared themwith the merged CARD 3.1.0 (ref. 78) and
ResFinder (d48a0fe) databases’ using DIAMOND v.2.0.4.142 (ref. 71).
Natural plasmid sequences were identified by downloading 27,939
complete plasmid sequences from the PLSDB database (v.2020-11-19)%,
Then the representative sequences of the isolated 114 ARG clusters
were searched using BLASTN both in the mobile gene catalogue and in
natural plasmid sequences with anidentity and coverage threshold of
90%. ARGs were considered mobile if they were present in the mobile
gene catalogue and/or in natural plasmid sequences.

Detecting ARGs present in human-associated microbiome and

human pathogens

To identify close homologues of the ARGs discovered in our func-
tional metagenomic screens, we used GMGCV1 (ref. 33). This exten-
sive, non-redundant database comprises over 2.3 billion unigenes,
derived frommore than 13,000 metagenomes across 14 major habitats,
and includes detailed phylogenetic origin information. We applied a
BLASTN®*’ search to compare the nucleotide sequences of the ORFs
from our screens with all unigenes in the GMGCv1, using a stringent
identity and coverage threshold of 90%. ARGs were considered to be
associated with the human body if they showed sequence homology
tounigenes presentin atleast five samplesin at least one of the follow-
ing environments: human gut, oral cavity, skin, nose, blood plasma or
vagina. To further investigate the association of the detected ARGs
with human pathogens, we analysed (1) their presence in the clini-
cal metagenomic library, and (2) their phylogenetic relationships to
pathogens, specifically focusing on ESKAPE pathogens and those listed
in the WHO priority lists (A. baumannii, P. aeruginosa, Enterobacte-
riaceae, Enterococcus faecium, Staphylococcus aureus, Helicobacter
pylori, Campylobacter,Salmonella, Neisseria gonorrhoeae, Streptococ-
cus pneumoniae, Haemophilus influenzae and Shigella) by leveraging
species information metadata from the GMGCvl1 database for each
BLASTN hit.

Detecting ARGs across E. coli phylogroups, host species types
and geographicregions

Host type, geographic location and phylogroup were determined for
adataset 0f 16,272 E. coli genomes in previous work®®, The initial com-
plete dataset of 26,881 E. coli genomes was retrieved from the NCBI
RefSeq database (in February 2022) and filtered for genomes with
complete metadata. Clermont phylogrouping” was performed in silico
using the EzClermont command-line tool®?, whereas host and location
metadatawereretrieved and categorized using the Bio.Entrez utilities
from Biopythonv.1.77. Allgenomes were sorted into the following host
species categories: human, agricultural/domestic animals and wild
animals. This was achieved using regular expressions constructed by
manually reviewing textinthe ‘host’ field of the biosample dataforeach
accessionnumber. Geographiclocations were splitinto 20 subregions
accordingtoNatural Earth data®. Alocal BLASTP search was performed
for this collection of E. coli genomes against a database of the predicted
ARG ORFsidentified in functional metagenomicscreens, using default
parameters. ARGs with both 90% amino acid identity and 90% query
coverage per subject, and presentin nomore than10% of the examined
E. coligenomes, were analysed further.

DIVERGE mutagenesis

We performed deep-scanning mutagenesis in the target genes of
moxifloxacin, an established topoisomerase inhibitor. The quinolone
resistance-determining regions (QRDR)** of the gyrA and parC genes
were subjected to a single round of mutagenesis using DIVERGE in
E. coli K12 MG1655 and K. pneumoniae ATCC 10031. A previously
described workflow?® was used with minor modifications. Briefly,
cells carrying the pPORTMAGE311B plasmid (Addgene number120418)
were inoculated into 2 ml LB medium plus 50 pg ml™ kanamycin and
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were grown at 37 °C with continuous shaking (250 rpm) for 12 h. From
this starter culture, 500 pl stationary-phase culture was propagated in
50 ml of the same fresh medium under identical conditions. Induction
wasinitiated at afixed population density (OD,, = 0.4) by adding 50 pl
of 1M m-toluicacid (dissolved in 96% ethyl alcohol; Sigma-Aldrich) for
30-45 minat 37 °C. Afterinduction, cells were cooled onice for 15 min.
Next, cells were washed three times with sterile ice-cold ultrapure
distilled water. Finally, the cell pellet was resuspended in 800 pl sterile
ultrapure distilled water and kept on ice until electroporation.

To perform DIVERGE mutagenesis, the corresponding gyrA and
parC QRDR-targeting oligonucleotides were mixed in equimolar
amounts. Of the 500 pl oligonucleotide mixture, 2 pl was added to
40 plelectrocompetent cellsin 5 parallel samples. The oligonucleotides
we used are listed in Supplementary Table 7. After electroporation, the
parallel samples were pooled and suspended in 25 mlfresh LB medium
toallow for cell recovery (37 °C and 250 rpm). After a 60 minrecovery
period, anadditional 25 ml LB medium was added and cells were grown
foranadditional 24 h.

Toselect clones withreduced susceptibility to moxifloxacin, 500 pl
of each mutant cell library was spread onto moxifloxacin-containing
MHB agar plates. The plates were incubated at 37 °C for 48 h. Finally,
20-20 antibiotic-resistant clones were selected randomly and analysed
further by capillary sequencing using the PCR primers listed in Sup-
plementary Table 7.

Efflux activity measurements

Measuring the accumulation of the fluorescent Hoechst dye is known
asarobustand rapid method for monitoring efflux activity/membrane
permeability in bacteria®. This method is based on the intracellular
accumulation of the fluorescent probe Hoechst 33342 (Bisbenzimide
H 33342; Sigma-Aldrich). Cells were grown overnight in MHB, then
20 pl of the overnight culture was used to inoculate 2 ml of MHB lig-
uid medium and then the cells were grown to mid-exponential phase
(ODgoo = 0.4-0.6). Bacterial cultures were harvested by centrifuga-
tion at 4,500¢ for 30 min. Next, cells were washed and resuspended
in the buffer containing 5 mM HEPES (pH 7.0) and 5 mM glucose. The
0Dy, of the cell suspensions was adjusted to 0.1, and 0.18 ml of each
suspension was transferred to 96 well plates (CellCarrier-96 Black
Optically Clear Bottom; Sigma-Aldrich). Plates were incubated in a
Synergy H1 microplate reader at 37 °C and 25 pM Hoechst 33342 was
addedtoeachwell. The ancestor strain was treated with an efflux inhibi-
tor agent (phenylalanine-arginine 3-naphthylamide) that served as a
positive control. The OD,, and fluorescence curves were recorded
for2 hwith75 sdelaysbetweenreadings and 2.5 minreadingintervals.
Fluorescence reading was performed from the top of the wells using
excitation and emission filters of 355 nm and 460 nm, respectively.
To estimate changes in efflux activity, we used a 2 step process: (1) we
measured the optical-density-normalized fluorescence signal over a
fixed time frame (from 7.5 min to 120 min) to monitor theintracellular
accumulation of a fluorescent probe, and (2) we calculated the change
in normalized fluorescence signal by dividing the signal at the final
time point (120 min) by that at the initial time point (7.5 min). Relative
efflux activity of the tested strains was determined by normalizing
the reached raw values to those of their respective ancestral strains
and takingitsinverse.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The maindatasupporting the findings of this study are available within
the article and its Supplementary Information. lllumina reads and
Nanopore contigs for this study have been deposited in the Euro-
pean Nucleotide Archive (ENA) at EMBL-EBI under accession number

PRJEB63210 (https://www.ebi.ac.uk/ena/browser/view/PRJEB63210).
Additional source data underlying the figures featured in the Supple-
mentary Notes are available from the corresponding authors upon
request. Source dataunderlying Figs.1-5and Extended Data Figs.1-10
are provided with this paper.

Code availability

Theauthorsdeclare that all data cleaning and analysis associated with
this article were performed using previously published methods, the
applications of which are appropriately cited in the corresponding
sectionsinthe Methods. No custom code was developed for the afore-
mentioned purposes. Additional code underlying the figures featured
are available fromthe corresponding authors upon request.
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Extended Data Fig. 1| Deep analysis of resistance evolution. Evolution of
resistance to 13 recently developed antibiotics was studied. To this aim we
selected new antimicrobial compounds which are currently under development
or have reached the market recently. To systematically study the possible
routes of resistance evolution and the underlying molecular mechanisms, we
combined multiple methods shown in grey boxes. We used multiple clinically
relevant Gram-negative bacterial species asindicated in each box. (A) Intrinsic
antibiotic susceptibility testing was performed using clinical isolates of E. coli,
K. pneumoniae, A. baumannii and P. aeruginosa. (B-C) Standard frequency

of resistance assays (FOR) with ~1010 cells and adaptive laboratory evolution
(ALE) experiments were performed using a sensitive and MDR strain of E. coli,

K. pneumoniae, A. baumannii and P. aeruginosa. (D) Functional metagenomic
screens for antibiotic resistance genes from three metagenomic DNA libraries
(soil and gut microbiomes and clinical genomes) were performed in E. coliand
K.pneumoniae. (E) The directed evolution method called DIVERGE was used in
E. coliand K. pneumoniae to test cross-resistance between recent and control
topoisomerase inhibitors. (F) We sequenced the complete genomes of 457
resistant lines and 690 independent DNA fragments to decipher the underlying
molecular mechanisms of resistance and explore the prevalence of these
mutations in the genomes of naturally occurring clinical isolates. Additionally,
we evaluated whether the detected putative antibiotic resistance genes could
pose threats to public health. Figure created with BioRender.com.
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Bacterial strains

Extended Data Fig. 2 | Resistance profile of 40 bacterial strains against
different antibiotic classes. The heatmap shows the resistance profile of
40 bacterial strains against 8 different antibiotic classes. Strains resistant
and sensitive to a given antibiotic class (based on clinical breakpoints) are
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Extended Data Fig. 3| Comparison of minimum inhibitory concentration
(MIC) of antibiotics for sensitive and multidrug-resistant/extensively
drug-resistant strains. (A) Comparison of minimum inhibitory concentration
(MIC) of recent vs. control antibiotics for sensitive and multidrug-resistant/
extensively drug-resistant strains. The figure shows the median MIC values (on
alog,y-scale) of control (top row) and recent (bottom row) antibiotics across all
tested bacterial strains. Each vertical panel represents a specific antibiotic class,
asindicated at the top. Individual points depict the median MIC value of strain-
antibiotic pairs, with lines connecting paired data points representing MIC values
of one antibiotic for one sensitive (SEN) and one multidrug-resistant/extensively
drug-resistant (MDR/XDR) strain for the same species. Blue points/lines indicate
cases where the MIC of a single antibiotic for a sensitive strain is lower compared
to the MDR/XDR strain of the same species, while red indicates cases where it is
not lower. Median MIC values are based on 2 biological and 3 technical replicates
for each bacterial strain-antibiotic combination. Boxplots display the median,
first, and third quartiles, with whiskers indicating the 5th and 95th percentiles
ofthe median MIC values per each investigated group. Paired Wilcoxon rank
sum analysis (two-sided test) was performed to assess significant difference in
sensitivity between antibiotic sensitive (SEN) and MDR/XDR bacterial strains ****
indicates P < 0.0001, whereas nsindicates that the P value is not significant. For
antibiotic abbreviations, see Table 1. Antibiotic classes: TOPO (topoisomerase
inhibitors), TETR (tetracyclines), AMIN (aminoglycosides), CARB (carbapenems),

CEPH (cephalosporins), and MEMB (membrane-targeting antibiotics). (B)
Comparison of minimum inhibitory concentration (MIC) of recent antibiotics
for sensitive and multidrug-resistant/extensively drug-resistant strains. The
figure shows the median MIC values (on alog;, scale) of recent antibiotics across
all tested bacterial strains. Each vertical panel represents a specific antibiotic
class and recent antibiotic, as indicated at the top. Individual points depict

the median MIC value of strain-antibiotic pairs, with lines connecting paired
data points representing MIC values of one antibiotic for one sensitive (SEN)
and one multidrug-resistant/extensively drug-resistant (MDR/XDR) strain for
the same species. Blue points/lines indicate cases where the MIC of a single
antibiotic for a sensitive strain is lower compared to the MDR/XDR strain of the
same species, while red indicates cases where it is not lower. Median MIC values
arebased on 2 biological and 3 technical replicates for each bacterial strain-
antibiotic combination. Boxplots display the median, first, and third quartiles,
with whiskers indicating the 5th and 95th percentiles of the median MIC values
per eachinvestigated group. Paired Wilcoxon rank sum analysis (two-sided
test) was performed to assess significant difference in sensitivity between
antibiotic sensitive (SEN) and MDR/XDR bacterial strains. ***/**indicates

P <0.0001/0.001, nsindicates that the P value is non-significant. For antibiotic
abbreviations, see Table 1. Antibiotic classes: TOPO (topoisomerase inhibitors),
TETR (tetracyclines), AMIN (aminoglycosides), CARB (carbapenems), CEPH
(cephalosporins), and MEMB (membrane-targeting antibiotics).
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Extended Data Fig. 4| Adaptation to antibiotics by frequency of resistance
assay. (A) Changes in minimum inhibitory concentrations (MIC) in mutants
isolated in frequency-of-resistance (FoR) assays. Each point represents the MICs
of amutant line and the corresponding ancestor (log10 scale). Control and recent
antibiotics are indicated by blue and orange panels, respectively. The colour of
the data points represents the bacterial species. The black dashed line indicated y
=x (thatis no changes in MIC in the mutants), whereas the red dashed line shows
the antibiotic specific peak plasma concentration (Supplementary Table 3). For
abbreviations, see Table 1. (B) Percentage of mutant lines reaching the clinical
breakpointin frequency of resistance assay and adaptive laboratory evolution.
The heatmap shows the percentage of lines reaching the clinical breakpoint.
Unavailable clinical breakpoints are indicated by white. For the antibiotic
abbreviation and clinical breakpoints see Supplementary Table 3, for strain
abbreviation see Supplementary Table 4. (C) Frequency of resistance of evolved
lines adapted to different antibiotics. The frequency of resistance at 8 x MIC

antibiotic concentrations was calculated for all antibiotics, shown as the number
of mutations per cell per generation. Each data point represents the median MIC
value of adistinct mutant line derived from the frequency of resistance assays
(FoR), species are denoted by different colours. Median MIC values are based

on 2biological and 3 technical replicates for each bacterial strain-antibiotic
combination. The label colour on the x-axis shows the generation of the different
antibiotics (blue stands for control, orange for recent antibiotics). The boxplots
show the median, first, and third quartiles, with whiskers showing the 5th

and 95th percentiles of the median MIC values per each investigated group.
Thereis highly significant heterogeneity in the frequency of resistance across
antibiotics (Kruskal-Wallis test, P < 0.00001), but no statistical difference was
found between control and recent antibiotics (Wilcoxon’s rank-sum-test, two-
sided, P=0.9) when all species and antibiotics were considered. For antibiotic
abbreviations, see Table 1.
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Extended DataFig. 5| Features shaping the resistance level during evolution.
(A) Correlation of the initial MIC and increase in resistance levels during adaptive
laboratory evolution for all species. The scatterplot shows the correlation
betweeninitial resistance level (MIC of the ancestor) and the increase in MIC
(both onlogl0-scale) during adaptive laboratory evolution (ALE) for the four
bacterial species. Increase in MIC was calculated by subtracting the initial MIC
from the final MIC. Each point corresponds to an adapted line-antibiotic pair.
Spearman’s rank correlation coefficients (calculated using a two-sided test)

and corresponding p-values between the two variables across all adapted lines
of each species are displayed in the figure. Colours indicate the 4 bacterial
species studied. (B) Correlation analysis between the initial MIC and the increase
inMIC during adaptive laboratory evolution for all genomic backgrounds.

The scatterplots show the initial MIC and the increase in MIC (both on log10-
scale) during adaptive laboratory evolution for each 8 studied bacterial strain
(indicated in the top of each panel). Increase in MIC was calculated by subtracting
the initial MIC from the final MIC. Each point corresponds to an adapted line-
antibiotic pair. Spearman’s rank correlation coefficients (calculated using a two-
sided test) and corresponding p-values are indicated within each panel. Error
barsrepresent 95% confidence intervals. Colours indicate the 4 bacterial species
studied. For abbreviations, see Supplementary Table 4. (C) Correlation analysis
between the initial MIC and the increase in MIC during adaptive laboratory
evolution for all tested antibiotics. The scatterplots shows the initial MIC and

theincrease in MIC (both onlogl0-scale) during ALE for all antibiotic studied
(indicated in the top of each panel). Increase in MIC was calculated by subtracting
the initial MIC from the final MIC. Each point corresponds to an adapted line-
antibiotic pair. Spearman’s rank correlation coefficients (calculated using a two-
sided test) and corresponding p-values are indicated within each panel (absence
of valuesin certain panels is due to the lack of variability in the initial MIC). Error
bars represent 95% confidence intervals. Colours indicate the 4 bacterial species
studied. For abbreviations, see Table 1. (D) Multiple linear regression (MLR)
analysis on features shaping the resistance level reached during evolution. The
analysis focused on three main features i) the MIC level of the ancestor strain
(MICa), i) the antibiotic employed (AB) and the ii) genetic background (strain).
The adjusted coefficient of determination (adjusted R-square) was used as a
statistical metric to measure the explanatory power of the models, ie. how much
of the variationin the absolute increase in MIC (log2) can be explained by the
variation in these features and combinations thereof, while adjusting for the
number of parameters used in the fitted model. Additivity (indicated with +sign
inaxis labels) and interaction (* sign in axis labels) between explanatory variables
are marked with orange and red colours, respectively. The predictors included
inthe models are also depicted in the right panel. We found a significantincrease
inadjusted R-square in all cases when a more complex model was comparedtoa
simpler one (ANOVA, two-sided, P < 0.0001).
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Extended Data Fig. 6 | Characterization of mutational events in antibiotic
resistant evolved lines. (A) Distribution of SNPs and indels in resistant lines
across four bacterial species. Red and green colours denote shortindels and
SNPs, respectively. As expected, lines derived from FoR have accumulated fewer
mutations (one-sided Wilcoxon rank sum test, P < 2.2e-16), when compared to
lines derived from ALE. (B) Fraction of non-synonymous mutations. To assess the
signatures of adaptive evolution in our genomic samples from ALE and FoR assay,
we tested whether the fraction of non-synonymous mutational events within all
SNPsin the coding region was higher than expected based on a purely neutral
model of evolution using an established method’®. For each bacterial strain
background, we identified all SNPs in the coding regions, counted the number

of non-synonymous (nonsyn) and synonymous (syn) ones and calculated the

observed fraction of non-synonymous mutations (red dashed line) as follows:
nonsyn/nonsyn +syn, where nonsyn and syn are the number of non-synonymous
and synonymous mutations, respectively. Next, we randomly generated the same
number of SNPs at random coding positions along the genome as observed in the
mutation dataset. We repeated this step 5000 times, then plotted the fraction

of non-synonymous mutations as histograms for each species (columns) and
strain type (rows). Next, we calculated the probability (P-value) that the fraction
of nonsynonymous mutations was equal to or higher in the real data than that of
inthe randomly generated one. (C) Distribution of different mutational events.
Top and bottom row correspond to the adapted lines originating for laboratory
evolution (ALE) and frequency of resistance (FoR) assays, respectively.
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Extended Data Fig. 7| Non-synonymous mutations shared by laboratory during laboratory evolution of resistance. The corresponding genes possessing
evolved lines and natural isolates of E. coli and A. baumannii. The barplots non-synonymous mutations are labeled with dark grey strips. The bottom left
show the number of natural isolates (top left and right panelin E. coli and panel shows the number of natural strains with canonical resistance mutations

A. baumannii, respectively) with the same non-synonymous mutation that arose (source: Pointfinder®).
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Extended DataFig. 9 | Distribution of canonical resistance mechanisms across
antibiotic treatments. (A) Distribution of canonical resistance mechanisms
across antibiotic treatments in adaptive laboratory evolution and frequency of
resistance assay. Unique de novo genomic mutations were assigned to four major
resistance mechanisms based on homology to genes featured in the CARD and
ResFinder databases. Those antibiotic treatments were disregarded that did not
yield at least 10 unique mutations during the course of laboratory evolution.

The four major resistance categories include reduced membrane permeability,
antibiotic target alteration, antibiotic inactivation, and antibiotic efflux. The
distribution of mutations belonging to each resistance mechanism differs

across the antibiotics (two-sided proportion test, p < 0.001). For antibiotic
abbreviations, see Table 1. (B) Distribution of resistance mechanisms across

antibiotic treatments in functional metagenomics screens. The barplot shows
the fraction of ARGs per antibiotic resistance mechanisms across functional
metagenomics screens in the presence of different antibiotics (blue and orange
indicate control and recent antibiotics, respectively). ARGs were assigned

to five major resistance mechanisms (vertical panels) based on homology

to genes featured in the CARD and ResFinder databases. The five major
resistance categories include antibiotic efflux antibiotic inactivation, antibiotic
target alteration, antibiotic target protection, and reduced permeability to
antibiotics. The distribution of ARGs belonging to each resistance mechanism
shows heterogeneity across the antibiotics (two-sided roportion test, p < 0.001).
For antibiotic abbreviations, see Table 1.
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Extended Data Fig. 10 | Characterization of potential health-risk of ARGs
across antibiotic treatments. (A) Antibiotic resistance genes and health-risk
criteria. The figure shows the fraction of putative ARGs that meet the following
criteria: i) gene mobility, ii) presence in microbiomes associated with the human
body, and iii) bacterial host pathogenicity. Numbers within the bars indicate the
total number of ARGs belonging to the specific category. There is significant
variationin the frequency of ORFs across the antibiotics tested (two-sided
proportion test, p < 0.05) for each criteria, indicating that adaptations to certain
antibiotics are more likely to meet a specific criterium. Abbreviations: TOPO:
topoisomerase inhibitors, TETR: tetracyclines, AMIN: aminoglycosides, CARB:
carbapenems, CEPH: cephalosporins, MEMB: membrane targeting antibiotics.

For antibiotic abbreviations, see Table 1. (B) Potential-risk antibiotic resistance
genes against recent antibiotics. The heatmap shows resistance genes identified
infunctional metagenomics screens. Blue and orange labels indicate control and
recent antibiotics, respectively. Only genes that display high sequence similarity
to already known antibiotic resistance genes are depicted here. The colours of
the heatmap indicate different resistance mechanisms associated with a given
antibiotic resistance gene. Horizontal panels depict major types of resistance
genes. Antibiotic classes (vertical panels): TOPO (topoisomerase inhibitors),
TETR (tetracyclines), AMIN (aminoglycosides), CARB (carbapenems), CEPH
(cephalosporins), and MEMB (membrane-targeting antibiotics). For antibiotic
abbreviations, see Table 1.
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