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ESKAPE pathogens rapidly develop 
resistance against antibiotics in 
development in vitro
 

Despite ongoing antibiotic development, evolution of resistance may 
render candidate antibiotics ineffective. Here we studied in vitro emergence 
of resistance to 13 antibiotics introduced after 2017 or currently in 
development, compared with in-use antibiotics. Laboratory evolution 
showed that clinically relevant resistance arises within 60 days of antibiotic 
exposure in Escherichia coli, Klebsiella pneumoniae, Acinetobacter 
baumannii and Pseudomonas aeruginosa, priority Gram-negative ESKAPE 
pathogens. Resistance mutations are already present in natural populations 
of pathogens, indicating that resistance in nature can emerge through 
selection of pre-existing bacterial variants. Functional metagenomics 
showed that mobile resistance genes to antibiotic candidates are prevalent 
in clinical bacterial isolates, soil and human gut microbiomes. Overall, 
antibiotic candidates show similar susceptibility to resistance development 
as antibiotics currently in use, and the corresponding resistance 
mechanisms overlap. However, certain combinations of antibiotics and 
bacterial strains were less prone to developing resistance, revealing 
potential narrow-spectrum antibacterial therapies that could remain 
effective. Finally, we develop criteria to guide efforts in developing effective 
antibiotic candidates.

Multidrug-resistant (MDR) bacterial infections are a major public health 
concern and are responsible for a substantial proportion of morbid-
ity and mortality worldwide1. Paradoxically, many pharmaceutical 
companies have discontinued their antibiotic research programs2. 
This may be linked to the rapid spread of MDR bacteria, which makes 
the commercial success of new antimicrobial drugs unpredictable3,4. 
For example, GlaxoSmithKline (GSK) spent US$15 million to acquire 
the GSK2251052 molecule and invested further money in its develop-
ment; however, resistance to GSK2251052 emerged and the project 
was cancelled5. Antibiotics released to the market can also lose utility 
and revenue in only a few years due to resistance. Dalbavancin is one 
of the few therapies available for treatment of methicillin-resistant 
Staphylococcus aureus infections6,7 but resistance emerged after 2 years 
of commercialization.

Bacteria acquire resistance through diverse genetic mechanisms, 
including point mutations, amplification of genomic segments and 
horizontal transfer of resistance genes8. The ability to predict the 
possible evolutionary routes towards resistance is clearly needed, 
especially at an early stage of antibacterial drug discovery, to develop 
antibiotics with limited susceptibility to resistance. However, this is 
a complex problem for three main reasons: (1) multiple and varied 
molecular mechanisms contribute to antimicrobial resistance, (2) 
numerous pathogenic bacteria need to be considered and (3) many 
potential antibacterial compounds need to be tested.

Here we asked whether antibiotic candidates show differences in 
their susceptibility to the development of resistance compared with 
antibiotics that are currently in use. By combining laboratory evolu-
tion and functional metagenomics, we studied in vitro emergence 
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and antibiotic resistance genes (ARGs) can be found in natural bacterial 
isolates and in human-associated microbiomes (Extended Data Fig. 1).

We found that critical Gram-negative pathogens develop resist-
ance within a short time frame after antibiotic exposure in vitro. The 
mutations driving this resistance, found in laboratory-evolved strains, 
are already present in natural pathogen populations, suggesting that 
resistance can rapidly emerge through the selection of pre-existing 
variants. In addition, we identified mobile resistance genes to antibiotic 
candidates across clinical isolates and in environmental and human 
microbiomes.

Results
Resistance to in-use and in-development antibiotics overlaps
We selected 40 representative strains from 4 Gram-negative bacterial 
pathogens, including Escherichia coli, K. pneumoniae, A. baumannii 
and P. aeruginosa (Supplementary Table 4), and measured their in vitro 
susceptibilities to 22 clinically in-use antibiotics (control) and 13 anti-
biotics that are in development or were introduced post-2017 (recent; 
Supplementary Table 3). Of the 40 strains with clinical origins, 8 were 
confirmed to be extensively drug resistant (XDR) because the minimum 
inhibitory concentrations (MICs) for nearly all clinically recommended 
antibiotics were above the established clinical breakpoints (Extended 
Data Fig. 2). For these 40 strains, recent antibiotic candidates, such as 
cefiderocol, SPR-206, eravacycline and delafloxacin, have on average 
significantly higher efficacy (that is, a lower average MIC) compared 
with control antibiotics with similar modes of action (Fig. 1a). Indeed, 
hierarchical clustering based on the heat map of antibiotic suscepti-
bility profiles showed that control and recent antibiotics with related 
modes of action cluster together (Fig. 1b). Moreover, MDR and XDR 
bacterial strains generally showed reduced sensitivity to both control 
and recent antibiotics compared with antibiotic-sensitive (SEN) strains 
belonging to the same species (Extended Data Fig. 3a). Together, these 
results indicate an overlap in resistance profiles for antibiotics that 
have been in clinical use and antibiotic candidates in development. 

of resistance to antibiotics either introduced after 2017 or currently 
in development, compared with antibiotics that are currently in use.

On the basis of the 2021 World Health Organization (WHO) pipeline 
report9 and reviews on the subject10–12, we selected antimicrobial com-
pounds that have been introduced into clinical practice recently (after 
2017) or that are currently in development (that is, recent antibiotics; 
Table 1). The selected compounds are generally small molecules and 
directly target Gram-negative bacteria. Most of the candidate antibi-
otics analysed are intended to be used as monotherapies, mostly via 
intravenous or oral administration; however, previous knowledge on 
de novo emergence of resistance is limited (Supplementary Table 2). 
We considered lead compounds that are in clinical trials or have at 
least established efficacy against Gram-negative ESKAPE pathogens, 
including Escherichia coli, Klebsiella pneumoniae, Acinetobacter bau-
mannii and Pseudomonas aeruginosa in mouse infection models. These 
antibiotics include multitargeting compounds that are considered 
to be less prone to resistance13,14. Similarly, compounds that attack 
essential components of the outer cell membrane have previously been 
suggested to be immune to bacterial resistance10,15 because potential 
resistance mutations to these drugs would seriously compromise nor-
mal cellular functioning. As the evolutionary dynamics of resistance to 
antibiotic combinations can be very different from that of monothera-
pies, we examine recent advances in adjuvant therapies (for example, 
β-lactamase inhibitors) in a separate study. For more information on 
antibiotic choices, see Supplementary Note 1.

Our main goal was to compare the resistance profiles of these 
‘recent’ antibiotics with antibiotics established for clinical use (that 
is, control). The control antibiotics belong to distinct major classes of 
antibiotics and they have all been in clinical use for over 25 years (Sup-
plementary Table 3). To systematically characterize the bacterial capac-
ity for resistance and the molecular mechanisms conferring resistance, 
we combined laboratory evolution, functional metagenomic screens 
and targeted mutagenesis. To explore the potential clinical relevance of 
our findings, we examined whether the identified resistance mutations 

Table 1 | Antibiotics used in this study

Antibiotic Abbreviation Antibiotic class Generation Date of approval/clinical phase

Omadacycline OMA

Tetracyclines

Recent 2018

Eravacycline ERA Recent 2018

Doxycycline DOX Control 1967

Ceftobiprole CTO

Cephalosporins

Recent 2019

Cefiderocol CID Recent 2019

Cefepime CEP Control 1994

Delafloxacina DEL

Topoisomerase inhibitors

Recent 2017

Gepotidacina GEP Recent Phase 3

Zoliflodacin ZOL Recent Phase 3

Moxifloxacina MOX Control 1999

Apramycin APR
Aminoglycosides

Recent Phase 1

Gentamicin GEN Control 1964

Sulopenem SUO
Carbapenems

Recent Phase 3

Meropenem MER Control 1996

Tridecaptin M152-P3a TRD

Membrane-targeting

Recent Preclinical

POL-7306a POL Recent Preclinical

SCH-79797a SCH Recent Preclinical

SPR-206 SPR Recent Phase 1

Polymyxin B PMB Control 1964

This table shows the antibiotics used in this study, including control and recent antibiotics. Notably, apramycin sulfate has been used in veterinary medicine for more than 10 years; its current 
focus lies in clinical trials for the treatment of systemic Gram-negative bacterial infections in humans. aMultitarget antibiotics.
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However, certain membrane-targeting antibiotics, such as POL-7306 
and SPR-206, were as effective in targeting MDR and XDR strains as 
they were in targeting SEN strains (Extended Data Fig. 3b), highlighting 
their antibacterial potential.

Species-specific evolution of resistance in the laboratory
Next, we asked whether antibiotic resistance evolves in bacterial patho-
gens, rendering the two groups of antibiotics less effective in the long 
term. Here we selected one MDR and one SEN strain each of E. coli, K. 
pneumoniae, A. baumannii and P. aeruginosa (Supplementary Table 4). 
Of all antibiotic–strain combinations, 32% were excluded from the 
analysis due to relatively low initial antibiotic susceptibility (that is, 
MIC > 4 µg ml−1).

To characterize first-step resistance, we used a standard protocol 
for spontaneous frequency-of-resistance (FoR) analysis16–19 at multiple 
concentrations of each antibiotic. Approximately 1010 bacterial cells 
were exposed to each antibiotic on agar plates for 2 days at concentra-
tions to which the given strain is susceptible. Mutants with decreased 
antibiotic sensitivity, that is, with at least a 4-fold increase in MIC fold 
change, were detected in 49.8% of the populations. Although clinical 
breakpoints are unknown for most of the recent antibiotics studied, 
recommended dosing for intravenous use is available in all cases. 
Therefore, data on the highest available peak plasma concentrations 
of the drugs (measured at intravenous administration) were used as a 
proxy to estimate potential clinical relevance of the MIC changes in the 

evolved strains (Supplementary Table 3). Within the short 48 h time 
frame, MICs were either equal to or above the peak plasma concentra-
tion in up to 18.7% of the mutant lines (Extended Data Fig. 4a). For 30% 
of the FoR-adapted lines, MICs surpassed the clinical breakpoint at 
which such data were available (Extended Data Fig. 4b). On average, 
recent and control antibiotics were equally prone to bacterial resist-
ance because neither the frequency of appearance per generation of 
mutants (Wilcoxon rank-sum test, P = 0.9; Extended Data Fig. 4c) nor 
the fold change in resistance were statistically different (paired t-test, 
P = 0.68).

As FoR assays cannot detect very rare mutations either alone or 
in combination20 and can underestimate bacterial potential for resist-
ance, we used the same eight ancestral strains (Supplementary Table 4) 
to initiate adaptive laboratory evolution (ALE) with two goals. First, we 
aimed to maximize the level of antibiotic resistance in the populations 
achieved during a longer, fixed time period (for up to ∼120 genera-
tions; Methods). Second, we aimed to characterize the mechanisms 
associated with resistance. Ten parallel-evolving populations of each 
strain were exposed to increasing concentrations each of the recent or 
control antibiotics. The level of resistance was estimated by comparing 
MICs of the evolved lines with those of their corresponding ancestral 
strains (Fig. 2a).

In general, 120 generations (60 days) of laboratory evolution was 
sufficient for the bacterial strains to develop resistance; the median 
antibiotic-resistance level in the evolved lines was ~64 times higher 

Fig. 1 | Susceptibility profiling of bacterial isolates to control and recent 
antibiotics. a, Comparison of MIC for control and recent antibiotics. The 
figure shows the median MIC values (on a log10 scale) of control and recent 
antibiotics across all tested bacterial strains. Each plot represents a specific 
recent antibiotic, along with the corresponding control antibiotics belonging 
to the same class (indicated and colour coded at the top of each plot). Individual 
points depict median MIC values of strain–antibiotic pairs, with lines connecting 
paired data points representing MIC values of the specific recent and within-class 
control antibiotic for the same strain. Blue points and lines indicate cases where 
the MIC of a recent antibiotic is lower compared with the corresponding control 
antibiotics for the same strain, whereas red indicates cases in which the MIC is 
not lower. Median MIC values are based on two biological and three technical 
replicates for each bacterial strain–antibiotic combination. Box plots show 
the median, first and third quartiles, with whiskers indicating the 5th and 95th 
percentiles of the median MIC values per investigated group. Paired Wilcoxon 
rank-sum analysis (two-sided test) was performed to assess significant difference 
between control and recent antibiotics within each class. ****P < 0.0001, 
***P < 0.001, **P < 0.01, *P < 0.05. For antibiotic abbreviations, see Table 1. 
The antibiotic classes are as follows: aminoglycosides (AMIN), carbapenems 
(CARB), cephalosporins (CEPH), membrane-targeting antibiotics (MEMB), 
topoisomerase inhibitors (TOPO) and tetracyclines (TETR). b, Recent antibiotics 
cluster together with control antibiotics based on sensitivity testing of a panel 
of bacterial strains. The heat map shows the antibiotic susceptibility profiles of 
bacterial strains (columns) belonging to four bacterial species, including E. coli, 
K. pneumoniae, A. baumannii and P. aeruginosa. In the x-axis labels, the first two 
letters represent the species (AB, A. baumannii; EC, E. coli; KP, K. pneumoniae; 

PA, P. aeruginosa), the next three letters indicate strain categorization based 
on susceptibility profiling (see Methods), while the final numbers serve as 
unique identifiers (please note that only strains without numeric identifiers 
were used for further experiments). The bacterial strains are ordered by the 
fraction of control antibiotics (red gradient panel on the top) to which they are 
resistant, as defined by the corresponding species-specific clinical breakpoint 
values. For more details on the abbreviations, see Table 1 (for antibiotics) and 
Supplementary Table 4 (species and strains). The antibiotic panel consists of 22 
control (blue) and 13 recent (orange) antibiotics (rows). Antibiotic generations 
and classes are indicated on the left. Antibiotic clustering was based on 
calculating Spearman’s rank correlation of median MIC values and using the 
complete hierarchical clustering method. The bacterial strains are ordered by 
the fraction of control antibiotics (top) to which they are resistant (defined by the 
corresponding species-specific clinical breakpoint values). Median MIC values 
are based on two biological and three technical replicates for each bacterial 
strain–antibiotic combination. AMI, amikacin; AMP, ampicillin; APR, apramycin-
sulphate; CEP, cefepime; CID, cefiderocol; CIP, ciprofloxacin; COL, colistin; CTO, 
ceftobiprole; CTZ, ceftazidime; CZA, ceftazidime-avibactam; DEL, delafloxacin; 
DHFR, dihydrofolate reductase inhibitor; DOR, doripenem; DOX, doxycycline; 
ERA, eravacycline; GEN, gentamicin; GEP, gepotidacin; IMI, imipenem; I-R, 
imipenem-relebactam; LEV, levofloxacin; MER, meropenem; MOX, moxifloxacin; 
NS, not significant; OMA, omadacycline; PIP, piperacillin; PMB, polymyxin 
B; POL, POL-7306; SCH, SCH-79797; SPR, SPR-206; SUO, sulopenem; TIC, 
ticarcillin; TIG, tigecycline; TOB, tobramycin; TRD, tridecaptin M152-P3; TRM, 
trimethoprim; TRS, trimethoprim-sulfamethoxazole; ZOL, zoliflodacin.

Fig. 2 | Adaptation to antibiotics by ALE. a, Changes in MICs after ALE. Each 
point represents the median MIC values of a laboratory-evolved line and the 
corresponding ancestor (log10 scale). Median MIC values are based on two 
biological and three technical replicates for each bacterial strain–antibiotic 
combination. Control and recent antibiotics are indicated by blue and orange 
plots, respectively. Each group of plots represents a specific antibiotic class 
(indicated at the top of each plot). The colour of the data points represents the 
bacterial species. The black dashed line indicates y = x (that is, no changes in MIC 
during the course of laboratory evolution), whereas the red dashed line shows 
the antibiotic-specific peak plasma concentration. For abbreviations, see Table 1.  
Due to low stability in the liquid laboratory medium used, cephalosporin 
antibiotics were not subjected to ALE. b, Relative MIC of laboratory-evolved 
lines across all antibiotic–ancestor strain combinations. In the x-axis labels, 

the first two letters represent the species, the next three letters represent the 
strain and the last three letters represent the antibiotics. For more details on the 
abbreviations, see Table 1 (for antibiotics) and Supplementary Table 4 (species 
and strains). Relative MIC is the median MIC of the evolved line divided by the 
median MIC of the corresponding ancestor. Each point is a laboratory-evolved 
line from ALE and the colours indicate the bacterial species. Each point is the 
median MIC value of a strain–antibiotic pair. Median MIC values are based on 
two biological and three technical replicates for each bacterial strain–antibiotic 
combination. Box plots show the median, first and third quartiles, with whiskers 
indicating the 5th and 95th percentiles of the MIC values per investigated group. 
There is a highly significant heterogeneity in relative MIC across antibiotic–strain 
combinations (Kruskal–Wallis χ2 = 630.43, d.f. = 80, P < 2.2 × 10−16).
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Fig. 3 | Genomic analysis of antibiotic-adapted lines using whole-genome 
sequencing. a, Repeatedly mutated genes during laboratory evolution across 
different antibiotics. The heat map shows commonly mutated genes (and the 
corresponding orthogroups) across the tested antibiotics after ALE. Genes were 
considered commonly mutated if they accumulated non-synonymous mutations 
in response to at least three different antibiotic treatments. Left: the class and the 
generation of the given antibiotics. The top two rows correspond to the number 
of antibiotic classes and the number of antibiotics in which a given orthogroup is 
mutated. b, Mutation profile similarity across antibiotics. Each node represents a 
recent (orange) or control (blue) antibiotic. Links indicate an overlap in the set of 
mutated genes (or corresponding orthogroups) detected after ALE. Only  

non-synonymous mutations in protein-coding genes were considered. The 
thickness of the links indicates the extent of overlap (calculated by Jaccard similarity, 
as in previous work96) between antibiotic treatments. c, Non-synonymous mutations 
shared by laboratory-evolved lines and natural isolates of E. coli and A. baumannii. 
The bar plots show the number of non-synonymous mutations found in laboratory-
evolved A. baumannii (left) or E. coli (right) adapted to different antibiotics. 
Mutations also detected in the genomes of natural isolates of the same species are 
marked in red, whereas those that remained undetected are marked in grey. No 
significant difference was found in the fraction of non-synonymous mutations 
shared by natural strains between control and recent antibiotics (binomial 
regression model, two-sided test, P = 0.206). For abbreviations, see Table 1.
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compared with that of the ancestor. MICs were either equal to or above 
the peak plasma concentration in 87% of all studied populations. More-
over, MICs surpassed the clinical breakpoint, where such data were 
available, for 88.3% of the ALE-adapted lines (Extended Data Fig. 4b). On 
average, recent and control antibiotics were equally prone to bacterial 
resistance (paired t-test, one-sided, P = 0.37). Resistance also emerged 
to recent antibiotics (Fig. 2a), with potent antibacterial activities target-
ing the MDR and XDR clinical isolates tested (Extended Data Fig. 3b).

Given the large heterogeneity observed in the capacity to evolve 
resistance across antibiotic–strain combinations, spanning a 65,000-fold 
range between the observed minimum and maximum MIC fold changes 
(Fig. 2b), we investigated possible reasons for this variation. We first 
analysed whether initial antibiotic susceptibility predicts long-term 
drug efficacy against bacteria. We found a significant positive correlation 
between initial MIC and the increase in resistance level across antibiotics 
in ALE-derived lines in two of the four species (Extended Data Fig. 5a) 
and five of the eight bacterial strains studied (Extended Data Fig. 5b). We 
also analysed whether initial MIC correlates with the increase in resist-
ance level across strains when each antibiotic is analysed separately. We 
found a significant positive trend in 5 of the 16 antibiotics (Extended Data 
Fig. 5c). These results show that initial MIC is predictive of long-term 
efficacy of an antibiotic in a strain- and antibiotic-specific manner.

Previous work21,22 indicates that certain antibiotics are more sus-
ceptible to resistance evolution for particular bacterial strains and 
species compared with others. Accordingly, we used multiple linear 
regression to investigate the global influence of both antibiotic and 
strain genetic background on the increase in resistance level, while 
also considering the resistance level of the ancestor (Extended Data 
Fig. 5d). When examining these factors separately, the antibiotic and 
strain genetic background explained 24.4% and 8.9%, respectively, 
of the variation in the increase of resistance levels, with the initial 
antibiotic susceptibility level (MIC) contributing 0.9% to the variance. 
In an additive model, combining the antibiotic, the initial MIC and 
genetic background explained approximately 33% of the variation. 
Importantly, a model that allows an interaction term between genetic 
background and antibiotic combination explains an additional ~26% 
of variation in the increase of resistance compared with the simple 
additive model (that is, 58.6% versus 32.6%; Extended Data Fig. 5d).

Together, these results indicate that the initial genetic makeup of 
the bacterial population has a large impact on resistance evolution, 
but predominantly in an antibiotic-specific manner. Detailed analysis 
of two antibiotic candidates, SCH-79797 and SPR-206, highlight this 
point further (Supplementary Note 2).

Overlap in mutational profiles across antibiotic treatments
To identify mutations underlying resistance, resistant lines derived 
from laboratory evolution (n = 381) and FoR assays (n = 135) were 

subjected to whole-genome sequencing (Supplementary Data 1). We 
implemented an established computational pipeline to identify muta-
tions relative to the corresponding ancestral genomes. Ten evolved 
lines accumulated exceptionally large numbers of mutations (n > 18), 
many of which are probably functionally irrelevant. These lines have 
elevated genomic mutation rates; indeed six of the ten lines have muta-
tions in methyl-directed mismatch repair (mutS, mutL or mutY). Such 
mutator bacteria frequently arise in response to antibiotic stress in 
clinical and laboratory settings23. For the remaining 506 lines, we identi-
fied 1,817 unique mutational events, including 1,212 single nucleotide 
polymorphisms (SNPs) and 605 insertions or deletions (Extended 
Data Fig. 6a). We found a significant excess of non-synonymous over 
synonymous mutations, indicating that the accumulation of the SNPs 
in protein-coding regions was largely driven by selection towards 
increased resistance (Extended Data Fig. 6b). Of the observed muta-
tions, 19.7% generated in-frame stop codons, frameshifts or disrup-
tion of the start codon, which are probably loss-of-function mutations 
(Extended Data Fig. 6c). This result is consistent with previous studies 
on the role of inactivating mutations in antibiotic resistance24.

In total, 604 mutated protein-coding genes were detected, 193 
of which were mutated in at least 2 independently evolved lines per 
species. Of all parallel-mutated genes, 69.4% carried mutations in lines 
adapted to different antibiotics. These results indicate that despite dif-
ferences in antibiotic treatments, there is considerable overlap in the 
set of mutated genes (Fig. 3a,b). Further results indicate that adaptation 
during the course of laboratory evolution in the presence of antibiotics 
was largely unrelated to the growth medium (Supplementary Note 3).

To explore cross-resistance explicitly, we focused on topoisomer-
ase inhibitors because this drug class includes a substantial proportion 
of the antibiotics currently in clinical trials, and resistance is usually 
encoded by resistance mutations. We performed deep-scanning 
mutagenesis in genes encoding the targets of moxifloxacin (gyrA and 
parC). Moxifloxacin resistance-conferring mutation combinations 
reduced susceptibility to topoisomerase inhibitors under clinical 
development, including delafloxacin and gepotidacin (Supplemen-
tary Note 4). The result with gepotidacin is unexpected because it is 
a new topoisomerase inhibitor in development, featuring innovative 
target sites and modes of action25. Previous studies reported that 
fluoroquinolone-resistant clinical isolates showed no cross-resistance 
to this antibiotic but the data were limited26.

Mutations to recent antibiotics are present in the environment
Given the overlap observed in mutational targets associated with 
resistance to antibiotics in clinical use and antibiotics in development 
(Fig. 3a,b), we hypothesized that mutations arising during labora-
tory evolution may already be present in environmental and clinical 
bacterial isolates. To investigate this hypothesis, we analysed the 

Fig. 4 | Exploration of mobile resistance genes using functional 
metagenomics. a, Overview of the sequencing results of antibiotic-resistant 
bacteria generated by functional metagenomics. Functional selection of 
metagenomic libraries with 18 antibiotics resulted in numerous distinct 
resistance-conferring DNA contigs, with the only exception of tridecaptin 
M152-P3 (TRD). The top bar plot shows the number of unique DNA fragments 
(contigs) that confer resistance to control (blue) and recent (orange) antibiotics, 
respectively, whereas the bottom bar plots show the distribution of the 
identified resistance-conferring contigs across metagenomic libraries and the 
percentage of mobile ORFs per antibiotic, respectively. ORF mobility was defined 
by evidence for recent horizontal gene transfer events or presence on mobile 
plasmids (Methods). The row below the bar plots denote the class of antibiotics 
analysed. We observed no significant difference in the number of contigs 
between recent antibiotics and their corresponding within-class controls (paired 
Wilcoxon signed-rank test, two-sided, P = 0.4973). The same pattern is true for 
the percentage of mobile ORFs (paired signed-rank Wilcoxon test, P = 0.576). 
For antibiotic abbreviations, see Table 1. b, Overlap in the set of resistance-

conferring DNA fragments (contigs) across antibiotics. Each node represents 
a recent (orange) or control (blue) antibiotic, and the links indicate overlap in 
the resistance-conferring DNA contigs identified in functional metagenomic 
screens. The thickness of the link indicates the extent of overlap (calculated 
by Jaccard similarity) between antibiotic treatments. The size of the nodes 
corresponds to the total number of detected DNA fragments per antibiotic. 
The class to which a given antibiotic belongs is also indicated. c, Risk analysis of 
putative ARGs. The figure shows the total number (top) and fraction (bottom) 
of health-risk ARGs across functional screens to different antibiotics. ARGs were 
designated as potential risk if they fulfilled at least two of the following three 
criteria: if they were (1) mobile, (2) present in human-associated microbiomes, 
and (3) human pathogens. Blue and orange colours depict control and recent 
antibiotics, respectively. The analysis revealed a significant variation in the 
fraction of potential-risk ORFs across the antibiotics tested (proportion test, 
two-sided, P < 0.05), indicating that certain antibiotics are more likely to be 
associated with potential-risk ORFs compared with others.
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prevalence of the observed mutations from laboratory-evolved E. coli 
and A. baumannii lines in a publicly available catalogue of genomes 
derived from natural isolates of E. coli (n = 20,786) and A. baumannii 
(n = 15,185) (Fig. 3c). We focused on non-synonymous mutations in 
protein-coding sequences and estimated their frequencies in the 
genomes of environmental isolates in these two species. For E. coli, 
up to 31.4% of the 245 laboratory-observed non-synonymous muta-
tions were identified in at least 1 of the genomes from natural isolates, 
whereas for A. baumannii, 27.3% of 216 mutations were found in at 
least 1 natural isolate. Although the majority of mutations found in E. 
coli were relatively rare (that is, typically found in less than 1% of the 
isolates), they were more enriched among pathogenic isolates than in 
other natural isolates (Fisher’s test, P < 2.2 × 10−16, odds ratio = 3.16). 
Several adaptive mutations were as abundant as, or even more abun-
dant than, canonical antibiotic resistance mutations in clinical isolates 
(Extended Data Fig. 7).

Mobile resistance genes targeting recent antibiotics are diverse
ALE does not allow for the analysis of horizontally transferable resist-
ance mechanisms. Therefore, we next analysed the abundance of 
mobile ARGs from environmental and clinical resistomes. We previ-
ously created metagenomic libraries from (1) anthropogenic soil micro-
biomes, that is, river sediment and soil samples at 7 antibiotic-polluted 
industrial sites in the close vicinity of antibiotic production plants in 
India; (2) human gut microbiomes, that is, stool samples from 10 Euro-
pean individuals who had not taken any antibiotics for at least 1 year 
before sample donation; and (3) clinical microbiome samples from a 
pool of 68 MDR bacteria isolated in healthcare facilities or obtained 
from strain collections27 (Supplementary Table 5). Each library con-
tained up to 5 million DNA fragments (contigs), corresponding to a 
total coverage of 25 Gb (that is, the size of ~5,000 bacterial genomes). 
Established functional metagenomic protocols were used to detect 
small DNA fragments (~1.7 kb long on average) in these libraries that 
confer resistance in intrinsically susceptible clinical E. coli and K. pneu-
moniae strains27. Specifically, these DNA fragments were heterologously 
expressed in these two strains.

A total of 690 independent DNA fragments conferred increased 
resistance, by up to 256-fold, against the recent and control antibiotics 
tested in their bacterial hosts (Supplementary Data 2). Overall, there is 
no significant difference in the number of contigs conferring resistance 
between the antibiotics under development and their corresponding 
within-class controls (paired Wilcoxon signed-rank test, P = 0.791; 
Fig. 4a). However, we detected no resistance-conferring DNA fragment 
against tridecaptin M152-P3 in any of the metagenomic libraries and 
host species (Fig. 4a). The clinical microbiome contributed as much as 
57.8% of the antibiotic-resistance-conferring DNA segments (Fig. 4a), 
more than 2× the contributions of the soil and gut microbiomes (25.5% 
and 24.8%, respectively). In total, 642 non-redundant open reading 
frames (ORFs) were detected, many of which were present in multiple 
DNA fragments (Supplementary Data 2). Of the 690 DNA fragments, 
77% showed close sequence similarity to known resistance genes (that 
is, ARGs) in relevant databases (Supplementary Data 2). These ARGs 
are involved in antibiotic inactivation, antibiotic efflux or protection 
of the antibiotic targets and they have a diverse phylogenetic origin 
(Supplementary Data 2).

The putative resistance mechanisms associated with genomic 
mutations and ARGs differed substantially from each other (Extended 
Data Fig. 8). In particular, antibiotic efflux and target alteration were 
the two most ubiquitous resistance mechanisms derived from genomic 
mutations (Extended Data Fig. 9a), whereas antibiotic inactivation 
was more prominent among hits derived from functional genomic 
screens (Extended Data Fig. 9b). For a detailed comparison of genomic 
mutations and mobile resistance genes, see Supplementary Note 5. 
In addition, our analysis revealed the contribution of non-canonical 
resistance mechanisms (Supplementary Note 6).

Prevalence of MDR-conferring DNA segments
We observed overlap in the set of DNA fragments conferring resist-
ance to recent and control antibiotics (Fig. 4b), including antibiotic 
pairs with different modes of action. For example, 69 contigs confer-
ring resistance to both the topoisomerase inhibitor moxifloxacin and 
the tetracycline antibiotic omadacycline were detected. The analysis 
identified 2 key genes, baeR and ramA, carried by 73.9% of these con-
tigs. BaeR and RamA induce expression of the MdtABC/AcrD28 and 
AcrAB–TolC efflux pump complexes29, respectively, with RamA also 
downregulating expression of the porin OmpF30. The fact that some 
DNA fragments confer resistance to multiple antibiotics may reflect 
similarities in chemical structure or mechanism of action. Therefore, 
we investigated the impact of chemical similarity on co-resistance by 
quantifying the structural similarity of antibiotic pairs using SMILES 
(Simplified Molecular Input Line Entry System) identifiers and examin-
ing their correlation with profile similarity based on detected DNA frag-
ments. We found that overlap in resistance-conferring DNA fragments 
is more likely for antibiotic pairs with similar structures (Spearman’s 
rank correlation, two-sided test, R = 0.43, P < 0.01). This pattern holds 
when only antibiotic pairs belonging to different antibiotic classes 
were considered (Spearman’s rank correlation, two-sided test, R = 0.31, 
P < 0.01). However, there are notable deviations from this general pat-
tern. For instance, although SPR-206 is a derivative of polymyxin B, 
there are no DNA fragments able to confer resistance to both antibi-
otics. Similarly, although cefiderocol shares structural similarity to 
other cephalosporins studied, the addition of a chlorocatechol group 
transforms it into a siderophore31 and the majority of DNA fragments 
conferring resistance to cefiderocol are unique to this antibiotic. In 
summary, these analyses indicate that certain alterations in chemical 
structure that affect the mode of action or uptake of the antibiotic 
can lead to major changes in the associated resistance mechanisms.

Health-risk analysis of resistance genes
Next, we used a previously developed omics-based framework for 
assessing the health risk of ARGs32. We considered three major ARG 
criteria: (1) gene mobility, (2) presence in microbiomes associated with 
the human body, and (3) bacterial host pathogenicity. ARGs were desig-
nated as ‘potential risk’ if they fulfilled at least two of the three criteria.

Using established methods, gene mobility was defined by evidence 
for recent horizontal gene transfer events in nature and the presence 
of the ARGs on natural plasmids derived from diverse environments 
(Methods). Of the putative ARGs, 20.7% were found to be carried by 
plasmids or to have been subjected to recent horizontal gene transfer 
events (Fig. 4a, Extended Data Fig. 10a and Supplementary Data 2). 
Next, we analysed putative ARG abundance in human microbiomes. We 
identified close homologues of the ARGS detected by our functional 
metagenomic screen in the non-redundant Global Microbial Gene 
Catalog (GMGCv1). The catalogue summarizes results from over 13,000 
publicly available metagenomes across 14 major habitats, including 
microbiomes from the human body, domestic animals, wastewater, 
fresh water and built environments.

Most microbial genes in the catalogue are specific to a single 
habitat33. In contrast, 27.6% of the putative ARGs detected in the resist-
ance screens to recent antimicrobials were found in multiple habitats, 
further indicating their potential mobility. In addition, when only 
habitats associated with the human body (human gut, oral, skin, nose, 
blood plasma or vagina microbiomes) were considered, this figure rises 
to 32.7%, indicating that these microbiomes could be a rich source of 
resistance genes to new antibiotics (Extended Data Fig. 10b). Reassur-
ingly, ARGs associated with the human body were also more prevalent 
in human-related abiotic habitats (wastewater or built environment) 
than other ARGs (Fisher’s test, odds ratio = 125, P < 0.0001). Of the 
ARGs, 36.6% are already present in the genomes of bacterial pathogens 
with critical clinical importance (Extended Data Fig. 10b, Methods and 
Supplementary Data 2). The detected ARGs are also prevalent in the 
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genomes of E. coli strains isolated from three main habitats (agricul-
ture, human or wild animal hosts; Supplementary Note 7).

Of the 642 ARGs, 24.5% were designated as potential risk (Sup-
plementary Data 2). These ARGs are anticipated to have the greatest 
potential for catalysing multidrug resistance in pathogens through a 
combination of hazardous traits: broad host compatibility enabled 
by mobility, alongside enrichment in human microbiomes and in bac-
terial pathogens. However, a significant variation was observed in 
the frequency of potential-risk ARGs across antibiotics (Fig. 4c). A 
notable example is apramycin sulfate, an antibiotic extensively used 
in veterinary medicine for decades that is now in clinical trials for 
human applications. Only 2 of the 63 putative ARGs (3.2%) associated 
with this antibiotic were designated as potential risk due to a shortage 
of evidence for their mobility and presence in bacterial pathogens.

By contrast, several potential-risk ARGs were detected for recent 
antibiotics, such as sulopenem (N = 16), cefiderocol (N = 22) and 
ceftobiprole (N = 26). These potential-risk ARGs included several 
β-lactamases, such as New-Delhi-metallo (NDM) and Verona integron 
metallo-β-lactamases (Extended Data Fig. 10b). Given the previous 
expectation of cefiderocol’s lower propensity for resistance develop-
ment, the high number of potential-risk ARGs to cefiderocol is notable.

Integrating evidence on resistance to new antibiotic 
candidates
An ideal antibiotic candidate is expected to meet several essential crite-
ria: (1) a broad antibacterial spectrum to ensure effectiveness against a 
wide array of pathogens, (2) low tendency for development of resistance 
through genomic mutations, (3) scarcity of intrinsic and horizontally 
transferred mobile ARGs, and (4) a low prevalence of associated resist-
ance mechanisms in human-associated microbiomes and bacterial 
pathogens. Unfortunately, none of the compounds investigated in 
this study simultaneously satisfied all these requirements (Fig. 5). By 

synthesizing several collected data, we calculated an average metric 
value that served for the ranking of new antibiotic candidates based 
on their resistance profiles and that showed significant heterogeneity 
across antibiotic classes (Kruskal–Wallis test, P < 0.05; Fig. 5). According 
to this ranking, recent antibiotics targeting bacterial membranes are 
anticipated to show reduced susceptibility to resistance development 
in natural settings compared with tetracyclines and topoisomerase 
inhibitors (Dunn post hoc test with Benjamini–Hochberg correction 
for multiple comparisons, P < 0.05). However, there remains consider-
able room for improvement in their efficacy.

Discussion
In this work, we showed that bacterial resistance to antibiotics currently 
in development generally evolves rapidly in vitro. These patterns also 
hold for compounds that have new or dual modes of action and that 
were previously thought to be relatively immune to bacterial resist-
ance in the laboratory (Fig. 2a and Extended Data Fig. 4a). Notably, 
genomic mutations that accumulated during laboratory evolution 
may prove to be clinically relevant because they are also prevalent in 
the genomes of clinical bacterial isolates (Fig. 3c). These results pre-
dict that resistance to new antibiotics could arise through selection 
for pre-existing resistant strains via mutations and with horizontally 
transferable genetic elements. These results suggest that overlap in 
resistance mechanisms and prolonged antibiotic exposure in clinics 
and agriculture have selected for resistance mechanisms that reduce 
susceptibility to both antibacterial compounds in use and those still 
in development. Given that overlap was increased for antibiotics with 
structural similarity (Fig. 4b), these observations suggest that minor 
chemical modifications are insufficient to circumvent established 
resistance mechanisms.

Antibiotics targeting multiple cellular functions are generally 
expected to be less prone to bacterial resistance. For example, it has 
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Fig. 5 | Resistance landscape for each antibiotic studied in this work. The 
heat map shows various metrics for each antibiotic studied in this work. The 
metrics include: (1) prevalence of panel strains with reduced susceptibility—the 
fraction of bacterial strains from a selected pathogen panel with high initial MIC 
values (Methods); (2) tendency for resistance—the fraction of adapted lines 
with a relative MIC exceeding 16, representing the 25% quantile of all relative 
MIC values; (3) diversity of genes with mutations—the fraction of orthogroups 
showing mutations during ALE or FoR assays with each antibiotic, adjusted 
by the total number of mutated orthogroups; (4 and 5) mutation prevalence 
in natural E. coli or A. baumannii strains—the fraction of laboratory-observed 

adaptive mutations that are already present in natural E. coli and A. baumannii 
strains, respectively; (6) diversity of horizontally transferred contigs—the count 
of unique DNA fragments per antibiotic, normalized by the total contig count in 
functional metagenomics studies; and (7) prevalence of potential-risk ARGs—the 
ratio of ARGs considered potential risk, based on meeting at least two of three 
specified health-risk criteria (Methods), among all ARGs detected for each 
antibiotic. Grey colours denote missing values due to initial resistance in the 
studied species. Antibiotics are ordered by the average metric value. Blue and 
orange indicate control and recent antibiotics, respectively. The row below the 
heat map denotes the class of the antibiotics analysed.
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been stated that SCH-79797, a dual-targeting antibiotic, effectively kills 
a wide range of bacterial pathogens without detectable resistance14 but 
the underlying data were limited. In contrast to these claims, we found 
that a relatively low but notable resistance emerged via mutations of 
regulatory genes of efflux mechanisms (acrR, adeN and adeS). Similarly, 
previous studies claimed that the chance of high-level delafloxacin 
and gepotidacin resistance via target mutations is limited due to the 
dual-targeting nature of these antibiotics25,34. In addition, these anti-
biotics were supposed to be poor substrates for established bacterial 
efflux pumps35. In our studies, however, high levels of resistance to 
these antibiotics evolved via target mutations and mutations often 
occurred in established efflux pumps (acrB) or their corresponding 
regulatory genes (acrR, adeN and nfxB).

Omadacycline was previously thought to evade resist-
ance via tetracycline-specific efflux pumps based on the lack 
of cross-resistance36. In our study, however, contigs containing 
tetracycline-specific efflux pump genes tetA and tetX came up as hits 
against omadacycline.

Due to its unique mechanism of uptake, resistance to cefiderocol 
was supposed to be relatively immune to the development of resist-
ance31. However, baeS and crP, two regulatory genes involved in antibi-
otic efflux, were mutated in response to cefiderocol. Indeed, previous 
work showed that mutations in these genes constitutively activate the 
BaeSR two-component regulatory system to increase the expression 
of the MdtABC efflux pump37. In addition, in our functional metagen-
omic screen, carbapenemases NDM-15, NDM-22 and NDM-27 provided 
resistance to cefiderocol. Similarly, sulopenem is a broad-spectrum 
thiopenem β-lactam antibiotic being developed to treat infections 
caused by MDR and cephalosporin-resistant bacteria belonging to 
the Enterobacteriales group38. However, it was prone to resistance in 
multiple screens. In particular, functional metagenomics identified 
several DNA fragments carrying NDM β-lactamase genes as able to 
confer resistance (Supplementary Table 6 and Supplementary Data 2).

Eravacycline was specifically designed to overcome resistance 
to common tetracycline-specific efflux and ribosomal protection 
mechanisms39. Although eravacycline has a relatively broad antimi-
crobial spectrum, resistance to this compound evolves rapidly in the 
laboratory through modification of efflux pump activities.

Resistance to the peptide-based antibiotic, SPR-206, readily 
emerged through genomic mutations. SPR-206 is in clinical trials and 
has potent activity against a wide range of MDR bacteria40. However, 
an increase in resistance level as high as 128-fold emerged in K. pneu-
moniae because of single mutations in the BasS/BasR 2-component 
regulatory system.

Our work highlights the concern that antibiotic development is 
currently dependent solely on susceptibility indicators in various bac-
terial pathogens. Although many of the new antibiotics indeed have an 
improved antibacterial spectrum compared with their predecessors, 
our studies show that this is rarely paired with favourable resistance 
properties. Specifically, eravacycline shows improved antibacterial 
activity against a panel of bacterial pathogens; however, it is especially 
prone to resistance via genomic mutations and horizontal gene transfer 
(Figs. 2a and 4a).

Future application of the same antibiotic to initially susceptible 
pathogens can have different outcomes depending on their capacity 
to evolve resistance21,41. Indeed, we have found that the level of resist-
ance achieved during ALE was contingent on the bacterial species 
and strains studied, in an antibiotic-specific manner (Extended Data 
Fig. 5c). This variability may stem from strain-specific differences in 
initial susceptibility to a given antibiotic, presence of efflux pumps 
and/or the influence of specific ‘potentiator’ genes, which facilitate 
unconventional mutational pathways towards resistance through 
epistatic interactions with resistance mutations. These hypotheses 
will be studied thoroughly in future work, which might aid in devel-
oping species-specific therapeutic options to counter the rapid 

development of resistance42. Our work also highlights the risk that 
antibiotic development programmes waste considerable resources 
on antibiotic candidates prone to resistance if they concentrate only 
on a single bacterial species or only on resistance emergence arising 
from genomic mutations. An important limitation of this study is the 
lack of systematic investigation of trade-offs of antibiotic resistance, 
especially on bacterial fitness and virulence—an issue that will be cov-
ered in future work. Future studies should also decipher the exact role 
of the identified mutations by reintroducing them individually and in 
combinations into wild-type genetic backgrounds, and studying their 
impact on the susceptibility of the resulting mutant strains to new 
antibiotics. In addition, resistance to Gram-positive-specific antibiotic 
candidates and combination therapies involving new antibiotics will 
be studied elsewhere.

In sum, the framework provided here highlights the importance 
of testing the evolution and mechanisms underlying resistance with 
complementary methods and in multiple relevant bacterial species. 
We argue that applying this framework is feasible and advisable for 
candidate antibiotics before acceptance for clinical use, as it enables 
a more accurate assessment of their immediate efficacy, long-term 
utility and potential for resistance emergence. Although our findings 
indicate that none of the compounds tested meets all the criteria for an 
ideal future antibiotic, they also highlight opportunities for improving 
certain critical properties (Fig. 5). This underscores the pressing need 
for innovative approaches in the discovery and optimization of new 
antibiotics, particularly those that address the challenges of efficacy 
and resistance.

Methods
Strains, antibiotics and media
This study focused on multiple bacterial strains. We tested the activity 
spectrum of the antibiotics in this study on a set of 40 clinically relevant 
pathogenic strains of 4 species (E. coli, K. pneumoniae, A. baumannii 
and P. aeruginosa; see the whole list of pathogens in Supplementary 
Table 4). For the FoR and ALE experiments, two strains per species 
were chosen: for SEN strains, E. coli ATCC 25922, K. pneumoniae ATCC 
10031, A. baumannii ATCC 17978 and P. aeruginosa ATCC BAA-3107; 
and for MDR strains, E. coli NCTC 13846, K. pneumoniae ATCC 700603, 
A. baumannii ATCC BAA-1605 and P. aeruginosa LESB58. For E. coli, we 
chose the ATCC 25922 strain as a SEN strain due to its widespread use 
in the literature, and an mcr1-carrying NCTC 13846 strain as the MDR 
strain due to the high interest in the impact of this mobile resistance 
gene on colistin resistance43. For the other three species, SEN and MDR 
strains were selected based on the highest number of control antibiot-
ics to which they showed sensitivity or resistance, respectively, with the 
additional criterion for MDR strains that they should be part of an offi-
cial strain collection (Extended Data Fig. 3). Functional metagenomic 
screens were performed with E. coli ATCC 25922 and K. pneumoniae 
ATCC 10031 strains. Deep-scanning mutagenesis (DIvERGE) was per-
formed with E. coli K12 MG1655 and K. pneumoniae ATCC 10031 strains. 
The collection of clinical samples was performed in a previous study44. 
No new samples were collected for the current study. The collection of 
clinical samples complies with all relevant ethical regulations and was 
approved by the Scientific and Research Ethics Committee of the Hun-
garian Health Science Council (BMEÜ /271-3/2022/EKU). As specified 
in Material Transfer Agreements, these isolates and their derivatives 
cannot be transferred to a third party as they can be used only at the 
recipient organizations and only in the recipient scientists’ laboratories 
under the direction of the recipient scientists or others working under 
their direct supervision.

A total of 19 antibiotics were applied in this study from 6 different 
antibiotic families: 13 newly developed (recent) antibiotics, which are in 
different phases of clinical trials, and 6 conventional (control) antibiot-
ics with a long clinical history from each antibiotic family. For names, 
abbreviations and further details, see Table 1 and Supplementary 
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Table 3. Antibiotics were custom-synthesized or purchased from sev-
eral distributors (Supplementary Table 3). For preparation, each antibi-
otic stock solution was filter-sterilized and kept at −20 °C until use. For 
more details on recent and control antibiotics, see Supplementary Note 
1, Table 1 and Supplementary Table 3. For data on clinical breakpoints 
and peak plasma concentrations, see Supplementary Table 3. Tridecap-
tin M152-P3 was synthesized using standard Fmoc-based solid-phase 
peptide synthesis. The process began with resin preparation, followed 
by iterative Fmoc deprotection and amino acid coupling steps using 
HBTU as the coupling reagent. After assembly of the peptide chain, 
the product was cleaved from the resin using a TFA-based cocktail, 
precipitated with cold isopropyl ether, and dried under vacuum. The 
crude peptide was then purified using preparative HPLC, yielding 233.4 
mg of the product with 98.17% purity as confirmed by LC-MS and HPLC.

The synthesis of POL7306 involved three main stages: the prepa-
ration of two intermediate peptides (Compound 1 and Compound 2) 
and their subsequent connection. Fmoc-based solid-phase peptide 
synthesis was used, beginning with the attachment of amino acids to 
a resin, followed by deprotection and coupling steps. After peptide 
assembly, the crude peptides were cleaved from the resin and purified 
by precipitation and washing with isopropyl ether. The final connection 
of the two peptides was performed on a Rink Amide resin, followed 
by cleavage with TFA and purification through prep-HPLC. The final 
product, POL7306, was obtained with 96.71% purity and confirmed 
by LCMS and HPLC.

For detailed synthesis route see Supplementary information.
Unless otherwise indicated, cation-adjusted Mueller–Hinton broth 

2 (MHB; Millipore) medium was used throughout the study, except for 
cefiderocol and the folate biosynthesis inhibitor SCH-79797. Following 
the European Committee on Antimicrobial Susceptibility Testing’s 
(EUCAST) recommendation on cefiderocol, iron-depleted MHB media 
was used45. To maximize antibacterial activity of SCH-79797, based on 
previous experience with folate biosynthesis inhibitor antibiotics46, 
Minimal Salt (MS) medium was used (1 g l−1 (NH4)2SO4, 3 g l−1 KH2PO4 
and 7 g l−1 K2HPO4 supplemented with 1.2 mM Na3C6H5O7·2H2O, 0.4 mM 
MgSO4, 0.54 μg ml−1 FeCl3, 1 μg ml−1 thiamine hydrochloride, 0.2% 
casamino acids and 0.2% glucose).

High-throughput MIC measurements
A standard serial broth microdilution technique47 was used to deter-
mine MICs, as suggested by the Clinical and Laboratory Standards 
Institute guidelines. A robotic liquid-handling system was used to 
automatically prepare 11–16 step serial dilutions in 384 well microtiter 
plates. A total of 5 × 105 bacterial cells per ml were inoculated into each 
well containing 60 µl medium. Bacterial cultures were incubated at 
37 °C with continuous shaking (300 rpm) for 18 h (2 replicates from 
each). Cell growth was monitored by measuring the optical density 
(optical density at 600 nm (OD600) values using a Biotek Synergy micro-
plate reader). MIC was defined as the antibiotic concentration of com-
plete growth inhibition (that is, OD600 < 0.05). The same protocol was 
used to estimate antibiotic susceptibility of laboratory-evolved line-
ages. Relative MIC was calculated as follows: log2(MICevolved/MICancestor). 
Increase in MIC was calculated as follows: log10(MICevolved − MICancestor).

We aimed to perform both FoR and ALE assays with all selected 8 
bacterial strains; however, 34% of all antibiotic–strain combinations 
(N = 52) were excluded from further experiments due to modest initial 
drug efficacy (that is, MIC > 4 µg ml−1), rendering them less relevant for 
clinical use. The prevalence of panel strains with reduced susceptibility 
to a certain antibiotic was estimated by calculating the fraction of panel 
strains with high initial MIC values.

FoR assays
To estimate the frequency of spontaneous mutations that confer 
resistance in a microbial population, the FoR assay was used. Using 
standard protocols16–19, approximately 1010 cells from stationary-phase 

cultures were plated to antibiotic-containing MHB plates. Before plat-
ing, bacteria were grown overnight in MHB medium at 37 °C, 250 rpm, 
collected by centrifugation (3,880g for 10 min) and washed once in 
equal volumes of MHB. From this concentrated bacteria suspension, 
~1010 cells were plated to agar plates containing the selective drug at 
the desired concentration (that is, 2×, 4×, 8× and 20× MIC of each given 
antibiotic). Unless otherwise indicated (see ‘High-throughput MIC 
measurements’ above), MHB agar medium was used throughout the 
study. All experiments were performed in three replicates. Plates were 
grown at 37 °C for 48 h. Total colony-forming units were determined 
simultaneously in each experiment by plating appropriate dilutions 
to antibiotic-free MHB agar plates. Resistance frequencies for each 
bacterial strain were calculated by dividing the number of emergent 
colonies by the initial viable cell count. Ten bacterial colonies from 
the highest antibiotic concentration were selected for further MIC 
measurements and whole-genome sequence analysis.

High-throughput ALE
A previously established protocol48,49 was used for ALE, with the aim to 
ensure that populations with the highest level of resistance were propa-
gated further. Starting with an antibiotic concentration resulting in 
~50% growth inhibition, 10 parallel populations per antibiotic–ancestor 
strain combination were grown for 72 h at 37 °C with continuous shak-
ing (300 rpm). As rapid degradation has been observed for β-lactams 
and cephalosporins in liquid laboratory media50, ceftobiprole, cefi-
derocol and cefepime were not subjected to ALE. Unless otherwise 
indicated, MHB medium was used. After each incubation period, 20 μl 
of each bacterial culture was transferred to 4 new independent wells 
containing freshly prepared medium containing different antibiotic 
concentrations (0.5×, 1×, 1.5× and 2.5× the concentration of the previous 
step). A chessboard layout was used on the plate to monitor potential 
cross-contamination events. Cell growth was monitored before each 
transfer by measuring the OD600 value (Biotek Synergy 2 microplate 
reader). Only populations with the highest drug concentration (and 
reaching OD600 > 0.2) were selected for further transfer. The evolution 
experiment was generally continued for 20 transfers, resulting in a total 
of 728 evolved lines (78 lines were omitted because of limited growth).

Whole-genome sequencing
To identify potential antibiotic-resistance-conferring mutations, we 
generally selected two to five lines from FoR and ALE experiments, 
respectively, for whole-genome sequencing. Resistant populations 
were grown overnight in antibiotic-free medium. DNA isolation from 
overnight cultures was performed with the GenElute Bacterial Genomic 
DNA Kit (Sigma), according to the manufacturer’s instructions. DNA 
was eluted with 120 µl RNAse-free sterile water in 2 elution steps. The 
eluted DNA (60 µl) was then concentrated using the DNA Clean and 
Concentrator Kit (Zymo), according to the manufacturer’s instructions. 
The final DNA concentration was measured using a Qubit Fluorometer 
and concentration was set to 1 ng ml−1 in each sample. Sequencing 
libraries from isolated genomic DNA were prepared using the Nextera 
XT DNA Library Preparation Kit (Illumina) following the manufacturer’s 
instructions. The sequencing libraries were sequenced on an Illumina 
NextSeq 500 sequencer using mid or high output flow cells to generate 
2× 150 bp paired-end reads.

To determine and annotate the variants, we mapped the sequenc-
ing reads to their corresponding reference genomes using an estab-
lished method (Burrows–Wheeler Aligner)51. From the aligned reads, 
PCR duplicates were removed with the Picard MarkDuplicates tool 
(http://broadinstitute.github.io/picard/). We removed every read that 
had been aligned with more than six mismatches (disregarding inser-
tions and deletions). The SNPs and insertions or deletions were called 
using Freebayes52 with the following parameters: -p 5–min-base-quality 
28. The identified variants were filtered using the vcffilter tool from 
vcflib53 using the following parameters: –f ‘QUAL > 100’. To avoid 
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missing rare but valid hits, we did not set a lower limit for the prevalence 
of rare variants. If necessary, mutations were also manually inspected 
within the aligned reads using IGV54 to reduce Burrows–Wheeler align-
ment or freebayes artefacts. Finally, the variants were annotated with 
SnpEf and we only kept those that were not present in the ancestor. We 
filtered out mutations that appeared in more than nine lines because 
these variants are probably already present in the ancestor. Further-
more, mutations that appeared in less than nine but more than six 
lines were manually inspected to exclude sequencing artefacts. We 
also excluded mutations that affect 40 bp or longer repetitive regions, 
resulting in a filtered set of mutations. Lines containing mutations in 
the mutL, mutS or mutY genes, or lines with more than 19 mutations, 
defined by outlier filtering (third quartile + (3 × interquartile range)), 
were considered hypermutators and were subsequently discarded.

To analyse the presence or absence of mutations across genes 
and strain backgrounds, we first complemented the existing gene 
functional annotation for the eight bacterial strain backgrounds as 
follows. Nucleotide sequence and annotation files of six strains (E. coli 
ATCC 25922, K. pneumoniae ATCC 10031, A. baumannii ATCC 17978, P. 
aeruginosa ATCC BAA-3107, K. pneumoniae ATCC 700603 and A. bau-
mannii ATCC BAA-1605) were downloaded from the ATCC database 
(https://www.atcc.org/). For P. aeruginosa LESB58 and E. coli NCTC 
13846 strains, genomic data were downloaded from NCBI Nucleotide 
(accession numbers FM209186.1 and GCA_900448335.1). Next, all 
genes in the GeneBank files, including hypothetical ones, were func-
tionally annotated using PANNZER2 (refs. 55,56). To compare the sets 
of mutated genes across strain backgrounds, we determined genes that 
are shared across different strains by identifying groups of orthologous 
genes using OrthoFinder (v.2.5.4)57,58.

Bioinformatic analysis of mutations promoting growth in the 
laboratory based on previous work
We compiled a comprehensive list of 104 genes associated with medium 
adaptation in E. coli, as identified in 2 previous studies59,60. First, we 
examined our evolved E. coli strains for mutations within these genes. 
The DNA sequences of these genes from the E. coli strain MG1655 were 
retrieved from EcoCyc (v.26.0)61. We then aligned the sequences to the 
amino acid sequences of proteins in our reference genomes (SEN and 
MDR, separately) using the BLASTX tool (implemented in the rBLAST 
R package62). For each gene, we selected the alignment with the highest 
bit score, requiring a sequence identity of at least 80% and coverage 
of at least 80%. This approach resulted in 92 of the 104 genes being 
matched in each reference genome. Among these, 8 genes in the MDR 
strains showed 13 mutations and 7 genes in the SEN strains contained 15 
mutations, totalling 11 genes with 28 mutations in at least 1 strain. As a 
next step, we investigated non-coding mutations in our evolved strains 
to ascertain if any were located in or adjacent to operons overlapping 
with the genes implicated in medium adaptation. This analysis did not 
reveal any non-coding mutations associated with the genes of interest.

Comparison of variants to public genomes of bacterial isolates
We assessed whether amino acid substitutions occurring in the FoR 
and ALE samples are present in natural populations of E. coli and A. bau-
mannii as follows. We compiled a comprehensive genomic dataset for 
E. coli strains by downloading assembled genome sequences or unas-
sembled reads and metadata, from four sources: (1) the JGI Integrated 
Microbial Genomes and Microbiomes (IMG) database63 (on 29 January 
2020), (2) the NCBI Prokaryotic RefSeq collection (available at https://
www.ncbi.nlm.nih.gov/refseq/; on 29 January 2020), (3) genomes that 
were analysed in ref. 64, and (4) genomes that were analysed in ref. 65.

After trimming the adaptors with the Cutadapt v.3.2 program66, 
we de novo assembled the next-generation sequencing short reads 
(downloaded from the Sequence Read Archive database67) of genomes 
from sources (3) and (4) using the SPAdes v.3.14.1 software68. Then we 
applied the BUSCO v.5.0.0. workflow69 to exclude genome sequences 

with less than 95% of the BUSCO genes, indicating inadequate com-
pleteness or quality. When multiple genome sequences belonged to 
the same BioSample identifier, only the one with the highest BUSCO 
score, longest sequence and fewest contigs were kept, and all meta-
data of the original sequences were merged. This resulted in 20,786  
E. coli genomes (Supplementary Data 1) for which gene prediction was 
performed using Prodigal (v.2.6.3)70 to obtain protein-coding gene 
annotations that are consistent across the genomes. ORFs with less than 
100 amino acids were filtered out. Strains were classified as pathogens 
and non-pathogens based on their genomic metadata. For A. bauman-
nii strains, we downloaded all available assembled genome sequences 
from the NCBI Prokaryotic RefSeq genome collection (https://www.
ncbi.nlm.nih.gov/refseq/) on 12 September 2022. Then we applied 
genome filtering with 95% completeness using BUSCO v.5.4.6. and 
protein prediction using Prodigal as described above for E. coli. This 
resulted in 15,185 A. baumannii genomes (Supplementary Data 1).

Next, we searched for the presence of each amino-acid-changing 
SNP across the E. coli and Acinetobacter genome collections as follows. 
First, we performed a sequence similarity search of each gene carry-
ing a given variant using DIAMOND BLAST (v.2.0.2)71 using an e-value 
(expect-value) of 0.00001 with 90% coverage and 90% identity to iden-
tify homologues among the genomes. In the next step, we performed 
multiple sequence alignment using MAFFT (v.7.475)72 with the –retree 
2 option. Then we analysed the amino acid frequency across the align-
ments in all mutated positions. All E. coli and A. baumannii variants that 
were present in the corresponding species’ genome collection and 
appeared more than once in our FoR and ALE samples were selected 
for further analysis.

Functional metagenomic screens
Resistance-conferring DNA fragments in the environment were iden-
tified by functional selection of metagenomic libraries. In a previous 
study27, we created metagenomic libraries to obtain environmental and 
clinical resistomes, including (1) river sediment and soil samples from 
7 antibiotic-polluted industrial sites in the close vicinity of antibiotic 
production plants in India73 (anthropogenic soil microbiome), (2) faecal 
samples from 10 European individuals who had not taken any antibiot-
ics for at least 1 year before sample donation (that is, gut microbiome), 
and (3) samples from a pool of 68 MDR bacteria isolated in healthcare 
facilities or obtained from strain collections (Supplementary Table 5). 
For full details on library construction, see ref. 27.

Briefly, environmental and genomic DNA was isolated using the 
DNeasy PowerSoil Kit (Qiagen) and the GenElute Bacterial Genomic DNA 
Kit (Sigma), respectively. Environmental and genomic DNA was enzy-
matically fragmented, followed by size selection of 1.5–5 kb long frag-
ments. Metagenomic inserts were cloned into a medium-copy-number 
plasmid and flanked by two 10 nt-long barcodes (referred to as uptag 
and downtag). Library sizes ranged from 2 to 6 million clones with an 
average insert size of 2 kb.

Libraries were introduced into K. pneumoniae ATCC 10031 and 
E. coli ATCC 25922 by bacteriophage transduction (DEEPMINE)27 
and electroporation, respectively. DEEPMINE uses hybrid T7 
bacteriophage-transducing particles to alter phage host specificity 
and efficiency for functional metagenomics in target clinical bacte-
rial strains.

In this study, we followed previously described protocols with two 
minor modifications. First, transducing hybrid phages were generated 
with a T7 phage lacking the gp11, gp12 and gp17 genes, constructed as 
previously described74. Second, we used a new phage tail donor plas-
mid for complementing the deleted phage tail genes. This plasmid 
was cloned using the ΦSG-JL2 phage tail coding genes, the packaging 
signal region of T7 phage and the pK19 plasmid backbone based on 
previous work75.

Functional selections for antibiotic resistance were performed 
on MHB agar plates containing a concentration gradient of the 
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antimicrobial compounds76,77. Cells containing the metagenomic 
libraries were plated in a cell number covering at least 10× the size of 
the corresponding metagenomic library. Plates were incubated at 37 °C 
for 24 h. For each functional selection, a control plate was prepared 
with the same number of cells containing the metagenomic plasmid 
without a cloned DNA fragment in its multicloning site. These control 
plates showed the inhibitory zone of the antimicrobial compound. To 
isolate the resistant clones from the libraries, sporadic colonies were 
identified above the inhibitory zone based on the control plate by visual 
inspection. Colonies were then collected for plasmid isolation (Thermo 
Scientific GeneJET Plasmid Miniprep Kit). Metagenomic inserts in the 
resistant hits were sequenced using two complementary sequencing 
methods. First, random 10 nt barcodes flanking the metagenomic 
inserts (pZET_bc_F_SrfI_v2, pZET_bc_R; Supplementary Table 7) on the 
resistant plasmids from each selection experiment were PCR amplified. 
For this, we used primers that contain 2× 8-nt-long barcodes specific 
for each selection experiment (with codes starting with Uptag-UF, 
Uptag-UR, pZET_Down_F and pZET_Down_R; Supplementary Table 7). 
Amplicons were pooled, size-selected on agarose gel and sequenced by 
Illumina. Second, metagenomic inserts and their flanking 10 nt uptag 
and downtag barcodes were sequenced by Nanopore.

Annotation of ARGs
Consensus insert sequences from Nanopore sequencing were matched 
with the respective selection experiment using the data from Illumina 
sequencing. First, sequencing reads from Illumina sequencing were 
demultiplexed using the 2× 8-nt-long barcodes specific to the selection 
experiment, and then the demultiplexed reads were matched with the 
consensus insert sequences using the random 10-nt-long barcodes spe-
cific to the metagenomic inserts. To reduce redundancy and spurious 
matches, the list of metagenomic contigs were filtered (1) to unique 
barcodes, keeping barcodes with the highest Nanopore read count; and 
(2) to contigs that were supported by at least eight Nanopore reads and 
five Illumina reads. Prediction of ARGs within these contigs was based 
on ORF prediction using Prodigal v.2.6.3 (ref. 70), followed by search-
ing the annotated ORFs within the CARD and ResFinder databases78,79. 
Searches were performed using BLASTX from NCBI BLAST v.2.12.0 
(ref. 80) with a 10−5 e-value threshold and otherwise default settings. 
ORFs were clustered at 95% identity and coverage using CD-HIT v.4.8.1 
(ref. 81) and only 1 representative ORF was kept for each cluster. The 
inserts were classified based on whether or not any ARGs were found 
in them, and whether or not at least one of these ARGs was associated 
with the antibiotic being tested in that particular selection experiment. 
Close orthologues of the host-specific proteins were excluded from 
further analyses by performing a BLASTP search of each ORF on host 
proteomes (https://www.uniprot.org/proteomes/UP000001734, 
https://www.uniprot.org/proteomes/UP000029103, downloaded 
on 24 November 2022) and removing each ORF with higher than 80% 
sequence similarity. The potential origin of the inserts was assessed by 
searching the Nanopore contigs within the NCBI Prokaryotic RefSeq 
Genomes database82 using BLASTN from NCBI BLAST v.2.12.0 with 
default settings and resolving taxids to hierarchical classifications 
using R83 and the taxizedb package84–86.

Catalogue of mobile ARGs
A mobile gene catalogue (that is, a database of recently transferred 
DNA sequences between bacterial species87) was created previously27. 
Briefly, 1,377 genomes of diverse human-related bacterial species 
from the Integrated Microbial Genomes and Microbiomes database87 
and 1,417 genomes of Gram-negative ESKAPE pathogens from the 
NCBI RefSeq database were downloaded. Using NCBI BLASTN 2.10.1+  
(ref. 80), we searched the nucleotide sequences shared between 
genomes belonging to different species. The parameters for filtering 
the NCBI BLASTN 2.10.1+ BLAST results were as follows: minimum 
percentage of identity, 99%; minimum alignment length, 500; and 

maximum alignment length, 20,000. Then, to generate the mobile gene 
catalogue, we compared them with the merged CARD 3.1.0 (ref. 78) and 
ResFinder (d48a0fe) databases79 using DIAMOND v.2.0.4.142 (ref. 71). 
Natural plasmid sequences were identified by downloading 27,939 
complete plasmid sequences from the PLSDB database (v.2020-11-19)88. 
Then the representative sequences of the isolated 114 ARG clusters 
were searched using BLASTN both in the mobile gene catalogue and in 
natural plasmid sequences with an identity and coverage threshold of 
90%. ARGs were considered mobile if they were present in the mobile 
gene catalogue and/or in natural plasmid sequences.

Detecting ARGs present in human-associated microbiome and 
human pathogens
To identify close homologues of the ARGs discovered in our func-
tional metagenomic screens, we used GMGCv1 (ref. 33). This exten-
sive, non-redundant database comprises over 2.3 billion unigenes, 
derived from more than 13,000 metagenomes across 14 major habitats, 
and includes detailed phylogenetic origin information. We applied a 
BLASTN89 search to compare the nucleotide sequences of the ORFs 
from our screens with all unigenes in the GMGCv1, using a stringent 
identity and coverage threshold of 90%. ARGs were considered to be 
associated with the human body if they showed sequence homology 
to unigenes present in at least five samples in at least one of the follow-
ing environments: human gut, oral cavity, skin, nose, blood plasma or 
vagina. To further investigate the association of the detected ARGs 
with human pathogens, we analysed (1) their presence in the clini-
cal metagenomic library, and (2) their phylogenetic relationships to 
pathogens, specifically focusing on ESKAPE pathogens and those listed 
in the WHO priority lists (A. baumannii, P. aeruginosa, Enterobacte-
riaceae, Enterococcus faecium, Staphylococcus aureus, Helicobacter 
pylori, Campylobacter, Salmonella, Neisseria gonorrhoeae, Streptococ-
cus pneumoniae, Haemophilus influenzae and Shigella) by leveraging 
species information metadata from the GMGCv1 database for each 
BLASTN hit.

Detecting ARGs across E. coli phylogroups, host species types 
and geographic regions
Host type, geographic location and phylogroup were determined for 
a dataset of 16,272 E. coli genomes in previous work90. The initial com-
plete dataset of 26,881 E. coli genomes was retrieved from the NCBI 
RefSeq database (in February 2022) and filtered for genomes with 
complete metadata. Clermont phylogrouping91 was performed in silico 
using the EzClermont command-line tool92, whereas host and location 
metadata were retrieved and categorized using the Bio.Entrez utilities 
from Biopython v.1.77. All genomes were sorted into the following host 
species categories: human, agricultural/domestic animals and wild 
animals. This was achieved using regular expressions constructed by 
manually reviewing text in the ‘host’ field of the biosample data for each 
accession number. Geographic locations were split into 20 subregions 
according to Natural Earth data93. A local BLASTP search was performed 
for this collection of E. coli genomes against a database of the predicted 
ARG ORFs identified in functional metagenomic screens, using default 
parameters. ARGs with both 90% amino acid identity and 90% query 
coverage per subject, and present in no more than 10% of the examined 
E. coli genomes, were analysed further.

DIvERGE mutagenesis
We performed deep-scanning mutagenesis in the target genes of 
moxifloxacin, an established topoisomerase inhibitor. The quinolone 
resistance-determining regions (QRDR)94 of the gyrA and parC genes 
were subjected to a single round of mutagenesis using DIvERGE in  
E. coli K12 MG1655 and K. pneumoniae ATCC 10031. A previously 
described workflow20 was used with minor modifications. Briefly, 
cells carrying the pORTMAGE311B plasmid (Addgene number 120418) 
were inoculated into 2 ml LB medium plus 50 μg ml−1 kanamycin and 
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were grown at 37 °C with continuous shaking (250 rpm) for 12 h. From 
this starter culture, 500 μl stationary-phase culture was propagated in 
50 ml of the same fresh medium under identical conditions. Induction 
was initiated at a fixed population density (OD600 = 0.4) by adding 50 μl 
of 1 M m-toluic acid (dissolved in 96% ethyl alcohol; Sigma-Aldrich) for 
30–45 min at 37 °C. After induction, cells were cooled on ice for 15 min. 
Next, cells were washed three times with sterile ice-cold ultrapure 
distilled water. Finally, the cell pellet was resuspended in 800 μl sterile 
ultrapure distilled water and kept on ice until electroporation.

To perform DIvERGE mutagenesis, the corresponding gyrA and 
parC QRDR-targeting oligonucleotides were mixed in equimolar 
amounts. Of the 500 μl oligonucleotide mixture, 2 μl was added to 
40 μl electrocompetent cells in 5 parallel samples. The oligonucleotides 
we used are listed in Supplementary Table 7. After electroporation, the 
parallel samples were pooled and suspended in 25 ml fresh LB medium 
to allow for cell recovery (37 °C and 250 rpm). After a 60 min recovery 
period, an additional 25 ml LB medium was added and cells were grown 
for an additional 24 h.

To select clones with reduced susceptibility to moxifloxacin, 500 μl 
of each mutant cell library was spread onto moxifloxacin-containing 
MHB agar plates. The plates were incubated at 37 °C for 48 h. Finally, 
20-20 antibiotic-resistant clones were selected randomly and analysed 
further by capillary sequencing using the PCR primers listed in Sup-
plementary Table 7.

Efflux activity measurements
Measuring the accumulation of the fluorescent Hoechst dye is known 
as a robust and rapid method for monitoring efflux activity/membrane 
permeability in bacteria95. This method is based on the intracellular 
accumulation of the fluorescent probe Hoechst 33342 (Bisbenzimide 
H 33342; Sigma-Aldrich). Cells were grown overnight in MHB, then 
20 µl of the overnight culture was used to inoculate 2 ml of MHB liq-
uid medium and then the cells were grown to mid-exponential phase 
(OD600 = 0.4–0.6). Bacterial cultures were harvested by centrifuga-
tion at 4,500g for 30 min. Next, cells were washed and resuspended 
in the buffer containing 5 mM HEPES (pH 7.0) and 5 mM glucose. The 
OD600 of the cell suspensions was adjusted to 0.1, and 0.18 ml of each 
suspension was transferred to 96 well plates (CellCarrier-96 Black 
Optically Clear Bottom; Sigma-Aldrich). Plates were incubated in a 
Synergy H1 microplate reader at 37 °C and 25 μM Hoechst 33342 was 
added to each well. The ancestor strain was treated with an efflux inhibi-
tor agent (phenylalanine-arginine β-naphthylamide) that served as a 
positive control. The OD600 and fluorescence curves were recorded 
for 2 h with 75 s delays between readings and 2.5 min reading intervals. 
Fluorescence reading was performed from the top of the wells using 
excitation and emission filters of 355 nm and 460 nm, respectively. 
To estimate changes in efflux activity, we used a 2 step process: (1) we 
measured the optical-density-normalized fluorescence signal over a 
fixed time frame (from 7.5 min to 120 min) to monitor the intracellular 
accumulation of a fluorescent probe, and (2) we calculated the change 
in normalized fluorescence signal by dividing the signal at the final 
time point (120 min) by that at the initial time point (7.5 min). Relative 
efflux activity of the tested strains was determined by normalizing 
the reached raw values to those of their respective ancestral strains 
and taking its inverse.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The main data supporting the findings of this study are available within 
the article and its Supplementary Information. Illumina reads and 
Nanopore contigs for this study have been deposited in the Euro-
pean Nucleotide Archive (ENA) at EMBL-EBI under accession number 

PRJEB63210 (https://www.ebi.ac.uk/ena/browser/view/PRJEB63210). 
Additional source data underlying the figures featured in the Supple-
mentary Notes are available from the corresponding authors upon 
request. Source data underlying Figs. 1–5 and Extended Data Figs. 1–10 
are provided with this paper.

Code availability
The authors declare that all data cleaning and analysis associated with 
this article were performed using previously published methods, the 
applications of which are appropriately cited in the corresponding 
sections in the Methods. No custom code was developed for the afore-
mentioned purposes. Additional code underlying the figures featured 
are available from the corresponding authors upon request.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Deep analysis of resistance evolution. Evolution of 
resistance to 13 recently developed antibiotics was studied. To this aim we 
selected new antimicrobial compounds which are currently under development 
or have reached the market recently. To systematically study the possible 
routes of resistance evolution and the underlying molecular mechanisms, we 
combined multiple methods shown in grey boxes. We used multiple clinically 
relevant Gram-negative bacterial species as indicated in each box. (A) Intrinsic 
antibiotic susceptibility testing was performed using clinical isolates of E. coli, 
K. pneumoniae, A. baumannii and P. aeruginosa. (B-C) Standard frequency 
of resistance assays (FoR) with ~1010 cells and adaptive laboratory evolution 
(ALE) experiments were performed using a sensitive and MDR strain of E. coli, 

K. pneumoniae, A. baumannii and P. aeruginosa. (D) Functional metagenomic 
screens for antibiotic resistance genes from three metagenomic DNA libraries 
(soil and gut microbiomes and clinical genomes) were performed in E. coli and 
K. pneumoniae. (E) The directed evolution method called DIvERGE was used in 
E. coli and K. pneumoniae to test cross-resistance between recent and control 
topoisomerase inhibitors. (F) We sequenced the complete genomes of 457 
resistant lines and 690 independent DNA fragments to decipher the underlying 
molecular mechanisms of resistance and explore the prevalence of these 
mutations in the genomes of naturally occurring clinical isolates. Additionally, 
we evaluated whether the detected putative antibiotic resistance genes could 
pose threats to public health. Figure created with BioRender.com.
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Extended Data Fig. 2 | Resistance profile of 40 bacterial strains against 
different antibiotic classes. The heatmap shows the resistance profile of 
40 bacterial strains against 8 different antibiotic classes. Strains resistant 
and sensitive to a given antibiotic class (based on clinical breakpoints) are 
represented by purple and grey, respectively. The numbers correspond to the 
number of drugs a strain is resistant to out of the number of drugs tested.  

The right panel classifies the strains based on their resistance profile as sensitive 
(SEN), multidrug-resistant (MDR), or extremely drug-resistant (XDR). Strains are 
classified as MDR, if being resistant to 3 or 4 antibiotic classes and XDR if being 
resistant to 5 or more antibiotic classes, respectively97. For abbreviations, see 
Supplementary Table 4.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Comparison of minimum inhibitory concentration 
(MIC) of antibiotics for sensitive and multidrug-resistant/extensively 
drug-resistant strains. (A) Comparison of minimum inhibitory concentration 
(MIC) of recent vs. control antibiotics for sensitive and multidrug-resistant/
extensively drug-resistant strains. The figure shows the median MIC values (on 
a log10-scale) of control (top row) and recent (bottom row) antibiotics across all 
tested bacterial strains. Each vertical panel represents a specific antibiotic class, 
as indicated at the top. Individual points depict the median MIC value of strain-
antibiotic pairs, with lines connecting paired data points representing MIC values 
of one antibiotic for one sensitive (SEN) and one multidrug-resistant/extensively 
drug-resistant (MDR/XDR) strain for the same species. Blue points/lines indicate 
cases where the MIC of a single antibiotic for a sensitive strain is lower compared 
to the MDR/XDR strain of the same species, while red indicates cases where it is 
not lower. Median MIC values are based on 2 biological and 3 technical replicates 
for each bacterial strain-antibiotic combination. Boxplots display the median, 
first, and third quartiles, with whiskers indicating the 5th and 95th percentiles 
of the median MIC values per each investigated group. Paired Wilcoxon rank 
sum analysis (two-sided test) was performed to assess significant difference in 
sensitivity between antibiotic sensitive (SEN) and MDR/XDR bacterial strains **** 
indicates P < 0.0001, whereas ns indicates that the P value is not significant. For 
antibiotic abbreviations, see Table 1. Antibiotic classes: TOPO (topoisomerase 
inhibitors), TETR (tetracyclines), AMIN (aminoglycosides), CARB (carbapenems), 

CEPH (cephalosporins), and MEMB (membrane-targeting antibiotics). (B) 
Comparison of minimum inhibitory concentration (MIC) of recent antibiotics 
for sensitive and multidrug-resistant/extensively drug-resistant strains. The 
figure shows the median MIC values (on a log10 scale) of recent antibiotics across 
all tested bacterial strains. Each vertical panel represents a specific antibiotic 
class and recent antibiotic, as indicated at the top. Individual points depict 
the median MIC value of strain-antibiotic pairs, with lines connecting paired 
data points representing MIC values of one antibiotic for one sensitive (SEN) 
and one multidrug-resistant/extensively drug-resistant (MDR/XDR) strain for 
the same species. Blue points/lines indicate cases where the MIC of a single 
antibiotic for a sensitive strain is lower compared to the MDR/XDR strain of the 
same species, while red indicates cases where it is not lower. Median MIC values 
are based on 2 biological and 3 technical replicates for each bacterial strain-
antibiotic combination. Boxplots display the median, first, and third quartiles, 
with whiskers indicating the 5th and 95th percentiles of the median MIC values 
per each investigated group. Paired Wilcoxon rank sum analysis (two-sided 
test) was performed to assess significant difference in sensitivity between 
antibiotic sensitive (SEN) and MDR/XDR bacterial strains. ****/*** indicates 
P < 0.0001/0.001, ns indicates that the P value is non-significant. For antibiotic 
abbreviations, see Table 1. Antibiotic classes: TOPO (topoisomerase inhibitors), 
TETR (tetracyclines), AMIN (aminoglycosides), CARB (carbapenems), CEPH 
(cephalosporins), and MEMB (membrane-targeting antibiotics).
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Extended Data Fig. 4 | Adaptation to antibiotics by frequency of resistance 
assay. (A) Changes in minimum inhibitory concentrations (MIC) in mutants 
isolated in frequency-of-resistance (FoR) assays. Each point represents the MICs 
of a mutant line and the corresponding ancestor (log10 scale). Control and recent 
antibiotics are indicated by blue and orange panels, respectively. The colour of 
the data points represents the bacterial species. The black dashed line indicated y 
= x (that is no changes in MIC in the mutants), whereas the red dashed line shows 
the antibiotic specific peak plasma concentration (Supplementary Table 3). For 
abbreviations, see Table 1. (B) Percentage of mutant lines reaching the clinical 
breakpoint in frequency of resistance assay and adaptive laboratory evolution. 
The heatmap shows the percentage of lines reaching the clinical breakpoint. 
Unavailable clinical breakpoints are indicated by white. For the antibiotic 
abbreviation and clinical breakpoints see Supplementary Table 3, for strain 
abbreviation see Supplementary Table 4. (C) Frequency of resistance of evolved 
lines adapted to different antibiotics. The frequency of resistance at 8 × MIC 

antibiotic concentrations was calculated for all antibiotics, shown as the number 
of mutations per cell per generation. Each data point represents the median MIC 
value of a distinct mutant line derived from the frequency of resistance assays 
(FoR), species are denoted by different colours. Median MIC values are based 
on 2 biological and 3 technical replicates for each bacterial strain-antibiotic 
combination. The label colour on the x-axis shows the generation of the different 
antibiotics (blue stands for control, orange for recent antibiotics). The boxplots 
show the median, first, and third quartiles, with whiskers showing the 5th 
and 95th percentiles of the median MIC values per each investigated group. 
There is highly significant heterogeneity in the frequency of resistance across 
antibiotics (Kruskal-Wallis test, P < 0.00001), but no statistical difference was 
found between control and recent antibiotics (Wilcoxon’s rank-sum-test, two-
sided, P = 0.9) when all species and antibiotics were considered. For antibiotic 
abbreviations, see Table 1.
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Extended Data Fig. 5 | Features shaping the resistance level during evolution. 
(A) Correlation of the initial MIC and increase in resistance levels during adaptive 
laboratory evolution for all species. The scatterplot shows the correlation 
between initial resistance level (MIC of the ancestor) and the increase in MIC 
(both on log10-scale) during adaptive laboratory evolution (ALE) for the four 
bacterial species. Increase in MIC was calculated by subtracting the initial MIC 
from the final MIC. Each point corresponds to an adapted line-antibiotic pair. 
Spearman’s rank correlation coefficients (calculated using a two-sided test) 
and corresponding p-values between the two variables across all adapted lines 
of each species are displayed in the figure. Colours indicate the 4 bacterial 
species studied. (B) Correlation analysis between the initial MIC and the increase 
in MIC during adaptive laboratory evolution for all genomic backgrounds. 
The scatterplots show the initial MIC and the increase in MIC (both on log10-
scale) during adaptive laboratory evolution for each 8 studied bacterial strain 
(indicated in the top of each panel). Increase in MIC was calculated by subtracting 
the initial MIC from the final MIC. Each point corresponds to an adapted line-
antibiotic pair. Spearman’s rank correlation coefficients (calculated using a two-
sided test) and corresponding p-values are indicated within each panel. Error 
bars represent 95% confidence intervals. Colours indicate the 4 bacterial species 
studied. For abbreviations, see Supplementary Table 4. (C) Correlation analysis 
between the initial MIC and the increase in MIC during adaptive laboratory 
evolution for all tested antibiotics. The scatterplots shows the initial MIC and 

the increase in MIC (both on log10-scale) during ALE for all antibiotic studied 
(indicated in the top of each panel). Increase in MIC was calculated by subtracting 
the initial MIC from the final MIC. Each point corresponds to an adapted line-
antibiotic pair. Spearman’s rank correlation coefficients (calculated using a two-
sided test) and corresponding p-values are indicated within each panel (absence 
of values in certain panels is due to the lack of variability in the initial MIC). Error 
bars represent 95% confidence intervals. Colours indicate the 4 bacterial species 
studied. For abbreviations, see Table 1. (D) Multiple linear regression (MLR) 
analysis on features shaping the resistance level reached during evolution. The 
analysis focused on three main features i) the MIC level of the ancestor strain 
(MICa), ii) the antibiotic employed (AB) and the iii) genetic background (strain). 
The adjusted coefficient of determination (adjusted R-square) was used as a 
statistical metric to measure the explanatory power of the models, ie. how much 
of the variation in the absolute increase in MIC (log2) can be explained by the 
variation in these features and combinations thereof, while adjusting for the 
number of parameters used in the fitted model. Additivity (indicated with + sign 
in axis labels) and interaction (* sign in axis labels) between explanatory variables 
are marked with orange and red colours, respectively. The predictors included 
in the models are also depicted in the right panel. We found a significant increase 
in adjusted R-square in all cases when a more complex model was compared to a 
simpler one (ANOVA, two-sided, P < 0.0001).
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Extended Data Fig. 6 | Characterization of mutational events in antibiotic 
resistant evolved lines. (A) Distribution of SNPs and indels in resistant lines 
across four bacterial species. Red and green colours denote short indels and 
SNPs, respectively. As expected, lines derived from FoR have accumulated fewer 
mutations (one-sided Wilcoxon rank sum test, P < 2.2e-16), when compared to 
lines derived from ALE. (B) Fraction of non-synonymous mutations. To assess the 
signatures of adaptive evolution in our genomic samples from ALE and FoR assay, 
we tested whether the fraction of non-synonymous mutational events within all 
SNPs in the coding region was higher than expected based on a purely neutral 
model of evolution using an established method98. For each bacterial strain 
background, we identified all SNPs in the coding regions, counted the number 
of non-synonymous (nonsyn) and synonymous (syn) ones and calculated the 

observed fraction of non-synonymous mutations (red dashed line) as follows: 
nonsyn / nonsyn + syn, where nonsyn and syn are the number of non-synonymous 
and synonymous mutations, respectively. Next, we randomly generated the same 
number of SNPs at random coding positions along the genome as observed in the 
mutation dataset. We repeated this step 5000 times, then plotted the fraction 
of non-synonymous mutations as histograms for each species (columns) and 
strain type (rows). Next, we calculated the probability (P-value) that the fraction 
of nonsynonymous mutations was equal to or higher in the real data than that of 
in the randomly generated one. (C) Distribution of different mutational events. 
Top and bottom row correspond to the adapted lines originating for laboratory 
evolution (ALE) and frequency of resistance (FoR) assays, respectively.
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Extended Data Fig. 7 | Non-synonymous mutations shared by laboratory 
evolved lines and natural isolates of E. coli and A. baumannii. The barplots 
show the number of natural isolates (top left and right panel in E. coli and  
A. baumannii, respectively) with the same non-synonymous mutation that arose 

during laboratory evolution of resistance. The corresponding genes possessing 
non-synonymous mutations are labeled with dark grey strips. The bottom left 
panel shows the number of natural strains with canonical resistance mutations 
(source: Pointfinder99).
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Extended Data Fig. 8 | Comparison of the distribution of resistance 
mechanisms across antibiotics between assays. The figure shows the 
distribution of resistance mechanisms across different antibiotics (blue and 
orange indicate control and recent antibiotics, respectively). The fraction of 
resistance mechanisms are colour-coded: those that rely on genomic mutations 

(ALE/FoR) and ARGs (functional metagenomics) are coloured brown and 
green, respectively. Genetic elements were assigned to five major resistance 
mechanisms (vertical panels) based on homology to genes featured in the CARD 
and ResFinder databases.
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Extended Data Fig. 9 | Distribution of canonical resistance mechanisms across 
antibiotic treatments. (A) Distribution of canonical resistance mechanisms 
across antibiotic treatments in adaptive laboratory evolution and frequency of 
resistance assay. Unique de novo genomic mutations were assigned to four major 
resistance mechanisms based on homology to genes featured in the CARD and 
ResFinder databases. Those antibiotic treatments were disregarded that did not 
yield at least 10 unique mutations during the course of laboratory evolution. 
The four major resistance categories include reduced membrane permeability, 
antibiotic target alteration, antibiotic inactivation, and antibiotic efflux. The 
distribution of mutations belonging to each resistance mechanism differs 
across the antibiotics (two-sided proportion test, p < 0.001). For antibiotic 
abbreviations, see Table 1. (B) Distribution of resistance mechanisms across 

antibiotic treatments in functional metagenomics screens. The barplot shows 
the fraction of ARGs per antibiotic resistance mechanisms across functional 
metagenomics screens in the presence of different antibiotics (blue and orange 
indicate control and recent antibiotics, respectively). ARGs were assigned 
to five major resistance mechanisms (vertical panels) based on homology 
to genes featured in the CARD and ResFinder databases. The five major 
resistance categories include antibiotic efflux. antibiotic inactivation, antibiotic 
target alteration, antibiotic target protection, and reduced permeability to 
antibiotics. The distribution of ARGs belonging to each resistance mechanism 
shows heterogeneity across the antibiotics (two-sided roportion test, p < 0.001). 
For antibiotic abbreviations, see Table 1.
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Extended Data Fig. 10 | Characterization of potential health-risk of ARGs 
across antibiotic treatments. (A) Antibiotic resistance genes and health-risk 
criteria. The figure shows the fraction of putative ARGs that meet the following 
criteria: i) gene mobility, ii) presence in microbiomes associated with the human 
body, and iii) bacterial host pathogenicity. Numbers within the bars indicate the 
total number of ARGs belonging to the specific category. There is significant 
variation in the frequency of ORFs across the antibiotics tested (two-sided 
proportion test, p < 0.05) for each criteria, indicating that adaptations to certain 
antibiotics are more likely to meet a specific criterium. Abbreviations: TOPO: 
topoisomerase inhibitors, TETR: tetracyclines, AMIN: aminoglycosides, CARB: 
carbapenems, CEPH: cephalosporins, MEMB: membrane targeting antibiotics. 

For antibiotic abbreviations, see Table 1. (B) Potential-risk antibiotic resistance 
genes against recent antibiotics. The heatmap shows resistance genes identified 
in functional metagenomics screens. Blue and orange labels indicate control and 
recent antibiotics, respectively. Only genes that display high sequence similarity 
to already known antibiotic resistance genes are depicted here. The colours of 
the heatmap indicate different resistance mechanisms associated with a given 
antibiotic resistance gene. Horizontal panels depict major types of resistance 
genes. Antibiotic classes (vertical panels): TOPO (topoisomerase inhibitors), 
TETR (tetracyclines), AMIN (aminoglycosides), CARB (carbapenems), CEPH 
(cephalosporins), and MEMB (membrane-targeting antibiotics). For antibiotic 
abbreviations, see Table 1.
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