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Effect of broccoli sprout extract and 
baseline gut microbiota on fasting blood 
glucose in prediabetes: a randomized, 
placebo-controlled trial
 

Chinmay Dwibedi    1,2,3, Annika S. Axelsson1, Birgitta Abrahamsson1, 
Jed W. Fahey4, Olof Asplund5, Ola Hansson5,6, Emma Ahlqvist5, 
Valentina Tremaroli    2, Fredrik Bäckhed2,7 & Anders H. Rosengren    1 

More effective treatments are needed for impaired fasting glucose 
or glucose intolerance, known as prediabetes. Sulforaphane is an 
isothiocyanate that reduces hepatic gluconeogenesis in individuals 
with type 2 diabetes and is well tolerated when provided as a broccoli 
sprout extract (BSE). Here we report a randomized, double-blind, 
placebo-controlled trial in which drug-naive individuals with prediabetes 
were treated with BSE (n = 35) or placebo (n = 39) once daily for 12 weeks. 
The primary outcome was a 0.3 mmol l−1 reduction in fasting blood glucose 
compared with placebo from baseline to week 12. Gastro-intestinal side 
effects but no severe adverse events were observed in response to treatment. 
BSE did not meet the prespecified primary outcome, and the overall effect 
in individuals with prediabetes was a 0.2 mmol l−1 reduction in fasting blood 
glucose (95% confidence interval −0.44 to −0.01; P = 0.04). Exploratory 
analyses to identify subgroups revealed that individuals with mild obesity, 
low insulin resistance and reduced insulin secretion had a pronounced 
response (0.4 mmol l−1 reduction) and were consequently referred to 
as responders. Gut microbiota analysis further revealed an association 
between baseline gut microbiota and pathophysiology and that responders 
had a different gut microbiota composition. Genomic analyses confirmed 
that responders had a higher abundance of a Bacteroides-encoded 
transcriptional regulator required for the conversion of the inactive 
precursor to bioactive sulforaphane. The abundance of this gene operon 
correlated with sulforaphane serum concentration. These findings suggest 
a combined influence of host pathophysiology and gut microbiota on 
metabolic treatment response, and exploratory analyses need to be 
confirmed in future trials. ClinicalTrials.gov registration: NCT03763240.
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in fasting blood glucose from baseline in participants assigned to BSE 
compared with placebo. The effect of BSE was also studied in different 
pathophysiological subgroups. Thus, in a post hoc exploratory analy-
sis, we stratified study participants using a data-driven clustering algo-
rithm that has been reproduced across multiple diabetic cohorts14–16 
and tested the null hypothesis that treatment response does not differ 
between subgroups. Finally, we analysed the microbiota composition 
in the subgroups and its association with response to BSE.

Results
Patient characteristics and safety
The inclusion criteria were impaired fasting glucose (6.1–6.9 mmol l−1), 
35–75 years of age, a body mass index (BMI) of 27–45 kg m−2 and written 
informed consent. Individuals with conditions or treatments that may 
affect blood glucose were excluded (see Methods for full study criteria). 
Impaired fasting glucose was defined using the international World 
Health Organization criteria rather than the wider criteria proposed 
by the American Diabetes Association, as it enabled the investigation 
of individuals with more severe disease progression and higher risk 
for adverse outcomes, who are likely to benefit more from therapeutic 
interventions8. A total of 450 individuals were screened for impaired 
fasting glucose, of whom 89 individuals met the study criteria and were 
included. The included individuals had a mean age of 63 ± 9 years and 
64% were men. The average fasting blood glucose was 6.4 ± 0.2 mmol l−1, 
and the average BMI was 32 ± 4 kg m−2.

The participants were randomized to receive sulforaphane- 
containing BSE (150 μmol once daily) or placebo for 12 weeks (Table 1). 
A total of 15 participants were lost to full clinical follow-up, mainly 
because of gastro-intestinal side effects (9 assigned to BSE and 6 to 
placebo; Fig. 1 and Supplementary Table 1). A higher frequency of 
gastro-intestinal side effects, including loose stools, nausea, diarrhoea, 
vomiting and reflux, was reported in participants receiving BSE than 
in those receiving placebo, and those who discontinued had a higher 
frequency of gastro-intestinal side effects than participants who com-
pleted the study, particularly those in the BSE-treated group (Table 2).

Primary analysis of fasting blood glucose
The participants who were assigned to BSE had a larger average reduc-
tion of fasting blood glucose than those receiving placebo, with a mean 
difference of 0.2 mmol l−1 between the randomization groups (95% 
confidence interval (CI) −0.44 to −0.01; P = 0.04 using a linear model 
adjusted for BMI and variation in homeostasis model assessment esti-
mates of insulin resistance (HOMA-IR); P = 0.045 using ANCOVA; Table 3 
and Supplementary Table 2). However, this did not meet the prespeci-
fied outcome of 0.3 mmol l−1 mean difference between randomization 
groups, which was set based on the efficacy previously observed in 
patients with type 2 diabetes12.

Analysis of secondary outcomes
There was no difference in the change of BMI, HOMA-IR, HOMA estimate 
of beta-cell function (HOMA-B; reflecting insulin secretion), glycated 
haemoglobin (HbA1c), insulin clearance, fatty liver index, plasma cho-
lesterol, serum triglyceride concentration, physical activity or dietary 
pattern between the groups (Table 3 and Extended Data Figs. 1 and 2).

Exploratory analysis of pathophysiological subgroups
We next investigated whether specific clinical and pathophysiological 
characteristics were associated with the metabolic response to BSE by 
post hoc exploratory analyses. A data-driven cluster analysis of newly 
diagnosed patients has recently identified five subgroups of diabetes 
with different clinical features, pathophysiology and disease progres-
sion14. We extended this approach to prediabetes and observed that 
19 study participants (10 BSE, 9 placebo) had early but typical charac-
teristics of severe insulin-resistant diabetes (SIRD), a subgroup that 
features high BMI and insulin resistance and has been associated with 

While many resources are devoted to treating late stages of type 2 dia-
betes, when anti-hyperglycaemic therapy usually has limited effect on 
disease progression, individuals with prediabetes, who have the great-
est opportunities for reversal1–4, only occasionally receive structured 
treatment5. International guidelines recommend lifestyle intervention 
programmes for individuals with prediabetes5, but these are resource 
intense, have variable outcomes and are currently offered to less than 
10% of individuals with increased blood glucose6. Obese individuals 
below 60 years of age, individuals with other high-risk traits or women 
with previous gestational diabetes who fail to improve glycaemic con-
trol through lifestyle changes are recommended additional metformin 
treatment5. However, several countries, including many European coun-
tries, do not routinely treat prediabetes pharmacologically because 
of the associated side effects (including detrimental effects on gut 
microbiota and host metabolism)7,8 and the large variation in metabolic 
response (for example, 30% do not respond to metformin)9,10. To enable 
more versatile and personalized prevention, it is therefore important 
to investigate other treatment options, including nutritional supple-
ments that may improve glucose control11,12.

Current guidelines also emphasize the need to investigate treat-
ment efficacy in different subgroups of patients8. Several methods 
to stratify patients into subgroups (based on pathophysiology or 
genetics) have been proposed, but the relevance of such stratification 
in predicting treatment response is largely unknown8,13–16. Moreover, 
recent studies have shown a potential role of the gut microbiome in the 
progression of diabetes and the response to anti-diabetic treatment. 
It has been shown that the gut microbiome is changed in individuals 
with prediabetes and diabetes, with decreased abundance of butyrate 
producers, compared with normoglycaemic individuals17. In addi-
tion, treatment with anti-diabetic drugs such as metformin has been 
associated with consistent shifts in microbial functions, including the 
biosynthesis of lipopolysaccharides and the metabolism of short-chain 
fatty acids18. Furthermore, the gut microbiome plays an important role 
in metabolizing dietary nutrients in the host. It could therefore poten-
tially influence the glycaemic response to nutritional interventions19,20. 
Several gaps remain, however, in our understanding of how both the 
individual gut microbiota and pathophysiology affect the glycaemic 
treatment response, in particular in prediabetes21–23.

We have recently found that sulforaphane, an isothiocyanate 
previously studied for cancer prevention11, reduces hepatic glucose 
production, as verified in both animal models and patients with obe-
sity and dysregulated type 2 diabetes12. The mechanism of action was 
shown to involve nuclear translocation of nuclear factor erythroid 
2-related factor 2 (NRF2), resulting in decreased expression of gluco-
neogenic enzymes, including phosphoenolpyruvate carboxykinase 
(PEPCK)12. Interestingly, the biogenic precursor to sulforaphane, the 
glucosinolate glucoraphanin, is contained at high concentrations 
in cruciferous vegetables, such as broccoli, and when provided as a 
broccoli sprout extract (BSE), delivering 150 μmol sulforaphane per 
dose, glucose tolerance was improved to the same extent as by pure 
(99% reagent-grade) sulforaphane. Ablation of sulforaphane in the 
BSE abolished the effect, showing that sulforaphane is the active com-
ponent12. The action of the compound on hepatic gluconeogenesis, its 
high tolerability11 and the ability to provide the compound as a BSE, 
making it available at a very low cost per dose, make its investigation 
as a possible anti-hyperglycaemic treatment at prediabetic stages 
highly warranted.

We hypothesized that BSE can be effective as an early intervention 
in treatment-naive individuals with impaired fasting blood glucose 
and tested this hypothesis in a double-blind randomized trial. The 
rationale for focusing on individuals with impaired fasting glucose 
is that sulforaphane directly suppresses hepatic gluconeogenesis12. 
This is central to the pathophysiology of impaired fasting glucose, in 
contrast to the larger involvement of peripheral insulin resistance in 
impaired glucose tolerance2,8. The primary endpoint was the change 
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increased prevalence of non-alcoholic fatty liver disease (NAFLD)15 
(Supplementary Table 3). Another 19 participants (5 BSE, 14 placebo) 
had features corresponding to mild obesity-related diabetes (MOD), 
with increased BMI and moderate insulin resistance. Finally, 51 study 
participants (29 BSE, 22 placebo) had the typical characteristics of 
mild age-related diabetes (MARD), with comparatively low BMI, insulin 
resistance, fatty liver index and insulin secretion (Fig. 2a). To assess the 
stability and reproducibility of the cluster distribution in prediabetes, 
we also used data from an independent cohort of 164 individuals with 
impaired fasting blood glucose (Fig. 2a,b, Supplementary Tables 4 and 
5, and Supplementary Notes).

The response to BSE (change in fasting glucose relative to base-
line) differed between participants of the various clusters (Supple-
mentary Table 6). Those in the cluster with MARD-like characteristics 
had a greater improvement of fasting blood glucose in response to 
treatment, with a mean difference of 0.4 mmol l−1 between BSE and 
placebo (95% CI −0.6 to −0.1; n = 24 with BSE and n = 20 with placebo; 
P = 0.008; Extended Data Figs. 3 and 4). Moreover, they had improved 

insulin secretion, measured as HOMA-B (95% CI 3.3–26.0; P = 0.02). By 
contrast, there was no significant difference between BSE and placebo 
in participants in the clusters with SIRD- or MOD-like characteristics 
(Supplementary Figs. 1–4). When evaluated as an interaction term, 
treatment (BSE or placebo) and cluster were observed to have a sta-
tistically significant interaction (P = 0.008 using a linear model, with 
the change in fasting glucose as the dependent variable; n = 74; Sup-
plementary Table 6). This suggests that the glycaemic response to BSE 
differs based on cluster.

Exploratory analysis of gut microbiota in responders
We also obtained stool samples before and after treatment with BSE 
or placebo for whole-genome sequencing. Principal coordinate (PCo) 
analysis of Bray–Curtis dissimilarity at the species level showed similar 
gut microbiota composition at baseline in the randomization groups, 
with no compositional change in response to treatment (Extended Data 
Fig. 5). Interestingly, we observed significant differences in overall 
baseline microbiota composition between participants of the clini-
cal clusters (P = 0.02; Fig. 2c). Compared with the other subgroups, 
the gut microbiota of participants with MARD characteristics had an 
increased abundance of health-associated species, such as those in 
Bifidobacterium, Levilactobacillus and Lactiplantibacillus, and butyrate 
producers such as Faecalibacterium and Eubacterium24,25 (Fig. 2d,e). 
This microbiota composition reflects the milder clinical phenotype of 
the cluster with MARD-like characteristics (lower BMI, HOMA-IR and 
fatty liver index) compared with the other clusters24,25.

Although participants with MARD-like characteristics had a larger 
average glycaemic response to BSE than those with SIRD- and MOD-like 
characteristics, all individuals with MARD-like characteristics did not 
respond equally well (Extended Data Fig. 3). To further understand 
which factors, in addition to pathophysiological cluster, influence 
the glycaemic response, we contrasted, in a post hoc analysis, the 
participants who showed a pronounced response to BSE (defined as a 
reduction of fasting blood glucose greater than the top quartile of gly-
caemic improvement (0.3 mmol l−1); n = 13) with the remainder (n = 22). 
Of the 13 pronounced responders, 11 were in the cluster with MARD-like 
characteristics, further corroborating that MARD characteristics are 
important for the treatment response. Moreover, we observed that 
the baseline gut microbiota composition of the pronounced respond-
ers was significantly different (P = 0.001) from that of the remainder 
(Fig. 3a), without further changes after treatment (Fig. 3b).

In particular, the metagenome of pronounced responders had 
increased abundance of Desulfovibrio sp., Anaerostipes caccae, Bacte-
roides M10 and Bacteroides D2 (Fig. 3c). Desulfovibrio sp. maintains gut 
fermentative processes by removing electron sink by-products of fer-
mentation, such as lactate and hydrogen, and they have recently been 
shown to use lactate and support the growth of butyrate-producing 
bacteria such as Faecalibacterium prausnitzii26. A. caccae is a known 
butyrate producer, and the observed shifts in microbial species were 
paralleled by increased abundance in pronounced responders of 
butyrate kinase (P = 0.047), one of the terminal enzymes catalysing 
butyrate production from carbohydrates (Supplementary Fig. 5)27.

By contrast, participants with a less pronounced response had 
significantly higher abundance of lactate producers, with increased 
facultative anaerobes and oral pathogens, including members of Strep-
tococcus and Veillonella (Fig. 3c). These have previously been observed 
in individuals with metabolic disease, in particular NAFLD, who have 
lower colonization resistance against oral and opportunistic patho-
gens28. The observations are consistent with the increased plasma con-
centration of clinical markers of NAFLD in those with a less pronounced 
response, predominantly gamma-glutamyl transferase (GGT; mean 
difference 0.3 μkat l−1 (95% CI 0.1–0.6) compared with the pronounced 
responders). The lower abundance of butyrate producers and lower 
butyrate production potential in low responders are also character-
istic of NAFLD (Supplementary Fig. 5)29. In addition, participants with 

Table 1 | Demographic and baseline characteristics of 
participants in the study

Characteristics BSE (n = 44) Placebo (n = 45) All (n = 89)

Age (years) 65 ± 7 61 ± 10 63 ± 9

Male (n (%)) 29 (66) 28 (62) 57 (64)

Fasting glucose 
(mmol l−1)

6.4 ± 0.2 6.4 ± 0.2 6.4 ± 0.2

HbA1c (mmol mol−1) 38.2 ± 3.9 38.1 ± 4.5 38.2 ± 4.1

BMIa 32.1 ± 3.8 32.2 ± 3.9 32.1 ± 3.8

HOMA-B 118.1 ± 30.0 119.1 ± 28.1 118.6 ± 28.9

HOMA-IR 5.4 ± 3.2 5.4 ± 3.4 5.4 ± 3.3

Fasting insulin (mIE l−1) 18.8 ± 10.8 19.0 ± 11.5 18.9 ± 11.1

Fasting C-peptide 
(nmol l−1)

1.22 ± 0.45 1.22 ± 0.39 1.22 ± 0.42

Fasting 
C-peptide-to-insulin 
ratio

0.074 ± 0.022 0.073 ± 0.020 0.074 ± 0.021

Bilirubin (μmol l−1) 10.0 ± 4.1 9.8 ± 4.5 9.9 ± 4.3

ALP (μkat l−1) 1.1 ± 0.3 1.1 ± 0.3 1.1 ± 0.3

GGT (μkat l−1) 0.7 ± 0.4 0.7 ± 0.5 0.7 ± 0.5

AST (μkat l−1) 0.4 ± 0.2 0.5 ± 0.2 0.4 ± 0.2

ALT (μkat l−1) 0.5 ± 0.3 0.6 ± 0.3 0.6 ± 0.3

Fatty liver indexb 75.9 ± 20.5 76.9 ± 17.4 76.4 ± 18.9

Total cholesterol 
(mmol l−1)

5.0 ± 1.1 5.1 ± 1.0 5.1 ± 1.0

LDL (mmol l−1) 3.4 ± 1.0 3.5 ± 1.0 3.5 ± 1.0

HDL (mmol l−1) 1.4 ± 0.4 1.3 ± 0.4 1.4 ± 0.4

Triglycerides (mmol l−1) 1.4 ± 0.6 1.5 ± 0.6 1.5 ± 0.6

Creatinine (μmol l−1) 82.1 ± 16.3 74.9 ± 12.5 78.5 ± 14.9

Estimated glomerular 
filtration rate 
(ml min−1 1.73 m−2)

71.4 ± 11.0 78.8 ± 10.2 75.1 ± 11.1

Baseline physical 
activity (metabolic 
minutes per week)c

2410 ± 1414 2225 ± 2028 2317 ± 1704

Food frequency scored 4.7 ± 1.3 4.7 ± 2.3 4.7 ± 1.8

Plus–minus values are means ± s.d. LDL, low-density lipoprotein; HDL high-density lipoprotein. 
aThe BMI is the weight in kilograms divided by the square of the height in metres. bThe 
fatty liver index was calculated based on BMI, waist circumference, triglycerides and GGT. 
cSelf-reported data via the IPAQ. dFood frequency questionnaire score from 0 to 9 (with 9 
indicating a diet most adherent to official food recommendations) as described in Methods. 
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a less pronounced response had higher gut microbial gene richness 
at baseline (P = 0.02; Supplementary Fig. 5), possibly reflecting the 
increased abundance of facultative anaerobes with longer genomes 
(Fig. 3c). While the gene richness in the pronounced responders was 
lower at baseline, it tended to be more homogenous after treatment 
(Supplementary Fig. 6), and the Bray–Curtis dissimilarity between 
samples decreased after treatment in the pronounced responders 
(P = 0.02; Supplementary Fig. 5).

Exploratory analysis of the BT2160 operon in responders
Interestingly, Bacteroides M10 and Bacteroides D2 (Fig. 3c), which were 
both increased in the pronounced responders, have recently been 
shown to convert inactive glucosinolate to bioactive isothiocyanates 
such as sulforaphane30. We therefore explored these in further detail. In 
the two bacterial genomes, we identified the operon BT2156–BT2160, 
which plays an important role in glucosinolate conversion30, with gene 
length coverage of 99–100% and a high sequence similarity of 84–86%. 

Randomized (n = 89)

Allocated to placebo (n = 45)

Assessed for eligibility (n = 450)

Excluded (n = 361)

• Fasting blood glucose outside the
range of 6.1–6.9 mmol l−1 (n = 341)

 

• BMI below 27 kg m−2 (n = 20)

Discontinued in BSE group (n = 9)

• Gastro-intestinal side e�ects (n = 5)
• Unable to attend visits (n = 2)
• Did not provide reason (n = 2)

Discontinued in placebo group (n = 6)

• Gastro-intestinal side e�ects (n = 2)
• Unable to attend visits (n = 2)
• Did not provide reason (n = 2)

Analysed in BSE group (n = 35) Analysed in placebo group (n = 39)
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Fig. 1 | Study profile as a CONSORT diagram. Number of individuals randomized and assigned to BSE and placebo, respectively. In addition to the reasons provided for 
study discontinuation, a full list of reported adverse events for all participants is presented in Table 2.

Table 2 | Reported adverse events in study participants

Adverse events Full analysis set (n = 74) Discontinued (n = 15) All (n = 89)

Placebo 
(n = 39)

BSE  
(n = 35)

Total 
(n = 74)

Placebo 
(n = 6)

BSE 
(n = 9)

Total  
(n = 15)

Placebo 
(n = 45)

BSE  
(n = 44)

Total 
(n = 89)

Nausea 3 3 2 2 5 5

Loose stools 6 6 1 2 3 1 8 9

Diarrhoea 1 1 2 1 3 4 2 4 6

Vomiting 1 1 2 1 1 1 2 3

Gastro-intestinal reflux 1 1 2 1 1 2

Lower urinary tract infection 1 1 1 1

Upper urinary tract infection 1 1 1 1

Pneumonia 1 1 1 1

Upper respiratory tract infection 3 5 8 1 1 2 4 6 10

Dry mouth 1 1 1 1

Fainting 1 1 1 1

Tooth infection 1 1 1 1

Hot flush 1 1 1 1

Skin symptoms 1 1 1 1

Skeletal pain 3 2 5 3 2 5

Gout 1 1 1 1

Adverse events were reported at the final visit or during a telephone follow-up. Data from discontinued participants are only from telephone follow-up, as they did not attend the final visit. Each 
participant may report several adverse events. Nausea, loose stools, diarrhoea, vomiting and gastro-intestinal reflux are collectively referred to as gastro-intestinal side effects in the text. 
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Next, we analysed the distribution of the transcriptional regulator of 
the operon, BT2160, in the metagenome and found it to be significantly 
higher in the pronounced responders at baseline compared with the 
remainder (P = 0.02; Supplementary Fig. 5a), suggesting an increased 
potential for glucosinolate activation in this group.

We also identified several other genes that differed significantly 
between pronounced responders and the remainder (Supplemen-
tary Fig. 7). These genes are associated with various metabolic 
pathways, including sugar metabolism (for example, d-arabinitol 
2-dehydrogenase), polyamine metabolism (for example, 
l-2,4-diaminobutyrate decarboxylase), amino acid metabolism, oxi-
dative stress (for example, ATP-dependent RNA helicase), and cellular 
energy metabolism and mitochondrial function (for example, phos-
phate transport)31. While these genes indirectly relate to the pathogen-
esis of type 2 diabetes31, their specific influence on the fasting glucose 
concentration warrants further studies.

Exploratory analysis of BT2160 and the efficacy of BSE
To further investigate the influence of BT2160 on the clinical effect of 
BSE, we analysed sulforaphane concentration in serum after BSE treat-
ment. The sulforaphane concentration had a bimodal distribution in the 
BSE-treated participants (with a mean concentration of 0.2 nmol ml−1 at 
the low end and 1.3 nmol ml−1 at the high end and the mean values differ-
ing by approximately twice the common standard deviation; Supple-
mentary Fig. 8). Interestingly, the participants with high sulforaphane 
concentration had significantly increased abundance of BT2160 in the 
gut microbiota compared with those with low sulforaphane concentra-
tion (0.032 versus 0.022; P = 0.046). The abundance of BT2160 did not 
differ between pathophysiological clusters. We observed, however, 
that in participants with MARD-like characteristics, the abundance 
of BT2160 was significantly correlated with the glycaemic response 
(P = 0.026; Spearman correlation coefficient −0.47). Moreover, when 
evaluated as an interaction term in the statistical model, there was a 
significant interaction between pathophysiological cluster (MARD-like 
versus SIRD- and MOD-like) and abundance of BT2160 on the glycaemic 

response to BSE (P = 0.048 for the interaction term; Supplementary 
Table 6 and Supplementary Fig. 5a).

We next contrasted participants who had an abundance of BT2160 
below and above the median, respectively, and compared the glycae-
mic response between pathophysiological clusters in each stratum 
of BT2160 abundance. In participants with BT2160 abundance above 
the median, those with MARD characteristics had a significantly larger 
glycaemic response compared with the other clusters, with a mean 
difference of 0.7 mmol l−1 (95% CI 0.20–1.21; MARD-like versus SIRD- 
and MOD-like; P = 0.009; Supplementary Table 6 and Supplementary 
Fig. 5a). By contrast, in participants with BT2160 abundance below 
the median, there was no significant difference in glycaemic response 
between clusters (P = 0.6). This collectively suggests that the host 
pathophysiology (reflected by the clusters) and the gut microbiota 
interact and that the abundance of BT2160 in the gut flora influences 
the glycaemic response on top of the pathophysiology.

We also observed in a post hoc analysis that the 11 study par-
ticipants who achieved remission of impaired fasting glucose after 
BSE treatment (fasting glucose below 6.1 mmol mol−1) had a higher 
abundance of BT2160 in the gut microbiota compared with those who 
remained in the prediabetic range (P = 0.03; n = 11 and 24, respectively; 
Extended Data Fig. 1 and Supplementary Fig. 5a). They had also lower 
plasma concentrations of GGT (a clinical marker coupled with hepatic 
fat content2,8; P = 0.01) and a tendency for lower HOMA-IR (Table 3 and 
Extended Data Fig. 1). Ten of them were in the cluster with MARD-like 
characteristics. In a regression model, we observed that the abundance 
of BT2160 in the gut microbiota and plasma concentration of GGT were 
independently and significantly associated with remission in response 
to BSE (R2 = 0.64 for the model using remission and non-remission as 
dependent variables and BT2160 abundance (P = 0.02) and plasma GGT 
(P = 0.01) as independent variables; Table 3 and Supplementary Fig. 5a), 
suggesting that these two variables could help identify those who are 
likely to achieve remission of impaired fasting glucose in response to 
BSE treatment.

Finally, to evaluate the combined importance of clinical 
variables and bacterial species to the variation in the response 
among all BSE recipients, considering also nonlinear effects, we 
used machine learning based on decision trees (Extreme Gradient 
Boosting (XGBoost)) and a distance-based redundancy analysis. 
The analyses showed that baseline alkaline phosphatase (ALP), GGT 
and triglycerides were associated with the glycaemic response to 
BSE (Extended Data Fig. 6a,b). Moreover, increased abundance of 
the health-associated bacteria F. prausnitzii, Roseburia intestinalis, 
Phocaeicola vulgatus and Prevotella copri was associated with the 
glycaemic response (Extended Data Fig. 6c). These data show that 
both hepatic markers and the baseline gut microbiota composition 
are associated with the response to BSE.

Discussion
This trial shows that the response to sulforaphane-containing BSE in 
individuals with impaired fasting glucose differs based on the host 
pathophysiology and gut microbiota. In the full cohort, the 0.2 mmol l−1 
reduction of fasting glucose in response to BSE compared with pla-
cebo did not meet the prespecified outcome of 0.3 mmol l−1. However, 
the data reveal marked variations in treatment response in individu-
als with MOD-like, SIRD-like and MARD-like characteristics, with an 
increased response in the cluster with MARD-like characteristics. The 
study also shows that the host pathophysiology (reflected by the clus-
ters) and the abundance of the BT2160 transcriptional regulator in the 
gut microbiota interact and influence the glycaemic response to BSE. 
Taken together, this indicates a need to personalize interventions in 
prediabetes, considering that many compounds have moderate overall 
efficacy but considerable impact in certain subgroups, and these find-
ings represent a step towards precision treatment of prediabetes based 
on the individual pathophysiology and gut microbiota.

Table 3 | Effect of BSE on primary and secondary endpoints

Endpoint Mean difference (95% CI)a

Change in fasting glucose (mmol l−1) −0.2 (−0.44 to −0.01)

Change in HbA1c (mmol mol−1) −0.3 (−1.3 to 0.6)

Change in BMIb −0.4 (−0.8 to 0.0)

Change in HOMA-B 7.1 (−3.2 to 17.4)

Change in HOMA-IR 0.9 (−0.1 to 1.9)

Change in fasting insulin (mIE l−1) 3.4 (0.1 to 6.8)

Change in fasting C-peptide (nmol l−1) 0.07 (−0.02 to 0.17)

Change in fasting C-peptide-to-insulin ratio −0.006 (−0.016 to 0.005)

Change in fatty liver indexc −1.2 (−5.2 to 2.9)

Change in total cholesterol (mmol l−1) 0.1 (−0.2 to 0.3)

Change in LDL cholesterol (mmol l−1) 0.0 (−0.2 to 0.2)

Change in HDL cholesterol (mmol l−1) 0.1 (−0.0 to 0.1)

Change in triglycerides (mmol l−1) 0.1 (−0.1 to 0.4)

Change in physical activity (metabolic minutes 
per week)d

737 (−1,702 to 3,176)

Change in food frequency scoree −0.02 (−0.99 to 0.95)

Changes relative to the baseline in primary and secondary endpoints in response to the 
BSE or placebo, respectively, in the full analysis set (n = 35 assigned to BSE; n = 39 assigned 
to placebo). aEstimated mean differences of values in response to BSE minus placebo are 
presented as means with 95% CIs. bThe BMI is the weight in kilograms divided by the square of 
the height in metres. cThe fatty liver index was calculated based on BMI, waist circumference, 
triglycerides and GGT. dSelf-reported data via the IPAQ. eFood frequency questionnaire score 
from 0 to 9 (with 9 indicating a diet most adherent to official food recommendations) as 
described in Methods. 
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Participants with a pronounced response to BSE had increased 
abundance of the butyrate producer A. caccae as well as sulphate- 
reducing Desulfovibrio sp., which support the growth of butyrate- 
producing bacteria26. Accordingly, butyrate kinase was elevated in 
the pronounced responders. The increased abundance of Desulfovi-
brio sp. and A. caccae may indicate a fermentative gut environment 
with higher butyrate production potential that could enhance the 
response to BSE. It is also possible that the sulphur component of sul-
foraphane might be used by Desulfovibrio to perform dissimilatory 

sulphate reduction and support butyrate producers26. Moreover, 
it is of interest that a recent study showed an association between 
elevated levels of Desulfovibrio and preserved beta-cell function 
following faecal microbiota transplantation32. Collectively, the gut 
microbiota composition of the pronounced responders is in line 
with their mild metabolic profile, characterized by reduced plasma 
concentration of clinical markers of NAFLD33 and a high proportion 
of individuals with MARD-like characteristics, with low BMI and low 
insulin resistance.
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Fig. 2 | Participant distribution and gut microbiota composition in clusters.  
a, Distribution of study participants in pathophysiological clusters according 
to the clustering methodology in ref. 14 (n = 89). b, Cluster distribution of 
participants in the replication cohort (n = 164). c, PCo analysis of Bray–Curtis 
dissimilarities at the species level in the three clusters of study participants 
(P = 0.02; n = 67 samples from 15 participants with SIRD-like characteristics, 11 
with MOD-like characteristics and 41 with MARD-like characteristics). Standard 
error bars for the principal coordinates are denoted. d,e, Significantly altered 

taxa (at adjusted P < 0.05) in the microbiota between participants with MARD-like 
and MOD-like characteristics (d) and between participants with MARD-like and 
SIRD-like characteristics (e). The x axis denotes log(fold change) of the taxa in the 
cluster with MARD-like characteristics compared with the clusters with MOD-like 
and SIRD-like characteristics, respectively, as indicated. Clostridium spiroforme is 
in the process of getting renamed and therefore within brackets. The legend in c 
also applies to d and e.
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A particularly interesting difference between the pronounced 
responders and the remainder was the increased abundance in pro-
nounced responders of the BT2160 operon that converts inactive 
glucosinolate to bioactive sulforaphane. Participants with high serum 
concentration of sulforaphane had also increased abundance of BT2160 
in their gut microbiota. Moreover, the abundance of BT2160 was associ-
ated with improved glycaemic response in participants with MARD-like 
characteristics, with a significant interaction between the abundance 
of the operon and pathophysiological cluster.

While several stratification methods of potential relevance for dia-
betes have been proposed, the method used here has the advantage of 
including variables that can be obtained in clinical routine, as opposed 
to subgroups based on genetic risk variants or extensive clinical profil-
ing34. Moreover, these clusters have been repeatedly demonstrated in 
diabetic cohorts of multi-ethnic origin14–16. Patient stratifications may, 
however, also be limited by the assumption of homogeneity within 
each cluster, the dependency on the background population and the 
potential change over time in response to treatment (which could make 
the approach more applicable to treatment-naive individuals with pre-
diabetes as studied here). As the individual age and duration of hyper-
glycaemia will be higher in diabetes than in prediabetes, the disease 
progression and risk for complications may differ between prediabetes 
and diabetes clusters, despite pathophysiological similarities. We there-
fore used the clusters in this trial as a means to better understand the 
pathophysiological characteristics of those who benefit most from BSE.

MARD represents a mild form of diabetes, and future longitu-
dinal studies will have to show what percentage of individuals with 
MARD-like characteristics and prediabetes develop overt diabetes. 
While it is likely that individuals with features of SIRD are more prone 
to severe disease progression, MARD is nevertheless the largest cluster 
of patients, representing 35–50% of all with diagnosed disease in vari-
ous cohorts14,16. It is of interest that a 5-year longitudinal observational 
study showed that individuals with MARD had increased fatty liver 
index (which in turn was correlated with hepatocellular lipid content) 
and NAFLD fibrosis score over time15. This enhances the risk of disease 
deterioration and emphasizes the need for early intervention in this 
subgroup15. As beta-cell preservation is an important goal of diabetes 
prevention4,5, it is also of note that BSE significantly improved HOMA-B 
in individuals with MARD-like characteristics without any concomitant 
change in HOMA-IR.

Although no previous studies have investigated the differen-
tial treatment effect in prediabetic subgroups, it is of interest that 
patients with type 2 diabetes and MARD characteristics were reported 
to have lower glycaemic response to metformin compared with  
other subgroups16, highlighting the need for more tailored inter
ventions with different therapeutic options. An observational study 
in prediabetes identified similar clusters and showed that the clus-
ters with MOD-like and, particularly, SIRD-like characteristics have a  
larger fraction of individuals with combined impaired fasting glucose 
and impaired glucose tolerance (approximately 20–30%), in contrast  
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Fig. 3 | Gut microbiota profiles of participants with different responses to BSE.  
a, PCo analysis of Bray–Curtis dissimilarities of gut microbiota at the species level  
at baseline between participants who showed a pronounced response (defined 
as a reduction of fasting blood glucose of at least 0.3 mmol l−1; n = 13) and a less 
pronounced response (n = 22) to BSE treatment (P = 0.001). Standard error  
bars for the principal coordinates are denoted. b, PCo analysis of species‐level  

Bray–Curtis dissimilarities at baseline and post-treatment in participants with a  
pronounced (n = 13) and less pronounced (n = 22) response to BSE (no significant 
differences between baseline and post-treatment; standard error bars are 
denoted). c, Significantly altered taxa at baseline (at adjusted P < 0.05) between 
participants with a pronounced (blue) and less pronounced (yellow) response to 
BSE. The x axis denotes log(fold change) of the taxa.
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to the cluster with MARD-like characteristics that had a higher pro-
portion of individuals with isolated impaired fasting glucose13. This 
agrees with the pronounced glycaemic response in individuals with  
MARD-like characteristics to sulforaphane, which acts directly on 
the expression of gluconeogenic enzymes (in contrast to metformin) 
and offers a targeted means to interfere with exaggerated glucose 
production.

A meta-analysis that identified the association between fasting 
glycaemia and risk of future diabetes35 indicates that a reduction of 
fasting glucose from 6.4 to 6.1 mmol l−1, as observed in response to 
BSE, would correspond to a diminished hazard ratio for diabetes onset 
from ~12 to ~7, and a decrease from 6.4 to 6.0 mmol l−1, as observed 
in response to BSE in the cluster with MARD-like characteristics, 
corresponds to an ~50% reduction in hazard ratio. Although we can-
not estimate the precise risk reduction based on these data, it is of 
relevance that BSE, despite not meeting the prespecified target of 
0.3 mmol l−1, reduces fasting blood glucose by a similar magnitude 
(0.2 mmol l−1) to that observed with metformin (which decreased fast-
ing blood glucose by ~0.2 mmol l−1 in the Diabetes Prevention Program 
and reduced diabetes incidence by 31% for 3 years)36. In view of the low 
cost of BSE, it is also of note that risk reductions as small as 5% have 
been shown to be clinically cost-effective owing to the large societal 
costs of diabetes37. Moreover, data from long-term studies on cancer 
prevention show that BSE has few adverse effects11. This is important 
in prediabetes, in which tolerance for side effects is presumably 
lower38. The provision of sulforaphane as a non-pharmaceutical food 
extract (BSE) rather than a traditional drug might also be attractive 
to individuals with impaired fasting glucose, who do not necessarily 
view themselves as being ill39.

The strengths of the study are the usage of a non-pharmaceutical 
plant-sourced compound as a treatment modality for prediabetes, 
the randomized placebo-controlled design, the investigation of 
the differential effect in pathophysiological subgroups of diabetes 
treatment-naive individuals and the analysis of microbiome pro-
files associated with the anti-hyperglycaemic response to BSE. The 
association between the abundance of the BT2160 transcriptional 
regulator in the gut microbiota and the glycaemic response to BSE 
(in addition to the individual pathophysiology) suggests a model 
for how the microbiota and host pathophysiology interact to influ-
ence treatment response that may have general implications for 
precision medicine.

The study also has a number of limitations. The follow-up time  
of 12 weeks does not allow for the analysis of long-term effects on  
glycaemic control, and future prospective studies will have to deter-
mine the rates of overt diabetes in the treatment groups. The CIs for  
the change of primary and secondary variables were not adjusted 
for multiple comparisons. Other study limitations are the discon-
tinuation of 15 study participants with an overall higher frequency 
of gastro-intestinal side effects (without any systematic differ-
ences in baseline characteristics; Supplementary Table 1), who were  
not included in the full analysis set, and the self-selection process  
in recruitment, which could increase the risk that participants would  
be more motivated to perform lifestyle changes and be concordant  
with treatment than individuals with prediabetes in general. We 
observed no significant changes in dietary habits or physical  
activity between placebo and BSE during the study (Table 3), and the 
placebo-controlled randomized design makes it unlikely that the 
observed effects are merely the result of lifestyle changes in response 
to study participation.

In summary, the trial shows that the response to sulforaphane- 
containing BSE in individuals with impaired fasting glucose differs 
based on the individual pathophysiology and gut microbiota. In the 
full cohort, the effect of BSE did not reach the prespecified outcome 
of 0.3 mmol l−1 reduction of fasting glucose. The data show, however, 
that clustering of individuals with prediabetes into subgroups and 

analysing the abundance of the BT2160 operon in the gut microbiota 
can be used to identify those who benefit most from BSE. This opens 
an avenue for precision treatment of prediabetes based on the indi-
vidual pathophysiology and gut microbiota composition that may have 
general implications. The mild side effect profile and the ability to pro-
vide sulforaphane-containing BSE, for example, as a ‘functional food’ 
could make it an attractive option for individuals with prediabetes and 
MARD characteristics, whereas other treatment modalities, including 
intensive lifestyle intervention programmes or drugs that specifically 
target high insulin resistance or fatty liver content, should be tested 
specifically in those with SIRD and MOD characteristics.

Methods
Trial design and oversight
The trial complies with all relevant ethical regulations, and the protocol 
was approved by the Regional Ethics Committee of Gothenburg (433-18).  
It started in December 2018 and was conducted as a randomized 
parallel-arm placebo-controlled double-blind trial in Gothenburg, 
Sweden (ClinicalTrials.gov NCT03763240) in accordance with the 
principles of the Declaration of Helsinki and Good Clinical Practice. 
The study was conducted at Gothia Forum, Sahlgrenska University 
Hospital, Gothenburg, Sweden, by academic investigators. Funders 
had no role in data interpretation. The trial was monitored by an inde-
pendent monitor before, during and after its completion to ensure that 
it was carried out according to the protocol. All authors had access to 
the data, were involved in the writing and editing of the paper, vouch 
for the completeness and accuracy of the data, and agreed to submit 
the paper for publication.

Participants
A random selection of members of the general population aged 
35–75 years in Gothenburg, Sweden, and surrounding municipalities, 
who had registered addresses and Swedish personal numbers, received 
an invitation letter with study information and instructions on how 
to book a time for a screening visit. Gender was determined based on 
self-report and the official personal number. Participants received 
travel reimbursement but no other financial compensation.

Inclusion criteria
Individuals were eligible to be included in the trial if all of the following 
criteria applied:

•	 Impaired fasting glucose, defined as fasting blood glucose at 
6.1–6.9 mmol l−1

•	 Written informed consent
•	 Age 35–75 years; participating women of fertile age must have 

no current pregnancy, which was assessed by a pregnancy test
•	 BMI 27–45 kg m−2

Exclusion criteria

•	 Diabetes mellitus based on previous documentation or treat-
ment with anti-hyperglycaemic medication or diagnosed 
according to the World Health Organization criteria (random 
plasma glucose >11.1 mmol l−1 or fasting glucose >7.0 mmol l−1 
or HbA1C ≥ 6.5%)

•	 Anti-diabetic medication
•	 Active liver disease
•	 At screening or at any subsequent visit, a level of aspartate  

aminotransferase (AST) or alanine aminotransferase (ALT) of 
more than three times the upper limit of the normal range

•	 Gastro-intestinal ailments that may interfere with the ability to 
adequately absorb sulforaphane

•	 At screening visit, creatinine >130 µmol l−1

•	 Coagulation disorder or current anti-coagulant therapy, which 
may be affected by BSE

http://www.nature.com/naturemicrobiology
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•	 Diagnosed with a cardiovascular disease or known cardiovascular  
event, transient ischaemic attack, coronary by-pass surgery 
or other coronary vessel intervention within 6 months before 
enrolment

•	 Systemic glucocorticoid treatment
•	 Herbal treatment, defined as food supplement (except multi-

vitamin treatment) with herbal or vegetable extracts that may 
affect blood glucose

•	 Participant unable to understand the study information
•	 Participation in another clinical trial, which may affect the 

outcome of the present study
•	 Any other physical or psychiatric condition or treatment that 

in the judgement of the investigator makes it difficult to partici-
pate in the study

Trial procedures
All participants signed a written informed consent before study pro-
cedures were initiated. Participants were instructed not to conduct 
intense physical activity or drink alcohol 24 h before the study visits. 
They were also instructed to fast starting midnight and not use nicotine 
on the same day.

At the screening visit, the height and weight of each participant 
were measured and venous blood samples were drawn for analysis of 
glucose, creatinine, AST, ALT, GGT, ALP, bilirubin, prothrombin com-
plex and thrombocytes. Blood samples were drawn at 7.30–10.00 a.m.

Individuals with fasting blood glucose between 6.1 and 6.9 mmol l−1 
were invited to a second visit approximately 2 weeks later. At this visit, 
body weight was measured and fasting venous blood samples were 
drawn for analysis of primary, secondary and safety variables. At this 
baseline visit, stool samples were also collected.

Individuals who had fasting blood glucose between 6.1 and 
6.9 mmol l−1 also at the second visit were randomized to receive BSE 
or placebo in a double-blind manner. The data from the second visit 
were used as baseline measures for analyses of primary and secondary 
variables. If blood glucose was 7.0 mmol l−1 or above, the individual was 
excluded and referred to primary healthcare.

The randomized participants were instructed to take BSE or placebo  
once daily in the morning. Concordance with treatment was noted in 
a diary and also checked at the final visit by counting the remaining 
doses. Study personnel contacted the participants by phone 2–4 weeks 
after the initiation of treatment to discuss concordance with treatment 
and side effects.

The third visit was scheduled on the same weekday as visit 2 (unless 
it was not possible because of public holidays) 12 weeks after the first 
dose of the study medication. At this visit, body weight was measured, 
stool samples were collected and fasting venous blood samples drawn 
for analysis of primary, secondary and safety variables.

Physical activity was assessed using the International Physical  
Activity Questionnaire (IPAQ), and dietary habits were assessed 
using items that had been validated in Swedish national health 
questionnaires40, which the participants completed during the  
second and third visits.

Randomization
The randomization (in a 1:1 ratio between BSE and placebo) was gener-
ated by independent statisticians using a computer-based block rand-
omization algorithm with balanced blocks. Allocation was concealed 
(via sealed envelopes) from the participants and study personnel until 
the end of the study. Thus, the generation of the random sequence, 
participant enrolment by study personnel and the allocation to rand-
omization groups were clearly separated.

Study compounds
BSE containing high amounts of the sulforaphane precursor gluco
raphanin was provided by Lantmännen R&D. BSE is a dried powder of an 

aqueous extract of broccoli sprouts that provides a consistent and stable 
source of sulforaphane. The active formulation contained BSE with 
maltodextrin added as a bulking agent, whereas maltodextrin alone was 
used as placebo. The placebo looked, smelled and tasted similar to the 
active compound and had the same constituents except BSE. Study doses 
were provided as dry mixtures in sealed, non-transparent portion-size 
bags. Each BSE dose delivered 150 μmol of sulforaphane. Sulforaphane 
content was determined using reverse-phase high-performance liquid  
chromatography by Eurofins. No sulforaphane was detected in the 
placebo. The mixtures of BSE and placebo were suspended with approxi-
mately 1 dl water and ingested orally once daily in the morning.

Safety studies of BSE in healthy volunteers have revealed no evi-
dence of systematic, clinically significant adverse effects11,41,42. This has 
been confirmed in several clinical trials with healthy volunteers as well 
as, for example, patients with recurrent prostate cancer, where doses of 
up to 400 μmol sulforaphane have been used37,42,43. The most commonly 
reported side effects are indigestion, belching or loose stools12,41–43.

Outcomes
Venous blood samples were taken between 7.30 and 10.00 in the morn-
ing. Fasting blood glucose from venous samples was measured at the 
study centre using a HemoCue Glucose System (HemoCue AB). All 
other blood analyses were performed at the central hospital laboratory 
(Gothenburg, Sweden). Homeostasis model assessment-2 estimates of 
insulin resistance (HOMA-IR) and beta-cell function (HOMA-B) were 
determined as previously described44.

The primary variable was fasting blood glucose, and the primary 
objective was to test the hypothesis that BSE improves fasting blood 
glucose using intraindividual comparisons before (baseline) and after 
treatment in the BSE group relative to the placebo group. The second-
ary variables were the change from baseline in HbA1c, BMI, insulin 
resistance (measured by HOMA-IR), insulin secretion (measured by 
HOMA-B), fasting blood lipids and a fatty liver index based on BMI, waist 
circumference, triglycerides and GGT45. Liver parameters, including 
GGT, ALP, AST, ALT and bilirubin, were also measured, and haemoglo-
bin, thrombocytes, thyroid-stimulating hormone, creatinine and esti-
mated glomerular filtration rate (based on creatinine) were analysed 
as safety variables. Insulin clearance was estimated using the fasting 
C-peptide-to-insulin ratio.

Patient-reported outcomes
Participants completed the IPAQ, which assesses intense and moder-
ate physical activity as well as walking during the past 7 days (ref. 46). 
The questionnaire was completed at baseline and at the last visit by 
participants. Responses were converted to metabolic equivalent task 
minutes per week according to the IPAQ scoring protocol46.

Dietary habits were assessed using a food frequency questionnaire 
previously used in public health surveys. The self-reported frequency of 
intake of vegetables, lentils and root vegetables; fruit and berries; fish 
and shellfish; sausages; chocolate and sweets; cakes, buns and cookies; 
cheese; and sugared beverages was recorded and scored according to a 
reference indicator from the National Food Administration41. The items 
were summed to a total score from 0 to 9 (with 9 indicating a diet most 
adherent to official food recommendations).

Clustering of study participants
The data-driven clustering based on diabetes-relevant traits was con-
ceived in the All New Diabetics In Scania (ANDIS) cohort14. ANDIS aims 
to register all incident cases of diabetes in Scania, which is one of the 
largest regions in Sweden with 1,200,000 inhabitants. Over 27,000 
diabetic patients (>90% of the estimated number of eligible cases 
in the region) are included. The clustering is based on continuous 
measures of BMI, age, fasting glucose, C-peptide and HbA1c as well as 
the presence or absence of glutamic acid decarboxylase antibodies 
(GADA) as a binary variable. The method, which is described in detail 
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in ref. 14, is based on k-means clustering and has highlighted five clus-
ters of patients with diabetes, each with different pathophysiological 
characteristics14,15.

The alignment of study participants with the clusters was per-
formed using the baseline data of each participant. GADA was not 
measured in this study, but all participants were assumed to have 
non-autoimmune diabetes based on disease history (type 1 diabetes 
was an exclusion criterion in the study). The clustering was based on 
bootstrapping. In every round, the 8,980 individuals used to analyse 
the original clusters in ref. 14 were sub-sampled, such that 60% of the 
cohort was randomly selected and clustered. The centroid, represented 
by the relative coordinates of the included variables, was determined 
for each cluster. The study participants were then assigned to one of 
the clusters based on the nearest Euclidean distance to the cluster 
centroids. This procedure was repeated in a bootstrapping algorithm, 
and the number of counts for the different cluster was summed for each 
study participant. The fraction of repeats that a study participant was 
assigned to the same cluster was used to determine a cluster alignment 
score from 0 to 1. A score of 1 means that the participant was assigned 
to the same cluster in every repeat.

As age at diagnosis of diabetes is used to cluster diabetes patients14, 
while age at diagnosis of prediabetes (that is, age at study inclusion) was 
used in this trial, disease progression and risk for complications may 
differ, despite pathophysiological similarities between clusters. Thus, 
the rationale for using the clusters was not to predict complications 
but to examine the glycaemic response in individuals with different 
clinical and pathophysiological characteristics.

Replication cohort
The clustering was also performed using baseline data in a separate 
cohort of individuals taking part in a longitudinal study to examine 
the influence of lifestyle on diabetes progression (ClinicalTrials.
gov NCT05006508). The study complies with all relevant ethical 
regulations, and the protocol was approved by the Swedish Ethics 
Review Authority 2021-06830-01. Study participants were recruited 
by advertisements in 2021–2024. Individuals above 35 years of age 
across Sweden were eligible to participate after giving informed 
consent. Those who had not been diagnosed with type 1, type 2 or 
secondary diabetes completed a diabetes risk assessment question-
naire (the Finnish Diabetes Risk Score questionnaire, ranging from 
0 to 26 with higher scores corresponding to higher diabetes risk) 
at baseline. Participants with a Finnish Diabetes Risk Score at 15 or 
above were requested to leave blood samples for analysis of fast-
ing glucose, C-peptide (to determine HOMA-B and HOMA-IR) and 
HbA1c to study their metabolic profile and better understand which 
factors contribute to the progression of diabetes over time. Those 
who were 35–75 years old with a fasting blood glucose between 6.1 
and 6.9 mmol l−1 at baseline and BMI 27–45 kg m−2 (corresponding 
to the study criteria of the BSE trial) were clustered with the same 
methodology used for the participants of the BSE trial.

DNA extraction, library preparation and shotgun 
metagenomic sequencing of faecal samples
All study participants collected their own faecal samples at room tem-
perature before visit 2 and 3. The faecal samples were delivered on the 
same day of sampling to the study centre, where they were stored at 
−80 °C. To use the samples to the largest extent possible, they were 
analysed even for participants who had non-complete clinical follow-up 
data. Total genomic DNA was isolated from 100–150 mg of faecal mate-
rial using a modification of the International Human Microbiome 
Standards DNA extraction protocol Q7 (ref. 47). Samples were extracted 
in Lysing Matrix E tubes (MP Biomedicals) containing ASL buffer (Qia-
gen), vortexed for 2 min and lysed by two cycles of heating at 90 °C for 
10 min followed by two bursts of bead beating at 5.5 m s−1 for 60 s in a 
FastPrep-24 Instrument (MP Biomedicals). After each bead-beating 

burst, samples were placed on ice for 5 min. Supernatants were col-
lected after each cycle by centrifugation at 4 °C. Supernatants from 
the two centrifugation steps were pooled, and a 600 µl aliquot from 
each sample was purified using the QIAamp DNA Mini kit (Qiagen) in 
the QIAcube (Qiagen) instrument using the procedure for human DNA 
analysis. Samples were eluted in 200 µl of AE buffer (10 mM Tris·Cl; 
0.5 mM EDTA; pH 9.0). Libraries for shotgun metagenomic sequencing 
were prepared by a PCR-free method; library preparation and sequenc-
ing were performed at Novogene on a NovaSeq instrument (Illumina) 
with 150 bp paired-end reads and at least 6 G data per sample.

Faecal metagenomic profiling and bioinformatic analysis
The metagenomic reads were quality filtered and trimmed using 
fastq_quality_trimmer from the fastX toolkit (https://github.com/
lianos/fastx-toolkit/). To remove human contamination, reads were 
mapped against the human genome (hg19) using Bowtie2 v2.4.4  
(ref. 48). Filtered reads passing the quality criteria were then mapped 
using Kraken2 with default settings against the RefSeq database 
(release 107). Abundance estimation was performed using Bracken for 
all reads with a minimum read length of 100 bp. Gene count estimation 
was performed on a previously published gene catalogue containing 
15,186,403 non-redundant microbial genes17. Kyoto Encyclopedia of 
Genes and Genomes ontology annotations were then performed for 
microbial functional profiling based on MEDUSA49. Butyrate kinase 
gene (buk) representing one of the bacterial butyrate-producing path-
ways27 was profiled using hidden Markov models to screen the gene 
catalogue and to identify the butyrate producers among the metagen-
omic species by HMMER50.

The BT2156–BT2160 protein sequences were downloaded from 
RefSeq (WP_008763945- WP_00876394) and mapped against Bacte-
roides D2 (accession id NZ_CP102261) and Bacteroides DM10 (accession 
id CP060488) based on the reference genomes of the species used 
in the RefSeq database (release 107). The gene count estimation of 
BT2160, the transcriptional regulator of the operon, was performed 
on the gene catalogue of the non-redundant microbial genes detailed 
above, and statistical significance was determined based on the pro-
portion of permutation test statistics greater than or equal to the 
observed statistic (using 10,000 permutations with a random shuffle 
function in R 4.1.0).

PCo analysis was performed on Bray–Curtis dissimilarity at the 
species level, calculated based on species abundances, and significance 
was determined by PERMANOVA test using the adonis2 function with 
10,000 permutations. Significantly differential abundant species 
tables were obtained using the deseq2 package with adjustment for 
subjects at different visits. The P value adjustment for significantly 
altered taxa was performed by the default setting in deseq2 using the 
false discovery rate according to the Benjamini–Hochberg method. 
Correlation of gut microbiota species abundances with clinical param-
eters was performed using distance-based redundancy analysis with 
the capscale function using anova.cca and 10,000 permutations. 
The functions used in these analyses are implemented in the vegan 
package (Community Ecology Package-R package version 1.17-8). All  
statistical analyses involving faecal whole-genome metagenomics 
were performed in R 4.1.0.

Continuous baseline variables that predict response to BSE
We used XGBoost, an ensemble machine learning technique based on 
decision trees, to identify continuous baseline variables that predict 
the change in fasting glucose after treatment of the study drugs. The 
method develops a multivariable ensemble of prediction models that 
were used to identify the strongest predictors of response. The opti-
mal values for hyperparameters for each outcome were detected by 
performing a grid search on several possible combinations of different 
variables. The hyperparameters include the number of trees, learning 
rate, minimal loss to expand on a leaf node, maximum tree depth and 
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subsample proportion. All other parameters were used at their default 
values. The package XGBoost version 1.6.0.1 was used in R 4.1.0.

We computed the relative importance of each variable predict-
ing the outcome using F scores in XGboost, calculated as the sum of 
Gini improvement among the corresponding splits within a tree aver-
aged over all the trees. In addition, we implemented Shapley Additive 
Explanations (SHAP), for easy interpretation of the machine learning 
model output. The SHAP value in this analysis is the mean absolute 
individual feature-level impact on the model. The training set in our 
models consisted of a randomly selected subset of 80% of the study 
participants, and the testing set was composed of the remaining 20%. 
The model was based on data from the training set; the testing set was 
independent of the training process and was used only for performance 
evaluation after the model was established.

Measurement of sulforaphane in serum
The concentration of sulforaphane in serum samples from participants 
was measured as previously described51. The methodology is based on 
analysing dithiocarbamate levels in patient serum by the cycloconden-
sation reaction for measurement of sulforaphane and its metabolites. 
Absence of sulforaphane in samples from the placebo group was veri-
fied by parallel measurements of the sulforaphane concentration in 
serum from placebo-treated participants. The difference in the average 
abundance of BT2160 in baseline and post-treatment samples between 
participants with low and high sulforaphane concentration in serum 
was compared using a weighted least squares analysis, adjusted for 
body surface area.

Statistical analysis
The primary endpoint was the intraindividual change in fasting glucose 
from baseline in response to BSE or placebo, which was analysed using 
a linear model adjusted for BMI and variation in HOMA-IR. The com-
parison of fasting glucose was also complemented with an ANCOVA 
model. Secondary endpoints included the intraindividual change 
in secondary variables from baseline in response to BSE or placebo 
and were analysed using a linear model as for the primary endpoint. 
Normality was verified for the major clinical variables using normal 
probability plots.

The full analysis set includes all participants who have clinical 
measures after randomization, independent of concordance with 
treatment.

In view of observations in patients with type 2 diabetes that serum 
triglyceride concentration is associated with the response to BSE, indi-
viduals below or above the median serum triglyceride concentration 
were also analysed separately.

The data-driven clustering method was published after the design 
of this study, and the investigation of clusters is a post hoc analysis. 
The primary and secondary variables were compared between BSE 
and placebo within each cluster of participants using corresponding 
linear models as applied to the full cohort. The interaction between 
treatment and subgroup was analysed by a linear model with one term 
for treatment (BSE or placebo), one term for the subgroup and an inter-
action term for the treatment and subgroup. Baseline variables were 
compared between the three clusters using ANOVA followed by Bonfer-
roni corrections to obtain an overall P value for the variation between 
all three groups and for pairwise comparisons between groups.

The interaction between the abundance of BT2160 (log values) 
and pathophysiological subgroup (MARD versus MOD and SIRD) was 
analysed by a linear model with one term for BT2160 abundance, one 
term for subgroup and an interaction term for BT2160 and subgroup 
with the change of fasting glucose in response to BSE as the dependent 
variable. The analysis was adjusted for variation in body surface area 
between participants using the standard Du Bois formula.

The study was designed to have 80% power to detect a treatment 
effect of 0.3 mmol l−1 between BSE and placebo. The standard deviation 

of change in fasting blood glucose over 12 weeks is 0.63 mmol l−1, based 
on analyses in our longitudinal cohorts of subjects with impaired fast-
ing blood glucose. At alpha 0.05, at least 74 study participants were 
needed.

Two-sided P values of 0.05 or less were considered to indicate 
statistical significance. Summary statistics are generally presented as 
point estimates with 95% CI unadjusted for multiple comparisons. Sta-
tistical analyses were performed using SPSS (version 26, IBM) or R 4.1.0.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw metagenomic sequence data have been deposited in the European 
Molecular Biology Laboratory-European Bioinformatics Institute 
European Nucleotide Archive under accession number PRJEB77105. 
To remove human contamination, reads were mapped against the 
human genome (hg19) using Bowtie2 v2.4.4. Filtered reads passing 
the quality criteria were then mapped using Kraken2 with default set-
tings against the RefSeq database (release 107). The BT2156–BT2160 
protein sequences were downloaded from RefSeq (WP_008763945–
WP_00876394) and mapped against Bacteroides D2 (accession id 
NZ_CP102261) and Bacteroides DM10 (accession id CP060488) based 
on the reference genomes of the species used in the RefSeq database 
(release 107). All clinical data supporting the findings of this study 
and the study protocol are available in the Article and Supplementary 
Information. Source data are provided with this paper. All other data 
that support the findings of this study are available from the corre-
sponding author upon reasonable request. De-identified individual 
and/or study-level data will be shared with researchers who provide a 
methodologically sound proposal and if regulatory criteria are met. 
Access to anonymized data may be granted following review (time 
frame <20 office days) to ensure compliance with relevant ethical and 
legal considerations.
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Extended Data Fig. 1 | Distribution of primary and secondary variables in all participants. Box plots show individual data points, medians (straight lines inside box) 
and means (cross marking) with hinges representing lower and upper quartile. Data are from baseline and post-treatment in the placebo (n = 39) and BSE (n = 35) groups. 
Individuals with similar values are represented by the same circle.
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Extended Data Fig. 2 | Distribution of cholesterol, triglycerides, insulin and 
C-peptide in all participants. Box plots show individual data points, medians 
(straight lines inside box) and means (cross marking) with hinges representing 

lower and upper quartile. Data are from baseline and post-treatment in the 
placebo (n = 39) and BSE (n = 35) groups. Individuals with similar values are 
represented by the same circle.
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Extended Data Fig. 3 | Distribution of primary and secondary variables in 
MARD-like participants. Box plots show individual data points, medians 
(straight lines inside box) and means (cross marking) with hinges representing 

lower and upper quartile. Data are from baseline and post-treatment in the 
placebo (n = 20) and BSE (n = 24) groups of MARD participants. Individuals with 
similar values are represented by the same circle.
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Extended Data Fig. 4 | Distribution of cholesterol, triglycerides, insulin 
and C-peptide in MARD-like participants. Box plots show individual data 
points, medians (straight lines inside box) and means (cross marking) with 

hinges representing lower and upper quartile. Data are from baseline and post-
treatment in the placebo (n = 20) and BSE (n = 24) groups of MARD participants. 
Individuals with similar values are represented by the same circle.
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Extended Data Fig. 5 | Dissimilarities between BSE and placebo. Principal coordinates analysis of species-level Bray-Curtis dissimilarities at baseline and post-
treatment between study participants randomized to BSE and placebo, respectively. No significant differences were observed.
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Extended Data Fig. 6 | Relative importance of clinical and microbiota features 
in predicting the response to BSE. a, The relative importance of baseline 
variables (features) in predicting the change in fasting glucose after treatment 
with BSE. The measures of relative feature importance sum up to 1 and were 
generated by XGBoost. All participants receiving BSE were included in these 
analyses to investigate the importance of continuous baseline variables across 
all individuals. b, SHAP summary plot for the impact of baseline variables in 
predicting the change in fasting glucose in response to BSE treatment. Each 
point in the figure corresponds to a participant, and the SHAP value reflects the 
impact of the baseline variable in predicting the change in fasting glucose for 
that individual. For example, in the row corresponding to alkaline phosphatase, 

all individuals receiving BSE are plotted in accordance with how much baseline 
alkaline phosphatase predicts the change in fasting glucose. The panel is 
arranged based on the mean of the absolute SHAP values for each baseline 
variable. c, The impact of baseline clinical and microbiota variables on the 
glycemic response to BSE treatment using a distance‐based redundancy analysis 
model, calculated by the capscale function in R (the vegan package with the 
significance level based on the anova.cca function and PERMANOVA test with 
10,000 permutations; P = 0.1). BMI is body mass index, blood glucose denotes 
fasting blood glucose, ALT is alkaline phosphatase, GGT is gamma‐glutamyl 
transferase, and HOMA‐IR is the homeostasis model assessment‐2 estimate of 
insulin resistance.
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