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The natural context in which CRISPR-Cas systems are active in
Enterobacteriaceae has remained enigmatic. Here we find that the

Citrobacter rodentiumtype I-E CRISPR-Cas system s activated by the
oxygen-responsive transcriptional regulator Fnr in the anoxic environment
of the mouse intestine. Since Fnr-dependent regulation is predicted in -41%
of Enterobacteriaceae cas3 orthologues, we propose that anoxic regulation
of CRISPR-Cas immunity is an adaptation that protects Enterobacteriaceae
against threats from foreign DNA within the intestinal microbiome.

Prokaryotes use clustered regularly interspaced short palindromic
repeats and CRISPR-associated protein (CRISPR-Cas) systems to recog-
nizeand cleave foreign nucleic acid sequences to protect against phages
and other mobile genetic elements'. However, with a few exceptions*”,
littleis known about the regulation of these systems under physiologi-
cal conditions. The limited understanding of CRISPR-Cas regulation
is partly attributable to the absence of native CRISPR-Cas activity in
cultured Enterobacteriaceae, acommonly studied family of bacteria,
necessitating investigation using artificial overexpression systems®™®,

Citrobacterrodentiumis a Gram-negative bacterial pathogen that
naturally infects and causes colitis in mice’. Like most Enterobacte-
riaceae, C. rodentium is a facultative anaerobe, capable of growth in
the presence or absence of oxygen (oxic or anoxic conditions, respec-
tively). We performed RNA sequencing of the pathogen’s transcrip-
tional response to anoxia and observed more transcripts from the
typel-Ecaslocus (schematized in Fig.1a) inanoxic versus oxic culture
conditions (Fig. 1b, Extended Data Fig.1and Supplementary Table 1).
To test whether increased cas expression correlates with CRISPR-Cas
activity, we designed a functional assay'’ that monitors the retention
frequency of either a plasmid containing a sequence that is (target)
orisnot (control) recognized by the native C. rodentium CRISPR locus
(plasmid retention assay; schematized in Extended Data Fig. 2).

In oxic culture conditions, 92% of cells retained the target plas-
mid, indicating that CRISPR-Cas immunity is inactive (Fig. 1c). By
contrast, only 1% of cells retained the target plasmid during anoxic
culture (Fig. 1c), demonstrating anoxic-specific immunity. To verify
that this assay requires CRISPR-Cas activity, we deleted the entire
C. rodentium cas locus (Acas3-2) and repeated the assay. Deletion of

cas3-2eliminated CRISPR-Casimmunity during anoxic culture (Fig. 1d).
We conclude thatanoxiais required for both expression and activity of
C.rodentium CRISPR-Cas immunity.

To discover anoxic regulators of the C. rodentium cas locus, we
leveraged the plasmid retention assay for a transposon-insertion
loss-of-function screen (InducTn-seq"). We anoxically cultured atrans-
poson mutant population of C. rodentium carrying the target plasmid
and then sequenced the mutants that retained the plasmid following
antibioticselection, comparing with a population containing a control
plasmid (Fig. 1e and Supplementary Table 2). As expected, transposon
insertions in the endonuclease cas3 were specifically enriched in the
populationretaining the target plasmid, indicating that disruption of
cas3 prevents CRISPR-Casimmunity. By contrast, casI and cas2, which
arenotinvolvedin CRISPR-Cas interference, were not enriched, dem-
onstrating the specificity of the assay. One of the two most enriched
non-cas-related genes was fnr, which encodes an oxygen-responsive
transcriptional regulator widely conserved among facultative anaero-
bicbacteria® (Fig. 1e). The other most enriched gene was a chaperone
involved inthe maturation of iron-sulfur cluster-containing proteins
(hscA), previously demonstrated to be needed for full Fnr activity®.
Based on these data, we hypothesized that Fnr regulates CRISPR-
Cas expression.

In support of this hypothesis, CRISPR-Cas immunity was elimi-
nated in the absence of fnr (Afnr; Fig. 1d). Mutation of a putative
Fnr-binding motif'*** centred 69.5 nucleotides upstream of cas3 (Fig. 1f)
also eliminated CRISPR-Cas immunity (Fig. 1d). Furthermore, quan-
titative PCR (QPCR) demonstrated that mutation of the Fnr-binding
site upstream of cas3 eliminated the transcriptional response of cas3
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Fig. 1| Anoxia causes Fnr-dependent activation of CRISPR-Cas immunity in

C. rodentium. a, A schematic of the C. rodentium caslocus. b, RNA sequencing
(RNA-seq) results from the caslocus of C. rodentium cultured under oxic or
anoxic conditions for 3.5 hon solid LB agar. Data represent three biological
replicates. FDR, false discovery rate. Additional analysis in Extended Data Fig. 1
and Supplementary Table 1. ¢,d, Fraction of cells from a single colony cultured
for 24 honsolid LB agar that retained the CRISPR-Cas target or control plasmid.
Assay design in Extended Data Fig. 2. Geometric mean of biological replicates.
For c¢:3 colonies each. For d: wild-type (WT), 5 colonies; Acas3-2, Afnr, and Fnr-site
mut. (with mutation displayed at the bottom of f), 6 colonies. e, InducTn-seq
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in Supplementary Table 1. f, Fnr-binding sites. Top: consensus defined in E. coli®.
Bottom: putative C. rodentium WT and mutated Fnr-binding sites relative to the
cas3start codon. g, qPCR of cas3following 3.5 h of culture on solid LB agar. AACT
(threshold cycle) analysis compared with rpoA and oxic culture conditions. Data
represent three biological replicates (plates) with three technical replicates per
sample. h,i, Consensus motif** (h) and location relative to cas3 start codon (i) of
putative Fnr-binding sites upstream of Enterobacteriaceae cas3 orthologues.

to anoxia (Fig. 1g). These results indicate that Fnr directly activates
CRISPRimmunity during anoxia.

To determine the conservation of Fnr-mediated regulation of
CRISPR-Casimmunity, we used OrthoDB' to select 501 non-redundant
Gammaproteobacteriagenomes containing cas3orthologuesandinter-
rogated the 300 nucleotides upstream of cas3 with motif enrichment
analysis™. Intotal, 141 of 501 genomes contained at least one predicted
Fnr-bindingsite upstream of cas3 (Supplementary Tables3and4). These
genomes were distributed among most orders of Gammaproteobacteria
(Extended Data Fig. 3). Notably, the Fnr-binding sites in Enterobacte-
riaceae closely matched the Fnr-consensus sequence previously defined
in Escherichia colistrain MG1655 (ref. 15) and were primarily centred at
the same positionasin C. rodentium (Fig.1h,iand Extended DataFig. 4).
The positional conservation of an Fnr-binding motif in 13 out of 32
Enterobacteriaceae suggests conserved Fnr-dependent cas3activation
within a subset of this family.

Many of the Enterobacteriaceae with an Fnr-binding motif
upstream of cas3 have been isolated from the mammalian intestine
(for example, Escherichia, Citrobacter and Klebsiella), which is fre-
quently an anoxic environment”. We hypothesized that activation of
CRISPR-Cas immunity by anoxia may protect Enterobacteriaceae from
threats encountered within the microbially rich intestine. Consistent

with this hypothesis, RNA sequencing revealed that faecal-associated
C.rodentiumisolated frominfected C57BL/6) mice had more transcripts
fromthe caslocusthaninoxicculture (Fig.2a, Extended DataFig.5and
Supplementary Table1).

To determine if increased cas expression results in CRISPR-Cas
immunity within the intestine, we infected mice with C. rodentium
strains carrying the CRISPR-Cas target plasmid and monitored plas-
mid retentionin faecal bacteria. Over the first 24 h, most shed bacteria
retained the plasmid (Fig. 2b). Subsequently, wild-type C. rodentium
progressively lost the plasmid, with only 1% of shed bacteria retaining
the plasmid 13 days after inoculation. By contrast, 85% of Acas3-2 cells
and 23% of Afnr cells retained the plasmid over the same 13-day period
(Fig. 2b). Theseresults suggest that anoxia within the intestine results
inFnr-dependentactivation of CRISPR-Casimmunity in C. rodentium.
Furthermore, the discrepancy between the Acas3-2and Afnr mutants
suggests that intestinal signals beyond anoxia may regulate CRISPR
activity—potentially by relieving H-NS-mediated transcriptional repres-
sion, as previously observed in other bacterial species”,

The intestine contains low concentrations of oxygen and dense
communities of microbes and phage'". Density-dependent regula-
tionis consistent with previous reports of quorum-sensing-regulated
CRISPR-Cas activity in Serratia spp., Pseudomonas aeruginosa and
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Fig. 2| C. rodentium CRISPR-Cas immunity is activated by Fnr within the
murineintestine. a, Cas transcripts from RNA sequencing (RNA-seq) of
C.rodentiumrecovered from the faeces of infected, female, C57BL/6) mice 7 days
after inoculation compared with bacteria from oxic culture. Data represent
three biological replicates from mice and three from oxic culture. Additional
analysis in Extended Data Fig. 5and Supplementary Table 1. b, Retention of a
CRISPR target plasmid by the indicated strains of C. rodentium measured by serial
dilution and plating of faeces from infected mice (N = 16 wild type (WT), 8 Afnr,

8 Acas3-2infected mice; equal mix of sexes). Lines represent the geometric
mean, and shading represents the geometric standard deviation. Significance
compared with wild-type by two-way analysis of variance with Dunnett’s
multiple-comparison test on log,,-transformed data (**P < 0.01, **P< 0.001,
***p<(0.0001).

Aliivibrio wodanis” . We therefore propose that, in dense microbial
communities such as the hostintestine, anoxic regulation of CRISPR-
Casimmunity in C. rodentium and other Enterobacteriaceae represents
anadaptation that protects these bacteria against predation.

Methods

Regulatory statement

All bacterial work was performed in biosafety level 2 facilities at the
Brigham and Women'’s Hospital according to protocols reviewed and
approved by the Brigham and Women’s Hospital Institutional Biosafety
Committee under protocol 2011BO00082. All personnel working with
bacteria were trained in relevant safety and protocol-specific proce-
dures. Animal studies were conducted at Brigham and Women’s Hos-
pitalincompliance with the ‘Guide for the Care and Use of Laboratory
Animals’ and according to protocols reviewed and approved by the
Brigham and Women'’s Hospital’s Institutional Animal Care and Use
Committee under protocol 2016N0O00416.

Bacterial strains

The strains used in this study are listed in Supplementary Table 5.
C.rodentiumis aspontaneous streptomycin-resistantisolate of strain
ICC168 (ref.22), previously known as Citrobacter freundii biotype 4280
(ATCC 51459). Escherichia coli strain MFDpir was used for cloning®.

Oxic and anoxic culture

Bacteria were cultured at 37 °C in either liquid lysogeny broth (LB)
shakingat 200 rotations per minute or on solid LB containing1.5% agar.
Oxic culture was performed in atmospheric conditions. Anoxic culture
was performed in a Baker Concept 400M anaerobic workstation set
to 0% oxygen, with media acclimated to the anoxic environment for
atleast one night.

Plasmid assembly

Plasmid fragments were amplified from plasmid or genomic DNA
using single-stranded DNA primers (Integrated DNA Technologies).
Fragments were assembled with NEBuilder HiFi DNA Assembly Master
Mix (New England Biolabs). Assembled plasmids were transformed
into E. coli strain MFDpir with electroporation and transferred to the
recipient strains by conjugation.

Constructing mutant C. rodentium strains

Theallelicexchange protocol from ref. 24 was used to create in-frame
deletions, and the Fnr-site mutationin C. rodentium. pTOX5 (Genbank
MK972845) was linearized with the restriction enzyme Swal and assem-
bled with-1-kb homology arms flanking the desired mutation. Primer
sequencesareincludedinSupplementary Table 6. For deletions, two to
three codonswereleftintactatboth ends of the deletion. This plasmid
was electroporated into MFDpir, checked by PCR and conjugated into
C.rodentium. Transconjugants were purified by plating consecutively
three times. Individual colonies were cultured for 1 h without antibi-
otic selection and then counterselected to isolate double crossovers
lacking the plasmid backbone. Single colonies were selected,and PCR
and whole-genome sequencing confirmed the identity and fidelity of
the mutant strains.

Animal experiments

Adult (9-12 weeks) C57BL/6) mice were purchased from Jackson
Laboratory (strain #000664) and acclimated for at least 72 h before
experimentation. During infection, mice were housed under specific
pathogen-free conditions at 68-75 °F, with30-50% humidity and a12-h
light/dark cycle in a biosafety level 2 facility.

For C. rodentiuminfections, mice were deprived of food for3-5h
beforeinoculation. Animals were then mildly sedated withisoflurane,
and 100 pl of the indicated strain suspended in phosphate-buffered
saline (PBS) wasinoculated into the stomachwith asterile feeding nee-
dle (Cadence Science). Dose (streptomycin-resistant colony-forming
units, CFU) and CRISPR plasmid retention (gentamicin-resistant CFU)
were determined retrospectively by serial dilution and plating.

Animal health was monitored during infection by measuring
weight, body condition and faecal appearance. C. rodentium coloni-
zation and plasmid retention were monitored by sampling faeces from
infected animals. Fresh faecal pellets were suspended in sterile PBS
and homogenized in a bead beater (BioSpec Products) with 3.2-mm
stainless-steel beads. C. rodentium concentration (CFU g™') and plasmid
retention were determined by serial dilution and plating for CFUs.

RNA sequencing
For cultured samples, C. rodentiumwas grown overnightin liquid LBin
oxic conditions. A total of 4 x 10’ CFU from the stationary phase culture
were seeded onto LB agar plates and cultured for 3.5 hinthe presence or
absence of oxygen. Cells were immediately diluted in two parts Qiagen
RNAprotect Bacteria Reagent and stored at —80 °C until processing.
For faecal samples, female mice were infected with 5 x 10° CFU of
C.rodentium, and colonization was monitored in the faeces to ensure
engraftment. Seven days afterinoculation, fresh faeces frominfected
mice were submerged in RNAprotect Bacteria reagent and manually
disrupted with asterile rod to release bacteria. Toremove large debris
and eukaryotic cells, samples were passed through a 5-pum filter and
bacteria were frozen at —80 °C until processing.
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RNA was released from bacteria using lysozyme and proteinase
K digestion. RNA was extracted with a Qiagen RNeasy kit and puri-
fied with RNA Clean & Concentrator-5 (Zymo Research). SeqCenter
performed library preparation and sequencing using the following
method, provided by SeqCenter: “Samples were DNAse treated with
Invitrogen DNAse (RNAse free). Library preparation was performed
using [llumina’s Stranded Total RNA Prep Ligation with Ribo-Zero
Plus kit and 10 bp unique dual indices (UDI). Sequencing was done on
aNovaSeq X Plus, producing paired end 150 bp reads. Demultiplexing,
quality control, and adapter trimming was performed with bcl convert.”

RNA sequencing data was processed using CLC Genomics Work-
bench (Qiagen). RNA-Seq Analysis 2.8 parameters: reference - ICC168
reference genome; mismatch cost = 2; insertion cost = 3; deletion
cost = 3; length fraction = 0.8; similarity fraction = 0.8; global align-
ment; strand specific = reverse; max hits per read = 10; count paired
reads as two = no; ignore broken pairs. Differential gene expression
was determined with Differential Expression for RNA-Seq 2.8. Results
areincludedinSupplementary Table1.

Plasmid retention assay

The assay is schematized in Extended Data Fig. 2. The CRISPR-target
plasmid contains the gentamicin resistance gene aaCI and a proto-
spacer adjacent motif (PAM; AAG) followed by a protospacer sequence
matchingthe native CRISPR array (ATCTGTTTATAGCTGGCTATAAAATT-
TATAAA). The control plasmid is identical except that the protospacer
sequenceisreplaced by aprotospacer recognized by the E. coliMG1655
CRISPR-Cas system (GCAACGACGGTGAGATTTCACGCCTGACGCTG),
and not the C. rodentium native CRISPR-Cas system.

For plasmid retention assays in culture, strains carrying the tar-
get or control plasmids were outgrown overnight in an oxic environ-
ment on solid LB plates with gentamicin. The next day, strains were
restreaked onto LB plates without antibiotics and cultured in the pres-
enceor absence of oxygen for 24 h. Single colonies were resuspended
insterile PBS, and serial dilution was used to determine the fraction of
the population that retained the plasmid (gentamicin-resistant divided
by streptomycin-resistant CFU).

For plasmid retention assays duringinfection, an equal mix of male
and female mice were inoculated with -5 x 10° CFU of the indicated
strain. Plasmid retention was measured in the inoculum and faeces
throughout theinfection.

InducTn-seq
Control or CRISPR-target plasmids were conjugated into a C. rodentium
InducTn-seq mutant library". A total of 3 x 10® transconjugants were
expanded in oxic conditions on LB containing gentamicin, to select for
the plasmid, and arabinose, to induce further miniTn5 transposition.
The mutant libraries were stored at —80 °C in PBS with 20% glycerol.
Subsequently, 5 x 10’ CFU of the mutant libraries were seeded onto LB
agar plates and cultured under anoxic conditions for 24 h. The popu-
lation was then expanded in oxic conditions on LB plates containing
gentamicinto select for mutant cells that retained the plasmid during
anoxic culture. Cells were frozen at =80 °C until processing.
Sequencing libraries were prepared with the protocol fromref. 11.
Genomic DNA was extracted using a DNeasy Blood and Tissue Kit
(Qiagen) and sheared to approximately 400 bp using a M220 ultra-
sonicator (Covaris). The fragmented DNA was then end-repaired
using the Quick Blunting Kit (NEB), polyadenylated with Taq poly-
merase and dATP, and lllumina P7 adapters were ligated using T4 DNA
ligase (NEB). The end of the miniTn5 transposon within the integrated
InducTn-seq vector was removed by double restriction enzyme diges-
tion followed by SPRIselect size-selection. Transposon-adjacent
sequences were amplified from 800 ng of DNA by PCR using an Illu-
mina i7 index sequence on the reverse primer. Primer dimers were
removed by size selection, and samples were sequenced on a NextSeq
1000 (Illumina).

InducTn-seq data were analysed with the protocol from ref. 11
using Python. MiniTn5 transposon-insertion frequency was compared
between populations that retained the control or target plasmids.
Significance was measured with the non-parametric Mann-Whitney U
statistical test with Benjamini-Hochberg multiple testing correction.
Results areincluded in Supplementary Table 2.

qPCR
Bacteria were cultured inliquid LB in oxic conditions. Approximately
10’ CFU from the culture were seeded onto LB agar plates and cultured
for3.5 hinthe presence or absence of oxygen. After culture, cells were
diluted immediately in two parts Qiagen RNAprotect Bacteriareagent
and frozen at —80 °C until processing.

RNA was released from bacteria using lysozyme and proteinase
K digestion, and extracted using an RNeasy kit (Qiagen). qPCR was
performed using the Luna Universal One-Step RT-qPCR kit on a Ste-
pOnePlus Real-Time PCR System (Applied Biosystems). At least three
biologicalandthree technical replicates were included per sample, with
primers targeting both rpoA and cas3 transcripts. Primer sequences
areincludedin Supplementary Table 6.

qPCR data were analysed by comparative critical threshold (CT)
analysis. The average cas3 CT of three technical replicates was first
normalized to the CT of rpoA from the same sample. Then, the CT was
normalized using the cas3 CT from oxic culture, producing AACT.

Phylogenetic analysis of cas3 orthologues

In total, 578 cas3 orthologues from 500 Gammaproteobacteria were
selected for analysis by OrthoDB (version 12.0)'°. We added E. coli
strain EDL933 to thislist. Strains are listed in Supplementary Table 3. To
construct a phylogeny, we retrieved the nucleotide sequence of dnaA
from the National Center for Biotechnology Information (NCBI) for
482 ofthe Gammaproteobacteriaand used MAFFT (strategy: FFT-NS-2;
model: DNA200; v7.526)% to align the sequences, FastTree (model:
Jukes-Cantor with CAT rate heterogeneity; v2.1.11)* to construct the
phylogeny and iTOL (Interactive Tree of Life; version 7.1)” to create
avisualization.

For motif enrichment analysis, we retrieved 300 bp upstream of
cas3 from NCBI for 553 of the 579 cas3 orthologues. These sequences
were compared with the prokaryotic transcription factor motif data-
base PRODORIC (release 2021.9) with Simple Enrichment Analysis
(SEA; version5.5.7)"* with the following parameters: differential enrich-
mentanalysis; both strands; Fisher exact test; control sequences from
shuffled sequences, preserving 3-mer frequencies; hold-out 10% of
sequences. This analysis determined that the Fnr motif defined in
E. colistrain MG1655 (ID MX000004) was significantly enriched within
the dataset (P=6.87 x107). The location relative to cas3and the scores
of putative Fnr-binding sites are included in Supplementary Table 4.
The consensus logo of putative Enterobacteriaceae Fnr-binding sites
was created with WebLogo version 2.8.2 (ref. 28).

Software and statistics

Data analysis was performed using CLC genomics workbench (ver-
sion 24.0.1), GraphPad Prism (version 10.4.1), Python (version 3.12)
and Microsoft Excel. The number of samples and statistical tests are
described in the figure legends. Graphics were prepared with Graph-
Pad Prism and Microsoft PowerPoint. Reads were mapped to the
C.rodentiumICC168 genome FN543502.1.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

RNA sequencing and InducTn-seq sequencing reads are deposited in
the Sequencing Read Archive (SRA) under accession no. PRJNA1254768.
Results from RNA-seq analysis areincluded in Supplementary Table 1.
Results from Tn-seq analysis are included in Supplementary Table 2.
To request biological materials or information related to this Brief
Communication, please contact the corresponding authors. Source
dataare provided with this paper.

Code availability
Customscriptsfor Tn-seqanalysis were originally developedinref.11and
areavailable via GitHub at https://github.com/dbasta27/InducTn-seq.
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Extended Data Fig. 1| Extended presentation of RNA-seq data from Fig. 1.
a-b, RNA-sequencing results from C. rodentium cultured with (oxic) or without
oxygen (anoxic) for 3.5 hours on solid LB agar. 3 biological replicates. False
discoveryrate, FDR. b, The frd and sdh loci were previously determined to be

b Anoxic v oxic culture RNA-seq controls

Fnr-
activated

Neutral

Fnr-
repressed

More anoxic >,
expression
frdA - [ )
frdB o -log1o (FDR)
frdC
frdD - . - < 2.00
rpoA-. | ® 775
sdhA -
sdhB{ ® @® = 30.00
sdhC{ @
sdhD{ @
AN
Logs fold-change
(Anoxic/Oxic)

directly activated or repressed, respectively, by Fnr in anoxic conditions in
Escherichia coli strain MG1655". rpoA is used as a neutral control for gPCR in
Fig.1g. Additional datain Supplementary Table 1.

Nature Microbiology


http://www.nature.com/naturemicrobiology

Brief Communication

https://doi.org/10.1038/s41564-025-02172-8

Plasmid retention assay

Negative control

PAM Control protospacer
(AAG) (GCAACGACGGTGAGATTTCACGCCTGACGCTG)

(1)

(plasmid retained)
‘

Culture assay

l CRISPR activity

Streak gentR cells

CRISPR target

PAM C. rodentium protospacer
(AAG) (ATCTGTTTATAGCTGGCTATAAAATTTATAAA)

CRISPR activity
(plasmid lost)

l gentS ;

Enumerate CFU

Culture 24-hours
oxic or anoxic
—_— Pick single colonies
—

Extended Data Fig. 2| Plasmid retention assay. CRISPR-Cas activity was

measured by retention frequency of a CRISPR target plasmid. The CRISPR target

plasmid encodes a gentamycin resistance (gentR) gene and a protospacer
adjacent motif (PAM) followed by a protospacer sequence matching the native
CRISPR array. The control plasmid is identical, except that the protospacer

sequenceis replaced with a protospacer not recognized by the native CRISPR-Cas

(plasmid retained)

system. CRISPR-Cas activity converts cells from gentamycin resistant to
gentamycin sensitive (gentS) by causing cleavage and loss of the CRISPR target
plasmid, but not the control plasmid. To measure CRISPR-Cas activity in culture,
gentamycin resistant cells were streaked onto plates and cultured in oxic or
anoxic conditions for 24-hours. After culture, single colonies were picked and
total versus gentR CFU was determined by serial dilution.
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Extended Data Fig. 3 | Potential Fnr binding sites are present upstream of cas3were identified with motif enrichment analysis' with the Fnr motif defined

cas3in many Gammaproteobacteria genomes. Gammaproteobacteria cas3 inE. coli strain MG1655. Tree scale is the number of substitutions per site. Strains
orthologs were curated from OrthoDB' and the phylogeny was constructed arelisted in Supplementary Table 3 and putative Fnr binding sites are listed in
from 482 dnaA sequences. Putative Fnr binding sites in the 300 bp upstream of Supplementary Table 4.
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Extended DataFig. 4| There is positional conservation of a putative Fnr
binding site upstream of cas3in 13 of 32 Enterobacteriaceae. The position of
putative Fnr binding sites relative to 553 Gammaproteobacteria cas3 orthologs,
grouped by family. The number of genomes with at least one putative Fnr binding
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sitein the 300 bp upstream of cas3 (numerator) and the number of genomes
analyzed within the family (denominator) are next to the family’s name. Strains
arelisted in Supplementary Table 3 and putative Fnr binding sites are listed in
Supplementary Table 4.
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