
Nature Microbiology | Volume 10 | December 2025 | 3059–3068 3059

nature microbiology

https://doi.org/10.1038/s41564-025-02186-2Consensus Statement

STREAMS guidelines: standards for 
technical reporting in environmental and 
host-associated microbiome studies

 

The interdisciplinary nature of microbiome research, coupled with the 
generation of complex multi-omics data, makes knowledge sharing 
challenging. The Strengthening the Organization and Reporting of 
Microbiome Studies (STORMS) guidelines provide a checklist for the 
reporting of study information, experimental design and analytical 
methods within a scientific manuscript on human microbiome research. 
Here, in this Consensus Statement, we present the standards for technical 
reporting in environmental and host-associated microbiome studies 
(STREAMS) guidelines. The guidelines expand on STORMS and include 
67 items to support the reporting and review of environmental (for 
example, terrestrial, aquatic, atmospheric and engineered), synthetic 
and non-human host-associated microbiome studies in a standardized 
and machine-actionable manner. Based on input from 248 researchers 
spanning 28 countries, we provide detailed guidance, including 
comparisons with STORMS, and case studies that demonstrate the usage 
of the STREAMS guidelines. STREAMS, like STORMS, will be a living 
community resource updated by the Consortium with consensus-building 
input of the broader community.

Microbiome research is inherently interdisciplinary, spanning hosts 
(humans, animals or plants) and environments and capturing impacts 
ranging from health and disease to ecosystem function, agriculture 
and food security1–4. While human microbiome research has flourished 
due to heavy investment in research infrastructure and broad public 
recognition, resourcing for microbiome science outside human health 
has lagged5. Environmental microbiome research necessitates unique 
considerations, as it combines cross-disciplinary techniques, field 
sampling campaigns and insights from microbiology, data science, 
bioinformatics and ecology, among other areas. The data and metadata 
associated with microbiome studies continue to be difficult to capture 
and report, especially as the utilization of multi-omics methodolo-
gies has advanced, generating large, complex datasets6. Furthermore, 
ensuring data are deposited and available for reuse according to the 
Findable, Accessible, Interoperable and Reusable (FAIR) principles pre-
sents challenges for many researchers when navigating data repository 

submissions and when working with incomplete metadata7. While 
there have been consistent calls from the community to promote more 
standardization across the entire microbiome research lifecycle, several 
barriers remain8–12. Researchers, publishers, funders and data reposi-
tories must be brought together to establish consensus guidelines 
that address the unique complexities of environmental and synthetic 
microbiome data generation, analysis and sharing.

Community-driven efforts to develop best practices, reporting 
guidelines and standards have advanced how microbiome data are 
shared and reused. When the Genomic Standards Consortium devel-
oped the Minimum Information about any (x) Sequence (MIxS) stand-
ards for metadata management in 2011, it quickly became a foundation 
for standardized microbiome metadata capture13–15. More recently, 
several genome-based community-driven efforts have advanced 
cross-study comparisons, including standards for viral and prokary-
otic genomes16,17. The Strengthening the Organization and Reporting of 
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responses to the feedback form, we obtained over 700 comments 
that were discussed and implemented, or were deemed to be infea-
sible (for example, the feedback was too prescriptive or did not align 
with existing reporting guidelines or standards). All comments from 
this first round were addressed by members of the STREAMS working 
group who continued to meet biweekly. Subsequently, an updated 
second draft of the STREAMS guidelines was then circulated, which 
received 400 additional comments, all of which were responded to 
and implemented into the consensus guidelines whenever possible and 
when agreed upon by the working group. A few examples of comments 
received during the rounds of feedback that were incorporated into the 
final guidelines include: “Software: would be good to specify actual 
parameters used rather than ‘default parameters’ as the defaults can 
change over time”; “Item 3: For agricultural studies, greenhouse stud-
ies sometimes serve as an in-between for field and laboratory studies. 
Greenhouse or semi-controlled spaces could be added as a category.”; 
“Similar to the STORMS checklist, having exemplary checklists for 
recent or past studies would be very helpful.”. There were very few 
instances of conflicting comments, and in those cases, the STREAMS 
working group and expert researchers in the microbiome research 
field were consulted to determine the optimal course of action. Overall, 
248 researchers from 28 countries provided feedback, although we 
acknowledge the lack of representation from researchers in Africa and 
parts of Asia and South America. Together, this group spans a range of 
career stages, works with various sample and data types and represents 
varied facets of microbiome research.

Checklist
The STREAMS guidelines (Supplementary Table 1) consist of 67 items 
organized into six sections aligned with the architecture of a scien-
tific manuscript, reflecting which section they pertain to (Fig. 1). The 
guidelines are also publicly available via Zenodo22, on the STREAMS 
website and as a machine-actionable data management plan (DMP) 
building tool within a free, publicly available web resource hosted by 
the California Digital Library called DMP Tool23 (available under Tem-
plates, as ‘STREAMS Microbiome Guidelines DMP Tool template’). 
Each STREAMS item comprises eight elements: its number, name, the 
recommendation, where the item derived from (for example, if derived 
from another existing standard), additional guidance, example(s) and 
two manuscript-associated columns to be used by authors or reviewers 
for noting if the item is reported in the manuscript and, if so, in which 
section. The ‘Item Source’ column references STORMS, the National 
Center for Biotechnology Information (NCBI), MIxS, the Environ-
ment Ontology (ENVO), the Open Biomedical Ontologies Foundry, 
the Chemical Analysis Working Group of the Metabolomics Standards 
Initiative, STROBE or STREGA, or denotes if the item is considered new 
for STREAMS. While not all studies may capture every reporting detail, 
the intent of the STREAMS guidelines is to be broadly descriptive and 
inclusive of diverse use cases spanning environmental, synthetic and 
non-human host-associated microbiomes. STREAMS is intended to act 
as a reflective framework for assessing manuscripts, and the content, 
item order and organization are not designed to be strict requirements.

Abstract (1.0–1.5)
The Abstract section (Items 1.0–1.5) provides guidance on how to 
organize and report sufficient information in an abstract for environ-
mental, non-human host-associated or synthetic microbiome studies. 
Abstracts are often replicated across platforms (for example, associ-
ated with the data in a data repository), magnifying their importance 
as independent summaries of key study elements. Overall guidance 
for the abstract organization is provided along with notes regarding 
graphical abstracts (Item 1.0). Items 1.1, 1.2, 1.4 and 1.5 encompass the 
study design, environments and samples, experiments or methodol-
ogy (including specific information about omics methods utilized), 
the analyses performed and the overall results of the study and their 

Microbiome Studies (STORMS) checklist leverages the MIxS standards 
as well as the Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) and Strengthening the Reporting of Genetic 
Association Studies (STREGA) guidelines to provide a framework for 
the reporting of human microbiome studies18–20. The microbiome 
research community has already widely adopted the STORMS checklist. 
However, these guidelines apply only to human-associated microbiome 
studies, and there has been no equivalent generated for environmental 
microbiomes.

To address the current gaps in comprehensive guidelines for 
environmental (for example, terrestrial, aquatic, atmospheric or 
engineered), non-human host-associated (for example, animal- or 
plant-associated) and synthetic microbiome research, we pre-
sent the Standards for Technical Reporting in Environmental and 
host-Associated Microbiome Studies (STREAMS) guidelines. These 
guidelines were constructed using the STORMS checklist as a frame-
work and were iterated using extensive community feedback. The 
STREAMS guidelines and associated materials provide authors with 
clear, actionable recommendations for manuscript preparation and 
data sharing, while offering reviewers a structured framework for 
evaluating methodology and data quality. The STORMS checklist and 
its subsequent iterations will continue to support human-associated 
microbiome studies, whereas the STREAMS guidelines provide guid-
ance to microbiomes not directly associated with human subjects. The 
STORMS and STREAMS guidelines will be collaboratively updated to 
maintain synergy. These guidelines were created to lower barriers to 
proper microbiome data management and reporting by providing a 
clear and structured framework. They are designed to foster greater 
standardization and promote FAIR data principles, ultimately maximiz-
ing the utility and impact of microbiome data for the broader scientific 
community.

Methodology
In June 2024, we convened the Microbiome Data Management in Action 
workshop in Atlanta, USA, which brought together 50 invited microbi-
ome researchers, publishers, funders and data repository representa-
tives to discuss the current state of microbiome data management and 
reporting21. More details regarding the workshop agenda, participants, 
panels, presentations and discussions are available in the Microbiome 
Data Management in Action workshop report21. A large focus of the 
workshop was adapting the human-associated microbiome STORMS 
checklist to make it applicable to these systems. A preliminary review of 
the STORMS guidelines revealed that many of its items would need to be 
revised based on differences in terminology, data access requirements, 
metadata standards and conventions within environmental microbi-
ome research compared with human-associated studies. Several limita-
tions with the STORMS checklist, such as the limited information about 
metabolomics and proteomics, varied interpretations of STORMS 
Item 6.0 related to causal inference, and the fact that several items 
may be outdated, were also presented by the STORMS lead author. Six 
breakout groups worked on the checklist, and the suggested changes 
were discussed and concatenated. This led to a first draft version of 
the STREAMS guidelines.

Obtaining community feedback was a priority for the STREAMS 
effort, and therefore, the first draft of the guidelines was circulated 
across the broader microbiome research community through targeted 
emails, social media posts, microbiome-relevant newsletters and the 
STREAMS website https://streamsmicrobiome.org/). A modified Delphi 
methodology was implemented, featuring multiple rounds of com-
munity feedback reviewed by a working group formed by attendees 
of the workshop. We designed and distributed a feedback form that 
included prompts about suggested changes, revisions and items to 
consider as ‘must-keep’ in the STREAMS draft, or respondents could 
comment directly in the Google Sheet with the STREAMS draft. From 
the first round of community feedback via direct comments and 
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importance. As noted throughout the guidelines, several items are 
applicable only to host-associated studies. The first such instance 
appears in Item 1.3, which requests a summary of host information.

Introduction (2.0–2.1)
The Introduction section (Items 2.0–2.1) parallels that of the original 
STORMS checklist. This section requests that authors describe the back-
ground and rationale for their study (Item 2.0) in the context of previous 
work that has been conducted in their specific field. The synthesis of 
previous publications and datasets in their area of research should 
highlight any knowledge gaps. Researcher hypotheses, objectives or 
research questions are also requested to be included in the Introduc-
tion (Item 2.1), which are encouraged to relate to the aforementioned 
knowledge gaps and broader importance of the reported study.

Methods (3.0–8.5)
Methods comprise a majority of the checklist, as outlined below.

Study and sample information (3.0–3.6). The ‘Study and sample 
information’ items (3.0–3.6) request detailed information on the study 
design, any associated host(s), any datasets that were reused for the 
study, and the samples that were analysed. This section is designed to 
capture sufficient contextual information about the study. The overall 
study design should be stated (Item 3.0) and should acknowledge if the 
study includes meta-analyses, combined analyses or involves datasets 
derived from previously published work. The sample type(s) as well 
as any associated sample metadata are requested in Item 3.1, which 
also necessitates the inclusion of specific information on how any 
relevant synthetic communities (SynComs) were generated, as well 
as accurate citation information on datasets that have been reused12. 
The ‘Environmental context and geographic location’ item (Item 3.2) 
requires that the author states where the samples originated. This item 
generated considerable discussion within the STREAMS Consortium, 
as some researchers preferred requiring geographic coordinates, while 

others noted that ethical and privacy considerations may prevent this. 
The consortium decided on strongly encouraging the inclusion of 
coordinates and requiring a justification if they cannot be provided. 
The MIxS standards as well as ENVO are referenced in this item to stand-
ardize how the environmental context and the geographic location are 
reported24. Item 3.3 requests any relevant dates, including when sam-
ples were collected, over what time period, the frequency of sampling 
and other temporal factors (for example, seasonality). Item 3.4 applies 
only to host-associated studies and is intended to capture as much 
detailed information about the host(s) as possible. Comprehensive, 
well-researched and detailed information on the ethics of the study 
design must be reported (Item 3.5). This item includes guidance on 
reporting permits, permissions and sampling ethics. The CARE princi-
ples for Indigenous data governance (Collective benefit, Authority to 
control, Responsibility and Ethics) are referenced here, and researchers 
are expected to adhere to these guidelines and ensure Indigenous data 
sovereignty whenever applicable25. Item 3.6 refers to any treatments or 
conditions that the sampling environment(s) or host(s) were subjected 
to, and the relevant MIxS references are included in the additional 
guidance for this item26–28.

Sample collection (3.7–3.9). Authors should report detailed informa-
tion regarding sample collection methods and metadata, including 
if previously published protocols were followed (Item 3.7). Specifics 
regarding the tools that were used, the host body site or environmental 
niche sampled, and potential sample destruction can be critical to a 
comprehensive understanding of the samples and the reproducibility 
of the methods and should also be provided. Information on sample 
eligibility and selection criteria should also be included (Item 3.8), 
which leads to reporting on the final analytic sample size (Item 3.9).

Experimental information (4.0–4.6). Information on sample storage, 
preservation, transportation and shipping should be included (Items 
4.0 and 4.1). In terms of experimental steps, nucleic acid, protein and/
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or metabolite extraction methods should be reported (Item 4.2), 
along with steps relating to experimental manipulations, sample pro-
cessing and culturing (Item 4.3). Information on nucleic acid library 
preparation protocols was separated into another item to better 
align with submission requirements to data repositories such as the 
NCBI Sequence Read Archive29 (Item 4.4). Methods for enriching or 
depleting samples should be discussed in depth (Item 4.5), including 
if amplification was used and, if so, the targeted region and primer 
sequences (Item 4.6). These items are of particular importance to 
microbiome samples, as each depletion or enrichment method could 
exclude signatures from some members of the microbial community 
and can have particular biases.

Controls and quality information (5.0–6.2). Feedback from the com-
munity suggested that the guidelines be extremely explicit for items 
referring to controls and replicates. Therefore, the ‘Control and quality 
information’ categories were split into several items (Items 5.0–6.2). 
Any positive (Item 5.0) and negative (Item 5.1) controls should include 
detailed descriptions, specifying what they were and at which stage 
they were implemented. Justification should be provided if no posi-
tive or negative controls were included. Information on quantity and 
quality assessments of samples, nucleic acids, proteins and metabolites 
should be included in Item 6.0, referencing any pre-existing protocols. 
Any laboratory-based strategies utilized to minimize and identify con-
tamination can be specifically stated (Item 6.1) or discussed throughout 
the Methods at each step. Biological and technical replicates should 
be discussed (Item 6.2), and the additional guidance recommends that 
authors explain why certain replicates were included and how they were 
incorporated into bioinformatics and statistical analyses.

Omics data generation (6.3–6.6). Items 6.3–6.6 encompass omics 
data generation, specifically for sequencing (Item 6.3) and mass 
spectrometry (Item 6.4) applications30. Specificity in the information 
provided in this section is paramount as these metadata can directly 
affect results and interpretations. Vendor and kit information as well 
as established protocols should be referenced whenever possible. For 
the sequencing information, synergy with specific NCBI Sequence 
Read Archive submission fields and requirements is noted to assist 
researchers. Item 6.5 requests information on other contextual or 
linked datasets and how these relate to the study and the omics data. 
While other omics or data types may not be fully encompassed by the 
guidelines, additional information would be required for analyses 
involving these datasets. Anticipated or potential batch effects (Item 
6.6) should also be reported for the sampling and processing steps 
outlined in earlier Items as well as for the omics and data generation 
Items in this section (Items 6.3–6.5).

Data analysis (7.0–7.9). Feedback from the community indicated that 
a key challenge for microbiome data reuse has been a lack of trans-
parency regarding specifics about bioinformatics tools, workflows, 
parameters and code in associated publications. Therefore, we split 
the bioinformatics, data analysis and statistical processing steps into 
ten detailed items. Information regarding all bioinformatics analyses 
and steps included in the study should be reported as noted in Item 
7.031. Standardization between workflow runs is encouraged, and all 
relevant processing metadata should be included so that any researcher 
can fully replicate all bioinformatics steps. Quality control information 
should be reported, including how low-quality data were filtered out 
and the performance of any negative or positive controls that were 
included (Item 7.1). Normalization processes can often differ between 
studies, and this information should be specifically reported (Item 
7.2). Many STREAMS Consortium members appreciated the inclusion 
of database information in the STORMS guidelines but requested 
that this be expanded to its own item with more guidance. Item 7.3 
captures database information for taxonomic classifications as well 

as metabolite and protein identification. Database names, versions, 
dates of creation and access, digital object identifiers, citations and/
or relevant links are requested. Information on the construction of 
custom databases should also be included.

The statistical methods used in the study should be exhaustively 
reported (Item 7.4) and should include details about how calculations 
were performed, any transformations that were performed and why 
particular statistical tests were chosen32. Item 7.5 is critical for research 
transparency relating to missing information. The potential for biases 
and confounding variables as well as methods utilized to minimize 
these effects are suggested to be included here in the Methods (Item 
7.6), and can be expanded upon in the Discussion (Item 11.2) in the con-
text of overall study limitations33. If any subgroups were formed during 
analysis, Item 7.7 should detail how and why these subgroups were 
created. Information on any sensitivity analyses that were performed, 
in particular those that may impact results, should be reported in Item 
7.8. Significance thresholds should be included as described in Item 7.9, 
and false discovery assessments are also recommended for reporting.

Access and reproducibility (8.0–8.5). Access to the metadata, host 
data, raw data, processed data, software and code are all critical for 
adhering to the FAIR principles and ensuring reproducibility and 
reusability of microbiome studies. The metadata standards that were 
followed (for example, MIxS) and how the metadata can be accessed 
should be reported as indicated in Item 8.0, and justification should be 
provided if not all metadata are made publicly available34. If applicable, 
host information, data and metadata should also be directly linked in 
the publication, and details should be provided on how to link host data 
to the microbiome data (Item 8.1). All raw data (Item 8.2) and processed 
data (when applicable; Item 8.3) should also be made publicly available 
in robust long-term databases. Item 8.4 outlines recommended details 
to include when reporting on the software, tools, workflows and code 
used to perform assessments and analyses, which should all be made 
publicly available whenever possible35. Item 8.5 closely matches the 
STORMS checklist to request information regarding the reproducibility 
of the methodologies and analyses used in the study36.

Results (9.0–10.3)
While microbiome research results can be presented in a myriad of 
ways, Items 9.0–10.3 provide recommendations for proper manuscript 
reporting of common types of results. Results and information relating 
to the environment(s), host(s) and sample(s), including the variables of 
interest (as well as potential confounding variables to the results), are 
requested in Item 9.0. Results, specifically from sequencing analyses, 
are encapsulated in Item 10.0, and results from positive and negative 
controls should be referenced. Results from other omics analyses (for 
example, metabolomics and proteomics) should also be reported in 
the context of any standards that were used to identify metabolites and 
proteins (Item 10.1). Item 10.2 relates to the methods reported in Item 
7.4 and includes guidelines for reporting on the results of statistical 
analyses performed on the data. Item 10.3 provides overall guidance 
for figures, tables and captions.

Discussion (11.0–13.0)
The Discussion section is meant to be minimally prescriptive, and 
we recognize that each journal, researcher and group have unique 
approaches to Discussion sections. The STREAMS guidelines request 
a summary of the key results and how they relate to the overall study 
objective(s) (Item 11.0). This can also include if any hypotheses have 
been rejected or supported. Item 11.1 describes how interpretations 
of results can be reported, and how the results fit into the broader 
context of the field and other existing datasets. It is noted that caution 
should be used when including certain terms and language, and that 
formal definitions may need to be included37. The overall limitations 
of the study should be included, with an emphasis on areas of potential 
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bias (Item 11.2). The generalizability of the study results should also 
be reported (Item 11.3); for example, authors should indicate how the 
results are expected to change—or remain the same—across different 
hosts or environments. Guidelines are also provided for the reporting 
of ongoing or future work (Item 12.0) and for overarching conclusions 
(Item 13.0).

Other information (14.0–18.0)
The ‘Other information’ section encompasses items that are typically 
required during journal submission. Journals may have different 
thresholds for awarding acknowledgements, but typically they are 
given to researchers who did not meet the criteria for authorship, or 
to other groups, facilities or institutions that provided assistance to 
the study (Item 14.0). As permitted by the publisher and authors’ affili-
ates, Indigenous land acknowledgements may also be reported here, 
along with other information described in Item 3.5. Item 14.1 provides 
guidance for how funding statements should be reported for each 
author. Any known or potentially perceived conflicts of interest must 
be reported to the journal following publisher guidance (Item 15.0). 
Proper management and reporting of supplementary information 
(Item 16.0) is often necessary to ensure FAIRness of the research, and 
this can often be overlooked by authors, reviewers and readers. Links 
to digital object identifiers and external supplementary information 
should be provided, and metadata, supplementary figures and data 
processing information should all be properly reported in this section. 
Similarly, information on how all the samples and data associated with 
the study can be accessed should be reported, along with information 
on how disparate datasets and information can be linked (Item 17.0). 
Finally, many journals now require the reporting of any machine learn-
ing or artificial intelligence (AI) methods that were utilized throughout 
the study (Item 18.0). We encourage authors to include this information 
in the Methods, as well as in the supplementary information section. 
Authors should describe the exact ways in which AI was used (for exam-
ple, language translations, writing assistance and figure generation) 
and refer to journal-specific guidance for acceptable usage. We expect 
the guidance for this item to continuously evolve as AI usage becomes 
more prevalent, and as guidance and restrictions change.

Implementation
Throughout the process of creating STREAMS, it became clear that 
providing these guidelines during the manuscript writing process may 
be too late in the research process to ensure that the information and 
metadata noted in the STREAMS items are captured. Therefore, we 
constructed a STREAMS template through an existing DMP-building 
resource, the DMP Tool. While this template is not meant to be 

used directly as a DMP, it can assist in the creation of information  
recommended in the STREAMS guidelines. Any researcher can access 
the ‘STREAMS Microbiome Guidelines’ DMP Tool template to help craft 
a machine-actionable template, automating the process of pulling 
institutional information and linking persistent identifiers, for work 
they plan to perform or have already conducted.

To ensure these guidelines are broadly comprehensible and 
user-friendly, we created an overall STREAMS User Guide document 
(Supplementary Note 1), as well as a tutorial video that is available on 
the STREAMS website (https://streamsmicrobiome.org). A simplified 
STREAMS document is also available on the website as a quick checklist 
for those already familiar with the comprehensive guidelines, or for 
those who prefer a less detailed version while still referencing the main 
STREAMS guidelines for context. A list of acronyms used in STREAMS, 
along with relevant links, is also available (Supplementary Note 2).

To demonstrate how the STREAMS guidelines can be applied, we 
selected eight publications spanning various environmental, synthetic 
and non-human host-associated microbiome studies (Table 1 and 
Supplementary Tables 2–9). Examples for each STREAMS item, where 
applicable, as well as their respective locations in the manuscripts were 
manually recorded on a STREAMS template. Each completed exemplar 
was internally reviewed for accuracy and made available here and on 
the STREAMS website.

Discussion
Reporting guidelines and checklists have demonstrated their efficacy 
across various disciplines, and the STORMS checklist continues to be 
adopted across human microbiome research and by funding agencies 
and publishers18. Using STORMS as the template for STREAMS leverages 
the successes seen with STORMS, while aiming to provide an effec-
tive checklist for necessary study, experimental design and analytical 
methods reporting for environmental, non-human host-associated 
and synthetic microbiomes. We also recognize the impact and utility 
of previously generated standards such as STROBE, STREGA, ENVO 
and MIxS, which were implemented throughout the STREAMS guide-
lines whenever possible14,19,20,24. A more detailed explanation of the 
Item Source column in STREAMS—including its connections to other 
standards and initiatives, as well as a comparison between STORMS 
and STREAMS—is also available (Supplementary Note 3).

While the items listed in the guidelines do not capture information 
relevant to every study, they are designed to be generalizable without 
being exhaustive. There are several noted limitations of these guide-
lines. There is the possibility of ‘checklist fatigue’ due to the length and 
amount of content captured in the STREAMS guidelines. The simplified 
version of STREAMS (https://streamsmicrobiome.org) was designed 
to help with this; however, we recognize that these guidelines may 
still appear overwhelming. The order of the items may also be per-
ceived as a strict recommendation for manuscript ordering and flow, 
which could potentially hinder creativity and prevent non-traditional 
manuscript formatting. In addition, STREAMS may be interpreted 
by some as a set of strict requirements to assess compliance, rather 
than a reflective framework as it is intended. It can also be difficult to 
retroactively obtain the information or perform steps recommended 
by STREAMS. If researchers are not aware of these guidelines until the 
manuscript submission step, critical reporting information could be 
missed. We also recognize that the specific caveats associated with 
various research areas, environments, experiments or contexts may 
not be captured in sufficient detail by these guidelines.

Throughout the development of STREAMS, we prioritized commu-
nity feedback to generate consensus. The inherent interdisciplinarity 
of microbiome research necessitates feedback from across the field, 
which in turn also supports adoption. We broadly circulated the draft 
guidelines with the intent to reach researchers around the world; how-
ever, we recognize that many research groups and countries are not 
represented in the Consortium—specifically researchers from Africa 

Table 1 | STREAMS exemplars serve as practical examples 
of how to apply the guidelines for a broad range of 
environmental, synthetic and host-associated microbiome 
studies

Environment/host Microbiome study STREAMS exemplar

Agriculture/broiler chickens Fonseca et al.38 Supplementary Table 2

Deep-sea corals Kellogg and 
Pratte39

Supplementary Table 3

Freshwater lake Berg et al.40 Supplementary Table 4

Deadwood Tláskal et al.41 Supplementary Table 5

Synthetic community Novak et al.42 Supplementary Table 6

Wastewater Becsei et al.43 Supplementary Table 7

Subsurface groundwater and 
extreme conditions

Chen et al.44 Supplementary Table 8

Soil Fernandes et al.45 Supplementary Table 9
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and parts of Asia and South America—which currently limits the gen-
eralizability. We also emphasize that these guidelines are not meant to 
be prohibitive to those in less well-resourced areas. We will continue to 
involve the global microbiome research community in future iterations 
of the STREAMS guidelines and will continue to expand the STREAMS 
Consortium. Furthermore, the lead author of the STORMS checklist 
is a co-author here and a core member of the STREAMS Consortium, 
and we will continue to work synergistically with the STORMS team 
on iterations to both sets of guidelines. An ongoing feedback form 
(https://forms.gle/WgEpBAEAnx3m9o5UA) is publicly available on the 
STREAMS website for any researcher to provide their input. Updated 
versions are planned, with new versions being posted publicly on the 
STREAMS website and via Zenodo22.

We believe the STREAMS guidelines will be valuable for researchers 
writing manuscripts and can help to streamline the peer review process 
for both the authors and reviewers. The DMP Tool template guidance 
will also assist with proper writing, reviewing and reporting on aspects 
of DMPs for funding agencies and is a machine-actionable implemen-
tation of these guidelines. Future efforts include the development of 
a STREAMS large language model that could be used by researchers 
to quickly assess microbiome manuscripts. Together, the STREAMS 
guidelines and accompanying resources will advance the ways in which 
microbiome research is reported and reviewed, increasing the short- 
and long-term value of these studies.

Data availability
The guidelines are publicly available via Zenodo at https://doi.
org/10.5281/zenodo.15014818 (ref. 22), on the STREAMS website (https://
streamsmicrobiome.org/), and through the DMP Tool site (https://
dmptool.org) as the ‘STREAMS Microbiome Guidelines’ template.
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