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The outbreak of the 2009 influenza A virus subtype H1N1 pan-
demic caused an estimated global mortality of 200,000 within 
the first year1, and coronavirus disease 2019 (COVID-19) has 

rapidly claimed >900,000 deaths within about nine months at the 
time of writing this Review. Infectious diseases are unpredictable 
and can affect people of all ages; however, the fatality demographic 
may differ, as the 1918 Spanish flu claimed more lives of young 
adults. In contrast, COVID-19 has adversely impacted the elderly 
and immunocompromised individuals more than others2; however, 
infections among young adults are sharply rising, with 2.7% death 
among hospitalized patients in the United States between ages 18 and 
34 (ref. 3). Unless there is a drug that is at least 95% effective to stop 
the outbreaks, normalcy in life relies on safe and effective vaccines. 
However, there are substantial challenges in developing effective 
vaccines, as described in Box 1, including failure to elicit optimally 
mutated antibodies4,5 and biases in the immune system through 
immunological imprinting to prior infections6. Antibody responses 
to severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) 
or Middle East respiratory syndrome coronavirus (MERS-CoV) 
waned after two to three years in individuals that survived lethal 
infections7, and post-mortem analysis of lymph node and spleen tis-
sues in critically ill COVID-19 patients suggested a lack of lymphoid 
structures that lead to durable antibody responses8. These findings 
raise new challenges to the development of infectious disease vac-
cines that aim to induce a persistent immune response.

The live attenuated vaccines are complex and require a sub-
stantially long time for development, often involving tremendous 
revamping if the pathogen mutates. The seasonal influenza vac-
cine, for example, delivers inconsistent performance with as good 
as 60% effectiveness, and as low as 10% or 20% in mismatched 
years9. Therefore, the burden of disease shifts to the development 
of vaccines that promise broader protection than seasonal shots. To 
overcome the limitations of live attenuated vaccines, sophisticated 
vaccine technologies are being developed, including structurally 
engineered immunogens10,11, germline-targeting immunogens12–14, 
novel synthetic adjuvants15,16 and material-based vaccines of multi-
ple length scales14,16–18. Engineered vaccines with natural or synthetic 
materials can induce broadly neutralizing antibodies and strong 

memory responses against infections. Among these, nanovaccines, 
which are the focus of this Review, provide distinct advantages of 
structural and size proximity to pathogens, tunable physiochemi-
cal and biophysical properties, protection of the vaccine antigen 
from degradation or rapid clearance, improved transport through 
lymphatics and into the immune follicles of lymph nodes, as 
well as co-delivery of immunomodulatory molecules to boost  
immune recognition.

Vaccine transport and spatial localization in lymph nodes
Defining where and in what form specialized immune cells, B and 
T lymphocytes, encounter vaccine antigens in their soluble or par-
ticulate form is fundamental to understanding how long-term, 
antigen-specific immune responses occur to nanovaccines. During 
the immune response to an infection, antigen-primed B cells clon-
ally expand within B-cell follicles of lymph nodes and undergo sec-
ondary diversification of their immunoglobulin genes, followed by 
the selection of rare winner cells, called plasma cells and memory B 
cells19. Naive B cells in lymph nodes can encounter antigens in B-cell 
follicles either through direct binding of their immature B-cell 
receptors (BCR) or on the surfaces of resident antigen-presenting 
cells, including follicular dendritic cells (FDCs).

A key question is how do nanovaccines carrying complex anti-
gens traffic inside the B-cell follicles to reach FDCs and whether 
this localization is necessary. After immunization, the nanovac-
cines are picked up in the flow of interstitial fluid and localize to 
various parts of a lymph node. Nanovaccines of the order of small 
antigens (<200 nm) enter the lymph nodes, and before the lymph 
fluid exits through the efferent lymphatics near the medullary 
sinus, the particulate antigens localize on the subcapsular sinus 
macrophages overlying B-cell follicles (Fig. 1a). However, targeting 
FDCs and inner structures within a B-cell follicle is not a common  
characteristic of nanovaccines, as particles of different sizes and 
material compositions tend to localize outside of the B-cell follicles. 
It is only recently that glycoengineered nanovaccines were shown to 
deposit within the B-cell follicles14. In contrast, small nanovaccines 
with a hydrodynamic radius of about 5 nm bypass subcapsular sinus 
macrophages and gain direct access to the B-cell follicles through 
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a network of collagen-rich fibre conduits (Fig. 1a). The conduits 
are prevalent between B-cell follicles and in the T-cell zones and 
are wrapped by fibroblastic reticular cells20,21. Although the conduit 
openings are about 1 μm, collagen fibres have a spacing smaller 
than 10 nm, and therefore only allow passage of nanovaccines with 
a dynamic radius of less than about 5 nm (~70 kDa). In the case of 
larger nanoparticles (200–500 nm) that drain into the subcapsular 
sinus, the antigen may get proteolysed22 and transported through 
macrophages or through the conduits. In contrast, nanovaccines 
that are greater than 500 nm get internalized by the dendritic cells 
through Fc fragment of IgG receptor IIb (FcγRIIb) receptor, and 
the antigen is recycled to the dendritic cell surface to present to the 
B cells. Therefore, the nanoscale size range of the antigen vehicle 
is a critical design criterion and can determine the spatial loca-
tion of antigen. The size range is not generalizable and depends on 
the dimensions and chemical properties of the nanovaccines23,24, 
opsonization of nanovaccines by complement and complement 
receptor14, and other factors25. In addition to macrophages, lymph 
node-resident stromal cells, such as lymphatic endothelial cells, 
can bind and endocytose antigens, including viruses, via mannose 
receptor and scavenger receptors26. However, the role of diverse 
lymph node stromal cells27 in nanovaccine capture, transport and 
presentation is yet to be thoroughly studied.

Germinal centres and B-cell stimulation by nanovaccines
The ultimate goal of an antiviral nanovaccine is to elicit a durable, 
antigen-specific, high-affinity antibody response, which depends 
on the response of the germinal centre B cells in the B-cell follicles 
of lymph nodes. After encountering vaccine antigens, primed B cells 
relocate to the border of B-cell follicles to interact with the follicu-
lar helper T (TFH) cells (Fig. 1a). Depending on the nature of the 
resulting interactions between B cells and TFH cells, which include 
CD40L binding to CD40 on B cells, naive B cells could differentiate 
into specialized germinal centre B cells or short-lived plasma cells  
(Fig. 1b). The germinal centre is a subanatomical compartment 
within B-cell follicles that is dynamically formed whenever an 
antigen is present and B cells start dividing. Through an epigeneti-
cally and transcriptionally controlled process28, the germinal centre 
grows with proliferating B cells and polarizes into the dark and light 
zone within seven to ten days from immunization (Fig. 1b). In the 
dark zone, the rapidly proliferating B cells undergo somatic hyper-
mutation and diversify the antibody repertoire to select for better, 
fitter antigen-reactive B-cell clones (Fig. 1b). After migration to the 
light zone, the B cells ‘test’ their BCRs against the antigens/immune 
complexes presented by the FDCs. At this point, most of the primed 

B cells undergo apoptosis; however, some clones receive enough 
activation—by a combination of the FDCs and TFH cells—to migrate 
to the dark zone where they proliferate and mutate further. B cells 
experience several rounds of BCR testing, which determines their 
fate: proliferation or apoptosis. Surviving B cells undergo cycles of 
somatic hypermutations of the antigen-binding variable regions 
of their immunoglobulin genes29, which produce class-switched 
high-affinity immunoglobulin-α (IgA)- and immunoglobulin-γ 
(IgG)-type antibodies. Eventually, activated B cells exit germinal 
centres to become long-lived plasma cells and memory B cells  
(Fig. 1a). The long-lived antibody-secreting plasma B cells relocate 
to bone marrow and protect against re-infection for months and 
years, sometimes for the entire life. The memory B cells, however, 
do not secrete antibodies and instead become plasmablast in case  
of a re-infection.

The germinal centre is reminiscent of Darwinian selection19.  
The use of engineered confetti mice has shed light on clonal compe-
tition among diverse B cells during germinal centre responses30 that 
can have direct implications for the development of nanovaccines 
and adjuvants where antibodies with non-immunodominant speci-
ficities need to be elicited (for example, human immunodeficiency 
virus (HIV)-1 and influenza) (Fig. 1c). Tas et al. showed that multi-
ple B-cell clones seed individual germinal centres and lose diversity 
at disparate rates, suggesting the possibility that the germinal centre 
competition may restrict the emergence of non-competitive clones 
and promote somatic diversification that must be elicited for the 
generation of broadly neutralizing antibodies30. Understanding how 
nanovaccines elicit clonal bursts have implications for the design 
of better-engineered vaccines against highly variable viruses, where 
the success of immunization depends on whether broadly protec-
tive antibodies targeting conserved, non-immunodominant epit-
opes are elicited.

Overcoming transport barriers to B-cell follicles
Targeting vaccines to specific immune or stromal cells in the 
lymph nodes or, more specifically, the B-cell follicles provides 
the possibility to programme the humoral immune response. 
However, the structure of a lymph node, zonal localization of lymph 
node-resident cells and their intra-lymph node migration makes it 
challenging to access the target cell population31. When compared 
with vaccine antigens, polymeric materials can be more easily tuned 
into specific sizes or shapes, or modified by functional groups that 
target unique receptors on immune cells without compromising the 
functionality of immunogenic epitopes. The human immune sys-
tem has a wide range of pattern recognition receptors—C-type lec-
tin receptors, such as dendritic cell-specific intercellular adhesion 
molecule-3-grabbing non-integrin (DC-SIGN), mannose receptors 
and scavenger receptors, which recognize polysaccharide motifs on 
microbes. As such, glycoengineering of nanoparticles has emerged 
as a powerful vaccine design tool. Wilson et al.16 recently reported a 
synthetic polymeric glyco-adjuvant p(Man–TLR7) that targets den-
dritic cells via mannose-binding receptors and activates them via 
Toll-like receptor 7 (TLR7) stimulation. When conjugated to anti-
gens, p(Man–TLR7) elicited robust humoral and cellular immunity 
against malaria16. Synthetic glycosylation is fully characterizable 
and stable, and does not induce an unnecessary immune response 
to an antibody-based targeting moiety. The approach also contrasts 
with covalently linked glycosylation approaches that can hinder the 
intracellular processing of antigens for major histocompatibility 
complex presentation.

However, most nanovaccines do not easily enter B-cell fol-
licles in the lymph nodes. To overcome this challenge, Tokatlian 
et al. glycoengineered multivalent protein nanoparticles with HIV 
envelope antigens and compared them against soluble mono-
mers14. These germline-targeting immunogens, gp120 (eOD-GT8) 
and gp140 envelope trimer (MD39), offer distinct advantages, 

Box 1 | Biological and logistical challenges in nanovaccines 
against infectious diseases

•	 Generation of suboptimal antibodies that fail to neutralize 
more than a small fraction of the diverse strains of viruses11.

•	 Failure to elicit extensive somatic hypermutation in 
antibody-secreting B cells.

•	 An inefficient T-cell response.
•	 Antibody-dependent enhancement of infection.
•	 Waning antibody responses over time7,54.
•	 Mutating pathogens.
•	 The inability of antigens to localize within specific lymph 

node compartments14.
•	 The inability to longitudinally monitor lymph node response 

against infections in humans69.
•	 Regulatory influence of microbiome39,40.
•	 Dependency on immunological imprinting6.
•	 Lack of biomanufacturing infrastructure and safety measures.
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including improved thermal stability12,13,32,33. The study eluci-
dated how the immune system generates a response to multimeric 
nanoparticles, a phenomenon that is poorly understood, while  
simultaneously demonstrating that nanoparticle glycosylation is 
key to enhanced humoral immunity. Glycosylation spurs binding 
to mannose-binding lectin complement fixation and antigen traf-
ficking to FDCs (Fig. 2a). The eOD-60-mers are predominantly 
decorated with mannose glycans, which, even in low amounts, 

are sufficient to transport nanovaccines to B-cell follicles and 
FDCs, via a mannose binding lectin-mediated process. Simple fer-
ritin nanoparticles14, even without antigen, when decorated with 
a synthetic trimannose moiety at as low as about 96 mannose per 
nanoparticle, can markedly improve delivery to B-cell follicles, 
induction of germinal centre response, B cell–TFH cell interactions, 
as well as the generation of neutralizing antibodies when compared 
with those lacking glycosylation (Fig. 2a). With respect to size, it 
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Fig. 1 | How nanovaccines induce high-affinity antibody response. a, Nanovaccines are carried through the lymphatics into the subcapsular sinuses 
located between the collagenous capsule and the immune cell-rich cortex region of the lymph node. The nanovaccines can localize on subcapsular 
macrophages overlying B-cell follicles. Nanovaccines are transported to FDCs in B-cell follicles by the relay of complexes from subcapsular sinus 
macrophages to migrating B cells, which in turn transfer antigen to FDCs, in a complement- and complement receptor-dependent manner. After 
encountering vaccine antigens, primed B cells decrease their migration velocity and relocate to the border of B-cell follicles (a C–X–C chemokine receptor 
type 5 (CXCR5) and CC-chemokine receptor 7 (CCR7)-dependent migration), where they encounter a specific subclass of CD4+ T cells, the TFH cells, 
eventually leading to germinal centre reactions. Nanovaccine size may regulate transport mechanisms in the lymph nodes, with ~5-nm nanoparticles 
entering the B-cell follicle through collagen conduits and >500 nm particles transported by dendritic cells. b, Naïve B cells differentiate into germinal 
centre B cells (1) or short-lived plasma cells (2) as two possible outcomes of antigen and T-cell encounter. If successfully induced by nanovaccines, the 
germinal centre could lead to a high-affinity antibody response through a complex iterative process of somatic hypermutation, affinity maturation and 
selection. c, Multiple distinct B-cell clones seed each germinal centre in a vaccinated individual, and these specialized cells lose clonal diversity at widely 
disparate rates. Multiple clones can evolve in parallel within the same germinal centre, making it a highly heterogeneous structure, and a fraction of 
germinal centres become heavily dominated by the substantial expansion of the descendants of a single somatic hypermutation variant arising at or after 
the onset of germinal centre selection over cells of the same and of different clones. NP, nanoparticles; SCS MΦ, subcapsular sinus macrophage; CSR, 
class switch recombination.
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appears that approximately 40 nm nanoparticles are optimal for 
vaccine design, as they deposit within the B-cell follicles and gener-
ate a strong immune response. However, a more rigorous analysis is 
needed to understand whether size alone can regulate entry into the 
follicles34 or whether glycosylation of larger particles (100–500 nm) 
and polymeric particles can also facilitate transport to B-cell fol-
licles. Interestingly, persistent long-term germinal centres have been 
reported in mouse models of influenza and yellow fever immunized 
with 300 nm poly(lactic-co-glycolic acid) (PLGA) nanovaccines 
without glycoengineering35. Immunization with PLGA nanovaccine 
that mimicked H1N1 influenza A in their ability to stimulate the 
first-responder immune cells in the body, induced persistent ger-
minal centre B-cell response in draining lymph nodes and strong  
antibody responses in a rhesus macaque model of the 2009 pan-
demic H1N1 influenza A along with long-lived memory responses35.

In contrast to the size, the shape of nanoparticles does not appear 
to influence particle localization to B-cell follicles. Similar-sized 

spherical-shaped eOD-60-mer and flower-shaped MD39-8-mer 
nanoparticulate gp140 vaccines, engineered by fusing the antigen to 
archaeal ferritin in a multimeric form, elicit markedly higher anti-
body titres and germinal centre response than soluble vaccines and 
localize to a similar extent in B-cell follicles. However, nanodisks are 
preferentially uptaken over nanorods by other immune cells36, and 
therefore more rigorous shape analysis is needed to distinguish pos-
sible shape effects on particle localization to B-cell follicles. It would 
be intriguing to see whether, in addition to size, shape and glyco-
sylation, optimal spacing and high density of epitopes, mimicking 
the distribution of spike proteins on viruses (spacing 5–10 nm, den-
sity 15–20 immunogens), can facilitate nanovaccine access to B-cell 
follicles and enhance the germinal centre response. Nanomaterial 
chemistry offers a unique opportunity for antigen multimerization 
and precise dosing on a single particle, which can enable activation 
of low-to-high affinity B cells and investigation of how immuno-
gens interact with the BCR to induce strong immunogenic signals 
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Fig. 2 | Immunoengineering approaches to overcome transport barriers to access B-cell follicles and restrictions imposed by the gut microbiome. 
a, Glycoengineered nanovaccines, when immunized, enhance antigen trafficking to FDCs in B-cell follicles. The glycoengineered (Glycosylated) 
nanovaccines elicit a higher number of antigen-specific B cells, and increased germinal centre B cell–TFH cell interactions and neutralizing antibodies 
than non-glycoengineered (aGlycosylated) nanovaccines. b, The gut microbiome, either through TLRs or other means, such as metabolites, secondary 
bile acids and inflammasome regulation, enhances antigen-specific germinal centre and antibody response to influenza vaccines in healthy individuals. 
Disruption of the gut microbiome through antibiotics or lack of sensing of TLR5, leads to poor vaccine outcomes. Rationally designed nanovaccines using 
immunomodulatory nanomaterials or co-delivery of TLR agonists may enhance the immune response under altered gut microbiome conditions, leading to 
a universal response. Immunization image in b reproduced with permission from ref. 64, Springer Nature Ltd.
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in B cells. For most conventional antigens, binding to the BCR is 
necessary but not sufficient to drive the full activation of B cells, 
including proliferation and differentiation into antibody-producing 
plasma cells. A temporally distinct second signal is required that 
could be provided by TFH cells or via pattern-recognition receptors 
expressed by B cells, such as TLR937. Nanovaccines could simul-
taneously induce this twofold signalling through BCR engage-
ment and co-delivery of TLR agonists. Nevertheless, optimizing 
vaccines would require help from TFH cell, which could be par-
tially triggered by exposing the CD4 T cells to good epitopes and  
stimulatory signals.

The microbiome effect on nanovaccines
The considerable variation in human microbiota and metabolism 
imposes a substantial challenge to the development and transla-
tion of vaccines38. How nanovaccines perform in the altered gut 
microbiome or modulate the gut microbiome is poorly understood. 
Recent preclinical and clinical studies have suggested that deple-
tion of gut bacteria by broad-spectrum antibiotics can weaken the 
immune system capability to respond to vaccines, including some 
nanovaccines38–41. Pulendran and colleagues first reported that 
engineered mice that fail to recognize flagella on gut bacteria result 
in a poor germinal centre and antibody response against human 
influenza and polio vaccinations40. These studies elucidated that 
a TLR5-mediated sensing of flagellin promoted plasma cell dif-
ferentiation directly and by stimulating lymph node macrophages 
to produce plasma cell growth factors. TLR5 has a vital role in the 
inflammation response to flagellated pathogens that breach the epi-
thelial barrier. Notably, the decimation of the gut microbiome in 
mice using antibiotics also led to inadequate vaccine outcomes40.  
A follow-up clinical trial investigated the role of perturbing the gut 
microbiome using broad-spectrum antibiotics on the efficiency of 
the H1N1 influenza vaccine39. Importantly, these studies showed 
that lack of prior vaccination or exposure to flu strains is critical 
to the impairment of H1N1-specific neutralization and IgG1 and 
IgA binding responses when antibiotics alter the gut microbiome. 
These studies provide unprecedented insights into the gut microbi-
ome role in the activity of conventional vaccines. They suggest that 
antibiotic treatment can enhance inflammatory signatures, increase 
dendritic cell activation and induce divergent metabolic trajecto-
ries, such as reduced levels of serum secondary bile acids (Fig. 2b). 
In particular, transcriptional signatures have revealed that alteration 
to the gut microbiome through antibiotic treatment can enhance 
innate immune responses and gene expression programmes associ-
ated with the transcription factors activating protein 1 (AP-1, com-
prising FOS and JUN) and nuclear receptor 4A1 (NR4A1), which 
are central to inflammatory responses39. Antibiotic administration 
can alter the blood metabolome of patients receiving the inactivated 
seasonal influenza vaccine, including changes in bile acids, such as 
lithocholic acid, and are possibly associated with increased inflam-
mation and regulation of vaccine responses.

We showed that alteration in gut microbiome sensing through 
TLR5 and the resulting metabolic syndrome in TLR5−/− mice 
diminishes the germinal centre immune response induced by PLGA 
nanovaccines41 (Fig. 2b). The nanovaccines, unexpectedly, changed 
gut microbiome diversity, potentially creating a feedback loop in 
the immune response. By chronically treating mice with antibiot-
ics, we showed that disrupting the gut microbiome leads to poor 
vaccine response, likely attributable to increased interleukin-6 levels 
in mice. More importantly, the low immune response can be res-
cued by an immunoengineered pyridine-poly(hydroxyethyl meth-
acrylate) (Pyr-pHEMA) nanogel vaccine, which functions through 
the TLR2 stimulation and induced a more robust germinal centre 
response than alum-supplemented PLGA nanovaccines41. This is 
the first study to highlight the advantage of using a material-based 
nanovaccine in gut-associated metabolic syndrome, where the 

material itself offers immunomodulatory properties in overcoming 
the immunological restrictions imposed by gut-mediated inflam-
matory disease conditions and generating a more robust response 
than alum-adjuvanted vaccines.

Nanovaccines to elicit broadly neutralizing antibodies
HIV and influenza viruses can evade effective neutralizing antibody 
responses, and only a proportion of infected individuals generate 
broad and potent neutralizing antibody responses. Therefore, vac-
cine research has steered its focus towards eliciting broadly neutral-
izing antibodies (bnAbs) to recognize and neutralize the majority of 
pathogen’s quasispecies.

Harnessing the advantages of nanovaccine delivery, bioavail-
ability and multimeric antigen presentation of rationally designed 
B-cell lineage immunogens is revolutionizing the field of HIV. The 
eOD-GT8 60-mer nanoparticle vaccines elicit VRC01-class bnAbs, 
which have garnered particular attention for epitope-directed HIV 
vaccine design as they can neutralize up to 98% of HIV strains, and 
have entered phase 1 of the first-in-human clinical trial32,33,42–44.  
Nevertheless, most of the other HIV nanovaccines in develop-
ment need to overcome the challenges of generating bnAbs that 
first prime B cells encoding bnAb precursors (with a low affinity 
for the virus), followed by immunogens that guide antibody affinity 
maturation. The bnAbs can puncture the glycan-shield defence of 
the HIV envelope (Env) trimer in five regions, each of which may 
be involved in Env function (see detailed structure45). HIV poses 
unique challenges attributed to the antigenic diversity, glycosylation 
and immune evasion of its Env, together with poor bnAbs genera-
tion. In addition, HIV Env consists of ~50% glycans by mass and 
the bnAb–glycan binding is weak; therefore, nanovaccines must 
be designed to elicit bnAbs that strongly bind with glycans to 
access the native trimer and neutralize viral infection. Indeed, very 
few patients infected with HIV produce high levels of bnAbs46,47. 
Understanding why such antibodies are not produced in patients or 
vaccinated individuals will enable better nanovaccine design.

Detailed analysis of HIV-specific antibodies from infected 
individuals alludes to bnAbs having all or some of the following 
infrequent qualities: long antibody combining heavy-chain third 
complementarity-determining regions, high levels of somatic muta-
tions and autoreactivity with host non-HIV antigens48. As a result, 
the complex antibody traits predispose the antibody-producing B 
cells to immune tolerance-mediated elimination or suppress the 
B-cell activation by making them anergic. The bnAbs are unusually 
somatically hypermutated for affinity maturation to form improb-
able mutations (Fig. 3a) and require long periods of germinal centre 
reaction5,48. Therefore, key criteria to be considered in nanovaccine 
design would be (1) prolonged exposure and retention in B-cell fol-
licle for a persistent germinal centre reaction, and (2) overcoming 
somatic mutation roadblocks by specifically engaging bnAb precur-
sors and selecting for improbable mutations critical for successful 
vaccine induction of potent bnAb B-cell lineages (Fig. 3a). The first 
criterion can be achieved through controlled release systems and 
the second by vaccination with nanoparticles carrying immunogens 
that bind with moderate to high affinity to bnAb B-cell precursors, 
and with higher affinity to B-cell precursors that have acquired 
improbable mutations4,48.

Nanoparticles offer a unique structure-based design opportunity 
to package antigens, which is less feasible with standalone vaccines. 
For instance, the structure of ferritin, a ubiquitous iron storage pro-
tein that self-assembles into nanoparticles, allows for the insertion of 
influenza virus haemagglutinin (HA) in its physiologically relevant 
trimeric viral spike form49. In a landmark study49, the HA–ferritin 
nanovaccine (~37 nm diameter) was shown to elicit approximately 
34 times higher neutralization titres in immunized animals than the 
commercially available flu vaccine, a trivalent inactivated influenza 
vaccine (TIV), prompting the start of a clinical trial (ClinicalTrials.
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gov identifier: NCT03186781). The HA–ferritin nanovaccine also 
resulted in reduced side effects, such as weight loss, and can induce, 
with a single shot, an immune response comparable to the broadly 
neutralizing antibody immune responses generated by multiple 
immunizations of TIV49.

Overcoming disease enhancement, virus mutations and 
biomanufacturing challenges
In the quest for bnAbs, a suboptimal quality antibody response 
against a nanovaccine is probable and can promote pathology 

through antibody-dependent enhancement (ADE) of disease  
(Fig. 3b), whereby antibodies that bind viral spike protein can 
facilitate uptake by macrophages and B cells via their Fcγ receptors. 
Specifically, non-neutralizing antibodies have the potential to medi-
ate enhancement of respiratory disease in influenza vaccination,  
with non-neutralized virus–antibody complexes finding alternative  
receptors and entry routes into the cell via the Fc-receptor pathway.  
One study50 described ADE with two different functional mono-
clonal antibodies that increased influenza virus fusion kinetics 
and led to enhanced lung pathology and respiratory disease in  
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a dose-dependent manner in mice following the H3N2 virus  
challenge (haemagglutinin (H) protein; viral protein, neuramini-
dase (N)). The ADE-mediated pathology is not limited to influ-
enza; SARS-CoV studies have reported that the immunization of 
mice and non-human primates with inactivated whole SARS-CoV, 
virus-like-particle vaccine or various forms of S protein could 
induce ADE51–53. ADE of viral pathology can cause an inflamma-
tory response through stimulation of RNA-sensing TLR pathways 
in the infected cell, leading to a cytokine storm54. Wang et  al.55 
systemically tested immunodominant B-cell peptide epitopes of 
SARS-CoV-1 spike protein in non-human primates and found that 
the spike glycoprotein peptides S471–503, S604–625 and S1164–1191 elicited 
antibodies that efficiently prevented infection in rhesus macaques, 
whereas peptide S597–603 induced ADE-like behaviour. Therefore, 
while it is true that the quality of antibody production is one aspect 
that needs careful optimization, the antigen itself may also need to 
be edited to steer clear of epitopes that, upon binding of the anti-
body, may enhance viral infectivity. Whether SARS-CoV-2 or vac-
cines currently in clinical trials can cause ADE remains unclear. 
Nanoparticles can play an essential role in overcoming ADE as they 
can potentially be engineered to shield the effect of ADE-promoting 
epitopes or maximize safety through controlled delivery (Fig. 3b). 
Nanoparticles become important if epitopes that show low ADE 
potential are also poorly immunogenic; then, the immunogenic-
ity of these antigens, and the resulting immune response, can be 
enhanced through simultaneous packaging of adjuvants in nano-
vaccines. As a cautionary note, whether or not nanoparticle con-
figuration, materials, and formulations can themselves add to ADE 
remains to be carefully investigated.

Most of the immune response in influenza is thought to be tar-
geted at the virus-exposed head, which contains features that elicit 
a strong antibody response, instead of the slender stalk. However, 
an influenza virus that is highly diverse, such as influenza A, can 
change within two years, therefore leaving flu vaccine recipients 
largely unprotected56,57. To overcome these issues, multiple vaccine 
and nanovaccine programmes are targeting ‘universal influenza 
vaccines’ that can induce broad cross-protection against divergent 
viruses. Nanoparticles such as ferritin, with their unique structural 
features, are useful vaccine platforms because they can display mul-
tiple copies of influenza HA spikes on their surface, mimicking the 
natural organization of HA on the influenza virus49. The universal 
flu nanovaccine approaches have leveraged on these nanoparticle 
properties to vaccinate against conserved domains, such as the slen-
der stalk or the immunogenic subdominant stem region of HA. This 
region is highly conserved and recognized by antibodies capable of 
binding multiple HA subtypes. Yassine et al.58 developed HA-stem 
nanoparticles that generated heterosubtypic influenza protection. 
Using an iterative structure-based design, the team developed 
H1-based HA-stabilized stem (HA-SS) glycoprotein immunogens 
that lack the immunodominant head domain. With the stem immu-
nogens, a C-terminal fusion to the ferritin nanoparticle created 
self-assembling HA-SS nanoparticles (HA-SS NPs) and reduced the 
splaying of the membrane-proximal regions of the stem. The HA-SS 
NP vaccine elicited broadly cross-reactive antibodies in mice and 
ferret models with complete to partial protection against the lethal 
heterosubtypic H5N1 influenza virus challenge58. The HA-SS NP 
vaccine design is now undergoing a phase I clinical trial and could, 
in principle, confer protection against a broad range of pandemic 
influenza virus subtypes9.

A nanoparticle vaccine, which offers added benefits of exclud-
ing any vector components and tunability towards antigens, has 
also been developed against two other conserved domains of 
influenza—the matrix protein 2 ectodomain (M2e) and the neur-
aminidase (NA) membrane glycoprotein containing four identical 
polypeptides. The M2e immunogen, however, has low immunoge-
nicity due to the small size and low abundance in virions compared 

with HA and NA. To overcome this, a layered protein nanoparticle 
system comprising structure-stabilized HA stalk domains and a 
vaccine construct M2e has been engineered, and shown to induce 
high immunogenicity and protection against homosubtypic and 
heterosubtypic influenza A virus challenges59. These nanoparticles 
were composed exclusively of the antigens without any vector com-
ponents. The nanovaccine-induced M2e antibodies showed strong 
cross-reactivity to a diverse set of influenza strains, followed by 
complete protection. Using crosslinkers that link a disulfide bond 
between primary amines in a protein, one could regulate the pro-
longed release of antigen in physiological redox conditions, poten-
tially promoting B-cell responses59. The binding of soluble HA 
antigen to the desolvated double-layered nanoparticles prevents the 
risk of solution instability shown by virus-like particles as well as 
off-target immune responses against self-assembly motifs, such as 
the ferritin nanoparticles49,58,59.

Reassessing how we target the induction of B-cell immunity and 
improve associated T-cell response is the future of nanovaccines. 
The approaches discussed in this Review can also be applied to other 
infectious diseases, such as malaria16, Lyme disease60 and potentially 
COVID-19. Several nanovaccine candidates are in development and 
in pre-clinical phases of testing against COVID-19. Novavax, Inc., 
a late-stage biotechnology company, had developed a proprietary 
virus-like particle vaccine for use against MERS-CoV comprising a 
MERS-CoV that contained a minimum of one trimer of an S pro-
tein and their proprietary Matrix-M adjuvant. They used the same 
technology to produce a vaccine candidate against SARS-CoV-2, 
NVX-CoV2373, and, at the end of May 2020, announced the enrol-
ment of the first participants in a phase I/II clinical trial. An alternative 
to protein vaccines, messenger RNA nanovaccine platforms, such as a 
lipid nanoparticle encapsulated RNA vaccine (reviewed elsewhere61), 
have been proposed for several diseases. For example, the 2019-nCoV 
vaccine (mRNA-1273) developed by Moderna, Inc. is currently in 
phase III trial for COVID-19. Moderna, Inc. has also reported that 
lipid nanoparticle-based mRNA vaccines against H10N8 and H7N9 
demonstrate favourable safety and reactogenicity profiles in healthy 
adults in phase I randomized clinical trials62 and has tested its 
mRNA-based platform against chikungunya in mice and macaques63.

The challenges in nanovaccines do not end with the induction of 
humoral immunity. Once validated for pre-clinical studies in larger 
animal models, clinical translation of nanovaccines will require a 
complex safety testing, clinical trial, and setting up bioprocess and 
analytical pipeline for supporting engineered vaccine development. 
The safety testing process requires compliance with good labora-
tory practice and cannot be skipped because there are insufficient 
data available for nanovaccine production processes. Nanovaccines 
will need to be then produced in facilities that comply with cur-
rent good manufacturing practice to ensure continuous quality and 
safety. It is unlikely that these processes could be incorporated fully 
within existing viral vaccine pipelines, and therefore they need to 
be completely developed. Nevertheless, polymeric nanovaccines 
offer unique advantages: they can be characterized biochemically; 
could be less reactogenic than live or inactivated virus vaccines; and 
can be purified to a high degree owing to the relatively large size 
of nanoparticles compared with the other components of the cul-
ture medium. However, unlike the manufacturing of live, attenuated 
organisms, which readily accumulate to high concentrations in virus 
growth conditions, including eggs, nanovaccines would require  
the production of distinct components separately (antigen, delivery 
system and adjuvant), and then their assembly in the final product. 
The antigens could be produced in a similar manner as other sub-
unit vaccines, but little industrial procedure exists for manufactur-
ing immune potentiator and delivery system for nanovaccines.

Finally, the nanovaccine field has many outstanding biologi-
cal questions to answer. These include—but are not limited to—
whether nanovaccines can induce T-cell subsets that enhance 
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antigen-specific bnAb development, whether they have an impact 
on B-cell somatic hypermutation and TFH cell functions, and 
whether they can break through clonality bottlenecks that restrict 
the engagement of the large diversity of B-cell repertoire and mem-
ory responses. Emerging ex vivo cellular and acellular technologies 
(for example, organoids28,64–66 and acellular antibody discovery pipe-
line67) that could be integrated with nanovaccine research in both 
in vivo and ex vivo settings can reduce the nanovaccine discovery 
timeline, impact on the dynamics of germinal centres and memory 
B-cell re-activation, and elucidate mechanisms to overcome poor 
immunity in the elderly population68.
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