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Exciton transport driven by spin excitations 
in an antiferromagnet
 

Florian Dirnberger    1,2,3,8  , Sophia Terres1,8, Zakhar A. Iakovlev    4, 
Kseniia Mosina5, Zdenek Sofer    5, Akashdeep Kamra    6,7, Mikhail M. Glazov    4 &  
Alexey Chernikov    1 

Optical quasiparticles called magnetic excitons recently emerged in 
magnetic van der Waals materials. Akin to the highly effective strategies 
developed for electrons, the strong interactions of these excitons with the 
spin degree of freedom may provide innovative solutions for long-standing 
challenges in optics, such as steering the flow of energy and information. 
Here we demonstrate the transport of excitons by spin excitations in the 
van der Waals antiferromagnetic semiconductor CrSBr. Our observations 
reveal ultrafast, nearly isotropic exciton propagation, substantially 
enhanced at the Néel temperature, transient contraction and expansion of 
exciton clouds at low temperatures and superdiffusive behaviour in bilayer 
samples. These signatures largely defy description by commonly known 
exciton transport mechanisms. Instead, we attribute them to magnon 
currents induced by laser excitation. We propose that the drag forces 
exerted by these currents can effectively imprint characteristic properties 
of spin excitations onto the motion of excitons. The universal nature of the 
underlying magnon–exciton scattering promises the driving of excitons 
by magnons in other magnetic semiconductors and even in non-magnetic 
materials by proximity in heterostructures, merging the rich physics of  
magnetotransport with optics and photonics.

More than three decades ago, the giant magnetoresistance effect1,2 
demonstrated the extensive potential of controlling electrons using 
the spin degree of freedom in solids. The profound impact of this dis-
covery on science and technology spawned the field of spintronics 
and ultimately came to play an important role in modern electron-
ics. Now, reports of excitons in magnetic van der Waals crystals3–8 and 
their interactions with magnetic spin order raise the question whether 
similar developments are on the brink of transforming optics and pho-
tonics. High-speed propagation, anomalous dispersion, exceptional 

coherence and thermopower9–14 can be extremely attractive features 
of spin excitations (magnons and paramagnons) in this context. This 
promise, however, rests on the expectation that the recently reported 
coupling of excitons and magnons15–18 can indeed be leveraged to 
control19–21 the movement of quasiparticles in solids.

A key material to explore this question is the van der Waals mag-
netic semiconductor CrSBr (refs. 22,23). At low temperatures, CrSBr 
exhibits strong magnetization along the in-plane b axis that alternates 
between layers in the out-of-plane c axis (Fig. 1b). Moderate magnetic 
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Magnetically correlated exciton transport
The photoluminescence (PL) and reflectance contrast spectra of a 
9-nm-thick (about 10L; Supplementary Section 2) crystal in Fig. 1a 
are typical for the few-nanometre-thick CrSBr flakes investigated in 
our study. The PL peak at 1.366 eV matches the well-known resonance 
of CrSBr excitons (X0) in the reflectance6,17,26,28, whereas additional 
low-energy features in PL are attributed to either phonon sidebands29 or 
surface-like states30. In light of the results presented below, we note that 
neither the effective diffusion coefficients nor the emission lifetimes we 
obtain from our measurements vary considerably across the emission 
spectrum (Extended Data Fig. 1 and Supplementary Fig. 14). The use of 
such very thin crystals, with purely excitonic optical responses, avoids 
contributions from self-hybridized polaritons17. This allows us to meas-
ure the actual propagation of excitons with a transient optical micros-
copy technique by imaging the spectrally integrated cross-section of 
the entire PL emission as a function of time and space onto a fast streak 
camera detector following the excitation by a sub-1-ps short laser pulse 
(Methods)31. Temporally and spectrally integrated spatial profiles of 
the 10L PL signal, presented for 4 K and 125 K (Fig. 1c), already show 
that the exciton propagation length in CrSBr is temperature depend-
ent. Even more pronounced are the differences in the time-resolved 
expansions of the exciton cloud, presented in the inset as a relative 
increase in Δσ2(t), which represents the relative change of the mean 
squared displacement32.

For a quantitative analysis, we evaluate the effective exciton dif-
fusion coefficient, defined as D∗ = 1

2
∂Δσ2/∂t, during the first 80 ps, as 

a function of the lattice temperature for an excitation fluence of 
390 μJ cm−2, which corresponds to an estimated initial exciton density 

fields are already sufficient to switch the antiferromagnetic (AFM) 
ground state into a ferromagnetic (FM) configuration. As the tem-
perature rises, an increasingly larger number of thermal magnons 
progressively suppresses long-range magnetic order until the material 
becomes paramagnetic (PM) above the Néel temperature of TN = 132 K 
(refs. 22–24). Moreover, a local temperature gradient generates a flux 
of incoherent magnons25. Most importantly, CrSBr hosts tightly bound 
excitons that interact strongly with light17, are tunable by magnetic 
fields6,26,27 and couple to both coherent and incoherent magnons15–18. 
This renders it an ideal platform to study the impact of magnon cur-
rents on excitonic motion.

Here we demonstrate the transport of excitons in CrSBr and pre-
sent a series of experimental signatures implicating the drag of exci-
tons by magnons. For up to tens of picoseconds after the excitation 
by a short light pulse, excitons are observed to move remarkably fast. 
Their propagation correlates with the magnetic phase and reaches a 
maximum at TN. Corresponding effective diffusion coefficients are as 
high as 150 cm2 s−1, exceeding expectations from classical exciton dif-
fusion by orders of magnitude. Moreover, for the majority of excitation 
conditions, the exciton propagation is quasi-isotropic in the van der 
Waals plane, in stark contrast to the highly anisotropic exciton effec-
tive masses dictated by the electronic dispersion of CrSBr. Instead, it 
matches the nearly isotropic in-plane propagation of thermal magnons 
and their group velocities. Finally, at low temperatures and excitation 
densities, we observe a complete reversal of the exciton propagation 
direction, from expansion to contraction, and find ultrafast, super-
diffusive behaviour in bilayers (2L) with effective velocities reaching 
41 km s−1 within the first 15 ps.
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Fig. 1 | Exciton transport in CrSBr across the AFM–PM magnetic phase 
transition. a, PL spectrum and the derivative of reflectance contrast (with a fit 
curve; Methods) recorded at T = 4 K. The dashed line and the Gaussian profile 
mark the optical signature of the fundamental exciton X0 transition in CrSBr 
(refs. 6,28). b, Schematic of the CrSBr structure in the AFM phase and the optical 
injection of propagating excitons in the experiments. c, PL cross-section profiles 
along b measured at 4 K and 125 K. The PL is integrated in energy and in time from 
0 to 150 ps after pulsed excitation. The arrows represent the standard deviation σ 
extracted from Gaussian fits. Inset: corresponding time dependence of the 
relative Δσ2(t). The solid lines are linear fits to the data. d, Blue circles, 

temperature dependence of the effective diffusion coefficient D*, extracted by 
evaluating D∗ = 1

2
∂Δσ2/∂t  over the first 80 ps along the b axis. The blue line is a 

guide to the eye. The solid and dotted orange lines show the expected classical 
diffusion of excitons along the a and b axes. Labels and the black dashed line 
mark the TN and the AFM–PM phase transition, respectively. The error bars 
indicate the statistical error of the linear fit of σ2(t) to obtain D*. Data in c and d are 
obtained under a fluence of 390 μJ cm−2 at 1.61-eV excitation energy, 
corresponding to an exciton density in the range of 1012 cm−2 per layer. Similar 
results, obtained at a smaller fluence for an excitation energy of 1.77 eV close to 
the B-exciton resonance, are shown in Extended Data Fig. 4. a.u., arbitrary units.
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of about 2 × 1012 cm−2 per layer (Extended Data Fig. 2 and Supplementary 
Section 3). As demonstrated in Fig. 1d, the exciton propagation exhibits 
a pronounced maximum near TN, the critical point of the magnetic 
phase transition. Among the observed phenomena characteristic for 
the spatiotemporal dynamics of excitons in CrSBr (Extended Data Fig. 3), 
the temperature dependence of D* is particularly intriguing because 
of its striking similarity with the nearly diverging magnetic susceptibil-
ity at TN (ref. 24). This correlation suggests that the transport of excitons 
is not determined by classical diffusion or hopping as in the majority 
of semiconductors. Instead, the coupling of excitons to the spin degree 
of freedom seems to play a major role.

This notion is strongly supported by two key findings of our study. 
First, at T = TN, exciton transport is almost isotropic with respect to 
the a and b axes, as shown by the symmetric PL shape and similar 
density-dependent traces of Δσ2(t) (Fig. 2a,b). This observation is in 
stark contrast with the strongly anisotropic dispersion of excitons and 
electrons6,26,33,34 and the anisotropic electric conductivity35 in CrSBr, but 
in good agreement with recent studies reporting nearly isotropic mag-
non transport15,18. Our calculation of the magnon dispersion (Fig. 2e) 
further shows that magnons are not only much more isotropic but also 
much heavier than excitons. Second, the time-resolved expansion of 
the exciton cloud (Fig. 2b) strongly depends on the excitation fluence 
and can, thus, become exceptionally fast. Most values of D* we obtain 
from evaluating the dynamics in the first 20 ps are orders of magni-
tude larger than those expected from a classical diffusion model. The 
latter estimates exciton diffusion coefficients to be in the range of 

1 cm2 s−1, or below, based on the exciton masses in the a and b direc-
tions and scattering rates obtained from the temperature-dependent 
linewidths of the X0 peak (Supplementary Section 5A and Fig. 1d 
(orange lines)).

Magnon–exciton drag
Besides diffusion, few other processes are known to impact exciton 
transport. Among them, exciton–exciton repulsion can be excluded 
due to its strong dependence on the effective mass and expected ani-
sotropy36. Exciton–exciton annihilation31,37 may potentially play a role, 
as it can lead to an apparent, density-dependent broadening of the 
spatial exciton distribution. However, the annihilation coefficients we 
obtain and the resulting contributions to the effective diffusion coef-
ficient substantially underestimate our observations for the majority 
of the studied experimental conditions with the exception of room 
temperature (Supplementary Fig. 9). Most importantly, one would 
not expect this process to be enhanced specifically at TN. Due to its 
general importance for other two-dimensional semiconductors, we 
provide an extensive discussion on exciton–exciton annihilation in 
Supplementary Section 5B.

The position dependence of the X0 emission peak at T = 4 K, where 
the reduction in linewidth compared to that at elevated temperatures 
resolves much smaller spectral shifts (Fig. 2c), reveals that considerable 
amounts of excess energy are released in the CrSBr crystal following 
optical excitation. Especially under a higher fluence, sizable spectral 
shifts within the excitation area strongly indicate local heating by 

b aS XY Γ S
0

20

40

En
er

gy
 (m

eV
)

a

b

−1 0 1

−1

0

1

a (µm)

−1

0

1

b 
(µ

m
)

10
Counts (normalized)

Laser

PL

a
132 K

a
132 K

b

D* = 148 cm2 s–1

9 cm2 s–1

D* = 110 cm2 s–1

7 cm2 s–1

0 30 60

0

0.5

1.0

0 30 60

Time (ps)

1.36

1.37

1.36

1.37

−1 0 1

En
er

gy
 (e

V)

Position (µm)

e

Laser

Low fluence

High fluence

0.81.0
PL (normalized)

∆T

c

d

155 310 920 1,720 3,100 µJ cm–2

Ma = 73m0Mb = 23m0

jmag

hν

b

∆
σ2 (t)

 (µ
m

2 )

+–
+–

+– +–

+–+–
+–

+–

Fig. 2 | Direction and fluence dependencies of exciton transport in a 10L 
sample. a, Top: spatial PL profile recorded at TN = 132 K under a fluence of 
3,100 μJ cm−2. Broadening along the a and b directions is indicated by the blue 
and red arrows, respectively. The dashed circles mark the σ values extracted 
from the Gaussian fits of the PL and laser profiles. Bottom: spatial profile of the 
excitation laser. b, Time and fluence dependencies of Δσ2(t) recorded at TN along 
the a and b directions (Extended Data Fig. 8 and Supplementary Fig. 2). The 
lines are linear fits to the data during the first 25 ps. Insets: the axis of transport 
measurement. c, Position dependence of X0 emission under an excitation fluence 
of 260 μJ cm−2 (top) and 3,100 μJ cm−2 (bottom), corresponding to the estimated 
exciton densities between 1.1 × 1012 and 1.3 × 1013 cm−2 per layer, respectively. The 

sample temperature was nominally 4 K, but spectral shifts in the region  
of laser excitation locally indicate an effective increase in temperature due to 
excitation (Extended Data Fig. 5). The laser profile is shown by the grey line.  
d, Schematic illustrating an incoherent magnon flux jmag (blue) propagating away 
from the excitation region, dragging excitons (red and blue circles) along. Pulsed 
laser excitation is indicated by the red line. e, Calculated magnon dispersion. 
Compared with exciton masses from ref. 26, magnons are substantially heavier 
than excitons; magnon-to-exciton mass ratios are 38 and 7 along the b and a 
directions. Ma and Mb denote the masses of magnons along the a- and b-
directions, respectively; m0 is the free electron mass. The solid and dashed lines 
represent two branches that are very close in energy (Supplementary Section 6).
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several tens of kelvins, as shown by the analysis in Extended Data Fig. 5. 
Thus, not only excitons but also an imbalance in the spatial occupation 
of phonons and magnons is created by the optical excitation38, result-
ing in a flux of all quasiparticles away from the excitation region39,40. 
Although neither the pure Seebeck drift of excitons themselves41 nor 
their coupling to phonons42,43 can explain the peak we observe at TN. 
Thermal magnon currents, as we discuss below, are key for understand-
ing the transport of excitons in this material instead. It is also worth 
noting that the high sensitivity of PL to exciton populations in the first 
tens of picoseconds, the larger fluence and the absence of external 
fields contrast the nanosecond propagation dynamics of coherent 
magnons studied in recent pump–probe experiments15,16,18.

We propose that a mutual drag between excitons and thermal 
magnon currents emerges directly from their scattering. Our theo-
retical analysis (Supplementary Section 7) demonstrates that the 
underlying interaction is distinct from the magnon–exciton coupling 
recently observed in a canted spin state15. Because of their larger effec-
tive mass and occupation, magnons are able to substantially accelerate 
excitons through scattering, analogous to the effects enhancing the 
thermal transport of electrons in magnetic materials44. This process 
of magnon–exciton drag qualitatively explains the key signatures of 
our experiments. First of all, the steady increase in the population of 
thermal magnons on approaching TN enhances the magnon flux11,45,46 
and, thus, maximizes the magnon–exciton drag effect, which is in 
good agreement with the pronounced maximum of D* we observe at 
TN. This is also confirmed by a recent study on CrSBr (ref. 25) reporting 
a maximum of the electronic Seebeck coefficient near TN. Even at tem-
peratures above TN, substantial drag is expected from the short-range 
magnetic correlations called paramagnons47, evidenced in the mag-
netometry measurements of CrSBr far beyond TN (ref. 24).

A more detailed description of this process is presented in Sup-
plementary Section 7. It estimates that the nearly isotropic disper-
sion15 and propagation18 of magnons with non-zero momentum may 
overcome the strong anisotropy of the electronic dispersion when the 
scattering rates are sufficiently high. In this case, the stream of heavy, 
rapidly propagating magnons essentially carries the excitons along 
(Fig. 2d). This also explains why, at elevated temperatures, anisotropic 
exciton transport is only observable at very low excitation densities 
compared with the studied regime (Extended Data Fig. 6) and why the 

differences are much smaller than expected from theory. Finally, we 
note that the average expansion of excitons we observe is in overall 
good agreement with the typical propagation velocities of magnons, 
which are in the range of approximately a few kilometres per second 
in CrSBr. Altogether, the magnon–exciton drag effect provides a suit-
able framework for capturing key signatures of the exciton transport 
observed in our experiments across a broad range of temperatures.

Low-temperature transport
To complete the experimental picture, we now present two particularly 
striking phenomena observed at low temperatures. First, at 4 K, the 
exciton distribution is not expanding; it appears to be contracting over 
time (Fig. 3a,b), which can be resolved because the absolute width of the 
PL spot still exceeds the optical diffraction limit (Extended Data Fig. 7). 
The observed contraction is also very fast. Depending on the chosen 
model, we either obtain an average inward velocity of –3 km s−1 or 
D* = –13 cm2 s−1. Contraction is not too common for excitons48,49 but 
seems to be ubiquitous in CrSBr, independent of the layer number. 
Since the effect is more prominently observed along the b axis, exciton 
transport at 4 K is anisotropic in the a–b plane. Increasing the fluence 
or the sample temperature, however, turns the anisotropic contrac-
tion into a positive, nearly isotropic expansion of the exciton cloud 
(Figs. 3c and 2b).

The fact that the group velocity of magnons with very small ener-
gies and momenta can become negative in CrSBr (ref. 18; Fig. 3d,e) 
suggests that a scenario in which excitons are dragged by magnons 
with predominantly antiparallel phase and group velocities is possible. 
A simplified, semianalytical model presented in Supplementary Sec-
tion 7 indeed shows that the primary excitation of such magnons at 
low temperatures and fluences may allow magnons propagating away 
from the excitation region to scatter excitons backwards, causing a 
contraction of the exciton cloud. By contrast, at elevated temperatures 
or fluences, the thermal occupation of magnons with higher energies 
and momenta, and positive group velocity, favours forward scattering 
and regular expansion (Fig. 3c). This also motivates a selective excita-
tion of magnons with negative and positive group velocities18 for future 
experiments in this unusual propagation regime.

The second striking observation at low temperatures is a remark-
ably fast expansion of the excitonic emission in 2L crystals spanning 
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direction under a laser excitation fluence of 155 μJ cm−2. The dashed lines are a 
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transport measurement. c, Dependence of D* on temperature (grey squares) 

and excitation fluence (4 K; blue circles) shows a transition from exciton cloud 
contraction to expansion. The excitation fluence for the temperature series 
was 310 μJ cm−2. Inset: excitation fluence dependence of D* measured at 4 K in 
the 10L crystal for transport along the a and b axes. The solid lines approximate 
a linear fluence and temperature dependence. d, Magnon dispersion of the 
lowest branch for small magnon momenta Q. e, Corresponding magnon group 
velocities. norm., normalized.
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hundreds of nanometres within picoseconds (Fig. 4a). The broaden-
ing is continuous and well resolved in the first 15 ps after the excitation 
and appears to be only limited by the fast decay of excitons (Fig. 4b). 
Most interestingly, in this time window, Δσ2(t) does not increase lin-
early but exhibits a superlinear behaviour. The observed expansion 
law, Δσ2 ∝ tα, with values of α between 1.3 ± 0.1 and 2.1 ± 0.3 obtained 
from fits, is a hallmark of exciton superdiffusion32. Similar features 
are consistently observed along the a direction, for both AFM and 
FM phases, and in other 2L samples (Fig. 4c, Extended Data Fig. 10 
and Methods), and yet are absent in a nearby 3L crystal. For com-
pleteness, we note that monolayer PL signals were too small to draw 
reliable conclusions.

Superdiffusion generally indicates coherent transport. How-
ever, the ballistic motion of excitons themselves seems an unlikely 
explanation, since excitons are expected to be frequently scattered 
by phonons and magnons on these timescales. Besides, experimental 
transport signatures in 2L crystals otherwise match the contraction, 
nearly isotropic propagation and pronounced fluence dependence 
of thicker samples (Extended Data Fig. 9 and 10). We, thus, speculate 
that the superdiffusive behaviour results from the enhanced interac-
tions of excitons with ballistically propagating magnon waves. This 
is supported by the fact that the expected transition towards reg-
ular diffusion (Δσ2 ∝ t) is observed at temperatures of around 60 K 
(Fig. 4e and Supplementary Fig. 1). The origin of superdiffusion in 2L 
and the large effective velocities that exceed the velocity of long-range 
magnon transport reported for bulk CrSBr (refs. 15,18) is not clear 
at this stage. Nevertheless, we note that the properties of excitons 
and magnons in ultrathin crystals could differ from those of bulk 
(Supplementary Figs. 6 and 7). In particular, phenomena related to 
surface30,50,51 and superluminal-like effects12, as well as a stronger role 
of phonons52,53, could contribute to the ultrafast dynamics of excitons 
and magnons in 2L crystals.

Conclusion
In conclusion, exciton transport in ultrathin crystals of the layered 
antiferromagnet CrSBr is very fast, fluence dependent and peaks at TN. 
It features both expansion and contraction and can become superdif-
fusive in bilayer crystals. Although common transport mechanisms fail 
to describe these findings, the scattering of excitons by a flux of thermal 

magnons is proposed to drive exciton transport. For sufficiently strong 
interactions, excitons no longer move independently inside a stream 
of heavy magnons; they are effectively carried by the magnon current. 
The fact that magnons can exhibit much longer coherence times and 
lengths than excitons, and may be excited electrically, highlights the 
considerable potential of exciton–spin interactions to imprint mag-
non transport properties onto the typically slow motion of excitons. 
It might further be possible to drive excitons even in non-magnetic 
semiconductors by both coherent and incoherent magnon currents 
using proximity effects in heterostructures. Altogether, these results 
are highly promising for the realization of efficient magnetic control of 
optical quasiparticles, an encouraging new direction for fundamental 
research on correlated exciton–spin systems and, more broadly, energy 
and information transport in solids.
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Methods
Crystal growth and sample fabrication
CrSBr bulk single crystals were synthesized by the chemical vapour 
transport method described in ref. 26. From these bulk crystals, thin 
flakes with typical lateral extensions of several tens of micrometres 
were mechanically exfoliated directly from tape onto standard SiO2/Si 
substrates with a SiO2 thickness of 285 nm. After the transfer, samples 
were stored under vacuum conditions. For the experiments, they were 
mounted either directly onto the cold finger of a continuous-flow He 
cryostat, or on top of a small disc magnet with in-plane magnetization 
providing a permanent magnetic field of ~0.2 T, which was then glued 
onto the cold finger. We estimate an accuracy of ±10° for the alignment 
of CrSBr crystals with respect to the in-plane magnetization axis of the 
magnet and an accuracy of ±5° for their alignment relative to the detec-
tor slit. Due to a reduction in the saturation field, 2L crystals placed on 
top of the disc magnet allow us to study exciton transport in the FM 
phase inside our cryostat (Fig. 4 shows the results).

Optical spectroscopy and time-resolved microscopy
Few-layer crystals with lateral extensions of at least several microme-
tres were preselected by optical microscopy. Their layer number was 
determined by optical contrast and confirmed by atomic force micros-
copy. Before measuring the exciton dynamics, each flake was charac-
terized by reflectance and PL spectroscopy. For reflectance, we used 
the attenuated output of a spectrally broadband tungsten halogen 
lamp, focused to a spot size of about 2.0 μm by a ×60 glass-corrected 
microscope objective (numerical aperture, 0.7). Spectra measured 
on top of the bare SiO2/Si substrate were used as a reference for 
the CrSBr reflectance spectra and analysed by the transfer-matrix 
method calculating the absorption spectrum based on a small set of 
Lorentz oscillators.

For transient PL microscopy, we used ultrashort (~140-fs) linearly 
polarized optical pulses from a Ti:sapphire laser tuned to a photon 
energy of 1.61 eV, or to 1.77 eV where specified. The laser was focused 
to a spot size of 0.8 μm by a ×60 glass-corrected objective. For each 
flake, the linear polarization of the laser was aligned parallel to the 
crystallographic b axis; no polarization-selective optics were used for 
the detection of emission. The PL was spectrally filtered to remove the 
laser excitation before being directed into the spectrometer, where 
it was either spectrally dispersed by a grating or imaged by a silver 
mirror. The signal was detected by a charge-coupled device and by 
a streak camera to acquire time-integrated and time-resolved data, 
respectively. We estimate the accuracy of D* values determined by our 
experiment to be ±0.1 cm2 s−1.

In our experiments, the variance σ of the PL spot in the first one 
or two picoseconds is typically ~0.3 μm larger than the size of the laser 
spot. This could result from differences in the excitation and detection 
wavelengths, chromatic aberration of the imaging system and potential 
ultrafast, subpicosecond propagation processes that are beyond the 
resolution of the streak camera detector.

Data availability
The main datasets generated and analysed in this study are available 
in Zenodo at https://doi.org/10.5281/zenodo.17542127 (ref. 54). All 
other data are available from the corresponding authors upon request.
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Extended Data Fig. 8 | Exciton transport in 10L along a and b at 4 K, 132 K, and 300 K. a, Relative mean squared displacement, Δσ2(t), measured for different 
excitation fluence. Solid lines indicate the linear fits to obtain the values D* shown in Fig. S9. b Effective diffusion coefficients D* obtained from the data in a. Error bars 
indicate the statistical error of the Δσ2(t) line fit.
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Extended Data Fig. 9 | Exciton transport at 4 K in a 11L crystal. a Exciton transport measured along the a–direction for 155 (yellow) and 3,100 (black) μJ/cm2.  
b Exciton transport measured along b for the full spectrum (unfiltered) and for the X0 peak (filtered). Both measurements were recorded with an excitation fluence of 
310 μJ/cm2 and evaluated during the first 35 ps.
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Extended Data Fig. 10 | Exciton transport in 2L and other few-layer crystals  
at 4 K. a Left: Schematic of the sample chip mounted on top of a small disk 
magnet with in-plane magnetization. Right: Optical microscope image of a 2L and 
a 3L crystal on the chip, which is glued onto the magnet such that the b–axis of the 
crystals aligns with the magnetization axis with an estimated precision of ± 10∘.  
b PL emission of the 2L crystal when the chip is mounted together with the 
magnet (red), or directly on top of the cold finger of the cryostat (blue). The 
spectral shift of the PL indicates a field-induced transition of the magnetic order 
into an FM state6. c Integrated PL signal of the 2L crystal (B = 0, AFM) shows 
only a weak dependence on excitation energy. d Fluence dependence of Δσ2(t) 
measured along the b–axis of the 2L crystal for 30 (orange), 55 (yellow),  

150 (light blue), 310 (dark blue) μJ/cm2 in the AFM phase without the magnet 
at B=0. Dashed lines are guides to the eye. Inset: Δσ2(t) measured along a and 
b–axis in the FM phase on top of the magnet (B∥b) with 310 μJ/cm2. e,f Analogous 
to a,b on a second sample. g PL emission of a 1L and a 4L crystal when the chip is 
mounted together with the magnet (red), or directly on top of the cold finger of 
the cryostat (blue), illustrating the lack of energy shifts, as expected51.  
h Measurement of Δσ2(t) along the b–axis of a 2L (blue) and a 4L (orange) crystal 
for 500 μJ/cm2 on top of the magnet. The magnetic configuration is FM for the 2L 
crystal but because of the larger switching field required remains AFM for the 4L 
crystal. Dashed lines are guides to the eye. Inset: Magnified view of the negative 
transport measured in the 4L crystal. All data recorded at 4 K.
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