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Intense light-matter interactions have revolutionized our
ability to probe and manipulate quantum systems at sub-
femtosecond timescales', opening routes to the all-optical
control of electronic currents in solids at petahertz rates®”.
Such control typically requires electric-field amplitudes in the
range of almost volts per angstrom, when the voltage drop
across a lattice site becomes comparable to the character-
istic bandgap energies. In this regime, intense light-matter
interaction induces notable modifications to the electronic
and optical properties®'°, dramatically modifying the crystal
band structure. Yet, identifying and characterizing such modi-
fications remain an outstanding problem. As the oscillating
electric field changes within the driving field's cycle, does
the band structure follow and how can it be defined? Here
we address this fundamental question, proposing all-optical
spectroscopy to probe the laser-induced closing of the band-
gap between adjacent conduction bands. Our work reveals the
link between nonlinear light-matter interactions in strongly
driven crystals and the sub-cycle modifications in their effec-
tive band structure.

The ability of near-resonant light fields to modify the energetics
and dynamics of an atom (or a molecule) is central to many phe-
nomena such as laser cooling, trapping, quantum optics of atoms in
a cavity'""? or extremely efficient generation of hyper-Raman lines".
The combined states of matter and near-resonant light are gener-
ally studied over many laser cycles using the Floquet formalism,
which takes advantage of the periodicity of light oscillations. In sol-
ids, cycle-averaged modification of the hopping rates between the
neighbouring sites leads to, for example, the coherent destruction of
tunnelling'* and modified local interaction potentials'.

The situation changes in light fields with frequencies well
below resonance but with intensities sufficiently high to induce
electronvolt-scale voltages across a lattice site. As the oscillating
electric field of the lightwave changes from zero to its maximum
value within a quarter cycle, rapidly changing voltages can lead
to sub-cycle modifications of the macroscopic properties, such as
transmittance®® or conductance’. In this regime, a cycle-averaged
frequency-domain Floquet perspective is hardly satisfying.

Here we describe how the effective band structure can be intro-
duced in such an interaction regime within a time-domain perspec-
tive. We experimentally demonstrate all-optical spectroscopy of a
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strongly driven crystal, revealing an anomalous spectral intensity
response, using high-harmonic generation (HHG). Our theoretical
study links these observations to laser-induced closing of the gap
between adjacent conduction bands (Fig. 1a).

HHG in solids involves optical tunnelling'® across the gap
between the valence and conduction bands. This transition initi-
ates harmonic generation associated with both intraband cur-
rents'®'®'” and electron-hole recombination, the latter leading to
higher-order harmonic emission'®. At higher light intensities and/
or lower frequencies, one enters a new dynamical regime. In many
systems, as the electron-hole wavepacket approaches the edges of
the Brillouin zone, Landau-Dykhne-type transitions'’ can promote
electrons to higher conduction bands, as reflected in the harmonic
spectra’?! (Fig. 1a). However, can the imprint of these transitions
on high-harmonic emission be used to observe light-induced modi-
fications of the bands?

One can show that light-induced modifications of the bands are
directly linked to the sub-cycle Landau-Dykhne-type transitions
between them (Methods). In the low-frequency limit, one begins
with the adiabatic approximation, which treats the phase wt of the
electric-field oscillations as a parameter, and finds the adiabatic
band structure e(k, wt) in the presence of a quasi-static electric field.
When a non-adiabatic Landau-Dykhne-type transition between a
pair of bands occurs, typically as the electron is laser driven across
the minimal bandgap, it modifies the gap as follows:

1-— WLD(t)

Acefr(t) =~ Aeay(t) T mwin (D)’

(1)

where Ae, is the effective bandgap, Ae,, is the bandgap in the
adiabatic approximation and wyy, is the probability of the sub-cycle
Landau-Dykhne-type transition. The result is intuitive: the effective
bandgap is closed by the laser field when the sub-cycle transition
approaches unity, that is, w;,(t) >~ 1. Given the exponential sensitiv-
ity of wy(f) to the laser-field strength, the effective bandgap closes
soon after the sub-cycle excitation probability becomes appreciable.

To experimentally investigate this phenomenon, we use
two-colour HHG spectroscopy’>** (Fig. 1b), augmenting the strong
fundamental driver with a weak second-harmonic (SH) field
and controlling their sub-cycle delay 7. Electron-hole trajectories
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Fig. 1| All-optical spectroscopy of dynamical band structure. a, Non-adiabatic Landau-Dykhne-type transition between a pair of bands. b, Two-colour
HHG spectroscopy probes the internal dynamics, mapping the temporal properties of electron trajectories, transitions between the bands as well as their
laser-driven modifications.
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Fig. 2 | HHG spectroscopy beyond the semi-classical description. a,c, HHG spectrum (black line) and oscillation phase (red dots) as a function of photon
energy for crystal orientations of 0° (a) and 45° (¢). The oscillation phase calculated using the saddle-point approximation in the interband model'®
(purple star markers). b, Valence and the first conduction band for 0° (I" to X) and for 45° (T" to K). The yellow-shaded area emphasizes the energy range
where the semi-classical description fails?, also marked at the corresponding photon energies in a and ¢ (dashed yellow line).
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Fig. 3 | Probing the structural dependence of multiple conduction bands. a, Oscillation phase as a function of harmonic number, for different crystal
orientations ranging from 0° (dark blue) to 45° (cyan). The dashed line marks the cutoff of the first conduction band and the dashed box emphasizes the
H21 oscillation phases for different orientations (plotted in b). b, Harmonic 21 (H21, purple) and harmonic 11 (H11, grey) oscillation phase as a function

of crystal orientation. ¢, Two-dimensional second bandgap, €., =€, — €, as a function of crystal momentum (top). The purple contour represents the
H21 energy along different crystal orientations. Two-dimensional first bandgap, €., =€, — €, as a function of crystal momentum (bottom). The grey
contour represents H11 energy along different crystal orientations. d, One-dimensional cut of the second (yellow) and first (blue) bandgap along crystal
orientations of 10° and 45°. H21 and H11 energies are represented by the purple and grey dashed lines, as well as their crossing point with the bandgaps

(cross markers).

responsible for different harmonics* are perturbed by the weak field:
each trajectory acquires an additional complex phase o(r), which is
accumulated along the entire trajectory, serving as a sensitive label of
its temporal properties. If the fundamental field generates only odd
harmonics, the SH field breaks the symmetry of interaction, as o(z)
changes sign between two consecutive half-cycles (Supplementary
Information). This phase is mapped into the harmonic intensity as

loda(o(1) o¢ (¢ +e77),

: : @)

Ieven(0(7)) ox (€7 —e™).
Scanning 7 modifies o(7) in a periodic manner, modulating the har-
monic spectrum. The modulation phase and contrast encode the
dynamical properties of electron trajectories associated with each
harmonic order and allow their reconstruction with attosecond
precision. In previous studies this method resolved the interband

430

contribution to high-harmonic emission* and provided an
all-optical reconstruction of the field-free band structure on excit-
ing a single conduction band****. In this paper, we use this scheme to
study the underlying dynamics of driven multiband currents, prob-
ing the dressed band structure.

Experiments were performed on MgO (ref. ”’) using A=1.3pm
laser field at intensities of ~10"* W cm™ and a weak SH field, polar-
ized parallel to the fundamental field. We have measured the HHG
modulations with the two-colour delay and extracted the oscillation
phase @, associated with each harmonic order N. Figure 2 presents
@, as a function of the harmonic order for orientation angles of 0°
(I'X) and 45° (I'K) with respect to the fundamental field’s polariza-
tion. For harmonics N=11-15 (10.5-14.5¢eV), which are associated
with electron-hole recombination from the first conduction band,
we measure a gradual slope of @, with N. The slope reflects the
evolution of the trajectory length with harmonic order*, supported
by our semi-classical calculations (Supplementary Information).
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Fig. 4 | Dynamical band structure. a, First (blue) and second (yellow) bandgaps, €., and e.,,, respectively, for 0° (right) and 25° (left) orientations, as

a function of k/k. (k.=2r/a, where a is the lattice constant). b, H20 oscillation phase as a function of crystal orientation for different fundamental field
intensities (light green to dark green). ¢, Calculated oscillation phase of H20 as a function of crystal orientation for different fundamental field intensities
(light green to dark green). d, Oscillation phase difference, ®,, — @,,, at 0° orientation as a function of the fundamental field intensities. The inset shows

the @, — @, (pink) and &,, — @, (blue) plots.

As we approach the edge of the Brillouin zone, represented by har-
monic 17 (H17; 16 eV) for the I'K direction and harmonic 19 (H19)
for the I'-X direction, this simple description fails. A clear phase
jump appears in the measurements, associated with the edge of
the zone and changing the band curvature. At this point, the map-
ping between momentum and energy becomes singular, leading to
the appearance of spectral caustic’'. Thus, the phase measurement
serves as a sensitive probe of the bandgap and allows its accurate
identification.

Beyond the cutoff energy of the first conduction band, the elec-
tron dynamics involve multiple bands®>*. The harmonic emission
is dictated by electron currents originating from higher conduction
bands, determined by their structure and coupling. Importantly,
these parameters depend on the crystal orientation, with each ori-
entation offering a new one-dimensional slice of the band struc-
ture””*. We can, thus, track the dependence of electron dynamics
on the band structure and laser-induced couplings by resolving
the oscillation phase of each harmonic as a function of crystal
orientation.

Figure 3a presents the HHG oscillation phase, for various crystal
orientations. The oscillation phases of the lower harmonics (H11,
H13 and H15) emitted far from the edge of the Brillouin zone
remain unchanged with the crystal orientation. Indeed, the bottom
of the first conduction band, as well as its distance from the valence
band (e, =€, —¢,), is approximately isotropic (Fig. 3c).
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For higher harmonics (N=19-29), a strong variation in the
oscillation phase with crystal orientation is observed (Fig. 3a).
Figure 3b presents the oscillation phase as a function of crystal ori-
entation for H21. The phase shows a sharp increase by more than
T as the orientation angle changes towards 45°. The origin of this
sharp variation can be understood by looking at the angular depen-
dence of the bands. Figure 3c shows the energy difference between
the valence, first and second conduction bands (e, ,,€,,) for differ-
ent crystal orientations, together with the energy contours for H21.
The crystal momentum at the emission point associated with H21
quickly changes with the crystal orientation (Fig. 3d). The strong
orientation-dependent modifications of the bandgap, ¢, lead to
notable angular changes of the corresponding electron trajectories,
as captured by the phase measurement. In contrast, the emission
points for H11-H15 are almost constant with the crystal orientation
(Fig. 3d). Such nearly isotropic response is captured by the phase
measurement, too (Fig. 3b).

We now turn to resolving the light-induced dressing of the
band structure. Although in large bandgap materials, such as MgO,
observing the bandgap modifications requires high intensities, and
the gap between the conduction bands is relatively small. Therefore,
it can be notably modified at moderate field intensities. We focus
on harmonic emission associated with an energy gap between the
first and second conduction bands. In Fig. 4a, we plot the field-free
band structure, which provides a good description of the system at
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low laser intensities. At 0° orientation, the minimum energy gap
between the two conduction bands, €,—¢_,, is around 3eV; H20
is located inside this gap. As we rotate the crystal, the energy gap
rapidly reduces to zero, and H20 is emitted from the second con-
duction band. In Fig. 4b, we plot the oscillation phase of H20 (®,,)
as a function of crystal orientation for different laser intensities. At
low intensity (light green), @,, shows a dramatic angular depen-
dence, mainly between 0° and 25° as a consequence of the strong
angular dependence of €, — €.,. Importantly, as we increase the field
intensity, the angular dependence of @,, decreases and then notably
flattens (dark green). These experimental results are confirmed by
our numerical simulations (Fig. 4c). Numerically, the flattening of
the angular dependence of the oscillation phase coincides with the
onset of strong sub-cycle Landau-Dykhne-type transitions, with
the probability approaching 50% (Supplementary Information).

Our theoretical and numerical results link these
intensity-dependent observations with the closing of the effective
bandgap by the laser field. According to equation (2), the oscilla-
tion phase is dictated by the additional complex phase ¢ induced
by the SH field”. The imaginary component, Im(o), is associated
with perturbations of tunnelling and recombination probabilities,
whereas the real component Re(o) reflects subtle modifications in
the electron trajectory as it propagates within the band. Since the
odd and even harmonics represent constructive and destructive
interference of two sub-cycle emissions, Re(o) leads to an oscilla-
tion phase difference. However, Im(o) simultaneously affects both
even and odd harmonics; therefore, their oscillation phases coincide
(Supplementary Information).

In Fig. 4d, we plot the relative oscillation phase of H19 and H20,
namely, @,,— ®,,, at 0° orientation for different fundamental field
intensities. At a sufficiently low laser intensity, this phase difference
vanishes, reflecting the dominant role of the imaginary component.
The origin of this imaginary component could be associated with
an anomalous emission event of these harmonics, emitted from an
energy gap. At higher field intensities, the band structure is strongly
dressed so that the energy gap between the bands becomes negli-
gible. Therefore, the associated imaginary component is reduced
and the perturbation is dominated by Re(o), leading to a phase
difference between the even and odd harmonics (Supplementary
Information).

In summary, our study establishes the all-optical spectroscopy
of a strongly driven crystal, revealing a laser-induced modifica-
tion of the band structure. We identify the dynamical transitions
between several conduction bands as well as probe their structural
dependence. Importantly, we resolve the clear signature of har-
monic emission from the energy gap between the two conduction
bands, probing its modification by the laser field. This study pro-
vides a general framework for resolving and interpreting attosecond
electronic response phenomena in strongly driven solids. Looking
forward, two-colour HHG spectroscopy opens a window into the
observation of a broad range of electronic phenomena—from
sub-cycle phase transitions to ultrafast dynamics in correlated sys-
tems; some of these have been theoretically predicted decades ago,
whereas others are still hotly debated.
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Methods

Dressed bands in strongly driven solids. We consider the response of a two-band
solid driven by a strong low-frequency field, and we show how an effective band
structure can be introduced in this case on the sub-cycle timescale, which is
relevant for low-frequency drivers. In addition to a simple result that averages the
instantaneous adiabatic energies over the current wavefunction, we introduce an
extension of the Floquet-type analysis to the sub-cycle timescale.

Floquet-type analysis on the sub-cycle timescale: effective bandgap in a strong
low-frequency field. Let us start with some well-defined eigenstate, with
wavefunction y, and energies E,, which satisfies the stationary Schrédinger
equation, namely, Hy,, = Egy,.. Here k collects the quantum numbers that label
the state. In a solid, i labels the crystal momentum k together with band index .
Let the Hamiltonian depend on some external parameter f, that is, H(f).
If we change S slowly, our eigenstate will slowly evolve following the stationary
Schrodinger equation

HB) b (B) = ex(B) (). 3)

In the low-frequency field, where the driver has frequency w substantially
lower than the energy gap, such parameter f is = wt. From now on, we will simply
refer to time t. In the low-frequency field, the adiabatic states are solutions of the
stationary Schrodinger equation with time treated as a parameter:

H(t)d)l( (1) = ex ()i (1),

. . . 4)
H(t) = Ho + V(2),
where V(?) is the interaction with the low-frequency field. The adiabatic eigenstates
¢.(t) form a complete basis set. Each state has an associated time-dependent state
¥, that incorporates the standard energy phase factor as follows:

T (f) = e O g ), (5)

Putting this back into the time-dependent Schrédinger equation, we see that
the equation for ¥, contains an extra term proportional to the derivative of the
eigenstate:

(6)

iW.K _ HEt)WK + ie—ifr: e (t1)dt! d‘)K.
As long as the non-adiabatic Landau-Dykhne-type transitions (between the
adiabatic states) caused by this term are small, their instantaneous energies ¢,(t)
offer a very good approximation for the effective instantaneous (and hence the
sub-cycle) energies of the driven system. However, in the presence of strong
non-adiabatic transitions between the adiabatic states, these concepts require
corrections.

Consider now the specific case of a solid, with bands ¢,(k) and Bloch
wavefunctions ¢,,, interacting with a low-frequency laser field. We note that
the analysis below is not, in fact, limited to such a low-frequency case, but the
low-frequency case presents the most natural physical situation where our analysis
and its conclusions are physically transparent.

With the light-solid interaction treated in the dipole approximation and in
the length gauge, the initial crystal momentum k becomes a function of time. We
label this time-dependent momentum k(t) =k+ A(f), where A(¢) is the field vector
potential.

It is very useful then to use the Houston states to analyse the interaction.

In this basis, Bloch wavefunctions ¢, and band energies ¢,(k) also follow the
vector potential, replacing k with k() =k + A(t). The field-free energy ¢,(k) goes
into €,(k(t)) =¢,(k+ A(?)), so that the band energy ‘slides’ with instantaneous
momentum K(f). The Bloch wavefunction also ‘slides’ with this instantaneous
momentum, becoming ¢, .

In this basis, each time-dependent crystal momentum k(t) =k+ A(¢) ‘traces’
its own multilevel system, with its states labelled with band index n as well as
time-dependent energies and couplings. The multilevel system with crystal
momentum k is decoupled from other multilevel systems with momenta k'.

Beyond adiabatic evolution. Consider a two-band solid, with band indexes n=1,2,
driven by a low-frequency field. Owing to the low frequency, the adiabatic
evolution would be a good approximation for most part of the Brillouin zone. The
adiabatic evolution will break down to the greatest extent in regions of the smallest
bandgap, with exponential dependence on the bandgap.

Different k values reach these regions at different times and hence with
different instantaneous values of field F(). Suppose we start in state k, turn on the
field, and at a moment t;, we arrive at some momentum k in one of the adiabatic
states (say with label |1, k)), approaching a region where the two bands are coming
close to each other.

We shall now look at the propagator across the region of interest. The analysis
is general, but for the physical interpretation to be clear, the time interval should
be enough to go through the region. For compactness, we will drop the crystal
momentum index for the moment.
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The propagator, written in the basis of the adiabatic states |#*V) and |#¥®) with
energies €V(t) and (1), respectively, has the following form:

cosae*  — sinae'®

~ —il 1(1>+/1(Z)]
Ut t) = 2 [ . .
() =e sinae™ cosae

?)
A=1 [,1<2> _ ,1<1>]

This form of the propagator is general and meets the key requirements.

[Un)? + |Un |

1
|Ui|” + |Un|* =1 (8)
Ut =0'0=1
The last point also ensures that the wavefunctions remain orthogonal during
passage, that is, (#@ U O]y = 0.
The meaning of the matrix elements in this propagator is as follows.

o The phases A*?(¢) are associated with the adiabatic energies plus, in general,
the geometrical Berry phase, ;.

10w = [(are )4y, ©
t,

The reason we want to complete the passage across the region of interest is that
we want the geometrical phase, associated with this passage, to accumulate
fully. But, if we treat the problem fully numerically, then, of course, such a
requirement is not necessary: the phases A9(¢) are simply found numerically.

o The overall factor in front of the propagator sets the zero-energy level as

<@:%Fm+&ﬂ (10)

through the phases associated with the adiabatic energies.
o Irrespective of how the phases A9(f) are obtained, their physical interpretation
remains the same: their time derivatives have to be associated with the adiaba-
tic energies (which are viable and meaningful in the absence of non-adiabatic
transitions, that is, when |sina| < 1).
92D (1)

0w = =5

11
The reason to add the ‘tilde’ above the adiabatic energy is to stress that the
adiabatic energies &(”) (¢) obtained in such a way may not always coincide with
the adiabatic energies obtained by diagonalizing the adiabatic Hamiltonian,
because of the presence of the geometric phase. Again, we stress that the
phases associated with (¥ (t) can be numerically extracted. For the physical
interpretation, we will need their derivatives.

o The off-diagonal elements describe the Landau-Zener-Dykhne non-adiabatic
transitions between the two adiabatic states.

o Phases ¢ of these off-diagonal elements are determined by the landscape of the
bands and the Berry connections (couplings). As we shall see below, the effec-
tive band structure is independent of ¢.

o The probability of staying in the adiabatic state is cos’a and the probability of
making the transition is sin’a.

We can now develop the sub-cycle version of the Floquet analysis. To this end,
we return to the propagator, dropping the common zero-energy-level phase factor
for compactness, as

. cosae*  —sinae
U ti) = ‘ u
sinae ™ cosae™!

A=1 [,1<2> 7,1”]

(12)

and look for orthogonal states |##(t,)) with time-dependent quasi-energies e*(t, t,),
which depend on crystal momentum k. We want these states to behave as if they
were the Floquet states for this propagator.

Ut 1) | o) = e o)
(13)

The positive sign in the phase of the exponent is for convenience because we
shall start with the ‘lower’ state, which has negative energy. The minus sign in the
equation for the quasi-energy is related to the positive sign in the exponent in the
first equation.

These quasi-energies and the associated states are as close as one can get
to the effective bands and effective eigenstates in a strongly driven system with
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non-adiabatic transitions. As we shall see below, in the absence of non-adiabatic
transitions, they—of course—coincide with the adiabatic energies and states.

In principle, one can try to find such states for any time interval after ¢, but
a meaningful time interval is an interval that is sufficient to cross the transition
region. Once the region is crossed, each component of the wavefunction, projected
on the adiabatic states, will mostly evolve on the associated adiabatic bands; in the
absence of non-adiabatic transitions, these bands are fine and, as mentioned above,
coincide with the quasi-energies discussed below.

The time-dependent ‘eigenstates’ of the propagator have two components
corresponding to the amplitudes in the two adiabatic states [¢p?(1)).

=(;)

The analysis is straightforward. We consider that the determinant of matrix
U — €1 is equal to zero, and the solution is found to be

(14)

COS Jt = COS @ COS A. (15)
There are two solutions of this equation, namely, 4, =y and y,=—pu, and the
quasi-energies €/ and ¢*2 are obtained by differentiating y, and y, with respect to
time, respectively.

The first observation is that in the absence of non-adiabatic transitions, when
cosa =1, cosp=cos, i, =—A4 and u, =4, and the quasi-energies coincide with the
adiabatic states.

Equation (15) is already sufficient to find the effective bandgap, which is equal
to

ou
Aet = |t M| — o ) 16
€—|€ e|7 ‘at (16)

We differentiate the two sides of equation (15) with respect to time and find

Aet = [6(2) - E‘(l)] cosoz—sm}L , (17)
ad ad sin u
where we have used that
7 — =2 _ ()
20=¢) —&). (18)
Using the relationship cosu= cosacosl, we can rewrite
s 2 cos*asin®A
Cos a — = 5 5 (19)
sin p cos’asin?A + sin?a
and hence
cosasin®i
Aet = [a“) - a“q L 20
ad ad cos?asin?A + sin?a @0

Finally, we can simplify this expression by taking into account that if the action A(f)
is large, which is usually the case in a strong, low-frequency field, then sin?A(t, t,) is
a fast-oscillating function of ¢ — t,. Replacing it with its average (sin?A(t, ;) =>1/2)
and introducing the notation sin’a = w,,, we get the final result for the bandgap
between the two quasi-energies as

1 — w
act = [ef = e ]/ .
1+ wip

21
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This result shows that the bandgap collapses when the non-adiabatic Landau-
Dykhne-type transition approaches unity, that is, w;, ~ 1.

We note that the formalism based on the sub-cycle analogue of the
quasi-energy states of a strongly driven system is especially attractive because it
naturally merges into the Floquet analysis when ¢ —t; is equal to one period.

One can also find the quasi-eigenenergies in a different way by only using the
relationship cosu=cosacosA. Namely, one can use this relationship to solve the
equations for the amplitudes a* and b*, and then average the full Hamiltonian over
the eigenvectors obtained in such a way from equation (14). The result is exactly
the same, as expected.
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