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Intense light–matter interactions have revolutionized our 
ability to probe and manipulate quantum systems at sub- 
femtosecond timescales1, opening routes to the all-optical 
control of electronic currents in solids at petahertz rates2–7. 
Such control typically requires electric-field amplitudes in the 
range of almost volts per angstrom, when the voltage drop 
across a lattice site becomes comparable to the character-
istic bandgap energies. In this regime, intense light–matter 
interaction induces notable modifications to the electronic 
and optical properties8–10, dramatically modifying the crystal 
band structure. Yet, identifying and characterizing such modi-
fications remain an outstanding problem. As the oscillating 
electric field changes within the driving field’s cycle, does 
the band structure follow and how can it be defined? Here 
we address this fundamental question, proposing all-optical 
spectroscopy to probe the laser-induced closing of the band-
gap between adjacent conduction bands. Our work reveals the 
link between nonlinear light–matter interactions in strongly 
driven crystals and the sub-cycle modifications in their effec-
tive band structure.

The ability of near-resonant light fields to modify the energetics 
and dynamics of an atom (or a molecule) is central to many phe-
nomena such as laser cooling, trapping, quantum optics of atoms in 
a cavity11,12 or extremely efficient generation of hyper-Raman lines13. 
The combined states of matter and near-resonant light are gener-
ally studied over many laser cycles using the Floquet formalism, 
which takes advantage of the periodicity of light oscillations. In sol-
ids, cycle-averaged modification of the hopping rates between the 
neighbouring sites leads to, for example, the coherent destruction of 
tunnelling14 and modified local interaction potentials10.

The situation changes in light fields with frequencies well 
below resonance but with intensities sufficiently high to induce 
electronvolt-scale voltages across a lattice site. As the oscillating 
electric field of the lightwave changes from zero to its maximum 
value within a quarter cycle, rapidly changing voltages can lead 
to sub-cycle modifications of the macroscopic properties, such as 
transmittance4,6 or conductance7. In this regime, a cycle-averaged 
frequency-domain Floquet perspective is hardly satisfying.

Here we describe how the effective band structure can be intro-
duced in such an interaction regime within a time-domain perspec-
tive. We experimentally demonstrate all-optical spectroscopy of a 

strongly driven crystal, revealing an anomalous spectral intensity 
response, using high-harmonic generation (HHG). Our theoretical 
study links these observations to laser-induced closing of the gap 
between adjacent conduction bands (Fig. 1a).

HHG in solids involves optical tunnelling15 across the gap 
between the valence and conduction bands. This transition initi-
ates harmonic generation associated with both intraband cur-
rents10,16,17 and electron–hole recombination, the latter leading to 
higher-order harmonic emission18. At higher light intensities and/
or lower frequencies, one enters a new dynamical regime. In many 
systems, as the electron–hole wavepacket approaches the edges of 
the Brillouin zone, Landau–Dykhne-type transitions19 can promote 
electrons to higher conduction bands, as reflected in the harmonic 
spectra20,21 (Fig. 1a). However, can the imprint of these transitions 
on high-harmonic emission be used to observe light-induced modi-
fications of the bands?

One can show that light-induced modifications of the bands are 
directly linked to the sub-cycle Landau–Dykhne-type transitions 
between them (Methods). In the low-frequency limit, one begins 
with the adiabatic approximation, which treats the phase ωt of the 
electric-field oscillations as a parameter, and finds the adiabatic 
band structure ϵ(k, ωt) in the presence of a quasi-static electric field. 
When a non-adiabatic Landau–Dykhne-type transition between a 
pair of bands occurs, typically as the electron is laser driven across 
the minimal bandgap, it modifies the gap as follows:

Δϵeff(t) ≃ Δϵad(t)

√

1− wLD(t)
1+ wLD(t)

, (1)

where Δϵeff is the effective bandgap, Δϵad is the bandgap in the 
adiabatic approximation and wLD is the probability of the sub-cycle 
Landau–Dykhne-type transition. The result is intuitive: the effective 
bandgap is closed by the laser field when the sub-cycle transition 
approaches unity, that is, wLD(t) ≃ 1. Given the exponential sensitiv-
ity of wLD(t) to the laser-field strength, the effective bandgap closes 
soon after the sub-cycle excitation probability becomes appreciable.

To experimentally investigate this phenomenon, we use 
two-colour HHG spectroscopy22,23 (Fig. 1b), augmenting the strong 
fundamental driver with a weak second-harmonic (SH) field  
and controlling their sub-cycle delay τ. Electron–hole trajectories 
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Fig. 1 | All-optical spectroscopy of dynamical band structure. a, Non-adiabatic Landau–Dykhne-type transition between a pair of bands. b, Two-colour 
HHG spectroscopy probes the internal dynamics, mapping the temporal properties of electron trajectories, transitions between the bands as well as their 
laser-driven modifications.
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Fig. 2 | HHG spectroscopy beyond the semi-classical description. a,c, HHG spectrum (black line) and oscillation phase (red dots) as a function of photon 
energy for crystal orientations of 0° (a) and 45° (c). The oscillation phase calculated using the saddle-point approximation in the interband model18 
(purple star markers). b, Valence and the first conduction band for 0° (Γ to X) and for 45° (Γ to K). The yellow-shaded area emphasizes the energy range 
where the semi-classical description fails21, also marked at the corresponding photon energies in a and c (dashed yellow line).
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responsible for different harmonics24 are perturbed by the weak field: 
each trajectory acquires an additional complex phase σ(τ), which is 
accumulated along the entire trajectory, serving as a sensitive label of 
its temporal properties. If the fundamental field generates only odd 
harmonics, the SH field breaks the symmetry of interaction, as σ(τ) 
changes sign between two consecutive half-cycles (Supplementary 
Information). This phase is mapped into the harmonic intensity as

Iodd(σ(τ)) ∝ (eiσ + e−iσ),

Ieven(σ(τ)) ∝ (eiσ − e−iσ).
(2)

Scanning τ modifies σ(τ) in a periodic manner, modulating the har-
monic spectrum. The modulation phase and contrast encode the 
dynamical properties of electron trajectories associated with each 
harmonic order and allow their reconstruction with attosecond  
precision. In previous studies this method resolved the interband  

contribution to high-harmonic emission24 and provided an 
all-optical reconstruction of the field-free band structure on excit-
ing a single conduction band25,26. In this paper, we use this scheme to 
study the underlying dynamics of driven multiband currents, prob-
ing the dressed band structure.

Experiments were performed on MgO (ref. 27) using λ = 1.3 μm 
laser field at intensities of ~1013 W cm–2 and a weak SH field, polar-
ized parallel to the fundamental field. We have measured the HHG 
modulations with the two-colour delay and extracted the oscillation 
phase ΦN associated with each harmonic order N. Figure 2 presents 
ΦN as a function of the harmonic order for orientation angles of 0° 
(ΓX) and 45° (ΓK) with respect to the fundamental field’s polariza-
tion. For harmonics N = 11−15 (10.5–14.5 eV), which are associated 
with electron–hole recombination from the first conduction band, 
we measure a gradual slope of ΦN with N. The slope reflects the 
evolution of the trajectory length with harmonic order24, supported 
by our semi-classical calculations (Supplementary Information). 
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Fig. 3 | Probing the structural dependence of multiple conduction bands. a, Oscillation phase as a function of harmonic number, for different crystal 
orientations ranging from 0° (dark blue) to 45° (cyan). The dashed line marks the cutoff of the first conduction band and the dashed box emphasizes the 
H21 oscillation phases for different orientations (plotted in b). b, Harmonic 21 (H21, purple) and harmonic 11 (H11, grey) oscillation phase as a function 
of crystal orientation. c, Two-dimensional second bandgap, ϵc2,v = ϵc2 − ϵv, as a function of crystal momentum (top). The purple contour represents the 
H21 energy along different crystal orientations. Two-dimensional first bandgap, ϵc1,v = ϵc1,v − ϵv, as a function of crystal momentum (bottom). The grey 
contour represents H11 energy along different crystal orientations. d, One-dimensional cut of the second (yellow) and first (blue) bandgap along crystal 
orientations of 10° and 45°. H21 and H11 energies are represented by the purple and grey dashed lines, as well as their crossing point with the bandgaps 
(cross markers).
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As we approach the edge of the Brillouin zone, represented by har-
monic 17 (H17; 16 eV) for the ΓK direction and harmonic 19 (H19) 
for the Γ–X direction, this simple description fails. A clear phase 
jump appears in the measurements, associated with the edge of 
the zone and changing the band curvature. At this point, the map-
ping between momentum and energy becomes singular, leading to 
the appearance of spectral caustic21. Thus, the phase measurement 
serves as a sensitive probe of the bandgap and allows its accurate 
identification.

Beyond the cutoff energy of the first conduction band, the elec-
tron dynamics involve multiple bands20,28. The harmonic emission 
is dictated by electron currents originating from higher conduction 
bands, determined by their structure and coupling. Importantly, 
these parameters depend on the crystal orientation, with each ori-
entation offering a new one-dimensional slice of the band struc-
ture27,29. We can, thus, track the dependence of electron dynamics 
on the band structure and laser-induced couplings by resolving 
the oscillation phase of each harmonic as a function of crystal 
orientation.

Figure 3a presents the HHG oscillation phase, for various crystal 
orientations. The oscillation phases of the lower harmonics (H11, 
H13 and H15) emitted far from the edge of the Brillouin zone 
remain unchanged with the crystal orientation. Indeed, the bottom 
of the first conduction band, as well as its distance from the valence 
band (ϵc1,v = ϵc1 − ϵv), is approximately isotropic (Fig. 3c).

For higher harmonics (N = 19−29), a strong variation in the 
oscillation phase with crystal orientation is observed (Fig. 3a). 
Figure 3b presents the oscillation phase as a function of crystal ori-
entation for H21. The phase shows a sharp increase by more than 
π as the orientation angle changes towards 45°. The origin of this 
sharp variation can be understood by looking at the angular depen-
dence of the bands. Figure 3c shows the energy difference between 
the valence, first and second conduction bands (ϵc1,v, ϵc2,v) for differ-
ent crystal orientations, together with the energy contours for H21. 
The crystal momentum at the emission point associated with H21 
quickly changes with the crystal orientation (Fig. 3d). The strong 
orientation-dependent modifications of the bandgap, ϵc2,v, lead to 
notable angular changes of the corresponding electron trajectories, 
as captured by the phase measurement. In contrast, the emission 
points for H11–H15 are almost constant with the crystal orientation 
(Fig. 3d). Such nearly isotropic response is captured by the phase 
measurement, too (Fig. 3b).

We now turn to resolving the light-induced dressing of the 
band structure. Although in large bandgap materials, such as MgO, 
observing the bandgap modifications requires high intensities, and 
the gap between the conduction bands is relatively small. Therefore, 
it can be notably modified at moderate field intensities. We focus 
on harmonic emission associated with an energy gap between the 
first and second conduction bands. In Fig. 4a, we plot the field-free 
band structure, which provides a good description of the system at 
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Fig. 4 | Dynamical band structure. a, First (blue) and second (yellow) bandgaps, ϵc1,v and ϵc2,v, respectively, for 0° (right) and 25° (left) orientations, as 
a function of k/kc (kc = 2π/a, where a is the lattice constant). b, H20 oscillation phase as a function of crystal orientation for different fundamental field 
intensities (light green to dark green). c, Calculated oscillation phase of H20 as a function of crystal orientation for different fundamental field intensities 
(light green to dark green). d, Oscillation phase difference, Φ20 − Φ19, at 0° orientation as a function of the fundamental field intensities. The inset shows 
the Φ18 − Φ17 (pink) and Φ22 − Φ21 (blue) plots.
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low laser intensities. At 0° orientation, the minimum energy gap 
between the two conduction bands, ϵc2 − ϵc1, is around 3 eV; H20 
is located inside this gap. As we rotate the crystal, the energy gap 
rapidly reduces to zero, and H20 is emitted from the second con-
duction band. In Fig. 4b, we plot the oscillation phase of H20 (Φ20) 
as a function of crystal orientation for different laser intensities. At 
low intensity (light green), Φ20 shows a dramatic angular depen-
dence, mainly between 0° and 25° as a consequence of the strong 
angular dependence of ϵc2 − ϵc1. Importantly, as we increase the field 
intensity, the angular dependence of Φ20 decreases and then notably 
flattens (dark green). These experimental results are confirmed by 
our numerical simulations (Fig. 4c). Numerically, the flattening of 
the angular dependence of the oscillation phase coincides with the 
onset of strong sub-cycle Landau–Dykhne-type transitions, with 
the probability approaching 50% (Supplementary Information).

Our theoretical and numerical results link these 
intensity-dependent observations with the closing of the effective 
bandgap by the laser field. According to equation (2), the oscilla-
tion phase is dictated by the additional complex phase σ induced 
by the SH field23. The imaginary component, Im(σ), is associated 
with perturbations of tunnelling and recombination probabilities, 
whereas the real component Re(σ) reflects subtle modifications in 
the electron trajectory as it propagates within the band. Since the 
odd and even harmonics represent constructive and destructive 
interference of two sub-cycle emissions, Re(σ) leads to an oscilla-
tion phase difference. However, Im(σ) simultaneously affects both 
even and odd harmonics; therefore, their oscillation phases coincide 
(Supplementary Information).

In Fig. 4d, we plot the relative oscillation phase of H19 and H20, 
namely, Φ20 − Φ19, at 0° orientation for different fundamental field 
intensities. At a sufficiently low laser intensity, this phase difference 
vanishes, reflecting the dominant role of the imaginary component. 
The origin of this imaginary component could be associated with 
an anomalous emission event of these harmonics, emitted from an 
energy gap. At higher field intensities, the band structure is strongly 
dressed so that the energy gap between the bands becomes negli-
gible. Therefore, the associated imaginary component is reduced 
and the perturbation is dominated by Re(σ), leading to a phase 
difference between the even and odd harmonics (Supplementary 
Information).

In summary, our study establishes the all-optical spectroscopy 
of a strongly driven crystal, revealing a laser-induced modifica-
tion of the band structure. We identify the dynamical transitions 
between several conduction bands as well as probe their structural 
dependence. Importantly, we resolve the clear signature of har-
monic emission from the energy gap between the two conduction 
bands, probing its modification by the laser field. This study pro-
vides a general framework for resolving and interpreting attosecond 
electronic response phenomena in strongly driven solids. Looking 
forward, two-colour HHG spectroscopy opens a window into the 
observation of a broad range of electronic phenomena—from 
sub-cycle phase transitions to ultrafast dynamics in correlated sys-
tems; some of these have been theoretically predicted decades ago, 
whereas others are still hotly debated.
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Methods
Dressed bands in strongly driven solids. We consider the response of a two-band 
solid driven by a strong low-frequency field, and we show how an effective band 
structure can be introduced in this case on the sub-cycle timescale, which is 
relevant for low-frequency drivers. In addition to a simple result that averages the 
instantaneous adiabatic energies over the current wavefunction, we introduce an 
extension of the Floquet-type analysis to the sub-cycle timescale.

Floquet-type analysis on the sub-cycle timescale: effective bandgap in a strong 
low-frequency field. Let us start with some well-defined eigenstate, with 
wavefunction ψκ and energies Eg, which satisfies the stationary Schrödinger 
equation, namely, Ĥψκ = Egψκ. Here κ collects the quantum numbers that label 
the state. In a solid, κ labels the crystal momentum k together with band index n.

Let the Hamiltonian depend on some external parameter β, that is, Ĥ(β). 
If we change β slowly, our eigenstate will slowly evolve following the stationary 
Schrödinger equation

Ĥ(β)ϕκ(β) = ϵκ(β)ϕκ(β). (3)

In the low-frequency field, where the driver has frequency ω substantially 
lower than the energy gap, such parameter β is β = ωt. From now on, we will simply 
refer to time t. In the low-frequency field, the adiabatic states are solutions of the 
stationary Schrödinger equation with time treated as a parameter:

Ĥ(t)ϕκ(t) = ϵκ(t)ϕκ(t),

Ĥ(t) = Ĥ0 + ˆV(t),
(4)

where V(t) is the interaction with the low-frequency field. The adiabatic eigenstates 
ϕκ(t) form a complete basis set. Each state has an associated time-dependent state 
Ψκ that incorporates the standard energy phase factor as follows:

Ψκ(t) = e−i
∫ t
ti

ϵκ(t′)dt′ϕκ(t). (5)

Putting this back into the time-dependent Schrödinger equation, we see that 
the equation for Ψκ contains an extra term proportional to the derivative of the 
eigenstate:

iΨ̇κ = ˆH(t)Ψκ + ie−i
∫ t
ti

ϵκ(t′)dt′ ϕ̇κ . (6)

As long as the non-adiabatic Landau–Dykhne-type transitions (between the 
adiabatic states) caused by this term are small, their instantaneous energies ϵκ(t) 
offer a very good approximation for the effective instantaneous (and hence the 
sub-cycle) energies of the driven system. However, in the presence of strong 
non-adiabatic transitions between the adiabatic states, these concepts require 
corrections.

Consider now the specific case of a solid, with bands ϵn(k) and Bloch 
wavefunctions ϕn,k, interacting with a low-frequency laser field. We note that 
the analysis below is not, in fact, limited to such a low-frequency case, but the 
low-frequency case presents the most natural physical situation where our analysis 
and its conclusions are physically transparent.

With the light–solid interaction treated in the dipole approximation and in 
the length gauge, the initial crystal momentum k becomes a function of time. We 
label this time-dependent momentum κ(t) = k + A(t), where A(t) is the field vector 
potential.

It is very useful then to use the Houston states to analyse the interaction. 
In this basis, Bloch wavefunctions ϕn,k and band energies ϵn(k) also follow the 
vector potential, replacing k with κ(t) = k + A(t). The field-free energy ϵn(k) goes 
into ϵn(κ(t)) ≡ ϵn(k + A(t)), so that the band energy ‘slides’ with instantaneous 
momentum κ(t). The Bloch wavefunction also ‘slides’ with this instantaneous 
momentum, becoming ϕn,κ(t).

In this basis, each time-dependent crystal momentum κ(t) = k + A(t) ‘traces’ 
its own multilevel system, with its states labelled with band index n as well as 
time-dependent energies and couplings. The multilevel system with crystal 
momentum k is decoupled from other multilevel systems with momenta k′.

Beyond adiabatic evolution. Consider a two-band solid, with band indexes n = 1, 2, 
driven by a low-frequency field. Owing to the low frequency, the adiabatic 
evolution would be a good approximation for most part of the Brillouin zone. The 
adiabatic evolution will break down to the greatest extent in regions of the smallest 
bandgap, with exponential dependence on the bandgap.

Different k values reach these regions at different times and hence with 
different instantaneous values of field F(t). Suppose we start in state k, turn on the 
field, and at a moment ti, we arrive at some momentum κ in one of the adiabatic 
states (say with label |1, κ〉), approaching a region where the two bands are coming 
close to each other.

We shall now look at the propagator across the region of interest. The analysis 
is general, but for the physical interpretation to be clear, the time interval should 
be enough to go through the region. For compactness, we will drop the crystal 
momentum index for the moment.

The propagator, written in the basis of the adiabatic states |Ψ(1)〉 and |Ψ(2)〉 with 
energies ϵ(1)(t) and ϵ(2)(t), respectively, has the following form:

Û(t, ti) = e−i 12
[

λ(1)+λ(2)
]






cos αeiλ − sin αeiϕ

sin αe−iϕ cos αe−iλ







λ = 1
2

[

λ(2) − λ(1)
]

. (7)

This form of the propagator is general and meets the key requirements.

|U11|
2 + |U21|

2 = 1

|U12|
2 + |U22|

2 = 1

ÛÛ†
= Û†Û = 1̂

(8)

The last point also ensures that the wavefunctions remain orthogonal during 
passage, that is, ⟨Ψ(2)

|Û†Û|Ψ(1)
⟩ = 0.

The meaning of the matrix elements in this propagator is as follows.
•	 The phases λ(1,2)(t) are associated with the adiabatic energies plus, in general, 

the geometrical Berry phase, γi.

λ
(i)

(t) =

∫ t

ti
dt′ϵ(i)(t′) + γi (9)

The reason we want to complete the passage across the region of interest is that 
we want the geometrical phase, associated with this passage, to accumulate 
fully. But, if we treat the problem fully numerically, then, of course, such a 
requirement is not necessary: the phases λ(i)(t) are simply found numerically.

•	 The overall factor in front of the propagator sets the zero-energy level as

⟨ϵ⟩ =
1
2

[

ϵ
(2)

+ ϵ
(1)

]

(10)

through the phases associated with the adiabatic energies.
•	 Irrespective of how the phases λ(i)(t) are obtained, their physical interpretation 

remains the same: their time derivatives have to be associated with the adiaba-
tic energies (which are viable and meaningful in the absence of non-adiabatic 
transitions, that is, when |sinα| ≪ 1).

ϵ̃
(i)

(t) =
∂λ(i)(t)

∂t (11)

The reason to add the ‘tilde’ above the adiabatic energy is to stress that the 
adiabatic energies ϵ̃(i)(t) obtained in such a way may not always coincide with 
the adiabatic energies obtained by diagonalizing the adiabatic Hamiltonian, 
because of the presence of the geometric phase. Again, we stress that the 
phases associated with ϵ̃(i)(t) can be numerically extracted. For the physical 
interpretation, we will need their derivatives.

•	 The off-diagonal elements describe the Landau–Zener–Dykhne non-adiabatic 
transitions between the two adiabatic states.

•	 Phases ϕ of these off-diagonal elements are determined by the landscape of the 
bands and the Berry connections (couplings). As we shall see below, the effec-
tive band structure is independent of ɸ.

•	 The probability of staying in the adiabatic state is cos2α and the probability of 
making the transition is sin2α.

We can now develop the sub-cycle version of the Floquet analysis. To this end, 
we return to the propagator, dropping the common zero-energy-level phase factor 
for compactness, as

Û(t, ti) =

( cos αeiλ − sin αeiϕ

sin αe−iϕ cos αe−iλ

)

λ = 1
2

[

λ(2) − λ 1)
]

(12)

and look for orthogonal states |Ψµ(ti)〉 with time-dependent quasi-energies ϵμ(t, ti), 
which depend on crystal momentum k. We want these states to behave as if they 
were the Floquet states for this propagator.

Û(t, ti) |Ψ μ
⟩ = eiμ |Ψ μ

⟩

ϵμ = −

∂μ

∂t

(13)

The positive sign in the phase of the exponent is for convenience because we 
shall start with the ‘lower’ state, which has negative energy. The minus sign in the 
equation for the quasi-energy is related to the positive sign in the exponent in the 
first equation.

These quasi-energies and the associated states are as close as one can get 
to the effective bands and effective eigenstates in a strongly driven system with 
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non-adiabatic transitions. As we shall see below, in the absence of non-adiabatic 
transitions, they—of course—coincide with the adiabatic energies and states.

In principle, one can try to find such states for any time interval after ti, but 
a meaningful time interval is an interval that is sufficient to cross the transition 
region. Once the region is crossed, each component of the wavefunction, projected 
on the adiabatic states, will mostly evolve on the associated adiabatic bands; in the 
absence of non-adiabatic transitions, these bands are fine and, as mentioned above, 
coincide with the quasi-energies discussed below.

The time-dependent ‘eigenstates’ of the propagator have two components 
corresponding to the amplitudes in the two adiabatic states |ɸ(i)(t)〉.

∣

∣Ψ
μ
〉

=

(

aμ

bμ

)

(14)

The analysis is straightforward. We consider that the determinant of matrix 
Û − eiμ 1̂ is equal to zero, and the solution is found to be

cos μ = cos α cos λ. (15)

There are two solutions of this equation, namely, μ1 = μ and μ2 = −μ, and the 
quasi-energies ϵμ1 and ϵμ2 are obtained by differentiating μ1 and μ2 with respect to 
time, respectively.

The first observation is that in the absence of non-adiabatic transitions, when 
cosα = 1, cosµ = cosλ, μ1 = −λ and μ2 = λ, and the quasi-energies coincide with the 
adiabatic states.

Equation (15) is already sufficient to find the effective bandgap, which is equal 
to

Δϵ
μ
=

∣

∣ϵ
μ1

− ϵ
μ2
∣

∣ = 2
∣

∣

∣

∣

∂μ

∂t

∣

∣

∣

∣

. (16)

We differentiate the two sides of equation (15) with respect to time and find

Δϵ
μ
=

[

ϵ̃
(2)
ad − ϵ̃

(1)
ad

]

∣

∣

∣

∣

cos α
sin λ

sin μ

∣

∣

∣

∣

, (17)

where we have used that

2λ̇ = ϵ̃
(2)
ad − ϵ̃

(1)
ad . (18)

Using the relationship cosµ = cosαcosλ, we can rewrite
[

cos α
sin λ

sin μ

]2
=

cos2αsin2λ

cos2αsin2λ + sin2α
(19)

and hence

Δϵ
μ
=

[

ϵ̃
(2)
ad − ϵ̃

(1)
ad

]

√

cos2αsin2λ

cos2αsin2λ + sin2α
. (20)

Finally, we can simplify this expression by taking into account that if the action λ(t) 
is large, which is usually the case in a strong, low-frequency field, then sin2λ(t, ti) is 
a fast-oscillating function of t − ti. Replacing it with its average (sin2λ(t, ti) => 1/2) 
and introducing the notation sin2α = wLD, we get the final result for the bandgap 
between the two quasi-energies as

Δϵ
μ
=

[

ϵ̃
(2)
ad − ϵ̃

(1)
ad

]

√

1 − wLD

1 + wLD
. (21)

This result shows that the bandgap collapses when the non-adiabatic Landau–
Dykhne-type transition approaches unity, that is, wLD ≃ 1.

We note that the formalism based on the sub-cycle analogue of the 
quasi-energy states of a strongly driven system is especially attractive because it 
naturally merges into the Floquet analysis when t − ti is equal to one period.

One can also find the quasi-eigenenergies in a different way by only using the 
relationship cosµ = cosαcosλ. Namely, one can use this relationship to solve the 
equations for the amplitudes aμ and bμ, and then average the full Hamiltonian over 
the eigenvectors obtained in such a way from equation (14). The result is exactly 
the same, as expected.
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