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Nonlinear valley selection rules and 
all-optical probe of broken time-reversal 
symmetry in monolayer WSe2

 

Paul Herrmann    1, Sebastian Klimmer    1,2, Thomas Lettau3, Till Weickhardt1, 
Anastasios Papavasileiou    4, Kseniia Mosina4, Zdeněk Sofer4, 
Ioannis Paradisanos    5, Daniil Kartashov    6,7, Jan Wilhelm    8,9 & 
Giancarlo Soavi    1,7 

In monolayer transition metal dichalcogenides, time-reversal symmetry—
combined with broken space-inversion symmetry—defines the spin–valley 
degree of freedom. As such, the engineering and control of time-reversal 
symmetry by optical or magnetic fields constitutes the foundation of 
valleytronics. Here we propose a new approach for the detection of broken 
time-reversal symmetry and valley imbalance in monolayer WSe2 based 
on second-harmonic generation. At room temperature, our method can 
selectively probe a net valley imbalance generated by ultrafast, coherent 
and valley-exclusive optical Stark and Bloch–Siegert effects. This work 
demonstrates the potential and unique capabilities of nonlinear optics as 
a probe of broken time-reversal symmetry as well as a tool for ultrafast and 
non-destructive valleytronic operations.

Time-reversal symmetry (TRS) E↑(k) = E↓(−k) underlies some of the 
most exotic phases of condensed matter1. In monolayer transition 
metal dichalcogenides (TMDs), the interplay between broken space 
inversion E↑(k) ≠ E↑(−k) and TRS further defines the spin–valley 
degree of freedom2,3, where direct transitions in momentum space at 
the ±K points of the Brillouin zone are energetically degenerate but 
non-equivalent. Engineering of TRS in TMDs naturally leads to the field 
of valleytronics, where the degeneracy of ±K valleys is lifted either by 
magnetic fields (Zeeman splitting)4 or with circularly polarized light. 
The latter approach can be further distinguished between the gen-
eration of a real exciton population in one of the valleys via one-5 or 
two-photon6 absorption, or by the transient breaking of TRS with coher-
ent processes such as the optical Stark and Bloch–Siegert effects7,8. In 
the vast majority of studies reported so far, the detection of broken TRS 

and the consequent valley imbalance has been limited to the realm of 
linear optics, mainly to the detection of a polarized photoluminescence 
(PL)5,9, or the detection of Kerr rotation in the pump–probe configura-
tion to probe valley-polarized resident carriers10,11 or valley-selective 
coherent states7,8. Both approaches suffer from severe limitations: 
PL is intrinsically destructive, as it requires the recombination of the 
electron–hole pair and, thus, the loss of valley information, whereas 
optical Kerr rotation uses a relatively intense and resonant probe pulse 
(for example, 100 μW of average power11), which can considerably per-
turb the sample under investigation. Although it is possible to probe a 
valley imbalance at room temperature8,12, most experiments on pristine 
TMDs were performed at cryogenic temperatures, as a shorter exciton 
lifetime13 and a longer spin relaxation time14–16 result in a robust exciton 
polarization at low temperatures.
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energy difference between the fundamental photon energy and the 
optical gap of the material under investigation. Finally, a key ingredi-
ent of our theory and experiments is the observation that some ele-
ments of the NLO susceptibility in monolayer TMDs are proportional 
to the valley index τ = ±1, a property that we define as the ‘nonlinear 
valley selection rule’. On the basis of this, we demonstrate that the 
different polarizations in our SH experiments effectively probe dif-
ferent wave-vector groups32, and thus, they are subject to different 
symmetry operations. In particular, SHG with linearly polarized light 
simultaneously probes both ±K valleys, leading to a cancellation of 
the terms in the NLO susceptibility that are proportional to τ (Fig. 1a). 
This leads to a NLO susceptibility that is typical of the D3h point group, 
corresponding to the wave-vector group at the Γ point of the Brillouin 
zone for monolayer TMDs. By contrast, SHG with circularly polarized 
light selectively probes only one of the ±K valleys, and thus, it measures 
the corresponding C3h wave-vector group (Fig. 1b).

Crystal symmetry and nonlinear valley selection 
rules
The vast majority of NLO experiments on TMDs33, such as the measure-
ments of crystal orientation34, number of layers35, strain36 and ultrafast 
switching37,38, are based on the assumption that monolayers belong to 
the D3h point group. However, a closer look shows that the point group 
(or more precisely the wave-vector group39) is D3h only at the Γ point of 
the Brillouin zone, whereas it is C3h at the ±K points40. Thus,  
resonant excitation of the valleys must be described by the nonlinear 
elements of the cyclic C3h tensor, rather than those of the dihedral D3h 
group. The elements of the second-order susceptibility χ(2) for the C3h 
point group can be divided into two sub-groups41, namely, 

χ(2)xxx = −χ(2)xyy = −χ(2)yyx = −χ(2)yxy and χ(2)yyy = −χ(2)yxx = −χ(2)xxy = −χ(2)xyx, where x 

(y) refers to the armchair (zig-zag) axis of the crystal in the case of TMDs. 
The first subset ( χ(2)xxx) is identical to the D3h point group and these ele-
ments can fully describe SHG in TMDs in the case of non-resonant 
excitation (for example, below-gap virtual states), and thus, they rep-
resent the crystal (that is, geometrical and intrinsic) response of TMDs. 
By contrast, the second subset ( χ(2)yyy) appears only in the C3h group and 
must be taken into account in the case of resonant excitation at ±K. To 
show this, we use analytical expressions of the χ(2) tensor31 derived from 

In this context, nonlinear optics (NLO) can provide distinct 
advantages. An all-optical probe of broken TRS based on NLO has 
been realized in layered17 and bulk18 magnets, as well as in various 
non-magnetic TMDs under the effect of an external magnetic field19. 
Very recently, ultrafast and room-temperature nonlinear valleytron-
ics has been realized in centrosymmetric materials based on light–
matter interactions with engineered topological optical fields20,21. 
In addition, a few theoretical22–24 and experimental12,25,26 studies have 
recently demonstrated the advantages of a detection scheme based 
on second-harmonic generation (SHG). All these studies were based 
on the measurement of a rotation in the second-harmonic (SH) polar-
ization ellipse and simultaneously writing the valley state with an 
elliptically polarized fundamental beam (FB)12,25,26. On one hand, this 
approach clearly surpasses the standard methods based on polarized 
PL and optical Kerr rotation, because SHG is a parametric process and, 
thus, ultrafast and non-destructive, especially under the condition 
in which the SH signal at 2ω is resonant with the exciton transition 
under investigation. Therefore, the TMD is fully transparent to the FB 
at ω. On the other hand, the detection of the valley imbalance based 
on elliptical SHG fails if the polarization of the FB approaches the 
circular state, because, in this case, there is no well-defined ellipse 
rotation to measure.

In this work, we experimentally and theoretically study SHG in 
monolayer WSe2 excited by linearly versus circularly polarized light, 
and we demonstrate that their ratio can be used as a simple and power-
ful probe of valley imbalance and broken TRS. Our theoretical model is 
based on the semiconductor Bloch equations (SBE)27–30, which we solve 
both analytically31 and numerically in the two scenarios where TRS is 
either preserved (excitation with linearly polarized light) or broken 
(excitation with circularly polarized light). Broken TRS is included in 
the model Hamiltonian of monolayer WSe2 as a valley-selective and 
intensity-dependent perturbation arising from the optical Stark and 
Bloch–Siegert shifts7,8. For a linear FB, the shift in the optical gap is val-
ley symmetric, and thus, TRS is preserved. By contrast, circular excita-
tion leads to valley-exclusive gap opening and TRS breaking, which is 
reflected in a characteristic modification of the NLO susceptibility. We 
highlight that our results can provide new insights for understanding 
previous experiments12, in which the impact and strength of the optical 
Stark and Bloch–Siegert effects can be estimated by considering the 

σ–

a

b
σ+

+K

−K

−K

−K

+K

+K
+

+K (τ = +1) –K (τ = –1)

+
 

iτ × χ(2)
yyy iτ × χ(2)

yyy

iτ × χ(2)
yyy

χ(2)
xxx χ(2)

xxx χ(2)
xxx

χ(2)
xxx + iτ × χ(2)

yyy
χ(2)

xxx

+K−K

−K

+K

+K

Fig. 1 | Nonlinear valley selection rules in monolayer TMDs. a, A linearly 
polarized FB (left, red) can be decomposed into right- and left-circular 
components that interact with the ±K valleys, respectively, emitting counter-
rotating SH beams. Since the χ(2)yyy elements (grey) of the NLO susceptibility cancel 

out in the two valleys, only the χ(2)xxx  terms (light green) contribute to the emitted 

signal, which add up again to a linearly polarized SH (right, light green).  
b, A right-circularly polarized FB (left, red) interacts only with the +K valley,  
and thus, it probes both χ(2)xxx  and χ(2)yyy. Coherent superposition of the two 
contributions from the +K valley results in circularly polarized SH (right,  
dark green).
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the perturbative solutions of SBEs. In the SBE framework, a monolayer 
TMD is described by a Hamiltonian, and we use the simplified TMD 
two-band model valid close to ±K (ref. 42):

h1(k) = (
∆ γ∗f∗(k)

γf(k) −∆
) (1)

with the on-site energy Δ, effective hopping γ and

f(k) = −i(κx − iκyτ) + ζ(κx + iκyτ)
2, (2)

where κα = a(kα − Kα) is the dimensionless wave vector measured with 
respect to ±K, a is the TMD lattice constant, τ = ±1 is the valley index and 
ζ is the prefactor of the trigonal warping term, responsible for space 
inversion breaking. From h1(k), we calculate the second-order suscepti-
bility contribution from each valley τ as (Supplementary Section 2.2.3)

χ(2)xxx(τ) = 2C a3|γ|2ζ
∆3 = χ(2)0 , (3)

χ(2)yyy(τ) = iτχ(2)0 , (4)

where χ(2)xxx(τ) = −χ(2)xyy(τ) = −χ(2)yyx(τ) = −χ(2)yxy(τ)  and χ(2)yyy(τ) = −χ(2)yxx(τ)
= −χ(2)xxy(τ) = −χ(2)xyx(τ) . Here C =

̃Cq
2∆−i/T2−2ω

 accounts for the usual  

resonance condition (Supplementary Section 2.2.3). Note that through-

out this work, we use the convention of ℏ = 1. We highlight that χ(2)yyy(τ) 
is linear in τ, and thus, it disappears when simultaneously probing both 
valleys, namely, when the FB is linearly polarized (Fig. 1a). In this condi-
tion, the second-order polarization is given as follows.

(
P(2)x

P(2)y

) = ϵ0 ∑
τ=±1

(
χ(2)xxx(τ) −χ(2)xxx(τ) −χ

(2)
yyy(τ)

−χ(2)yyy(τ) χ(2)yyy(τ) −χ(2)xxx(τ)
) ⋅

⎛
⎜⎜⎜
⎝

E2x

E2y

2ExEy

⎞
⎟⎟⎟
⎠

(5)

= 2ϵ0 (
χ(2)0 −χ(2)0 0

0 0 −χ(2)0

) ⋅
⎛
⎜⎜⎜
⎝

E2x

E2y

2ExEy

⎞
⎟⎟⎟
⎠

(6)

We stress that in equation (6), only the valley-summed susceptibili-

ties χ(2)xxx = −χ(2)xyy = −χ(2)yyx = −χ(2)yxy = 2χ(2)0  survive, leading to the typical 

second-order tensor of the D3h point group41 and in agreement with the 
vast majority of reports on SHG in monolayer TMDs33–37. This feature is 
even captured by our numerical simulations (Supplementary Section 2).  

In addition, from equations (3) and (4), we stress that (1) χ(2)0  is directly 
proportional to the trigonal warping prefactor ζ; (2) the χ(2)xxx(τ) and 

χ(2)yyy(τ) terms of the NLO susceptibility are phase shifted by π/2 at ±K.

If we now move to the circular basis and re-calculate the ±K-resolved 
NLO susceptibility (Supplementary Section 2.2.4), we obtain

χ(2)−++(τ) = √2 (χ(2)xxx(τ) + iχ(2)yyy(τ)) = √2 χ(2)0 (1 − τ), (7)

χ(2)+−−(τ) = √2 (χ(2)xxx(τ) − iχ(2)yyy(τ)) = √2 χ(2)0 (1 + τ), (8)

whereas χ(2)−−− and χ(2)+++ vanish. Here the subscripts ± refer to the helic-
ity of SH polarization and FB. In contrast to the linear case, for circularly 
polarized SH and FB, the contributions from the ±K valleys towards χ(2)yyy 
no longer cancel out (Fig. 1b), and the second-order polarization reads

(
P(2)+

P(2)−
) = ϵ0√2χ(2)0 ∑

τ=±1
(
(1 + τ)E2−
(1 − τ)E2+

) = ϵ02√2χ(2)0 (
E2−

E2+
) . (9)

In other words, since circularly polarized light selectively probes 
the valleys, the NLO susceptibility is described by the C3h wave-vector 
group41. In analogy with linear optics, we label the τ proportionality of 
χ(2)yyy  as the nonlinear valley selection rule, and we stress that this is 

fundamentally different compared with the selection rules for circu-
larly polarized light based on the conservation of angular 
momentum43–45. The conservation of angular momentum is naturally 
included in our model in the fact that the elements χ(2)+++ = χ(2)−−− = 0 
and χ(2)−++ = χ(2)+−− ≠ 0, namely, the observation that a σ± FB generates 
a σ∓ SH.

Finally, we highlight that as long as TRS is preserved, the ratio 
between the intensities for circularly polarized versus linearly polarized 
SH is exactly 2, as one can immediately observe by taking the intensity 
I ∝ ∣P∣2 from equations (6) and (9).

TRS breaking in TMDs by off-resonant excitation
We now include TRS breaking into our model Hamiltonian. We do this 
by considering the optical Stark and Bloch–Siegert shifts8, namely, by 

adding an energy shift ΔEτ,σ =
|dvc|2ℰ2

0
2∆+στω

, where we have defined the heli-

city parameter σ = ±1 of the off-resonant FB; the dipole moment ∣dvc∣, 
which is identical at the ±K valley; the FB electric-field strength ℰ0; and 
FB frequency ω. Note that the optical Stark and Bloch–Siegert shifts 
are valley exclusive7,8: for instance, a σ = − 1 FB leads to an optical Stark 

shift of ΔE+1,−1 =
|dvc|2ℰ2

0
2∆−ω

= ΔEOS  in +K and, simultaneously, to a  

Bloch–Siegert shift of ΔE−1,−1 =
|dvc|2ℰ2

0
2∆+ω

= ΔEBS in −K. In the framework 
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Fig. 2 | TRS breaking by the optical Stark and Bloch–Siegert effects.  
a, A linearly polarized FB opens the gap in both valleys by the optical Stark 
and Bloch–Siegert shifts, interacting equally with the +K and −K valleys. This 

preserves TRS, namely, E↑(+K) = E↓(−K). b, A right-circularly polarized FB opens 
different gaps by the optical Stark and Bloch–Siegert shifts in the +K and −K 
valleys, respectively, leading to the breaking of TRS: E↑(+K) ≠ E↓(−K).
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of perturbative NLO, the optical Stark and Bloch–Siegert effects can 

also be regarded as a higher-order nonlinear contribution to the emis-
sion at the SH photon energy. Thus, the Hamiltonian for broken  
TRS reads

h2(k) = (
∆ + ΔEτ,σ γ∗f∗(k)

γf(k) −∆ − ΔEτ,σ
) . (10)

The optical Stark and Bloch–Siegert effects shift the bandgap 
(diagonal elements in equation (10)) of the material8,46, whereas 
we do not expect them to change the effective mass of the material 
(off-diagonal term in equation (10)). We can now calculate the elements 
of the NLO susceptibility with optical Stark and Bloch–Siegert shifts 
starting from the model Hamiltonian (equation (10)) (Supplementary 
Section 2.2.5):

χ(2)xxx(τ) = χ(2)0 (1 + 4
3

|dvc|2ℰ2
0

∆(2δω + i/T2)
) , (11)

χ(2)yyy(τ) = iτχ(2)0 (1 + 4
3

|dvc|2ℰ2
0

∆(2δω + i/T2)
) , (12)

where 1/T2 is the dephasing rate and we have defined the detuning 
δω = ω − E0/2 using the A1s exciton resonance energy E0. Here we observe 
that χ(2)xxx  is again identical in both valleys (τ = ±1), and thus, TRS is pre-
served (Fig. 2a). Therefore, the second-order polarization for a linearly 
polarized FB becomes

(
P(2)x

P(2)y

) = 2ϵ0 (1 +
4
3

|dvc|2ℰ2
0

∆(2δω + i/T2)
) (

χ(2)0 −χ(2)0 0

0 0 −χ(2)0

) ⋅
⎛
⎜⎜⎜
⎝

E2x

E2y

2ExEy

⎞
⎟⎟⎟
⎠

,

(13)

which is, again, the typical expression of the SH for a crystal with D3h 
symmetry. Finally, we calculate the elements of the NLO susceptibility 
for circularly polarized light (Supplementary Section 2.2.5), namely, 
the case in which the gap opening is asymmetric in the two valleys, and 
thus, TRS is broken (Fig. 2b):

χ(2)−++ = 2√2 χ(2)0 (1 + |dvc|2ℰ2
0

∆(2δω + i/T2)
) = χ(2)+−−. (14)

From this, we derive again the SH polarization as

(
P(2)+

P(2)−
) = ϵ0 2√2χ(2)0 (1 + |dvc|2ℰ2

0
2∆(δω + i/T2)

) (
E2−

E2+
) . (15)

On the basis of equations (11), (12) and (14), TRS breaking can be 
measured by looking at the ratio η of the SH intensity in the two cases 
of circular and linear FB polarization:

η ∶= Icirc(2ω)
Ilin(2ω)

=
|
|χ
(2)
+−−

|
|
2

|
|χ
(2)
xxx

|
|
2

= 2 ⋅
|
|
|
1+

|dvc |2ℰ20
∆(2δω+i/T2)

|
|
|

2

|
|
|
1+ 4

3
|dvc |2ℰ20

∆(2δω+i/T2)
|
|
|

2 = 2 ⋅
|||1+

ΔEOS
2δω+i/T2

|||
2

|||1+
ΔEOS+ΔEBS
2δω+i/T2

|||
2 ,

(16)

assuming an equal intensity of incident linearly and circularly polarized 
FB: |Ilin0 (ω)| = |Icirc0 (ω)|. If we consider the Taylor expansion of equation 
(16) up to the first order in I0 ∝ ℰ2

0, we obtain

η ≅ 2 − 4
3
||dvc||

2ℰ2
0

∆
Re ( 1

2δω + i/T2
) ≅ 2|||

1 + δOS − δBS
1 + δOS

|||

2

, (17)

where δOS/BS =
ΔEOS/BS

(2δω+i/T2)
 (Supplementary Section 2.2.5). As expected, 

the ratio η depends on the energy difference (δOS − δBS) between the ±K 
valleys, and it tends to 2 if TRS is preserved (that is, in the absence of 
the valley-asymmetric gap opening). Furthermore, we highlight the 
dependence η ∝ Re ( 1

2δω+i/T2
), which results in a derivative-like shape 

when crossing the A1s exciton resonance, as we will show later in our 
experiments. In addition, η depends on the material parameters (for 
example, the dipole moment dvc and dephasing time T2) and experimen-
tal parameters (such as the electric-field strength of the FB ℰ0 and detun-
ing δω). Therefore, even though the effect is enhanced at resonance 
(δω→0), it is possible to observe broken TRS even for off-resonant SHG, 
whereas the ratio η→2 is only far from resonance, namely, when δω→∞.

Experimental and analytical results
To demonstrate the features discussed in the previous section, we per-
form SH experiments at different wavelengths (SH signal at 690–820 nm, 
corresponding to an FB in the range of 1,380–1,640 nm) and scan across 
the A1s exciton resonance of a monolayer WSe2 sample (Methods provides 
details on the sample fabrication). First, we performed differential reflec-
tivity ΔR/R and PL (Fig. 3a), Raman spectroscopy (Fig. 3b) and SH power 
dependence (Fig. 3c) measurements to confirm the monolayer nature of 
our sample. One prominent feature arising from the A exciton is observed 
in the ΔR/R value. The PL emission is plotted in the same figure for com-
parison with ΔR/R, and it shows a negligible Stokes shift, indicating the 
absence of contribution from localized defect states in the material47. 
The Raman spectrum (Fig. 3b) shows the spectrally overlapping E′ and 
A1′ modes and the second-order 2LA mode. The distance between the two 
peaks of approximately 11 cm−1 is typical of a WSe2 monolayer48. Finally, 
the SH power dependence (Fig. 3c) recorded for an FB of 1,500 nm shows 
a slope (in log–log scale) of ~2, as expected for SHG. A more detailed 
analysis of the SH power dependence will be discussed below.

To measure the broken TRS from the ratio η, we tune the ellipticity 
of the FB (from linear to circular) and detect the total SH intensity 
(Fig. 3d and Methods provide details on the experimental setup). 
Figure 3e shows the ellipticity-dependent measurements for three 
selected wavelengths: at resonance (750 nm) and away from the reso-
nance (780 nm and 720 nm) with respect to the A1s exciton of our sam-
ple. Here the FB power is kept constant at 6 mW. The curves are 
normalized (that is, we set the SH intensity to 1 for linear excitation) 
and we paid particular attention to remove any possible contribution 
from two-photon PL (Supplementary Section 4), which could alter the 
ratio of the circular/linear SH intensity. Clearly, this ratio is highly 
dispersive and can dramatically differ from 2 (that is, the ratio expected 
when TRS is preserved), particularly in the case of resonant SHG. To 
further highlight this point, in Fig. 4a, we plot the wavelength depend-
ence of η (black squares) on top of the linear PL measured on the same 
sample (orange curve). This ratio displays values both above and below 
2 (horizontal dashed line) in correspondence with the exciton transi-
tion. Furthermore, we point out that the ratio η has a clear ‘derivative 
shape’ across the A1s exciton resonance, which arises from the 1

δω
 

dependence of equation (16)/(17). It is worth noting that the ratio η is 
approximately 2 close to zero detuning (δω ≈ 0), even though this 
wavelength falls in the resonant region in which TRS is broken. We argue 
that in this case, the fingerprint of broken TRS can be found in the phase 

difference (Δϕ) between χ(2)xxx  and χ(2)+−−. Our experimental results are 

in good agreement with the dispersion of the ratio η obtained from our 
analytical model (16), as plotted in Fig. 4b for dephasing times of 
T2 = 100 fs, 250 fs and 500 fs and an FB power of 6.5 mW (Supplementary 
Section 2.2.5). We observe that the depicted data fall within a range of 
dephasing time of 100–250 fs, which is in excellent agreement with the 
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expected value of dephasing time at room temperature from electron–
phonon scattering at the ±K points49. Finally, we stress that the influence 
of the dephasing time T2 is a direct consequence of considering a mono-
chromatic field within our theoretical model.

In addition, Fig. 4c shows the power dependence of η for three 
example SH wavelengths (720 nm, 750 nm and 800 nm). The SH ratio η 
tends to 2 when the FB power tends to 0, namely, when TRS is preserved 
in the absence of an external perturbation. Moreover, the ratio η shows 
a linear power dependence with respect to the FB, in agreement with 
our analytical results from equation (17). This linear power dependence 
is a natural consequence of the fact that TRS is broken by the coherent 
optical Stark and Bloch–Siegert effects. Figure 4a also shows the slope 
of η (red open circles), obtained from a linear fit of all the wavelengths 

investigated in our experiments (Supplementary Fig. 5), displaying 
exactly the same derivative shape of the ratio η at a fixed FB power.

Finally, we highlight that with our analytical model, we can esti-
mate the optical Stark (στ = −1) and Bloch–Siegert (στ = 1) shifts as 

ΔEτ,σ =
|dvc|2ℰ2

0
2∆+στω

 using the parameters shown in Fig. 4. For an excitation 

wavelength of 1,500 nm, we obtain a gap opening of 17 meV and 6 meV 
from the optical Stark and Bloch–Siegert shifts, respectively. On rescal-
ing by the input power and detuning, these values are in reasonable 
agreement with previously reported values7,8 (Supplementary Section 3).  
Thus, the agreement between experiments and theory (without any 
fitting parameter) demonstrates the capability of our detection scheme 
to quantitatively measure broken TRS in monolayer TMDs.
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Discussion
We established a new method based on circular SHG to probe the valley 
degree of freedom in TMDs, and more generally, to probe broken TRS 
in crystals belonging to the D3h point group. We demonstrate that the 
NLO response of TMD monolayers must be interpreted looking at the 
wave-vector group, rather than the point group. Furthermore, with 
our analytical model, we clarify the origin of the different wave-vector 
groups that describe circular and linear excitations, and attribute this 
difference to the nonlinear valley selection rule. Finally, we analytically 
derive and experimentally show that the coherent and off-resonant 
optical Stark effect and Bloch–Siegert shift break TRS, and their effects 
can be measured by simply looking at the ratio η between the SH inten-
sities emitted from circularly and linearly polarized FBs. Building on 
this, our approach can be used as a powerful detection scheme for 
valleytronic operations. This could be done, for instance, by selecting 
the SH wavelength with the largest slope of η as a function of power. 
Subsequently, TRS can be controlled with external knobs, such as the 
valley Zeeman splitting using magnetic fields50 or by generating a net 
valley polarization using one-photon absorption with circularly polar-
ized light51. Finally, the broken TRS can be measured with our method 
by looking at the changes in the ratio η with and without the presence 
of external perturbations. Thus, this work demonstrates the unique 
capabilities of NLO as an ultrafast and non-invasive probe of broken 
TRS and of the valley degree of freedom in TMDs.
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Methods
Fabrication of bulk crystals
The synthesis of WSe2 was performed by chemical vapour transport 
in a quartz glass ampoule from tungsten (99.999%; 100 mesh, China 
Rhenium) and selenium (99.9999%, granules of 1–6 mm, Wuhan Xin-
rong New Material) in stochiometric amounts corresponding to 100 g 
WSe2. In addition, excess of 2 at.% selenium, 0.5 g SeCl4 (99.9%, rough 
crystalline powder, Strem) and 0.5 g iodine (99.9%, granules, Fisher Sci-
entific) were added in a glove box to the ampoule (50 × 250 mm2; wall 
thickness, 3 mm) and the ampoule was sealed by an oxygen–hydrogen 
welding torch under a high vacuum (under 1 × 10−3 Pa) using a diffu-
sion pump with a liquid-nitrogen trap. The sealed ampoule was first  
placed in a muffle furnace and heated to 500 °C for 25 h, 600 °C for 
50 h and finally 800 °C for 50 h. The heating and cooling rates were 
1 °C min−1. The ampoule with the formed WSe2 powder was placed 
in a two-zone horizontal furnace. First, the growth zone was heated 
to 1,000 °C and the source zone, to 800 °C. After 2 days, the thermal 
gradient was reversed, as the source zone was kept at 1,000 °C, whereas 
the growth zone was kept at 900 °C for 10 days. During cooling, the 
thermal gradient was reversed for 2 h, to remove the transport medium 
and volatile compounds. The ampoule was opened in an argon-filled 
glove box.

Sample preparation and characterization
We mechanically exfoliate a monolayer of WSe2 from a bulk crystal 
onto polydimethylsiloxane and transfer it onto a transparent fused 
silica substrate. The monolayer nature of our sample is confirmed by 
optical PL, Raman and SHG measurements (Fig. 3a–c).

Polarization-resolved SHG
For the SHG measurements, we use a custom-made multiphoton 
microscope, which we operate in the transmission geometry (Fig. 3d). 
The FB is generated by an optical parametric oscillator (Levante IR 
fs from APE), pumped by the output of an Yb-doped mode-locked  
laser (FLINT FL2-12, LIGHT CONVERSION) with a repetition rate 
of 76 MHz and a pulse length of ~100 fs. This allows tuning the FB  
from 1,300 nm to 2,000 nm. Before entering the microscope, a 
combination of half-wave plate (AHWP05M-1600, Thorlabs) and 
quarter-wave plate (#46-562, Edmund Optics), both mounted on 
motorized rotation mounts (RSP05/M, Thorlabs), allows us to fully 
control the polarization state of the FB. Subsequently, the FB is 
focused onto the sample by a ×40 objective (LMM-40X-P01, Thorlabs) 
and the transmitted FB as well as the generated SH are collimated 
by a lens (C330TMD, Thorlabs). The transmitted FB is blocked by a 
shortpass filter (FESH0950, Thorlabs) and the SH is spectrally filtered 
by bandpass filters. Finally, we detect the SH with a silicon avalanche 
photodiode (APD440A, Thorlabs) and lock-in amplifier (HF2LI, Zurich 
Instruments).

Differential reflectivity and PL
Room-temperature differential reflectivity (ΔR/R) measurements 
are performed using a custom-built confocal microscope. A halogen 
lamp with a stabilized power supply serves as the white light source 
for reflectivity, focused on a pinhole that is imaged on the sample. The 
reflected light is then dispersed in a spectrometer and detected by a Si 
charge-coupled device camera. The excitation/detection spot diameter 
is approximately 1 μm, smaller than the typical size of the monolayers. 
Differential reflectivity is defined as (Rsub − Rsam)/Rsub, where Rsam repre-
sents the intensity reflection coefficient of the sample with the WSe2 
monolayers and Rsub denotes the same structure without WSe2. The PL 
experiments are conducted on the same areas of the monolayer using 
the same custom-built confocal microscope and a 633 nm He–Ne laser 
as the excitation source.

Numerical methods
We simulated the SHG using the SBEs27–30. The material data are calcu-
lated using a two-band tight-binding model52 fitted to the density func-
tional theory band structure of WSe2 in the vicinity of the ±K points of the 
Brillouin zone. Further details are provided in Supplementary Section 2.1.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author on reason-
able request.
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