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The remarkable frequency stability of resonant systems in the optical
domain (optical cavities and atomic transitions) can be harnessed at
frequency scales accessible by electronics using optical frequency
division. This capability is revolutionizing technologies spanning time
keeping to high-performance electrical signal sources. A version of the

technique called two-point optical frequency division (2P-OFD) is proving
advantageous for application to high-performance signal sources. In
2P-OFD, an optical cavity anchors two spectral endpoints defined by lines
of afrequency comb. The comb need not be self-referenced, which greatly
simplifies the system architecture and reduces power requirements. Here,
a2P-OFD microwave signal source is demonstrated with record-low phase
noise using amicrocomb. Key to this advanceis a spectral endpoint defined
by afrequency-agile single-mode dispersive wave that is emitted by the
microcomb soliton. Moreover, the system frequency reference is acompact

all-solid-state optical cavity with arecord Q factor. A hybridly packaged
version of the system offers excellent longer term stability. The results
advance integrable microcomb-based signal sources into the performance
realm of much larger microwave sources.

An octave spanning frequency comb is required to perform conven-
tional optical frequency division, wherein the maximum frequency
division ratio is attained as, for example, is required to count optical
cycles'. This method has led to the most stable microwave signals ever
generated®. Two-point optical frequency division (2P-OFD) trades-off
aportionofthis performance for technical simplification resulting from
using anon-self-referenced (narrower spectral span) frequency comb®®.
This tradeoff has made possible compact commercial microwave sys-
tems based on electro-optically generated combs”® and chip-integrable
microwave signal sources using microcombs’ ™, Inmicrocomb-based
2P-OFD, spectral endpoints of the comb are locked to two frequencies
of areference cavity. This transfers relative frequency stability from
the cavity to the comb repetition rate, which can be photodetected to

generate a microwave signal. Control of power and frequency at the
comb spectral endpointsis criticallyimportant to 2P-OFD. High power
at these endpoints is necessary for low phase noise microwave signal
generation, and endpoint frequency controlis essential to roughly align
these frequencies with reference laser lines. This combination of fea-
turesis challengingin bright soliton microcombs, which also offer the
highest frequency division performance through their broad spectral
reach.Here, 2P-OFD is demonstrated using a bright soliton microcomb
with spectral endpoints that are both high in power and frequency
tunable. These features in combination with the spectral reach of the
microcomb achieve optical division noise reduction (to a detectable
microwave signal) that is 30 times greater than in recent reports’. The
microcomb is referenced to a solid state cavity with eight-fold higher
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Q-factor relative to earlier designs', and together make possible a
record-low phase noise for chip-integrable components.

High power spectral endpoints with tunable frequency control
arefully achieved in electro-optic combs® on account of their tunable
repetition rate and ability to efficiently throw pump power to the
comb spectral wings. High power spectral endpoints (without tuning
control) is also a feature of normal dispersion microcombs” (some-
times called dark pulse combs'®) and for this reason these combs have
been used recently for microwave signal generation’. There, the lack
of endpoint tuningis lessimportant when the comb repetition rate is
low enough to guarantee comb line spectral proximity to the optical
reference; however, both of the these comb generation methods tend
to provide narrower comb spectral spans, thereby limiting the amount
of optical frequency division. And although bright soliton microcombs
offer broader spectral spans, their per-line comb power is limited on
account of the steep (exponential) roll-off in comb spectral envelope
away from the pump line".

Dispersive wave generation provides asolutionto this problem
and has beenimplemented in optical synthesizer* and optical clock”
demonstrations featuring octave-span microcombs and full optical fre-
quency division. Dispersive waves formwhen soliton comb lines phase
match to resonator modes (from either the same or another mode
family). They appear as a spectrally local enhancement in comb line
power near the phase matching frequency. Strong single-line dispersive
waves can form in cases where a single cavity mode phase matches to
the soliton?’; however geometrical control of dispersion to accomplish
this matchingis challenging, because the actual wavelength of the dis-
persive wave is sensitive to fabrication variance. Tuning of this phase
matching condition is possible in coupled ring resonators?. In this
paper, broad tuning of single-line dispersive wavesis used to implement
broadband 2P-OFD at directly detectable microwave repetition rates.

18,19

2P-OFD measurement

The microcomb uses a three-coupled-ring (3CR) design fabricated
using ultra-low-loss silicon nitride (Fig. 1a). The resonator mode locks
through formation of femtosecond pulse pairs*. As described below,
differential heating of the rings allows for both broad dispersion tun-
ing to set-up the pulse pair operation, as well as fine tuning for con-
trol of dispersive wave emission. Refer to the Methods for further
details on the 3CR properties. Two lines of the microcomb (v,, near
the pump frequency) and v, (the dispersive wave frequency) serve
as spectral endpoints for 2P-OFD (Fig. 1b). Besides the microcomb,
two continuous-wave lasers are stabilized to aminiature high-finesse,
vacuum-free Fabry-Pérot resonator (Fig. 1c) that provides reference
frequencies v, and v,, asin Fig. 1d.

The detailed experimental set-up is depicted in Fig. 1e. The micro-
comb is pumped at the bus waveguide coupled to the central ring in
Fig. 1a, and comb power is collected at the waveguide coupled to the
left ring (drop port) and amplified by an Erbium-doped fibre amplifier
to 60 mW; 75% of the amplified power is split evenly and filtered by two
optical bandpass filters to select two desired comb lines. These are
combined with their respective stabilized continuous-wave laser, and
detected by two photodetectors (New Focus 1611) to generate beatnotes
atfrequencies f; and f,. The formation of the dispersive wave improves
the signal-to-noise ratio (SNR) of this beatnote by 30 dB (Extended Data
Fig.1). Thisenhancement makes possible 2P-OFD over thisbroader comb
spanof3 THz (thatis, v, - v,,inFig.1b). The two beatnote signals are elec-
trically amplified before mixing to generate their frequency-summed
signal. This signal at frequency f,, is amplified and mixed with a local
oscillator at 1.25 GHz to generate the error signal. The error signal is
processed by a servo (Vescent D2-125) for feedback to the microcomb
to control its repetition rate (Fig. 1e). This closed loop thereby imple-
ments 2P-OFD. Additional details are provided in the caption to Fig. 1d.

Details on the Fabry-Pérot cavity are provided elsewhere'** (and
inMethods), but briefly itis a bulk fused silicarod with high-reflectivity

coatings. The free spectral range (FSR) is 4.0 GHz and cavity Q-factor
is as high as 8.2 x 10° (inset of Fig. 1c). The Q-factor is improved by
more than eight times compared witha previous demonstration'. The
vacuum-free nature of the Fabry-Pérot cavity simplifies the opera-
tion compared with the vacuum-based reference cavities®*® and its
ultra-high Q-factor boosts its performance in stabilizing lasers com-
pared with other vacuum-free reference cavities”*". Upon Pound-
Drever-Hall locking to the cavity, relative phase noise of the two
continuous-wave lasers is —113 dBc Hz " at 10 kHz offset frequency,
when separated by one FSR of the Fabry-Pérot cavity. This is 64 dB
lower than their free-running relative noise (Extended Data Fig. 2).
For microwave generation, the remaining 25% of the ampli-
fied microcomb output is directed to a fast photodetector (U2T
XPDV2320R), generating a radio frequency signal of -7 dBm at f.,,
(near 20 GHz). The microwave phase noise is shownin Fig. 1f (measured
using an R&S FSWP). When scaled to a10 GHz carrier (black curve), the
single-sideband phase noiseis-101dBc Hz 'at100 Hz,-133 dBc Hz ' at
1kHz, and -152 dBc Hz* at 10 kHz, which is a record-low to our knowl-
edge among photonic-chip-based platforms’>*>* Figure 1gshows a
representative radio frequency tone (f,.;,) under the 2P-OFD.

Dispersive-wave-tunable microcomb

Concerning the microresonator design, the three rings share the same
waveguide cross section, but the left (right) ring B (C) is 3 x 107 times
larger (smaller) than the middle ring (ring A). The left (B) and right (C)
rings arerespectively coupled to the middlering (A) by the evanescent
field of neighbouring waveguides (2.4 pm coupling gap). The Si;N,
waveguides feature normal dispersion, but mode coupling enables
generation of bright pulse pairs?. These pulse pairs form in certain
spectral windows that can be tuned by electrical control of the ring
temperatures using the heaters in Fig. 1a. A two-step tuning proto-
col is described in the Extended Data Fig. 3 and Methods that allows
configuration of the comb from any initial configuration. Likewise,
this protocol permits higher-order dispersion control that tunes the
dispersive wave wavelength. It is noted that after the differential tun-
ing is completed, the resulting dispersion and microcomb spectrum
are very stable. No change in dispersion or microcomb spectrum was
observable over two months of measurements.

Upon set-up of the microcomb using this protocol, three disper-
sionbands are apparent as shownin Fig. 2a, where measured (blue) and
modelled (black) integrated dispersion D, (ref. 17) is plotted versus
wavelength (Methods)****. The upper band is used for microcomb gen-
erationandis pumped near1,565 nm. Concerningthe structure of these
bands, there is no simple closed-form expression for the dispersion
spectrum, but there are some universal features. The dispersion spectra
ofthe uncoupledrings areindicated by the coloured curves (red, blue
and grey for the three rings, respectively). Where ring A crosses the
curves of rings B and C (indicated by the two arrows), two bandgaps
are opened following the introduction of ring coupling. Also note that
rings Band C are able to indirectly couple to each other through their
mutual interaction with ring A. This coupling creates another smaller
bandgap. The magnitude of these gaps can be related to coupling
strength and dispersion, and itis discussed further in the Methods.

The dispersion curve of the 3CR system allows generation of
double dispersive waves. These waves form at frequencies at which
soliton frequency components are nearly resonant with cavity modes
(black arrows in Fig. 2b). Controlled electrical (heater) tuning of
the dispersive wave wavelength is used for matching to one of the
continuous-wave lasers in the optical frequency division measure-
ment. This capability greatly strengthens the beatnote SNR and ena-
bles flexible access to a wider range of continuous-wave lasers, whose
wavelengths may not be widely tunable. Microcomb optical spectra
showing different dispersive wave tunings are plotted in Fig. 2c. Tun-
ing of the shorter wavelength dispersive wave by 4 nm and the longer
wavelength dispersive wave by 8 nmis possible (Extended Data Fig. 3).
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Fig.1| The low-noise miniaturized optical frequency division architecture.
a, Photograph of the 3CR resonator with heaters for differential temperature
tuning of the three rings. b, Schematic of the microcomb in the 2P-OFD system.
Adispersive wave at frequency v, is electrically tuned to closely match the
frequency v, of the continuous-wave (c.w.) laser. ¢, Photograph of the miniature,
vacuum-free Fabry-Pérot (FP) cavity with a US nickel. Inset: Fabry-Pérot cavity
reflection spectrum showing Q-factor of 8.2 billion. d, Schematic of the Fabry-
Pérot cavity spectrum in the 2P-OFD system, wherein two continuous-wave
lasers at frequencies v, and v, (separated by approximately 3 THz) are locked

to the cavity. Beatnote frequencies f; and f, between comb lines and the nearby
continuous-wave lasers are generated via photodetection (-1 GHz), and mixed
to generate their sum frequency. The summed frequency is stabilized to alocal

Freq -19868890 (kHz)

oscillator (f;,) by feedback to the microcomb. The microcomb repetition rate is
givenby ., = (v, v, +fi0)/(n—m), which divides the 3 THz laser separation
down to the microcomb repetition rate at microwave frequency (20 GHz).

e, Detailed experimental set-up of the 2P-OFD schematic ind. EDFA, erbium-
doped fibre amplifier; PD, photodetector; LO, local oscillator. f, Single-sideband
(SSB) phase noise spectrum measurement with carrier frequency near 20 GHz
(red). The instrumental measurement floor is the grey shaded area. For
comparison, the phase noise is scaled by Ly, 1064, = Ly, frep — 20 % 10g;0(f,/10 GHz),
and plotted in black. g, High-spectral purity microwave tone near 20 GHz
generated by the 2P-OFD system. The resolution bandwidth (RBW) of the
measured microwave tone is 3 Hz.

Itis alsonoted that adjusting the pump laser-microresonator detuning
allows tuning of the dispersive wave®, but this provides only limited
tuning range (~0.2 nm). As an aside, the bright soliton microcomb is
triggered using the method described in ref. 36, which is also illus-
trated in Fig. 3a.

Noise limits of the generated 20 GHz microwave tone are sum-
marized in Fig. 3b. The estimated phase noise limit from the relative
phase noise of the two continuous-wave lasersis plotted inred. This is
calculated by measuring the relative phase noise of the two lasers when
they are Pound-Drever-Hall (PDH) locked to the same mode family
of the Fabry-Pérot cavity, and when separated by one FSR (4 GHz) of
the Fabry-Pérot cavity (Extended Data Fig. 2). It is assumed that the
relative phase noise between the two continuous-wave lasers remains
unchanged when they are separated by 3 THz in the 2P-OFD measure-
ment (compared with the 4 GHz case). The phase noise is then scaled
down by the 2P-OFD factor (49 dBtoa10 GHz carrier) to infer the noise
limitsin generating the 20 GHz microwave. Inthe current experiment,
only one of the two dispersive waves is used. In principle, use of both
dispersive waves would increase the 2P-OFD factor by 6 dBto 55 dB. The
locking residual of the microcomb servois plotted in purple. The SNR
ofthe generated beatnotes f;andf, in Fig. 1d is limited by the noise from
the photodetector PD1and PD2; and imposes a limit of phase noise on
the generated microwave. This noiseis calculated in the Methods and
plotted asthe dashed black/grey lines for the case with (w/) and without

(w/o) the dispersive wave. Other possible limits in the phase noise
include amplitude-to-phase conversioninside the photodetector®*,
quantum noise of the microcomb*, amplified spontaneous emission
noise from the EDFA, as well as photodetector shot noise*.

Hybrid packaging and Allan deviation

The high Q-factor property of the 3CR resonator allows low
pumping power operation, enabling direct pumping by a IlI-V
distributed-feedback laser (DFB) laser under the turnkey self-injection
locking mode*'. Here, a hybrid packaged module containing a lll-V
DFB pump and the 3CR is demonstrated (Fig. 4a and Fig. 4b show
the module photograph and design concept, respectively). A com-
mercial [II-V DFB laser (Emcore Corporation) emits ~100 mW laser
light, and is collimated by a microlens. The beam passes through an
anti-reflection-coated siliconslab for feedback phase tuning in the self-
injectionlock process, below which aresistive heateris placed for ther-
mal tuning. After that, the beam is focused by another microlens onto
the 3CR bus waveguide facet, where ~30 mW of optical power is esti-
mated on the chip. Dispersion of the 3CR resonator is tuned on the basis
ofthe procedure described in the Methods, and the soliton microcomb
with tunable dispersive wave is generated by approximately tuning
thelaser current and heating on the silicon phase section. The output
ofthe 3CR bus waveguide is resized by two microlenses (Fig. 4b), and
collected by aferrule for fibre-coupled output. The nominal collected
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Fig.2|Dispersion and bright soliton microcomb with electrically tunable
dispersive wave. a, Measured dispersion spectrum showing the three dispersion
bands of the 3CR device (blue dots). The theoretical fitting is plotted as the solid
curves, and the inferred dispersion of the uncoupled rings are the shaded lines
(red, blueand grey for rings A, Band C, respectively). The relative mode number
m - m,is plotted in the upper axis, where m, corresponds to the intersection of
the uncoupled dispersion curves of rings Band C. The corresponding wavelength
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matching wavelengths. ¢, Optical spectra of bright soliton microcomb showing
tuning of the dispersive waves. Inset: illustration of the dispersion changing
when the heaters are differentially fine-tuned. The arrows indicate the change of
the dispersion curves whenring Ais heated.
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Fig. 3 | Details on 2P-OFD. a, Experimental set-up for bright bright soliton
microcomb generation. A continuous-wave laser (Orbits lightwave) near

1,565 nmisisolated (ISO), frequency-shifted by a quadrature phase shift key
modulator (QPSK) and amplified by an EDFA. The light is then bandpass filtered
toreduce the amplified spontaneous emission noise and coupled to the
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resonator chip using alensed fibre. The coupled on-chip power is ~-150 mW. Most
of the soliton power is routed to the 2P-OFD system (see text). A small portion
ismonitored by an optical spectrum analyser. DC, direct current. b, Phase noise
spectrasummary of the generated microwave signal in the 2P-OFD experiment.
Allnoise levels are scaled to a10 GHz carrier.

power in the fibre (when the DFB laser is not on resonance of the 3CR
resonator) is ~8 mW. The collected optical spectra demonstrate the
tunable dispersive wave (similar to those shown in Fig. 2¢; see also
Supplementary Fig. 2).

The hybrid packaging improves the long-term stability of the
microcomb for Allan deviation characterization of the 2P-OFD system.
Inthe packaging, the DFB and the 3CR are temperature-controlled by
athermoelectric cooler and the thermistor, respectively, with sub-
millikelvin temperature fluctuation. The module assembly in Fig. 4a
is covered by an aluminium enclosure for passive stabilization. The
module is embedded in the 2P-OFD set-up (as in Fig. 1e), by feeding
back to the current of the DFB laser®*. Fractional Allan deviation of
3.6 X107 is measured at the averaging time of 250 ms (Fig. 4¢). It is
noted that the Allan deviation benefits from the common mode sup-
pressionby locking the two continuous-wave lasers to the same mode
family of the Fabry—Pérot cavity*. Refer to Supplementary Note 3 for
further details onthe Allan deviation measurement and analysis of the
performance limit.

Discussion

Insummary, record-low microwave phase noise levels have been dem-
onstrated using amicrocomb-based system. Key to this demonstration
is the ability to electrically tune the spectral location of a dispersive
wave, which simultaneously increases the optical frequency divi-
sion ratio and locking system signal-to noise ratio. The coupled ring
chip that generates the microcomb is fabricated at a CMOS foundry
with high yield**, and is thus suitable for mass production. Moreo-
ver, the microcomb is demonstrated under the self-injection lock
mode and hybridly integrated with alll-V pump laser, implying that
entire system could be potentially miniaturized for fieldable test-
ing. The Fabry-Pérot cavity does not require operation in vacuum
while being high-performance, reducing supporting hardware and
operational complexity. And the two continuous-wave lasers sta-
bilized to the cavity can be readily miniaturized. The lasers are also
stabilized without extra bulky fibre-optic components (for example,
acoustic optic modulators)®”. These combined features mean that
the architecture simplifies the optical frequency division system and
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Fig. 4 | Hybrid packaging of the dispersive-wave-tunable microcomb and
Allan deviation results. a, Photograph of the hybridly packaged 3CR chip
with IlI-V pump. b, Illustration of the packaging scheme. Output of the
DFB laser is collected by a mirolens, and passes through an anti-reflection
coated silicon slab for feedback phase tuning (via electrical heating). The
light is lately focused by another microlens to be coupled into the Si;N,
waveguide. Heaters are deposited on the 3CR chip and wire-bonded, and
dispersion is tuned to support bright soliton mode locking. The output
beam of the Si;N, waveguide is shaped by another pair of microlenses and
collected by an optical fibre ferrule. ¢, Allan deviation results. Fractional
Allan deviation of 3.6 x 10 is measured at an averaging time of 250 ms.
For averaging times >1s, a linear drift of 0.013 Hz s ' is removed (detailed in
Supplementary Note 3).

is potentially manufacturable and fieldable. Finally, we would like to
note two related papers that were published during the preparation
of this manuscript*>*¢,

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/541566-025-01667-4.
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Methods

Dispersion modelling of the 3CR resonator

In this section we outline the theory that describes the dispersion
spectrum of the 3CR resonator (calculation of the dispersion is
detailed inref. 24). Briefly, a transfer matrix, 7, is used to propagate a
three-component wave function through a round trip.

The resulting secular equation gives the eigenfrequencies, , of the
three mode families (see plot in Fig. 2a), where m is mode number,
€=(Lg—Lc)/2L and €,=(Ly+Lc—2L,)/6 L. Here, L = (g ply + Ny clc)/2
is the averaged optical path length of rings B and C (left and right
rings),L; = n,,;liistheroundtrip optical pathlengthofany of the three
rings (i=A,B,C), where n,; is the effective index of the waveguide

el2mm(—e1+€3) cos(gcolco) e mmey cos(geoleo)sin(geoleo)
T = elwl/c jel2mm(—€1+€3) sin(geolco) —dimmey . 2 (gcolco)

0 ie_i4”m€2 Sin(gcolco)

_ei2nm(el +€2) in2 (gcolco)
ief2mm(er +€2) cos(gcolco)sin(geoleo) |- (1)

gl2mm(er+€3) cos(gcolco)

that forms the ring (which can be tuned via the thermo-optic effect)
and /;is the physical round trip length of an individual ring (which can
be tuned via the thermo-elastic effect); g, is the amplitude coupling
strength per unit length between the neighbouring rings (rings A
and B; rings A and C); [, is the physical length of the coupling section.

Thesecular equation after around trip can be simplified toa poly-
nomial equation,

X3 - (e—2i¢z Cos(gco[co) + Zei¢z COS(¢1)) Cos(gcolco)xz ( )
2
+(e%2 coS(geoleo) + 2672 cOS(h1)) COS(Eeoleo)X — 1 = 0,

wherex=e?and w = w, — %9, with w,, = 2tmc/L; D,/21t the average
FSR of the three rings and c the speed of light in vacuum; ¢, = 2rtme,
and ¢, = 2nime, are parameters that govern the dispersion spectrum.
Threedispersion bands willbe formed since equation (2) isathird-order
polynomial of x.

Equation (2) does not have a simple solution, but there are still
features that can be inferred in terms of the dispersion spectrum.
For example, ¢, = 21te;m, = 21tN (N is an integer) defines the mode
number where the dispersion curves of the uncoupled rings Band C
willintersect (Fig. 2a). At this mode number the corresponding wave-
lengthisA,. For the device used in this study, €, ~ 3 x 10 by design and
is measured to be within 1% of this value. ¢, is measured tobe €, = 105,
which s consistent with a design target close to zero. However, slight
fabrication variances modify the dispersion curve and impair soliton
mode locking at the pump wavelength. To acquire dispersion bands
thatare favourable for soliton mode locking, heater tuningis applied to
tune, (m,) and ¢,. After the heater tuning, the dispersionis as shown
inFig. 2a wherein the fitted parameters are ¢p, = -0.36, and g.,[., = 0.9
nearA,=1,568 nm (m, = 9,567). Further details on this tuning procedure
are given below.

Differential heater tuning of the three-coupled-ring resonator
Based on the analysis in the previous section, the dispersion curve is
determined by two parameters ¢, and ¢,. Experimentally, ring B (or C) is
thermally tuned to change ¢, and, in turn, A,. Ring A is thermally tuned
to change ¢, and, in turn, can be shown to tune the GVD parameter at
A,. Specifically, differential heating of ring A increases the curvature
of the pumped band near A, (amount of anomalous dispersion), as in
the inset of Fig. 2c. These tuning steps are largely independent and
enable a two-step dispersion tuning protocol described in Extended
Data Fig. 3a. In the first step, ring B is tuned (¢, is tuned) such that A,
istuned close to the pump wavelength (1,565 nm). In the second step,
ringAistuned (¢, is tuned) with ¢»; unchanged. The resulting dispersion
isshownin the lower panel of Extended Data Fig. 3a (also in Fig. 2b).
The dispersion tuning is efficient, requiring only a moderate
amount of actual temperature tuning. Tuning of A, benefits from the
Vernier effect, as describedinref. 15, and, experimentally, ~10 °C of dif-
ferential temperature tuning is sufficient to tune the pump wavelength
A,acrossthe optical Cband. Thelocal curvature of the dispersionbands
(GVD parameter) near A, is determined by differential thermal tuning

inring A. The tuning of uncoupled mode resonance in ring A by one
FSR (20 GHz) will access all the possible dispersion configurations.
This corresponds to tuning of L, by L/m. With a large mode number
m=10*inthe optical C band, this corresponds to <10 °C of differential
temperature tuning.

High-finesse, vacuum-free and miniaturized Fabry-Pérot cavity
The cavity is made of high purity fused silica with high-reflectivity
coatings on both sides to form resonance. It is cylindrical in shape,
25.4 mminlength and 15 mmin diameter; see the photograph of Fig. 1c.
Thedielectric coatings (SiO,/Ta,0;) at1,550 nm are deposited on both
surfaces (plano-convex with1 mradius of curvature). Since the cavity
is solid silica, a vacuum chamber and associated equipment are not
required. By using a continuous-wave laser to sweep across the cavity
resonance, thereflection of the cavity reveals the cavity linewidthtobe
24 kHz (quality factor = 8.2 billion); see the measurement and fittingin
theinset of Fig.1c. The vibration sensitivity of the cavity is designed and
measured tobe107° g by using the vibration-insensitive scheme dem-
onstrated inref. 14. The Fabry-Pérot cavity isinstalled ina multi-layer
thermalshield, providinginsulation (-20 mins time constant) to damp
theimpact of ambient temperature fluctuation.

By PDH locking individual lasers (Toptica DLC pro and the RIO
PLANEX) to neighbouring fundamental modes of the cavity*’ and
then detecting the beatnote of the two lasers with a fast photodetec-
tor (Thorlabs DXM30AF), a 4 GHz microwave tone (one cavity FSR)
is generated. This tone both with and without PDH lock is measured
using an R&S FSWP signal analyser (Extended Data Fig. 2). The phase
noise spectra show a large noise reduction from the cavity locking.
Thered curveinExtended DataFig. 2isreproducedin Fig.3b for com-
parison to the 2P-OFD microwave phase noise spectrum. Considering
the noise reduction due to 2P-OFD, which is 49 dB (when scaled to a
10 GHz carrier), the projected microwave phase noise is approximately
>10 dB lower than the measured phase noise of the comb repetition
rate (blue).

Details of the 3CR resonator

For the device used in the study, the intrinsic Q-factor of the pumped
mode is around 100 million, and the experimental threshold power
for parametric oscillation is around 3 mW. Furthermore, the FSR is
19.869 GHz and the local GVD parameter is D,/21 = 50 kHz. Refer to
ref. 42 for details on other parameters.

Impact of beatnote SNR on the 2P-OFD

The enhancement of SNR resulting from the agile dispersive wave is
critical toincreasing the OFD factor for low-noise microwave genera-
tion. Inthe 2P-OFD, the limited SNR of the f; + f, beatnote (asin Fig. 1e)
willimpose aflat (thatis, constant) phase noise onthe generated micro-
wave tone. Specifically, the phase noise (in the unit of decibels relative
tothe carrier per hertz) is denoted by

1 1

Ssw () = SRR RBW (3 ®
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where SNR is signal-to-noise ratio of the beatnote (f; +f,) used for
locking, under a certain resolution bandwidth (100 kHz in this work).
The SNR of the mixed f; + f, beatnote is limited by the beatnote with
lower SNR (the f, beatnote in this work). Based on equation (3) and the
measurementin Fig.1b, with the dispersive wave, the SNR-limited phase
noise is calculated as =159 dBc Hz ! (when scaled to a 10 GHz carrier).
Without the dispersive wave enhanced SNR, the SNR-limited phase
noise is calculated as —129 dBc Hz* (when scaled to a 10 GHz carrier).
In practice, without the dispersive wave enhancement, the SNR is too
low for areliable locking; thus the phase noise data are not acquired.

Data availability

The data that support the plots within this paper and other findings
of this study are available on figshare at https://doi.org/10.6084/
m9.figshare.27676482 (ref. 48). All of the other data used in this study
areavailable from the corresponding authors on reasonable request.

Code availability
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Extended Data Fig. 1| Measured beatnotes f; and f; in Fig. 1 with and without
dispersive-wave enhancement. a, Measured beatnote between the stabilized
c.w.laser (v;) and comb line (v,,), where f;is507.4 MHz. An SNR of 65dB is
measured with resolution bandwidth of 100 kHz. b, Measured beanote between
the stabilized c.w. laser (v,) and the dispersive wave (v,,). AnSNR of 60 dB is

b
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measured with resolution bandwidth of 100 kHz. f, is 743.6 MHz for the case with
dispersive wave, and f,=979.9 MHz for the case without the dispersive wave.
A30dBimprovementin SNRis demonstrated with the dispersive wave. Without
this SNRimprovement, it isimprobable to lock the 2P-OFD.
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Extended Data Fig. 2 | Relative phase noise of the two c.w. lasers, when both are free-running (black) and PDH stabilized to the Fabry-Perot cavity (red).
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Random dispersion configuration

Dispersion tuned to the pump wavelegnth
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Extended Data Fig. 3 | Dispersion tuning and dispersive wave tuning in the
bright soliton microcomb using electrical heaters. a, Upper panel: measured
dispersion spectrum of the 3-coupled-ring (3CR) resonator with random heater
tuning. Middle panel: measured dispersion spectrum of the 3CR after tuning A,
closer to the pump wavelength (1565 nm) by heating ring B. Lower panel:
measured dispersion spectrum of the 3CR after the local GVD parameter is tuned
by heating ring A. b,c, Measurement of dispersive wave tuning when ring A (B) is
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fine-tuned. The 1542 nm dispersive wave is plotted in blue, while the 1590 nm
dispersive wave s plotted in red. The corresponding data pointsin Fig. 2cand
panel d are indicated by the arrows (matched by the colours). d, Measured optical
spectra of the bright soliton microcomb with three different dispersive wave
tunings. Inset: theoretical dispersion spectrawhen ring Bis tuned. The arrow

indicates the change of the dispersion curves when ring B is heated.
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