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The motion of systems with linear restoring forces and recurring nonlinear
perturbations is of centralimportance in physics. When a system’s natural
oscillation frequencies and the frequency of the nonlinear restoring

forces satisfy certain algebraic relations, the dynamics become resonant.
Inaccelerator physics, an understanding of resonances and nonlinear
dynamicsis crucial for avoiding the loss of beam particles. Here we confirm
the theoretical prediction of the dynamics for a single two-dimensional
coupledresonance by observing so-called fixed lines. Specifically, we use
the CERN Super Proton Synchrotron to measure the position of a particle
beam at discrete locations around the accelerator. These measurements
allow us to construct the Poincaré surface of section, which captures the
main features of the dynamicsin a periodic system. In our setting, any
resonant particle passing through the Poincaré surface of sectionlieson a
curve embeddedin afour-dimensional phase space, the fixed line. These
findings are relevant for mitigating beam degradation and thus for achieving
high-intensity and high-brightness beams, as required for both current and
future accelerator projects.

The complexity of resonant dynamics depends on the number
of degrees of freedom of the problem. A pendulum has one degree
of freedom’, whereas a chain of N masses bounded by springs form-
ing a Fermi-Pasta-Ulam system” has N degrees of freedom. The main
features of the dynamics in a periodic system are captured by the
Poincaré surface of section, an approach invented by Henri Poincaré
to study the dynamics of nonlinear systems®. The resonant dynamics
for a one-dimensional (1D) periodic system is characterized by spe-
cial orbits in the Poincaré surface of section. These are fixed points,
islands and separatrices, as shown at the top left of Fig. 1a. The next
level of complexity is a periodic system with two degrees of freedom.
Inthis case, the orbits in the Poincaré surface of section expandintoa
four-dimensional phase space, the topology of which may elude our
geometric intuition. In the simplest case, the two degrees of freedom
(Fig.1a) aredecoupled, and the ‘mixed’ coordinates (¢;, ¢,) and (p,, p»)

exhibit the characteristic rectangular shape®, as shown in the bot-
tom row of Fig. 1a (for experimental evidence, see ref. 5). Instead, for
resonant dynamics created by a nonlinear coupling force, the mixed
coordinates may exhibit aspecific correlation, as shown, forexample,
in Fig. 1b. This feature can be quite surprising, as each (g, p) plane
per degree of freedom seems unaffected, with information about
the resonant dynamics being only in the mixed planes. Note that the
four diagrams in Fig. 1b show that the collection of all the red points
lies on afour-dimensional closed curve, which we call a ‘fixed line®, as
any resonant particle at any passage through the Poincaré surface of
section is located somewhere on this curve’.

Charged particlesincircularaccelerators have two degrees of free-
dominthetransverse plane. Nonlinear forces due to magnetimperfec-
tions may drive resonance structures in phase space, which has always
been a subject of practical concern for (1) avoiding resonances®™
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Fig.1| Effect of the coupled resonance for a system with two degrees of
freedom. a, Poincaré surface of section for a1D resonance acting in asystem
withtwo degrees of freedom. The top left diagram shows the main features of
the orbits for a 1D resonance with canonical coordinates (g;, p,). The blue curves
are the orbit of the separatrix, which crosses the unstable fixed points; The red
dotsindicate the stable fixed points. The green curves represent orbits inside
the resonance islands. The yellow dot is an orbit passing through the origin of
the phase space plane of coordinates 1. The top right diagram shows the non-

resonant orbits for the second degree of freedom, which are now circles. The
colours correspond to the same four test particles as in the top left diagram.
The bottom row shows the resonant orbits in the ‘mixed’ planes (g,, ¢,) and

(py, p,)- The characteristic rectangular shape of the areas covered by the orbits
isasignature of decoupling (green markers). b, Poincaré surfaces of section in
asystem with two degrees of freedom subject to a 2D nonlinear resonance. The
effect of the resonance s visible only in the mixed coordinate diagrams’.

and (2) keeping the dynamic aperture (DA)" large enough to ensure
sufficient beam lifetime . A prominent example of the impact of
nonlinearities in accelerators is the Large Hadron Collider (LHC)*¢,
which was commissioned at CERN in 2008. The LHC is constructed
with superconducting magnets that inherently generate unwanted
nonlinear field components. Based on the experience with previous
superconducting colliders, the LHC had to be designed witha DA larger
byafactor oftwo than the target value to ensure stable operation with
asafety margin. However, after a systematic effort on the measurement
and modelling of the LHC magnet-to-magnet nonlinearities at CERN,
abeam experiment in 2012 demonstrated that the two-dimensional
(2D) DA of the LHC agreed within 10% with the predictions of the
simulations". Further confirmations of the correlation of the realbeam
lifetime to the DA were reported later'®,

When designing future high-energy colliders”™', optimizing
the superconducting magnets will require a similar systematic effort
as was done for the LHC, including the study of 2D resonances, as in
this study. If we can predict the DA with 10% precision, the additional
safety margin of a factor of two may not be required, and thus, a
considerable cost saving can be achieved.

For lower-energy accelerators, nonlinear resonances are of con-
cern for high-intensity and high-brightness beams, as for the SIS100
in the Facility for Antiproton and lon Research?* at GSI, and for the
operation of the accelerator chain at CERN after the LHC injectors
upgrade?. Studies performed over the last 20 years on 1D resonances
have shown that space-charge-induced resonance crossing is a promi-
nent mechanism behind halo formationand associated particle loss for
high-intensity bunches>?”*, Recent studies have suggested that fixed
lines cause the formation of asymmetric halos”. However, the existence
of fixed lines has never been proven experimentally, confining any
discussionmerely to computer simulations or analytical methods. This
situation is unsatisfactory, especially because fixed lines are invoked
as part of the complex mechanism for periodic resonance crossing,
thus motivating the experimental verification of their existence.

The dynamical coordinates of a particle in the transverse plane
are (x, y) and the conjugate momentaare p, and p,. To these coordinates
we associate the horizontal and vertical phase advances ¢, and ¢,,
respectively?. The oscillation frequencies are expressed in terms of
the number of oscillations per turn, Q,and Q,, which are also called the
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Fig.2|Measured Poincaré surface of section. a-d, Four projections of a
Poincaré surface of section. The blue markers are the scaled beam coordinates
obtained experimentally from 3,000 passages through the selected longitudinal
observation point. a, Projection of horizontal position and momentum
expressed inscaled Courant-Snyder coordinates. The circular shape shows that
the amplitude a, is constant. b, Projectioninthe ( y, ﬁy) plane. The orbit s circular
showing that a, is constant. ¢,d, In the mixed coordinates, (x, ) (¢) and (p,, 5,)
(d), the motion of the beam follows a Lissajous curve. The spread of the markers
yields directinformation on the random error created by the four BPMs, with
standard deviations ogpy ,~ 0.66 mm and gy, = 0.5 mm. The red line is the best
fit of equation (1) to the experimental data, which confirms that the topology is
consistent with that of a fixed line.

tunes or the working pointinthe accelerator community. We consider
the case of one or more normal sextupole magnets of integrated
strength K, inserted in an otherwise linear accelerator structure. The
resonance condition Q, + 2Q,= Ncombines the phase advances of the
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Fig.3|Finding fixed lines and their properties. a-c, A case with the stable
features of Fig. 2. d-f, A case where the machine conditions (in particular the
machine tunes) are subject to unwanted drift. a, Evolution of the distance from
the resonance calculated using the measured beam tunes, Q,and Q,. The
harmonic number of the resonance is 79. b, Evolution of a, and a,, the scaled
Courant-Snyder forms (dark blue), and their corresponding moving averages
(light blue; Methods). ¢, a, versus (2 diagram, where 2 = ¢, + 2¢,. Thisbeam
revolves over 3,000 turns around a ‘fixed point’. The red vertical line is the fitted
value of £2. Theblack vertical line s the value of (2 found from the driving term
calculations. d, Evolution of the distance from the resonance calculated using the
measured beam tunes. There are larger oscillations over time. e, Evolution of a,

and a. The variation s larger but the variables are still correlated. f, a, versus

2 diagram. The meaning of the red and black vertical lines is the same asin c.
The quantity a, spans over alarge range, whereas (2 keeps oscillating around one
specific 2277 (the location of the fixed line). This finding suggests that the
beamis trapped® on the resonance. Thejitter in the light blue curvesinband e is
due to the random error of the BPMs (0gpy = 0.66 mm and Ggpy,, = 0.5 mm).

The same random error causes the variations in ¢, which make the overlapping
trajectory of (£2, a,) appear like a thick ring rather than a circle. The thickness

of thisring is consistent with +3 times the error bar: Ogy < 2.81mm?and

0, =0.0032, (inunits of 2). In f, the dynamic span of @, is much larger than

the error bar. Hence, the spiral pattern show resonance trapping.

particle transverse coordinates (x, y) into a resonance phase advance
perturnoftheformAg¢, + 2A¢,, which underlines the possible presence
of anonlinear coupling between the transverse particle coordinates
(x,y). When the accelerator tunes are set near this third-order reso-
nance, thatiswhenthe distance to thisresonanceis4,=Q,+2Q,-N=0,
the particle dynamics acquires special features due to the nonlinear
fields. In particular, the phase advances per turn, A, and Ag,, are no
longer constant, and the single-particle emittances, €,and €, computed
from the particle coordinates as defined by Courant and Snyder® are
no longer invariant. To emphasize that these quantities vary turn
after turn, we call the values of the Courant-Snyder form resulting from
the effect of the resonance a,and a, (see Methods for their definition).
A perturbative approach to the dynamics shows that a, and a, must
satisfy therelation 2a, = a,+ C,where Cisa constant determined by the
initial conditions. Using only a, together with the phase advance
2=¢,+2¢,issufficient for discussing the properties of the resonance.
The key feature of the resonant dynamics for a fixed Cis that a pair of
values of a,and 2 exist such that these two dynamical variablesbecome
stationary. The theory of fixed lines predicts the existence of an infinite
setof these pairs’. Backin the four-dimensional phase space (x, p,, y, p,),
this special solution acquires the topology of a1D closed curve, i.e.
the fixed line’. Expressed in Courant-Snyder coordinates, a third-
order fixed lineis

X(t) = \[ay cos(=2t — a + M),
Y(©) = +[a, cos(0),
PO = —\a,sin(=2t — a + M),

Py() = —/aysin(e),

()]

where tis a parameterization variable O < £ < 2m. a, and a, are now sta-
tionary. aisthe resonance driving term angle with respect to the Poin-
caré surface of section, and the integer Mis either O or 1 according to
thesignsof 4,and a. From equation (1), we derive the stationary phase
advance for a fixed line 24 = —a + mM , which characterizes its geo-
metric ‘orientation’ in the phase space.

We report here on the measurement of fixed lines performed at
the CERN Super Proton Synchrotron (SPS). Using a set of kicker mag-
nets, weinduce transverse oscillations of a proton beam and study how
the oscillations are affected by the third-order resonance excited by a
few strongly powered sextupoles. The beam positions are measured
ateachturnusing the available beam position monitors (BPMs). With
four consecutive BPMs (two per plane), we can reconstruct the Cou-
rant-Snyder coordinates (¥,p,., Y, p,)atone location of the machine.
Takingadvantage of the action-angle representation X = +/a, cos(¢,),
P, = —Ja;sin(gy), y = \/ay cos(¢,) and P, = —/aysin(@y), we can
retrievea,, a,, ¢,, ,and 2(Methods). This procedure allows us to visu-
alize the Poincaré surface of section in Courant-Snyder coordinates
andinspect theresonantdynamicsin (2, a,) space. If thebeamislocked
toastable fixed line, we expect the measured 2and a, to be constant,
as will be discussed in more detail in the following. A discussion
on unstable fixed lines is beyond the scope of this work and may be
the subject of future studies.

This experiment faces three major difficulties: (1) The inherent
fragility of the effect being searched for. Tune modulation due to a
power converter ripple and, therefore, fluctuations of magnetic fields
perturb the experimental conditions used to detect fixed lines.
To mitigate these effects, we accelerated the beam to 100 GeV/c
before exciting transverse beamoscillations, and the machine settings
were adjusted carefully (Methods). (2) The intrinsic manufacturing
tolerances of accelerator quadrupoles create a well-known effect
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Fig.4|Tunediagram, (({2), 0,) diagramand ((dy), (d,)) chart. All shots were
measured for the same resonance excitation and machine tune settings. a, Tune
diagram showing the measured average beam tunes along the interval of 3,000
turns. From the total of about 400 shots measured, around 150 shots are on the
resonance. Thesolid line Q, +2Q, =79 is the resonance excited by our sextupole
settings. Q.and Q, are the betatron tunes, and 79 is the harmonic number of the
resonance. The statistical error of tune evaluation is within the marker size.

b, ((£2), 0,) diagram. For each shot, we compute the turn-by-turn evolution of

2 along the storage period, and the corresponding mean value (£2) and standard
deviation 0,. Theblack solid line represents Qg“. The blue area shows the
selected shots close to the excited fixed line. Recall that 2 = ¢, + 2¢, with ¢, and
¢, the phase advances of the horizontal and vertical planes. £9is the resonance
phase advance of the resonance we have excited. The dashed lines show what is
expected when §2is not bounded and evolves randomly. In this case, the average
of £2is 0.5, and its standard deviation o, = 1/\/5, (inunits of 2m). The random

error (precision) of (£2) is 0(2) 56X 10"*and, hence, is within the marker size.
¢, Mean values (a,) and (@,) of the scaled Courant-Snyder forms for the measured
shots that are close to the resonance. The quantities a, and @, are the scaled
Courant-Snyder forms of the particles. The statistical error bar (precision)

of the measured quantities (@) and (,) when the beamis on the fixed line is
0(ay S 0.5mm*and O(ayy S 1.0 mm?. In case the beam s not centred on a fixed
line, the error bars remain nevertheless within the marker size. The quantity D
(Methods and equation (9)), shown by the colour of the markers, indicates the
degree of shiftin the a, and a, values and, thus, how stable the machine
conditions are during the measurement or how close the beam s to the centre
ofthe resonance structure. Small values of D (yellow band) signify that the
beamis close to a fixed line and is stationary. If Dis large (blue band), then
either the beam is far from the fixed line or there has been a drift of the machine
parameters (Methods).

called ‘beta-beating’, which can easily reach alevel of the order of -5%.
Thisunwanted optics perturbation must be considered when analysing
measurement results. (3) We must be able to kick the beam onto a fixed
line. The SPS has only one vertical and one horizontal kicker suitable
for this experiment. This set-up restricts the fixed-line orientations we
can explore to the unique value of 2 = 2, (Methods). In addition, the
synchronization of the kickers needs to be taken into account
(Methods).

The third-order resonance was excited using two sextupoles
placed at proper locations, which enabled us to vary a and, thus,
the orientation of the fixed line. To determine the proper sextupole
settings, asequence of measurements was performed by programming
the SPS to systematically vary the strength of the two sextupoles, K,
and K,,, the distance from the resonance 4,, and the strength of the
horizontal and vertical kicks, 6, and 6,, respectively (see Methods for
the programming of the SPS).

To analyse the experimental results, we scale the Courant-Snyder
coordinates and invariants to XDy s Pys Ox and a, (Methods). In
Fig. 2, we plot the projections of the measured Poincaré surface of
section for 3,000 turns of one selected dataset (all six projections are
shown in Extended Data Fig. 1, and Extended Data Fig. 2 shows acom-
parison with asimulation model). The circular orbits in the horizontal
and vertical phase space projections (Fig. 2a,b) show the usual
Courant-Snyder invariants, from which we obtain the values of a, and
a,. The other projections in Fig. 2 exhibit Lissajous patterns. Using
these values of a, and @, and applying a least squares minimization,
we find the best fit of equation (1) to the experimental data. This curve
isshown by the red linein all the projections of Fig. 2. It indicates that
the dynamicsis consistent with the topology of a fixed line.

From the same dataset, Fig. 3 (top) shows that the distance from
the resonance, as obtained from the beam tunes, remains small

throughout the storage time (Fig. 3a). @, and a, exhibit only small,
correlated oscillations around their corresponding average values
(Fig.3b). Thebeamrevolves around afixed pointin the (12, a,) diagram
(Fig. 3¢). We determine its orientation to be 25" = 0.275, (in units
of 2m). The line Qg” = 0.30 shows the expected orientation of the
fixed line from the sextupole settings”. We attribute the difference
between 27" and 24" to the unavoidable presence of beta-beating. In
fact, 5% beta-beating, a value thatis pretty normalin hadronaccelera-
tors, is sufficient to create a root mean square (r.m.s.) spread in .Qg”
of 0.016 (Methods), consistent with the experimental findings.
The residual beam oscillations around the fixed line in the (£2,@,)
diagram stems from the experimental inability to move the beam
exactly onto the fixed line. For given accelerator optics, there is a
unique fixed-line orientation allowed by the location of the kicker
magnets (Methods), which for the ideal SPS optics is 2, = 0.34. We
interpretthe difference between the orientation from the ideal lattice
£,,the orientation expected from the sextupole driving term Qg" and
the orientation determined experimentally Q;Xpas aresultofthe com-
bined effect of beta-beating and the granularity of the sextupole scan
(see Methods for more details). Note that the turn-by-turn data shown
here starts 1,000 turns after the beam is kicked. Particles that are too
far away from the stable resonant structure are lost in the machine
aperture during the first 1,000 turns (corresponding to around 20 ms
storagetime), resultingin unreliable readings of the BPMs. This transient

has, thus, been excluded in the data analysis presented in this paper.
Figure 3 (bottom) shows a dataset affected by an uncontrolled
drift of the SPS machine parameters. Inthis case, the distance from the
resonance exhibits larger variation (Fig. 3d). Nevertheless, although
a, and a, decrease over time (Fig. 3e), the beam keeps oscillating
P = 0.275 (Fig. 3f). That s, the resonance is strong enough

around 2, =
to trap®’ the beam around the fixed line.
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The previous analysis shows that the behaviour of (2 reveals the
properties of the resonant dynamics. In particular, the average (2)
and the standard deviation o, over the observation period are key
quantities for characterizing eachbeam. Figure 4a shows the measured
tunes foracomplete set of around 400 different shots (of which around
150 were on the resonance). In this set of measurements, the machine
tunes and the sextupoles settings for exciting the third-order resonance
were the same as used for the data shown in Fig. 3. Only the strengths
of the horizontal and vertical kicks were changed to allow us to
probe differentamplitudes a, and a,. Figure 4bisa ({£2), 0,) diagram
showing the behaviour of (£2) for each beam. The shots cluster into
two distinct groups: (1) a cluster of off-resonance shots, for which 2
spans all possible angles averaging (£2) = 1/2 with standard deviation
0n = 1/4/12 and (2) a second cluster close to (2) = Qg" with amuch
lower o, corresponding to shots where the beam is trapped on the
resonance structure. Note that the orientation of all the experimentally
found fixed linesis slightly offset compared to the unique orientation,
as already observed for the fixed line discussed in the example of
Fig.3.Toshowmoregeneral properties of the fixed lines, we select the
shots from Fig. 4b that are closer to 2. by requiring o, < 0.1and
plottheminthe ({a,),{(a,)) chartinFig. 4c. The colours of the markers
show D, the normalized r.m.s. distance to the fixed line (Methods),
arising from drifts of the SPS parameters or fromanoscillation around
the fixed line. The distribution of the fixed lines in this chart is very
similar towhat was found inref. 7.

We have shown that fixed lines may trap beam particles and
that we can predict the topology and orientation of the fixed lines,
which will allow the development of mitigation strategies to com-
bat beam-degradation mechanisms such as the periodic resonance
crossing induced by any modulation of the particle tune or by
amplitude-dependent detuning. Our findings are relevant for achiev-
ing the high-intensity and high-brightness beams required for both
current and future accelerator projects.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41567-023-02338-3.
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Methods

Scaled Courant-Snyder coordinates

For anon-momentum particle at fixed energy, the theory of Courant-
Snyder defines the normalized dynamical variables as

1

X = \/EX’
ﬁx = \%X"’\/ﬁ_x X

j= L 2
Yy \//Tyy

A ay

= —=y+ .
Py \/Ey Bypy

wherex, p,,yandp, are the particle phase space coordinatesand §,, a,,
B,and a, are the Twiss parameters at the location of the particle®®. The
units of the normalized Courant-Snyder coordinates are vmrad.
Hence, the Courant-Snyder forms a, = y,x? + 2a,xp, + B,p? and
a, = y,* + 2a,yp, + Byp; have unitsmrad. Inthe absence of aresonance,
a.and a, are the invariants of motion, that is, the particle emittances
usually called €, and €,. In the presence of a resonance, a, and a, can
slowly vary. Using these normalized coordinates allows a substantial
simplification of the topology of the linear dynamics by making
the uncoupled planes of the phase space highly symmetric (linear
normal form). The physical beam positions measured by the mth hori-
zonal BPM, the nth vertical BPM and in the direction of the travelling
beambythe (m +1)thhorizontal BPM and the (n + 1)th vertical BPM are
X Xmsv Ypandy,.,, respectively. We will show that by using these meas-
urements we are able to retrieve the Poincaré surface of section.

We start with the observation that the Sfunctions at the locations
ofall BPMs (in the respective plane of measurement) have almost the
same value, which we refer to as B;py = 103 m. In the data analysis, we
correct thedifferenceinthe gfunctionsto Bgpy, and define the scaled
Courant-Snyder coordinates as

X = \Beem¥,

Py = VBsewby.

5 = VB3, ©)
B, = VBsewb)s

which have units of metres and automatically imply that a,and a,
become a, = Bgpma, and a, = Bgpma, With units m* The phase advance
between two consecutive horizontal or vertical BPMs in the SPS is r7/2
within a few percent. In the data analysis, we correct this small shift
to restore the phase advance to /2. It is thus straightforward to
relate these beam position measurements to the scaled coordinates:

Xm = Xm»
Pem = Xm+1

Jn = Y @
Py = Ynu1-

The scaled Courant-Snyder coordinates are, therefore, especially
convenient, asthey are directly retrieved from the measurement data
from two consecutive BPMs.

Thesequence of BPMs inthe SPS alternates vertical with horizontal
position measurements. Therefore, equation (4) needs to be applied
with datafromagroup of four consecutive BPMs, V,,H,,, V,.;and H,,.;.
To compute the scaled Poincaré surface of section, we take the location
of H,,as our reference position. Although the scaled horizontal phase
spaceisautomatically retrieved at the location of H,,, a further rotation
ofthe coordinates (3,,p, ,) by 40°is necessary to transport the scaled

vertical phase space from the location V, to the location of H,,. This is
the treatment of the BPM data necessary to visualize the scaled Poin-
caré surface of section.

To retrieve the Courant-Snyder coordinates at the location of
the horizontal BPM H,,, whichis, hence, the Courant-Snyder Poincaré
surface of section, we have to invert equations (3) and use the scaled
coordinates of the beam. To retrieve the physical coordinates at H,,,
namely, to obtain the physical Poincaré surface of section, we need to
invertequations (2) using the Twiss parameters at thelocationH,,and
the Courant-Snyder beam coordinates obtained from equations (3).

Constraint on the fixed-line orientation

The possiblekick sequence of the two kicker magnets used to deflect the
beam fromthe central orbit hasaninherent limitation. Infact, although
these two accelerator elements provide two degrees of freedom in
displacing the beamin phase space (the kickangles 6, and 6,), they are
not sufficient to deflect the beam to any point in phase space. This is
because with two degrees of freedom, we can access only a2D surface
inthe four-dimensional phase space. Infact, the accessible pointsin the
Poincaré surface of section are determined by the optics functions at
thelocation of the kickers and the phase advance to the BPMs.

We consider first the case in which the sequence consists of a
vertical kick followed by a horizontal kick. Using equation (1) and
solving for t,8,and 6,, which bring the beam onto the fixed line, we find
that the only allowed kicks are

0, = ("™ | ﬂ—“* : ®)
h,x
6, ==+ ;—y ©)
vy

where f, , is the horizontal beta function at the location of the
horizontal kicker, and 3, , is the vertical beta function at the loca-
tion of the vertical kicker, with the integer N, given by the sign of 6,.
The ‘unique orientation’ of the fixed line is

Quz—a+nM=2A¢kJ—g+nNk—AQ, @)
where Ag, , is the difference between the vertical phase advances of
the two kickers.

The quantity A is defined as A2 = 2, — 2, with 2, the reso-
nance phase at the location of the horizontal kicker and 2, the reso-
nance phase at the location of the Poincaré surface of section. A2 is
computed by counting the phases from the Poincaré surface of section
to the kickers. As the horizontal kicker of the SPS can generate only
positive deflections, the unique orientation of the fixed line that is
consistent with the SPS kicker system is 2, = 2A¢y, + /2 - AQ2
(mod. 2m). Only if the resonance is excited with phase ¢, and the
correct deflecting angles 6, and 6, are used can the SPS kicker system
shift the beam exactly onto the excited fixed line.

For completeness, we consider also the case in which the kicker
sequenceisinverted, thatis withahorizontal kick followed by a vertical
kick. Using the same approach as above, we find the unique fixed-line
orientation:

Q= —a+ nM=A¢k,x—’§’+nNk—An, (8)

where we have used the corresponding notation and meaning of
quantities as above.

Mitigation of power converter ripple

Increasing the beam energy helps to mitigate the impact of a power
converter ripple, astherelative amplitude of the ripple decreases with
the higher current required for a higher beam energy.
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Kicker synchronization

As the resonance phase at the location of the kickers and the phase
advance between the kickers determines the orientation of the fixed
line, synchronizing the kickers is critical. During the experimental
campaign, the horizontal kicker was fired one turn after the vertical
kicker, and therefore, the sequence of beam deflections was vertical
followed by horizontal (‘Constraint on the fixed-line orientation’).

Driving term created by two sextupoles

By knowing the accelerator optics at the location of the BPMs, we can
compute thedriving term, which hasastrength A and angle a. By acting
on two independent sextupole magnets with strengths K, and K, ,,
respectively, we caneasilyreachanyvalueof aaslongas ay,, — ay,, ~ m/2
where ay, ,, and ay, denote the angles in the driving term generated
by the two sextupoles. During the experimental scan of the sextupole
settings, the strength of the driving term was kept constant.

Programming the SPS

The kickers will shift the beam onto a fixed line only if the angle a of
the driving term is consistent with the combined effect of both
kickers and the accelerator lattice between them. As the SPS has no
single sextupole at the proper distance to fulfil this condition, we
searched for the fixed lines by scanning the angle a looking for suitable
experimental conditions. Once we had anindication of afixed line, we
scanned the distance from the resonance 4, and the strength of the
resonance, that is the strength of the two sextupoles and the kicker
strengths 6, and 0,. For each measurement, the beam position was
stored turn by turn from all available BPMs in the SPS. Fixed settings
for the machine tunes and the resonance excitation were used for the
systematic measurements in Fig. 4. These settings were chosen such
thatalarge range of kicker strengths 6, and 6, resulted in the trapping
of thebeam on the resonance structure.

Beam and machine parameters

Optimal experimental conditions were found by setting the SPS to the
following parameters: betatron tunes Q, = 26.104 and Q,=26.448.
In addition, the natural chromaticity of the SPS was corrected, i.e.
chromaticities are Q, » 0 and Q; = 0, using dedicated sextupole
magnets without exciting or notably influencing the third-order reso-
nance. The optimal values of sextupole strengths for exciting the
third-order resonance (normalized to the beam rigidity) and kicking
the beam onto the fixed line were found to be K,;=-0.12m™ and
K,,=-0.21m. In addition, a family of weak octupoles was powered
to create some small amplitude-dependent detuning required to
stabilize the beam.

The measurements were performed at a plateau of constant beam
energy corresponding toa momentum of 100 GeV/c, such thatelectro-
magneticinteractions between the particles (collective effects) were
negligible compared to the external magnetic guiding fields of the
machine. In this case, the beam behaved almost like a single charged
particle (‘pencil beam’), which made it anideal probing tool for inves-
tigating the nonlinear dynamics of the third-order resonance. Abeam
with the following characteristics was used: single bunch of 4 x 10"
protons withr.m.s. normalized transverse emittances of ¢, = 0.5 pmand
&,~0.5umandabunchlengthofabout2.5 ns (40). Thebeamrevolution
period inthe SPS was about 23 ps.

Removing the BPMs noise from a, and g,
As the turn-by-turn data suffer from instrumental noise, a 100 turn
moving average filter was applied to yield the light blue tracesin Fig. 3.

Computingerror bars

The values of (a,) and (a,) are the averages over 3,000 turns after
the beam is kicked. The associated error bars are found from the
unbiased standard deviation of these data.

The error bars are inferred as follows. From Fig. 2a,b, we see that
the distribution of the dots (each dot is a phase space measurement)
is confined within aring. The error introduced by the horizontal BPM
is estimated as the thickness of the ring when intercepting the x axis,
whose value is Ax ~ 4 mm. In a similar way, from Fig. 2b we find
Ay ~ 3 mm. Next, we take this thickness to be six times the standard
deviation due to BPM fluctuations. These estimates include ~99% of
the fluctuations and are conservative, as in Fig. 2a,b, some additional
fluctuations arise because the beam is not exactly centred on the
fixed-line structure. Therefore, we take the BPM random errors to be
Oppmx = 4/6 =0.66 mm and Ogpy,, = 3/6 = 0.5 mm.

Wethen use these randomerrorsinanalgorithmthat repeats the
identical procedureforretrieving @aand ¢ fromthe BPM measurements,
as described for the scaled Courant-Snyder coordinates method. In
thisalgorithm, the beta-beating is also takenintoaccount,asitaddsa
systematic shift to the beta function and a systematic displacement of
the phase advance, thus adding another source of error to the deter-
minationof @and ¢. Asthe actual values of the beta-beating and phase
advance shiftalong the machine are not known with high precision, we
calculate the statistics also for these quantities, using the knowledge
thatthebeta-beatingintheSPSis (68,/B),,s ~ 5% Thisprocedureallows
usto estimate the range of the fluctuations of the quantities we plotin
Figs.3 and 4, for which the estimates for the error bars are mentioned
intherelative captions.

Selection of the experimental data and drift parameter
Toselect the datasetstobe analysed, we adopted the same procedure
used to verify the datain Fig. 4, namely, by investigating the oscilla-
tory properties in a (£2,a,) diagram. The location of the kickers
constrains the fixed line to aunique orientation £2,. However, the granu-
larity of the scan of the sextupole strengths leaves some uncertainty
infulfilling this condition. We, therefore, adopt the standard deviation
o, over the storage time, that is of the oscillation amplitude of 2, as
ameasure of closeness to the resonance. We consider a beam to be
locked onto a resonance if o, <10%. When identifying a fixed line, in
addition to the locking property, the quantities a, and a, should
not suffer from large variations. We measure this effect by defining a
parameter D as

i )
Y

where o7 and o; are the variances of a, and a,. Therefore, D corres-
pondsto 'the normallzed r.m.s. distance to the fixed line. Small values
of D correspond to cases where the beam is very close to a fixed line
with stationary machine parameters (for example D = 0.11in Fig. 3c).
On the other hand, a large D means either that the beam is far from
the fixed line or that there has been a drift of the machine parameters
(forexample, D=0.36in Fig. 3f).

Effect of beta-beating and of the sextupole scan granularity
The effect of beta-beating was estimated by taking the ideal accelerator
structure and imparting a tiny random error in the strength of each
quadrupole. This perturbed structure was used to compute the driving
term angle, hence the associated fixed-line orientation Qg", as well
as the perturbed beta functions j, and f,. Repeating this procedure
enables a statistical analysis. Extensive simulations confirmed that
the method of averaging the instantaneous 2 allows Qd"to beretrieved
and that O'_er(/ 0p,/{By)] = 3.23 10~ -3, where 0 is the standard devia-
tion of the set of perturbed Qd" and g, /(ﬂy) is the beta-beating at
the location of the sextupoles expressed in percent. Therefore, for a
beta-beating of ~5%, we find 0 ~ 0.016.

The scan of the two sextupoles was carried out while keeping
the driving term amplitude constant and varying the two sextupole
strengths K, and K, consistently to change only the phase of the
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driving term. Therefore, the maximum error in the orientation of
the fixed line Qg" is Afzﬁ" = 1/(2N), with Nthe number of scan steps in
changing the driving term angle. In the experiment, we used N=18.
Hence, O gun = (1/18)/(2y/3) ~ 0.016. This error is comparable with the

error for the beta-beating.

Simulation with MAD-X

The experimental conditions are very well defined, and we have a
sophisticated tracking model of the ideal SPS lattice in MAD-X format™,
such that one particle is tracked with initial conditions close to the
resonance. The results of the simulation are shown in Extended Data
Fig. 2a-f. The simulation® shows very similar orientations in the six
different projections of the Poincaré surface of sectionas foundinthe
experimental data® (Extended Data Fig. 1a—f). The fixed-line orienta-
tion for theideal SPS lattice is 25™ = 0.290.

Data availability
The experimental data are available at https://doi.org/10.5281/
zenodo.8278600 (ref. 33).

Code availability
Code and simulation analysis are available at https://doi.org/10.5281/
zenodo.8266916 (ref. 32).
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Extended Data Fig. 1| Full set of projections of ameasured Poincaré surface of the markers yields a direct information on the random error created by the
of section. In these pictures (a-f) we show all 6 two-dimensional phase space four BPMs, with astandard deviation ggpy = 0.66 mm, and Gy, ~ 0.5 mm. The
projections. The data corresponds to the same shot as shown in Fig. 2. The blue redlineis the best fit of Eq. (1) to the experimental data, which confirms that the
markers are the normalized beam coordinates obtained experimentally from topology is consistent with a fixed line.

3,000 passages through the selected longitudinal observation point. The spread
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Extended DataFig. 2| Simulation model of the SPS. In these pictures (a-f) we datashownin Extended Data Fig. 1, except thatin the simulation the starting
show all 6 two-dimensional phase space projections as obtained from tracking coordinates were initialized closer to the fixed line and thus reducing the jitter
simulations using the MAD-X code® with the same sextupole settings as used in around the fixed line structure. Note that the simulation is not affected by BPM
the experiment (cf. Extended Data Fig.1). Thered line is the best fit of Eq. (1) to noise.

the simulation data. The obtained results are very similar to the experimental
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