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Observation of fixed lines induced by a 
nonlinear resonance in the CERN Super 
Proton Synchrotron

H. Bartosik    1  , G. Franchetti    2,3,4   & F. Schmidt    1 

The motion of systems with linear restoring forces and recurring nonlinear 
perturbations is of central importance in physics. When a system’s natural 
oscillation frequencies and the frequency of the nonlinear restoring 
forces satisfy certain algebraic relations, the dynamics become resonant. 
In accelerator physics, an understanding of resonances and nonlinear 
dynamics is crucial for avoiding the loss of beam particles. Here we confirm 
the theoretical prediction of the dynamics for a single two-dimensional 
coupled resonance by observing so-called fixed lines. Specifically, we use 
the CERN Super Proton Synchrotron to measure the position of a particle 
beam at discrete locations around the accelerator. These measurements 
allow us to construct the Poincaré surface of section, which captures the 
main features of the dynamics in a periodic system. In our setting, any 
resonant particle passing through the Poincaré surface of section lies on a 
curve embedded in a four-dimensional phase space, the fixed line. These 
findings are relevant for mitigating beam degradation and thus for achieving 
high-intensity and high-brightness beams, as required for both current and 
future accelerator projects.

The complexity of resonant dynamics depends on the number  
of degrees of freedom of the problem. A pendulum has one degree 
of freedom1, whereas a chain of N masses bounded by springs form-
ing a Fermi–Pasta–Ulam system2 has N degrees of freedom. The main 
features of the dynamics in a periodic system are captured by the  
Poincaré surface of section, an approach invented by Henri Poincaré 
to study the dynamics of nonlinear systems3. The resonant dynamics 
for a one-dimensional (1D) periodic system is characterized by spe-
cial orbits in the Poincaré surface of section. These are fixed points, 
islands and separatrices, as shown at the top left of Fig. 1a. The next 
level of complexity is a periodic system with two degrees of freedom. 
In this case, the orbits in the Poincaré surface of section expand into a 
four-dimensional phase space, the topology of which may elude our 
geometric intuition. In the simplest case, the two degrees of freedom 
(Fig. 1a) are decoupled, and the ‘mixed’ coordinates (q1, q2) and (p1, p2) 

exhibit the characteristic rectangular shape4, as shown in the bot-
tom row of Fig. 1a (for experimental evidence, see ref. 5). Instead, for 
resonant dynamics created by a nonlinear coupling force, the mixed 
coordinates may exhibit a specific correlation, as shown, for example,  
in Fig. 1b. This feature can be quite surprising, as each (q, p) plane 
per degree of freedom seems unaffected, with information about 
the resonant dynamics being only in the mixed planes. Note that the 
four diagrams in Fig. 1b show that the collection of all the red points 
lies on a four-dimensional closed curve, which we call a ‘fixed line’6, as  
any resonant particle at any passage through the Poincaré surface of 
section is located somewhere on this curve7.

Charged particles in circular accelerators have two degrees of free-
dom in the transverse plane. Nonlinear forces due to magnet imperfec-
tions may drive resonance structures in phase space, which has always 
been a subject of practical concern for (1) avoiding resonances8–11 
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tunes or the working point in the accelerator community. We consider 
the case of one or more normal sextupole magnets of integrated 
strength K2 inserted in an otherwise linear accelerator structure. The 
resonance condition Qx + 2Qy = N combines the phase advances of the 

and (2) keeping the dynamic aperture (DA)12 large enough to ensure 
sufficient beam lifetime13–15. A prominent example of the impact of 
nonlinearities in accelerators is the Large Hadron Collider (LHC)16, 
which was commissioned at CERN in 2008. The LHC is constructed 
with superconducting magnets that inherently generate unwanted 
nonlinear field components. Based on the experience with previous 
superconducting colliders, the LHC had to be designed with a DA larger 
by a factor of two than the target value to ensure stable operation with 
a safety margin. However, after a systematic effort on the measurement 
and modelling of the LHC magnet-to-magnet nonlinearities at CERN, 
a beam experiment in 2012 demonstrated that the two-dimensional 
(2D) DA of the LHC agreed within 10% with the predictions of the  
simulations17. Further confirmations of the correlation of the real beam 
lifetime to the DA were reported later18.

When designing future high-energy colliders19–21, optimizing 
the superconducting magnets will require a similar systematic effort  
as was done for the LHC, including the study of 2D resonances, as in  
this study. If we can predict the DA with 10% precision, the additional 
safety margin of a factor of two may not be required, and thus, a  
considerable cost saving can be achieved.

For lower-energy accelerators, nonlinear resonances are of con-
cern for high-intensity and high-brightness beams, as for the SIS100 
in the Facility for Antiproton and Ion Research22,23 at GSI, and for the 
operation of the accelerator chain at CERN after the LHC injectors 
upgrade24. Studies performed over the last 20 years on 1D resonances 
have shown that space-charge-induced resonance crossing is a promi-
nent mechanism behind halo formation and associated particle loss for 
high-intensity bunches25,26. Recent studies have suggested that fixed 
lines cause the formation of asymmetric halos27. However, the existence 
of fixed lines has never been proven experimentally, confining any 
discussion merely to computer simulations or analytical methods. This 
situation is unsatisfactory, especially because fixed lines are invoked  
as part of the complex mechanism for periodic resonance crossing, 
thus motivating the experimental verification of their existence.

The dynamical coordinates of a particle in the transverse plane 
are (x, y) and the conjugate momenta are px and py. To these coordinates 
we associate the horizontal and vertical phase advances ϕx and ϕy, 
respectively28. The oscillation frequencies are expressed in terms of 
the number of oscillations per turn, Qx and Qy, which are also called the 
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Fig. 1 | Effect of the coupled resonance for a system with two degrees of 
freedom. a, Poincaré surface of section for a 1D resonance acting in a system 
with two degrees of freedom. The top left diagram shows the main features of 
the orbits for a 1D resonance with canonical coordinates (q1, p1). The blue curves 
are the orbit of the separatrix, which crosses the unstable fixed points; The red 
dots indicate the stable fixed points. The green curves represent orbits inside 
the resonance islands. The yellow dot is an orbit passing through the origin of 
the phase space plane of coordinates 1. The top right diagram shows the non-

resonant orbits for the second degree of freedom, which are now circles. The 
colours correspond to the same four test particles as in the top left diagram. 
The bottom row shows the resonant orbits in the ‘mixed’ planes (q1, q2) and 
(p1, p2). The characteristic rectangular shape of the areas covered by the orbits 
is a signature of decoupling (green markers). b, Poincaré surfaces of section in 
a system with two degrees of freedom subject to a 2D nonlinear resonance. The 
effect of the resonance is visible only in the mixed coordinate diagrams7.
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Fig. 2 | Measured Poincaré surface of section. a–d, Four projections of a 
Poincaré surface of section. The blue markers are the scaled beam coordinates 
obtained experimentally from 3,000 passages through the selected longitudinal 
observation point. a, Projection of horizontal position and momentum 
expressed in scaled Courant–Snyder coordinates. The circular shape shows that 
the amplitude āx  is constant. b, Projection in the ( ̄y, p̄y) plane. The orbit is circular 
showing that āy is constant. c,d, In the mixed coordinates, ( ̄x, ̄y) (c) and ( p̄x, p̄y) 
(d), the motion of the beam follows a Lissajous curve. The spread of the markers 
yields direct information on the random error created by the four BPMs, with 
standard deviations σBPM,x ≈ 0.66 mm and σBPM,y ≈ 0.5 mm. The red line is the best 
fit of equation (1) to the experimental data, which confirms that the topology is 
consistent with that of a fixed line.
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particle transverse coordinates (x, y) into a resonance phase advance 
per turn of the form Δϕx + 2Δϕy, which underlines the possible presence 
of a nonlinear coupling between the transverse particle coordinates 
(x, y). When the accelerator tunes are set near this third-order reso-
nance, that is when the distance to this resonance is Δr = Qx + 2Qy − N ≈ 0, 
the particle dynamics acquires special features due to the nonlinear 
fields. In particular, the phase advances per turn, Δϕx and Δϕy, are no 
longer constant, and the single-particle emittances, ϵx and ϵy, computed 
from the particle coordinates as defined by Courant and Snyder28 are 
no longer invariant. To emphasize that these quantities vary turn  
after turn, we call the values of the Courant–Snyder form resulting from 
the effect of the resonance ax and ay (see Methods for their definition). 
A perturbative approach to the dynamics shows that ax and ay must 
satisfy the relation 2ax = ay + C, where C is a constant determined by the 
initial conditions. Using only ay together with the phase advance 
Ω = ϕx + 2ϕy is sufficient for discussing the properties of the resonance. 
The key feature of the resonant dynamics for a fixed C is that a pair of 
values of ay and Ω exist such that these two dynamical variables become 
stationary. The theory of fixed lines predicts the existence of an infinite 
set of these pairs7. Back in the four-dimensional phase space (x, px, y, py), 
this special solution acquires the topology of a 1D closed curve, i.e.  
the fixed line7. Expressed in Courant–Snyder coordinates, a third- 
order fixed line is

̂x(t) = √ax cos(−2t − α + πM ),

̂y(t) = √ay cos(t),

̂px(t) = −√ax sin(−2t − α + πM ),

̂py(t) = −√ay sin(t),

(1)

where t is a parameterization variable 0 < t ≤ 2π. ax and ay are now sta-
tionary. α is the resonance driving term angle with respect to the Poin-
caré surface of section, and the integer M is either 0 or 1 according to 
the signs of Δr and α. From equation (1), we derive the stationary phase 
advance for a fixed line Ωfl = −α + πM , which characterizes its geo-
metric ‘orientation’ in the phase space.

We report here on the measurement of fixed lines performed at 
the CERN Super Proton Synchrotron (SPS). Using a set of kicker mag-
nets, we induce transverse oscillations of a proton beam and study how 
the oscillations are affected by the third-order resonance excited by a 
few strongly powered sextupoles. The beam positions are measured 
at each turn using the available beam position monitors (BPMs). With 
four consecutive BPMs (two per plane), we can reconstruct the Cou-
rant–Snyder coordinates ( ̂x, ̂px, ̂y, ̂py) at one location of the machine. 
Taking advantage of the action-angle representation ̂x = √ax cos(ϕx), 
̂px = −√ax sin(ϕx) , ̂y = √ay cos(ϕy)  and ̂py = −√ay sin(ϕy) , we can 

retrieve ax, ay, ϕx, ϕy and Ω (Methods). This procedure allows us to visu-
alize the Poincaré surface of section in Courant–Snyder coordinates 
and inspect the resonant dynamics in (Ω, ay) space. If the beam is locked 
to a stable fixed line, we expect the measured Ω and ay to be constant, 
as will be discussed in more detail in the following. A discussion  
on unstable fixed lines is beyond the scope of this work and may be  
the subject of future studies.

This experiment faces three major difficulties: (1) The inherent 
fragility of the effect being searched for. Tune modulation due to a 
power converter ripple and, therefore, fluctuations of magnetic fields 
perturb the experimental conditions used to detect fixed lines.  
To mitigate these effects, we accelerated the beam to 100 GeV/c  
before exciting transverse beam oscillations, and the machine settings 
were adjusted carefully (Methods). (2) The intrinsic manufacturing 
tolerances of accelerator quadrupoles create a well-known effect  
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Fig. 3 | Finding fixed lines and their properties. a–c, A case with the stable 
features of Fig. 2. d–f, A case where the machine conditions (in particular the 
machine tunes) are subject to unwanted drift. a, Evolution of the distance from 
the resonance calculated using the measured beam tunes, Qx and Qy. The 
harmonic number of the resonance is 79. b, Evolution of āx  and āy, the scaled 
Courant–Snyder forms (dark blue), and their corresponding moving averages 
(light blue; Methods). c, āy versus Ω diagram, where Ω = ϕx + 2ϕy. This beam 
revolves over 3,000 turns around a ‘fixed point’. The red vertical line is the fitted 
value of Ω. The black vertical line is the value of Ω found from the driving term 
calculations. d, Evolution of the distance from the resonance calculated using the 
measured beam tunes. There are larger oscillations over time. e, Evolution of āx  

and āy. The variation is larger but the variables are still correlated. f, āy versus  
Ω diagram. The meaning of the red and black vertical lines is the same as in c.  
The quantity āy spans over a large range, whereas Ω keeps oscillating around one 
specific Ωexp

fl
 (the location of the fixed line). This finding suggests that the  

beam is trapped30 on the resonance. The jitter in the light blue curves in b and e is 
due to the random error of the BPMs (σBPM,x ≈ 0.66 mm and σBPM,y ≈ 0.5 mm).  
The same random error causes the variations in c, which make the overlapping 
trajectory of (Ω, āy) appear like a thick ring rather than a circle. The thickness  
of this ring is consistent with ±3 times the error bar: σāy ≲ 2.81 mm2 and 
σΩ ≈ 0.0032, (in units of 2π). In f, the dynamic span of āy is much larger than  
the error bar. Hence, the spiral pattern show resonance trapping.
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called ‘beta-beating’, which can easily reach a level of the order of ~5%. 
This unwanted optics perturbation must be considered when analysing 
measurement results. (3) We must be able to kick the beam onto a fixed 
line. The SPS has only one vertical and one horizontal kicker suitable 
for this experiment. This set-up restricts the fixed-line orientations we 
can explore to the unique value of Ω = Ωu (Methods). In addition, the 
synchronization of the kickers needs to be taken into account 
(Methods).

The third-order resonance was excited using two sextupoles 
placed at proper locations, which enabled us to vary α and, thus,  
the orientation of the fixed line. To determine the proper sextupole 
settings, a sequence of measurements was performed by programming 
the SPS to systematically vary the strength of the two sextupoles, K2,1 
and K2,2, the distance from the resonance Δr, and the strength of the 
horizontal and vertical kicks, θx and θy, respectively (see Methods for 
the programming of the SPS).

To analyse the experimental results, we scale the Courant–Snyder 
coordinates and invariants to ̄x, p̄x, ̄y, p̄y , āx  and āy  (Methods). In  
Fig. 2, we plot the projections of the measured Poincaré surface of 
section for 3,000 turns of one selected dataset (all six projections are 
shown in Extended Data Fig. 1, and Extended Data Fig. 2 shows a com-
parison with a simulation model). The circular orbits in the horizontal 
and vertical phase space projections (Fig. 2a,b) show the usual  
Courant–Snyder invariants, from which we obtain the values of āx and 
āy. The other projections in Fig. 2 exhibit Lissajous patterns. Using 
these values of āx  and āy and applying a least squares minimization, 
we find the best fit of equation (1) to the experimental data. This curve 
is shown by the red line in all the projections of Fig. 2. It indicates that 
the dynamics is consistent with the topology of a fixed line.

From the same dataset, Fig. 3 (top) shows that the distance from 
the resonance, as obtained from the beam tunes, remains small 

throughout the storage time (Fig. 3a). āx  and āy exhibit only small, 
correlated oscillations around their corresponding average values  
(Fig. 3b). The beam revolves around a fixed point in the (Ω, āy) diagram 
(Fig. 3c). We determine its orientation to be Ωexp

fl
= 0.275 , (in units  

of 2π). The line Ωdrt
fl

= 0.30  shows the expected orientation of the  
fixed line from the sextupole settings29. We attribute the difference 
between Ωexp

fl
 and Ωdrt

fl
 to the unavoidable presence of beta-beating. In 

fact, 5% beta-beating, a value that is pretty normal in hadron accelera-
tors, is sufficient to create a root mean square (r.m.s.) spread in Ωdrt

fl
  

of 0.016 (Methods), consistent with the experimental findings.  
The residual beam oscillations around the fixed line in the (Ω, āy)  
diagram stems from the experimental inability to move the beam 
exactly onto the fixed line. For given accelerator optics, there is a 
unique fixed-line orientation allowed by the location of the kicker 
magnets (Methods), which for the ideal SPS optics is Ωu = 0.34. We 
interpret the difference between the orientation from the ideal lattice 
Ωu, the orientation expected from the sextupole driving term Ωdrt

fl
 and 

the orientation determined experimentally Ωexp

fl
 as a result of the com-

bined effect of beta-beating and the granularity of the sextupole scan 
(see Methods for more details). Note that the turn-by-turn data shown 
here starts 1,000 turns after the beam is kicked. Particles that are too 
far away from the stable resonant structure are lost in the machine 
aperture during the first 1,000 turns (corresponding to around 20 ms 
storage time), resulting in unreliable readings of the BPMs. This transient 
has, thus, been excluded in the data analysis presented in this paper.

Figure 3 (bottom) shows a dataset affected by an uncontrolled 
drift of the SPS machine parameters. In this case, the distance from the 
resonance exhibits larger variation (Fig. 3d). Nevertheless, although 
āx  and āy  decrease over time (Fig. 3e), the beam keeps oscillating 
around Ωexp

fl
= 0.275 (Fig. 3f). That is, the resonance is strong enough 

to trap30 the beam around the fixed line.
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diagram showing the measured average beam tunes along the interval of 3,000 
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resonance. The solid line Qx + 2Qy = 79 is the resonance excited by our sextupole 
settings. Qx and Qy are the betatron tunes, and 79 is the harmonic number of the 
resonance. The statistical error of tune evaluation is within the marker size.  
b, (⟨Ω⟩, σΩ) diagram. For each shot, we compute the turn-by-turn evolution of  
Ω along the storage period, and the corresponding mean value ⟨Ω⟩ and standard 
deviation σΩ. The black solid line represents Ωdrt

fl
. The blue area shows the 

selected shots close to the excited fixed line. Recall that Ω = ϕx + 2ϕy with ϕx and 
ϕy the phase advances of the horizontal and vertical planes. Ωdrt

fl
 is the resonance 

phase advance of the resonance we have excited. The dashed lines show what is 
expected when Ω is not bounded and evolves randomly. In this case, the average 
of Ω is 0.5, and its standard deviation σΩ = 1/√12, (in units of 2π). The random 

error (precision) of ⟨Ω⟩ is σ(Ω) ≲ 6 × 10−4 and, hence, is within the marker size.  
c, Mean values ⟨āx⟩ and ⟨āy⟩ of the scaled Courant-Snyder forms for the measured 
shots that are close to the resonance. The quantities āx  and āy are the scaled 
Courant–Snyder forms of the particles. The statistical error bar (precision)  
of the measured quantities ⟨āx⟩ and ⟨āy⟩ when the beam is on the fixed line is 
σ⟨āx⟩ ≲ 0.5 mm2 and σ⟨āy⟩ ≲ 1.0 mm2. In case the beam is not centred on a fixed 
line, the error bars remain nevertheless within the marker size. The quantity D 
(Methods and equation (9)), shown by the colour of the markers, indicates the 
degree of shift in the āx  and āy values and, thus, how stable the machine 
conditions are during the measurement or how close the beam is to the centre  
of the resonance structure. Small values of D (yellow band) signify that the  
beam is close to a fixed line and is stationary. If D is large (blue band), then  
either the beam is far from the fixed line or there has been a drift of the machine 
parameters (Methods).
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The previous analysis shows that the behaviour of Ω reveals the 
properties of the resonant dynamics. In particular, the average ⟨Ω⟩  
and the standard deviation σΩ over the observation period are key 
quantities for characterizing each beam. Figure 4a shows the measured 
tunes for a complete set of around 400 different shots (of which around 
150 were on the resonance). In this set of measurements, the machine 
tunes and the sextupoles settings for exciting the third-order resonance 
were the same as used for the data shown in Fig. 3. Only the strengths 
of the horizontal and vertical kicks were changed to allow us to  
probe different amplitudes āx  and āy. Figure 4b is a (⟨Ω⟩, σΩ) diagram 
showing the behaviour of ⟨Ω⟩ for each beam. The shots cluster into  
two distinct groups: (1) a cluster of off-resonance shots, for which Ω  
spans all possible angles averaging ⟨Ω⟩ = 1/2 with standard deviation 
σΩ = 1/√12  and (2) a second cluster close to ⟨Ω⟩ = Ω

drt
fl

 with a much 
lower σΩ corresponding to shots where the beam is trapped on the 
resonance structure. Note that the orientation of all the experimentally 
found fixed lines is slightly offset compared to the unique orientation, 
as already observed for the fixed line discussed in the example of  
Fig. 3. To show more general properties of the fixed lines, we select the 
shots from Fig. 4b that are closer to Ωexp

fl
 by requiring σΩ < 0.1 and  

plot them in the (⟨āx⟩, ⟨āy⟩) chart in Fig. 4c. The colours of the markers 
show D, the normalized r.m.s. distance to the fixed line (Methods), 
arising from drifts of the SPS parameters or from an oscillation around 
the fixed line. The distribution of the fixed lines in this chart is very 
similar to what was found in ref. 7.

We have shown that fixed lines may trap beam particles and 
that we can predict the topology and orientation of the fixed lines, 
which will allow the development of mitigation strategies to com-
bat beam-degradation mechanisms such as the periodic resonance 
crossing induced by any modulation of the particle tune or by 
amplitude-dependent detuning. Our findings are relevant for achiev-
ing the high-intensity and high-brightness beams required for both 
current and future accelerator projects.
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Methods
Scaled Courant–Snyder coordinates
For an on-momentum particle at fixed energy, the theory of Courant–
Snyder defines the normalized dynamical variables as

̂x = 1

√βx
x,

̂px =
αx

√βx
x +√βxpx,

̂y = 1

√βy
y,

̂py =
αy

√βy
y +√βypy,

(2)

where x, px, y and py are the particle phase space coordinates and βx, αx, 
βy and αy are the Twiss parameters at the location of the particle28. The 
units of the normalized Courant–Snyder coordinates are √mrad . 
Hence, the Courant–Snyder forms ax = γxx2 + 2αxxpx + βxp2x  and 
ay = γyy2 + 2αyypy + βyp2y  have units mrad. In the absence of a resonance,  
ax and ay are the invariants of motion, that is, the particle emittances 
usually called ϵx and ϵy. In the presence of a resonance, ax and ay can 
slowly vary. Using these normalized coordinates allows a substantial 
simplification of the topology of the linear dynamics by making  
the uncoupled planes of the phase space highly symmetric (linear 
normal form). The physical beam positions measured by the mth hori-
zonal BPM, the nth vertical BPM and in the direction of the travelling 
beam by the (m + 1)th horizontal BPM and the (n + 1)th vertical BPM are 
xm, xm+1, yn and yn+1, respectively. We will show that by using these meas-
urements we are able to retrieve the Poincaré surface of section.

We start with the observation that the β functions at the locations 
of all BPMs (in the respective plane of measurement) have almost the 
same value, which we refer to as βBPM ≈ 103 m. In the data analysis, we 
correct the difference in the β functions to βBPM, and define the scaled 
Courant–Snyder coordinates as

̄x = √βBPM ̂x,

p̄x = √βBPM ̂px,

̄y = √βBPM ̂y,

p̄y = √βBPM ̂py,

(3)

which have units of metres and automatically imply that ax and ay 
become āx = βBPMax and āy = βBPMay with units m2. The phase advance 
between two consecutive horizontal or vertical BPMs in the SPS is π/2 
within a few percent. In the data analysis, we correct this small shift  
to restore the phase advance to π/2. It is thus straightforward to  
relate these beam position measurements to the scaled coordinates:

̄xm = xm,

p̄x,m = xm+1

̄yn = yn,

p̄y,n = yn+1.

(4)

The scaled Courant–Snyder coordinates are, therefore, especially 
convenient, as they are directly retrieved from the measurement data 
from two consecutive BPMs.

The sequence of BPMs in the SPS alternates vertical with horizontal 
position measurements. Therefore, equation (4) needs to be applied 
with data from a group of four consecutive BPMs, Vn, Hm, Vn+1 and Hm+1. 
To compute the scaled Poincaré surface of section, we take the location 
of Hm as our reference position. Although the scaled horizontal phase 
space is automatically retrieved at the location of Hm, a further rotation 
of the coordinates ( ̄yn, p̄y,n) by 40° is necessary to transport the scaled 

vertical phase space from the location Vn to the location of Hm. This is 
the treatment of the BPM data necessary to visualize the scaled Poin-
caré surface of section.

To retrieve the Courant–Snyder coordinates at the location of 
the horizontal BPM Hm, which is, hence, the Courant–Snyder Poincaré 
surface of section, we have to invert equations (3) and use the scaled 
coordinates of the beam. To retrieve the physical coordinates at Hm, 
namely, to obtain the physical Poincaré surface of section, we need to 
invert equations (2) using the Twiss parameters at the location Hm and 
the Courant–Snyder beam coordinates obtained from equations (3).

Constraint on the fixed-line orientation
The possible kick sequence of the two kicker magnets used to deflect the 
beam from the central orbit has an inherent limitation. In fact, although 
these two accelerator elements provide two degrees of freedom in 
displacing the beam in phase space (the kick angles θx and θy), they are 
not sufficient to deflect the beam to any point in phase space. This is 
because with two degrees of freedom, we can access only a 2D surface 
in the four-dimensional phase space. In fact, the accessible points in the 
Poincaré surface of section are determined by the optics functions at 
the location of the kickers and the phase advance to the BPMs.

We consider first the case in which the sequence consists of a  
vertical kick followed by a horizontal kick. Using equation (1) and  
solving for t, θx and θy, which bring the beam onto the fixed line, we find 
that the only allowed kicks are

θx = (−1)1+Nk

√
ax
βh,x

, (5)

θy = ±
√

ay

βv,y
, (6)

where βh,x is the horizontal beta function at the location of the  
horizontal kicker, and βv,y is the vertical beta function at the loca-
tion of the vertical kicker, with the integer Nk given by the sign of θx.  
The ‘unique orientation’ of the fixed line is

Ωu = −α + πM = 2Δϕk,y −
π
2
+ πNk − ΔΩ, (7)

where Δϕk,y is the difference between the vertical phase advances of 
the two kickers.

The quantity ΔΩ  is defined as ΔΩ = Ωh −Ωp , with Ωh the reso
nance phase at the location of the horizontal kicker and Ωp the reso-
nance phase at the location of the Poincaré surface of section. ΔΩ is  
computed by counting the phases from the Poincaré surface of section 
to the kickers. As the horizontal kicker of the SPS can generate only 
positive deflections, the unique orientation of the fixed line that is 
consistent with the SPS kicker system is Ωu = 2Δϕk,y + π/2 − ΔΩ   
(mod. 2π). Only if the resonance is excited with phase Ωu and the  
correct deflecting angles θx and θy are used can the SPS kicker system 
shift the beam exactly onto the excited fixed line.

For completeness, we consider also the case in which the kicker 
sequence is inverted, that is with a horizontal kick followed by a vertical 
kick. Using the same approach as above, we find the unique fixed-line 
orientation:

Ωu = −α + πM = Δϕk,x −
π
2
+ πNk − ΔΩ, (8)

where we have used the corresponding notation and meaning of  
quantities as above.

Mitigation of power converter ripple
Increasing the beam energy helps to mitigate the impact of a power 
converter ripple, as the relative amplitude of the ripple decreases with 
the higher current required for a higher beam energy.
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Kicker synchronization
As the resonance phase at the location of the kickers and the phase 
advance between the kickers determines the orientation of the fixed 
line, synchronizing the kickers is critical. During the experimental 
campaign, the horizontal kicker was fired one turn after the vertical 
kicker, and therefore, the sequence of beam deflections was vertical 
followed by horizontal (‘Constraint on the fixed-line orientation’).

Driving term created by two sextupoles
By knowing the accelerator optics at the location of the BPMs, we can 
compute the driving term, which has a strength Λ and angle α. By acting 
on two independent sextupole magnets with strengths K2,1 and K2,2, 
respectively, we can easily reach any value of α as long as αK2,2 − αK2,1 ≈ π/2, 
where αK2,2, and αK2,1 denote the angles in the driving term generated  
by the two sextupoles. During the experimental scan of the sextupole 
settings, the strength of the driving term was kept constant.

Programming the SPS
The kickers will shift the beam onto a fixed line only if the angle α of  
the driving term is consistent with the combined effect of both 
kickers and the accelerator lattice between them. As the SPS has no  
single sextupole at the proper distance to fulfil this condition, we 
searched for the fixed lines by scanning the angle α looking for suitable 
experimental conditions. Once we had an indication of a fixed line, we 
scanned the distance from the resonance Δr and the strength of the 
resonance, that is the strength of the two sextupoles and the kicker 
strengths θx and θy. For each measurement, the beam position was 
stored turn by turn from all available BPMs in the SPS. Fixed settings 
for the machine tunes and the resonance excitation were used for the 
systematic measurements in Fig. 4. These settings were chosen such 
that a large range of kicker strengths θx and θy resulted in the trapping 
of the beam on the resonance structure.

Beam and machine parameters
Optimal experimental conditions were found by setting the SPS to the 
following parameters: betatron tunes Qx = 26.104 and Qy = 26.448.  
In addition, the natural chromaticity of the SPS was corrected, i.e. 
chromaticities are Q′

x ≈ 0  and Q′
y ≈ 0, using dedicated sextupole  

magnets without exciting or notably influencing the third-order reso-
nance. The optimal values of sextupole strengths for exciting the 
third-order resonance (normalized to the beam rigidity) and kicking 
the beam onto the fixed line were found to be K2,1 = −0.12 m−3 and 
K2,2 = −0.21 m−3. In addition, a family of weak octupoles was powered  
to create some small amplitude-dependent detuning required to  
stabilize the beam.

The measurements were performed at a plateau of constant beam 
energy corresponding to a momentum of 100 GeV/c, such that electro-
magnetic interactions between the particles (collective effects) were 
negligible compared to the external magnetic guiding fields of the 
machine. In this case, the beam behaved almost like a single charged 
particle (‘pencil beam’), which made it an ideal probing tool for inves-
tigating the nonlinear dynamics of the third-order resonance. A beam 
with the following characteristics was used: single bunch of 4 × 1010 
protons with r.m.s. normalized transverse emittances of εx ≈ 0.5 μm and 
εy ≈ 0.5 μm and a bunch length of about 2.5 ns (4σ). The beam revolution 
period in the SPS was about 23 μs.

Removing the BPMs noise from āx and āy
As the turn-by-turn data suffer from instrumental noise, a 100 turn 
moving average filter was applied to yield the light blue traces in Fig. 3.

Computing error bars
The values of ⟨āx⟩ and ⟨āy⟩ are the averages over 3,000 turns after  
the beam is kicked. The associated error bars are found from the  
unbiased standard deviation of these data.

The error bars are inferred as follows. From Fig. 2a,b, we see that 
the distribution of the dots (each dot is a phase space measurement) 
is confined within a ring. The error introduced by the horizontal BPM 
is estimated as the thickness of the ring when intercepting the x axis, 
whose value is Δ ̄x ≈ 4  mm. In a similar way, from Fig. 2b we find 
Δ ̄y ≈ 3 mm. Next, we take this thickness to be six times the standard 
deviation due to BPM fluctuations. These estimates include ~99% of 
the fluctuations and are conservative, as in Fig. 2a,b, some additional 
fluctuations arise because the beam is not exactly centred on the 
fixed-line structure. Therefore, we take the BPM random errors to be 
σBPM,x ≈ 4/6 = 0.66 mm and σBPM,y ≈ 3/6 = 0.5 mm.

We then use these random errors in an algorithm that repeats the 
identical procedure for retrieving ā and ϕ from the BPM measurements, 
as described for the scaled Courant–Snyder coordinates method. In 
this algorithm, the beta-beating is also taken into account, as it adds a 
systematic shift to the beta function and a systematic displacement of 
the phase advance, thus adding another source of error to the deter-
mination of ā and ϕ. As the actual values of the beta-beating and phase 
advance shift along the machine are not known with high precision, we 
calculate the statistics also for these quantities, using the knowledge 
that the beta-beating in the SPS is (δβx/βx)rms ≈ 5%. This procedure allows 
us to estimate the range of the fluctuations of the quantities we plot in 
Figs. 3 and 4, for which the estimates for the error bars are mentioned 
in the relative captions.

Selection of the experimental data and drift parameter
To select the datasets to be analysed, we adopted the same procedure 
used to verify the data in Fig. 4, namely, by investigating the oscilla
tory properties in a (Ω, āy)  diagram. The location of the kickers  
constrains the fixed line to a unique orientation Ωu. However, the granu-
larity of the scan of the sextupole strengths leaves some uncertainty 
in fulfilling this condition. We, therefore, adopt the standard deviation 
σΩ over the storage time, that is of the oscillation amplitude of Ω, as  
a measure of closeness to the resonance. We consider a beam to be  
locked onto a resonance if σΩ ≤ 10%. When identifying a fixed line, in 
addition to the locking property, the quantities āx  and āy  should  
not suffer from large variations. We measure this effect by defining a 
parameter D as

D =
√√√√
√

σ2āx

⟨āx⟩
2
+

σ2āy

⟨āy⟩
2
, (9)

where σ2āx  and σ2āy are the variances of āx  and āy. Therefore, D corres
ponds to the normalized r.m.s. distance to the fixed line. Small values 
of D correspond to cases where the beam is very close to a fixed line 
with stationary machine parameters (for example D = 0.11 in Fig. 3c). 
On the other hand, a large D means either that the beam is far from  
the fixed line or that there has been a drift of the machine parameters 
(for example, D = 0.36 in Fig. 3f).

Effect of beta-beating and of the sextupole scan granularity
The effect of beta-beating was estimated by taking the ideal accelerator 
structure and imparting a tiny random error in the strength of each 
quadrupole. This perturbed structure was used to compute the driving 
term angle, hence the associated fixed-line orientation Ωdrt

fl
, as well  

as the perturbed beta functions βx and βy. Repeating this procedure 
enables a statistical analysis. Extensive simulations confirmed that  
the method of averaging the instantaneous Ω allows Ωdrt

fl
 to be retrieved 

and that σ
Ω

drt
fl
/[σβy /⟨βy⟩] = 3.23 × 10−3, where σ

Ω
drt
fl

 is the standard devia-
tion of the set of perturbed Ωdrt

fl
, and σβy /⟨βy⟩  is the beta-beating at  

the location of the sextupoles expressed in percent. Therefore, for a 
beta-beating of ~5%, we find σ

Ω
drt
fl
≈ 0.016.

The scan of the two sextupoles was carried out while keeping  
the driving term amplitude constant and varying the two sextupole  
strengths K2,1 and K2,2 consistently to change only the phase of the  
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driving term. Therefore, the maximum error in the orientation of  
the fixed line Ωdrt

fl
 is ΔΩdrt

fl = 1/(2N), with N the number of scan steps in 
changing the driving term angle. In the experiment, we used N = 18. 
Hence, σ

Ω
drt
fl
= (1/18)/(2√3) ≃ 0.016 . This error is comparable with the 

error for the beta-beating.

Simulation with MAD-X
The experimental conditions are very well defined, and we have a 
sophisticated tracking model of the ideal SPS lattice in MAD-X format31, 
such that one particle is tracked with initial conditions close to the 
resonance. The results of the simulation are shown in Extended Data 
Fig. 2a–f. The simulation32 shows very similar orientations in the six 
different projections of the Poincaré surface of section as found in the 
experimental data33 (Extended Data Fig. 1a–f). The fixed-line orienta-
tion for the ideal SPS lattice is Ωsim

fl
= 0.290.

Data availability
The experimental data are available at https://doi.org/10.5281/
zenodo.8278600 (ref. 33).

Code availability
Code and simulation analysis are available at https://doi.org/10.5281/
zenodo.8266916 (ref. 32).
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Extended Data Fig. 1 | Full set of projections of a measured Poincaré surface 
of section. In these pictures (a-f) we show all 6 two-dimensional phase space 
projections. The data corresponds to the same shot as shown in Fig. 2. The blue 
markers are the normalized beam coordinates obtained experimentally from 
3,000 passages through the selected longitudinal observation point. The spread 

of the markers yields a direct information on the random error created by the 
four BPMs, with a standard deviation σBPM,x ≈ 0.66 mm, and σBPM,y ≈ 0.5 mm. The 
red line is the best fit of Eq. (1) to the experimental data, which confirms that the 
topology is consistent with a fixed line.
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Extended Data Fig. 2 | Simulation model of the SPS. In these pictures (a-f) we 
show all 6 two-dimensional phase space projections as obtained from tracking 
simulations using the MAD-X code31 with the same sextupole settings as used in 
the experiment (cf. Extended Data Fig. 1). The red line is the best fit of Eq. (1) to 
the simulation data. The obtained results are very similar to the experimental 

data shown in Extended Data Fig. 1, except that in the simulation the starting 
coordinates were initialized closer to the fixed line and thus reducing the jitter 
around the fixed line structure. Note that the simulation is not affected by BPM 
noise.
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