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Vortex knots have been seen decaying in many physical systems. Here
we describe topologically protected vortex knots, which remain stable

and undergo fusion and fission and conserve a topological invariant. The
host medium, a chiral nematic liquid crystal, exhibits intrinsic chirality

of molecular alignment, whereas cores of the vortex lines are structurally
achiral regions in which a molecular twist cannot be defined. We can
reversibly switch between fusion and fission of these vortex knots by
applying electric pulses. This reveals the physical embodiments of concepts
inknot theory, such as connected sums of knots and band surgeries. Our
findings demonstrate the interplay of chirality effects at hierarchical levels
from constituent molecules to the host medium and the energetically
stable chiral vortex knots. This emergent physical behaviour may enable
applicationsin electro-optics and photonics in which such fusion and fission
processes of vortex knots can be used for controlling light.

LordKelvin’s attempts to develop physics models of chemical elements
led to the modern-day knot theory'*, abranch of pure mathematics, as
well as to concepts of chirality and topology that play essential roles
across the entire nature’s hierarchy, from elementary particles to soft,
biological and quantum matter and to cosmology® . Fascinating experi-
mental analogues of Kelvin’s vortex knot models of atoms were recently
studied in common media like water'?, but complex knots were found
to decay to simpler counterparts and disappear after a series of recon-
nections of the vortex lines, so far finding no technological utility. On
the other hand, liquid crystals (LCs) are known for their widespread
applications, ranging from information displays to soft robotics and
biodetection'® %%, However, their technological utility mainly relies on
the continuous deformations of the orientational order of rod-like mol-
eculesinresponseto fields and other stimuli?* %, even though topological
defects are often used in some functionality designs, like mechanical
actuation, guided nanoscale self-assembly and beamsteering'®>?5%°,
At the same time, recent developments in nematic colloids and chiral
LCs allowed for controllably realized closed loops and knots of vortex
lines and particle-like topological solitons stabilized by chirality in the
bulk of chiral media'®*°*. Among them are the so-called ‘heliknotons™,

particle-like solitons that contain knotted vortex lines with structurally
achiral core regions in which the twist cannot be defined, which can be
referred toas ‘dischiralation’ vortexlines, inanalogy to dislocations and
disclinations in ordered media in which positional and orientational
orderisdisrupted, respectively. However, the possibilities of using exter-
nal stimulifor inducing fusion, fission and various reconnections of such
topological objects, including inter-transformations between distinct
states, aswell as the dynamics of such processes have not been studied,
althoughthe control of particle-induced knots of disclination defects by
laser tweezers was demonstrated™. Could the electric switching of such
fascinating topological objects further enhance the vast electro-optic
technological potential of LCs, in addition to providing vivid demonstra-
tions and experimental tests of the mathematical knot theory at work?
Towards this goal, we explore how low-voltage electric fields can guide
controlled transformations of stable Kelvin-atom-like vortex knots in
chiral LCs through fusion, fission and more complex relinking of knots.

Fission and fusion of atoms release massive amounts of energy,
whereas the net total number of nucleons, protons and neutrons is
conserved. Anyons in quantum computing®, skyrmions in optics*, and
many other particles and topological quasiparticles can exhibit similar
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Fig.1|Heliknotons as both dischiralation vortex knots and hopfions. a, LC cell
geometry with indium-tin-oxide-coated substrates, allowing the application of a
tunable voltage to a sample containing vortex knots, where each separate
closed-loop componentin the schematic is differently coloured. b, Schematic of
avortex knot with the helical axis field X(r) cross-sections depicting the local
X(r) field around the vortex at position r. ¢, Schematic showing that x(r) is the
helical axis field around which the LC molecules and director field n(r) twist.

3

Stereographic
projection

d, Twistin the vectorized director field n(r) in the cross-section of a small part of
the heliknoton (left) and the corresponding helical axis field X(r) (right). The red
circleindicates a-1/2 dischiralation region in the vortex knot’s cross-section. e,
Hopfion topology of the heliknoton in n(r): preimages in R3 (and S3) correspond
todistinct pointsin S2, which forminterlinked closed loops coloured by their
orientation on S2, asindicated by the dashed double arrows.

processes, but they are hidden from direct experimental observations
and often difficult to control. We describe how topologically protected
vortex knots in the chiral LC medium undergo directly observable
reconnections and conserving integer-valued topological invariants,
mimicking nuclear fusion and fission. Much like in subatomic sys-
tems, our soft-matter analogues of fusion and fission always lead to
alower energy of the final state. Interestingly, pulses of electric field
can controllably alter the energetics of these states and sequentially
fuse or split the same particle-like vortex knots, which would be impos-
sible to achieve with subatomic-physics counterparts of our knotted
particle-like objects. The facile control of suchlocalized knotted struc-
tures in the chiral LC’s helical axis field promises knot-theory-guided
photonicand electro-optic applications and unconventional compu-
tation, as well as data storage and spintronics applications for similar
knots in magnetic systems’™, in addition to providing insights into
topologically analogous phenomenain fields ranging from cosmology
to particle physics.

Electric-pulse-controlled interactions between
knots

Our chiral nematics are confined in a geometry similar to that of
electro-optic devices and displays®>** (Fig. 1a—c), where the chiral LC
is sandwiched between transparent indium tin oxide electrodes, to
which a1-kHz alternating-current voltage is applied. Far away from

the knots, the helical axis field X(r), around which molecules twist, is
spatially uniform and orthogonal to confining substrates. Localized
vortex knots in X(r), regions in which the directionality of twist can-
not be defined, are obtained by locally melting and quenching the
LC using laser tweezers incorporated into an inverted microscope
imaging setup. These localized knots are the so-called heliknotons,
topological solitons with the hopfion topology in the material director
field n(r) (Fig. 1d,e), but exhibiting singular vortex lines in X(r) (Fig. 1b)™°.
Due to the dielectric coupling between the electric field and spatially
localized n(r) and x(r), the structure of heliknotons strongly depends
on the magnitude of the applied voltage, expanding (shrinking) with
increasing (reducing) voltage. The ensuing stability of different knotted
structures at lower or higher voltages enables reversible transforma-
tions between them, allowing us to finely tune vortex knot interac-
tions, reconnections and complexity via applying electrical pulses or
acontinuously changing voltage.

Although the connected sum of knots is a pure mathematical
concept of reconnecting strands of two different knots through the
so-called band surgery operation (Fig. 2a), similar reconnections can
also emerge inbiological contexts*, preserving the number of under/
overcrossings within the ensuing composite knot. Our vortex knots
with disrupted twisting in their cores (Fig. 2b) commonly also exhibit
more complex types of fusion, reconnecting simultaneously at two
sites of the interacting knots (Fig. 2c-g and Supplementary Video 1).
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Fig. 2| Vortex reconnectionsin a helical twisted background of the chiral LC.
a, Connected sum of two trefoil knots. b, Schematic of a dischiralation vortex line
with the core in the form of a region in which the helical axis field X (r) is singular
(undefined) withina chiral LC. The top inset shows the local X (r) and the
molecular twist ata point corresponding to the single black double arrowin a
neighbourhood of the vortex line. ¢, Schematic of the vortex reconnections
between the vortex knots of two heliknotons, where the grey and black segments
indicate +1/2 and -1/2 vortex line fragments, respectively. The dashed red lines
represent the locations of the corresponding cross-sections of X (r) depictedin
planes perpendicular to the local vortex cores. The red circles highlight regions
of reconnection progressing from left to middle; additional intra-heliknoton
reconnections transform the dischiralation vortex knots depicted in the middle-
to-right schematics. d, Two heliknotons undergoing a paired reconnection event,
transforming from two trefoils (frame one) to multicomponent links (frames 3-5)
coloured according to the director orientation shown in e. The red circles
highlight regions in which reconnections progress through the intermediate
formation of vertices of a four-valent graph, in the process indicated inc.

e, Colour-mapping scheme of the vectorized director orientation n(r) based on
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the S?sphere (top left), where all the possible orientations of the unit vector are
uniquely represented by the colours, as illustrated for the helical structure (top
right). In the flattened version of the coloured unit sphere (bottom), the arrows
show the directions of increasing azimuthal and polar angles describing the
orientations of n(r), where the white centre corresponds to the north pole and
black periphery denotes the south pole of S2.f, Reconnections (shownind)
visualized with ribbons of splay and bend, where the dual-band and tri-band
ribbons distinguish between the +1/2 and -1/2 winding numbers of dischiralation
lines, respectively. Positive splay and bend regions of deformed x(r) are shown in
blue and the negative counterparts, in yellow, as depicted in g. Cross-sectional
slices show the local x(r) orientation and regions of strong splay and bend, both
within their actual locations in the sample and as separate enlarged subpanels in
theinsets below and above. g, Schematic of the X(r) orientation and the
corresponding splay-bend geometry and the colour scheme for each
dischiralation local structure type. Reconnectionsind and fwere initiated by
reducing the voltage from 2.8 V (first three frames) to 2 V (last two frames) ina
20-pum-thick cell with an LC pitch of 5 um. Supplementary Video 1shows the
corresponding dynamics.

The vortex lines forming the knots can have locally defined winding
numbers of1/2 or -1/2 (Fig. 2c,g), characterizing thelocal cross-sections
of these defects, where the winding numbers quantify the angle by
which x(r) rotates around the vortex line when one navigates around
its core once, divided by 2m. During the interaction, fragments of vortex
lines of opposite winding number (+1/2) annihilate simultaneously at
the twosites, effectively leading to two band surgeries (Fig.2c-g). Such
transformations firstlead to atwo-componentlink and then, with the
subsequent reconnections, to a four-component link (Fig. 2c-g). To
gain insights into how these transformations take place in our chiral
nematic system, we visualize the smoothly vectorized n(r) with the
help of its colour-coded order-parameter space, the two-sphere S?
(Fig.2d,e). This analysis reveals that n(r) stays continuous during such
reconnections as the knots approach and fuse, having cores of merging
vortex lines exhibit locally the same n(r) orientation. To reveal the

behaviour of singular x(r) during reconnection, we also visualize
regions with strong bend and splay distortions in X(r) (Fig. 2f,g). This
reveals the fine details of the local annihilation of opposite-winding-
number vortex line fragments, resulting in the reconnection, where
the +1/2 winding number of a given vortex fragment is encoded in the
splay-bend pattern (Fig. 2f,g).

Polarizing optical microscopy (POM), coupled with numerical
POM and free-energy modelling of the system (Fig. 3 and Supplemen-
tary Video 2), reveals how the fusion of individual heliknotons pro-
gresses upon changing the applied voltage. The evolution of the
separation vector (Fig. 3e) tracks the dynamics of heliknotons as they
fuse together. The relinking pathways extracted from the experimen-
talimages and from the energy-minimizing evolution of then(r) and
X(r) fields closely match (Fig. 3f,g and Supplementary Video 3). Inter-
estingly, relinking, both within anindividual heliknoton and between
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Fig. 3| Orientation-dependent fusion of vortex knots. a-d, POM time series
showing aninitial array of six vortex knots after they are perturbed from the
initial equilibrium configuration by changing voltage (a); three heliknotons fuse
while three others remainindividualized (b); the fused trimer hybridizes with one
more heliknoton to forma tetramer, alongside two individual heliknotons (c); the
remaining two individual heliknotons fuse to form the final configuration of a
dimer (right) next to a tetramer (left) (d). Scale bars, 10 um. The black double
arrows show the orientation of crossed polarizers. The bottom-right insets are
the corresponding numerically simulated POMs. Angle ¢ defines the relative
in-plane angle between the long axes of two interacting heliknotons. Sample
thickness d =16 pm and pitch p = 6.9 pm; the applied voltage U=1.7 Vinaand
U=2.1Vinb-d. Temporal progression is shown by arrows between the frames,
with the elapsed time marked on them. Supplementary Video 1shows the

Elapsed time (s) g

%
Q]

corresponding dynamics. e, Relative heliknoton-heliknoton positions and the
visualization depicting the orientation parameters (6., ¢) defined relative to the
inter-heliknoton separation vector ryand the uniform far-field helical
background of the sample. f,g, Experimental (f) and numerically simulated (g)
trajectories of the separation vector for the two far-right trefoils in a-d. The knot
insets in f (visualized with the help of KnotPlot freeware™) show the simplified
vortex knot topology at the beginning, middle and end of the interaction
process. The experimental and simulated dependencies are coloured based on
the elapsed time according to the colour scheme shown in f. The schematic of the
insets in fhave each closed-loop components represented by different colours.
The colours of the knot insets in g represent the director orientations in the
non-singular cores of vortices, according to the scheme shown in Fig. 2e. The
corresponding dynamics are shown in Supplementary Video 3.

270

aninteracting pair, can be driven along different kinetic pathways to
yield complex knots (Fig. 4 and Extended Data Figs. 1-6), which can
beunderstoodintermsof possible band surgeries between the vortex
line segments withinindividual knots or their pairs. Inaddition to the
various types of double reconnection (Figs. 2-4), the reconnections
representing more classical analogues of mathematical ‘connected
sum ofknots’ (Fig. 2a) are observed when heliknotons approach each
other with the separation vector parallel to the far-field helical axis
Xo (Fig. 5a,b and Supplementary Video 4), which can be induced by
subsecond pulses of the electric field. The relinking response times
7,and 7, defined as times needed for the fusion- or fission-type knot
relinking to occur after the electric field is turned on or off, respec-
tively, also occurinthe subsecond range (Fig. 5b). Relinking times for
double reconnection and reconnections of vortex lines within indi-
vidual heliknotons are also characterized by times in the
subsecond-to-second range, although somewhat longer pulses are
typically needed to prompt these topological transformations
(Fig. 5¢,d and Supplementary Video 5). The response times can be
tuned by controlling the electric field pulse amplitude, where 7, (7,)
can be shortened by increasing (reducing) the strength of the pulse
(Extended Data Fig. 7). Although the band surgeries associated with
knot transformations are classified as incoherent®>** in nature in
most cases, the examples shown in Fig. 5a,b can be considered as
physical manifestations of the mathematically coherent (preserving
orientation) band surgery>?, with oriented constituent vortex knots
undergoing fusion.

Complex knots, graphs and analogues of
high-baryon-number particles formed via fusion
Beyond single- and multicomponent knots and links, large composite
structures formed via the fusion of many separate knots also exhibit
topological features of graphs, which, inour case, are structures com-
posed of edges in the form of vortex lines and vertices at their junctions
(Fig. 6). Although three-dimensional spatial graphs are commonly
seen as transient states separating the distinct knots before and after
relinking (Figs. 2-5), for large structures formed via the fusion of many
knots, they also emerge as energy-minimizing or metastable states
(Fig. 6¢—j and Supplementary Videos 6-10). The visualization of n(r)
inthe zoomed-inregions of complex inter-vortex’s junctions forming
graphs confirms that the material director field remains non-singular
withinthem (Fig. 6), as well asillustrates the details of branching, con-
nections and reconnections of the vortex lines in the X(r) field. Some
of the components of complex vortex knots have multiple transfor-
mations between the local 1/2 and -1/2 structures along the closed
loops, whereas the other components can maintain a single winding
number, correspondingto1/2 or -1/2 (Figs.2c-g, 4 and 6¢ (insets) and
Extended DataFig. 6).

Although fusion and fission of two elementary heliknotons already
has many diverse scenarios (Figs.2-5), dependent on the relative direc-
tionality of the fusion of knots, even more possibilities arise for such
processes involving more than two heliknotons (Fig. 6 and Extended
Data Figs.1-3). The pathways of the fusion of knots can be controlled
by tuning the applied voltage and using laser tweezers, where the latter
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Fig. 4| Vortex knot reconnection pathways. a, Band surgery schematics of the
admissible reconnections that occur within a single heliknoton. b, Band surgery
schematics of the observed trefoil-trefoil reconnections. The annotations
connect the schematics to transformations demonstrated in Figs. 2 and 3. The
black-filled circles along the diagonal abbreviate alternative combinatorial
reconnection pathways, which could be obtained by choosing different
reconnection sites along the upper and lower branches, respectively. The grey
(black) fragments within the knots denote +1/2 (-1/2) vortex fragments (Fig. 2¢).
Surgeries within heliknotons are coloured in blue, whereas inter-heliknoton
reconnections are coloured in green. The blue-shaded (green-shaded) regions
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indicate an active reconnection pathway within (between) heliknotons
corresponding to four-valent vertices (Fig. 2a, middle). KnotPlot-visualized*
insets show the simplified representations of fused vortex knots after
reconnections. The arrows indicate reversible pathways induced by changing
the applied voltage. Although different pathways can be preselected by
means like relative initial positions, sample thickness, pitch, surface boundary
conditions, voltage amplitude, frequency and various kinetic voltage-driving
schemes, the detailed explorations of such means of controlis beyond the
present study’s scope.

allows us tospatially translate heliknotons and to locally melt or realign
the chiral LC in between the vortex knots, thereby prompting the
desired reconnections to occur. Within the interior of a single
heliknoton, the knotting topology can be controlled by changing the
applied voltage. Inthe simplest case, the trefoil vortex state transforms
into athree-component link by reducing the voltage (Fig. 4a). The cor-
responding reverse transformation can be induced by increasing the
voltage. Proximity to other heliknotons can influence the interior
knotting even in the absence of inter-heliknoton relinking, in
some cases, producing the Solomon link (Fig. 4a) due to attractive
heliknoton-heliknotoninteractions. At first sight, the relation between
the complex diverse knots and the concept of quasiatoms is elusive
because the numbers of components (vortex loops and knots) as well
as the numbers of crossings change during successive reconnections
related to fusion and fission and other knot transformations. One would
expect havinginteger invariants characterizing the quasiparticle knots
that could represent the effective ‘baryon numbers’ or the effective
number of nucleons. Despite the large spectrum of relinking possibili-
ties and within the voltage range of stability of individual and fused
knots, we find that the cumulative Hopfindex of heliknotons, defined
inthe material fieldn(r), is conserved during fusion, fission and various
other transformations. Indeed, characterizing the Hopfindex as an
integral, we find that the Hopf indices follow the addition of compo-
nents during fusion and stay conserved as the number of elementary
heliknotons taking partininteractions/transformations (Figs. 2-6 and
Extended DataFigs.4 and5). For asolitonic unit vector field n(r) embed-
dedin R3whose far-field background allows for compactificationinto
s3, the Hopfindex Q can be obtained as***°

— 1 3 pijk
Q= G fde rel Ak

where F; = eabcnaainbajnc, eistheLevi-Civitasymboland A;is defined

()]

as Fy = % (0iA; — 9;A); Einstein summation convention is used and

details of the calculation are presented in the Methods. For all the stud-
ied transformations, the Hopfindices obtained via the integration of

topological charge density before and after the relinking of vortices
match (up to numerical errors) with the corresponding numerical
integration values (Extended Data Fig. 5). These values of Hopfindex
are also consistent with the geometric analysis and interpretation of
this topological invariant as the linking number between the preimages
of any pair of distinct points on S?, the order-parameter space of vec-
torized n(r) (Extended Data Fig. 4)***. Figure 6 and Extended Data
Figs.5, 6 and 8 show examples of different ‘isotopes’ that have the same
Hopfindex formed from the same initial heliknoton structures but
with different vortex knotting and linking details. Interestingly, the
fusion of elementary heliknotons helps to make complex analogues
of high-baryon-number nucleons® or high-atomic-number chemical
elements, like in the original Kelvin’s vortex atom model and in topo-
logical Skyrme models of nucleons' ™.

Elasticity-mediated interactions and
reconnections of vortex knots
The facile attractive interaction that leads to ‘double reconnections’
(Figs.2and 3) viathe annihilation of vortex fragments with local oppo-
site elementary winding numbers of +1/2 can be understood as stem-
ming from the attractive elasticity-mediated local interaction between
the vortex regions of opposite winding numbers situated in the proxim-
ity of oneanother. Thisis both analogous and different from what was
observed for vortices in water'?, where the possibility of reconnections
to occur depends on the directionality of swirling flows around the
vortex cores. At the same time, other scenarios are possible, too, in
which locally graph-like configurations can form as transient states,
embedding asuperposition of reconnected states that can take place
(Figs. 5a and 6). Among other particularly interesting reconnection
scenariosis the generation of avortex loop that simultaneously recon-
nects multiple knots and serves as some kind of ‘glue’, fusing together
thedischiralation vortex cores (Fig. 6e-g and Supplementary Video 6).
Since the Hopfindex of our vortex-knot-containing structures is
conserved before and after the reconnections that mediate the fusion
and fission processes, one can ask: what is the minimum number of
reconnections needed to go from one knot to another and keep Q
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Fig. 5| Electrical switching of fusion and fission in vortex knots.

a, Reconnection of trefoils coloured according to the scheme shown in Fig. 2e,
with the top insets visualizing splay-bend ribbons at the reconnection site before
(left), during (middle) and after (right) the reconnection. The top insets show the
details of structure change in the region of reconnections, based on the colour
scheme shownin Fig. 2g. The knots in the bottom inset show the simplified knot
topology before and after the reconnection (Supplementary Video 4). b, Knotted
vortex length for repeated fusion and fission of trefoil vortices depicted ina. The
purple and orange shades correspond to the length of separated trefoils and red
triangles refer to the length of their connected sum. ¢, Switching between trefoil

Length (um)

0 05 1.0 15
Time (s)

U() Qa

Length (um)

Time (s)

knots (purple and orange markers) and the multicomponent links (blue and
cyan) showninFig. 2d-f, repeated multiple times (Supplementary Video 5).
Thered triangles refer to theintermediate graph structure facilitating the
reconnection. d, Switching between a single trefoil knot (red) and three-linked
loops (purple, orange and cyan). Inb-d, the total knot length is plotted as the
solid black curves; the dashed black lines are guides for the eye when the number
of components changes. Top: applied voltage magnitude U of the pulse train.
7,(7,) denotes the time interval between a switch in electric pulses and the
corresponding link-changing fusion (fission) event. The parameters used are
sample thickness d =25 pm and pitchp =5 um.

constant? For all the studied knots that appear to have crossings of
positive type both before and after the fusion/fission processes, a
lower-bound estimate for it,and upper bound as well, can be obtained
by calculating the reconnection numbers (or signature topological
invariants) by following the recently introduced topological analysis
of reconnections®. The relative reconnection number, determined as
the difference |R(K;) — R(K;)| between the numbers of reconnections
needed to unknot each of the knots, is indeed found to be the lower
boundand, insome special instances, equals the number of reconnec-
tions that we observe (Extended Data Fig. 9). For example, the relative
reconnection number for a single heliknoton undergoing internal
reconnectionsis 2, consistent with what we observe. In amore compli-
cated example involving two pairs of heliknotons consisting of
three-linked rings (Fig. 4b (left) and Extended Data Fig. 9g), we again
find the observed number of reconnections separating the two knots
saturates the lower bound |R(K;) — R(K;)| = 3. Furthermore, since the
application of special external stimuli such as very strong fields can
destroy elementary heliknotons and lead to changes in Hopfindex Q
of fused composite knot soliton states, the multiplicity of vortex recon-
nections associated with such knot-destroying and Q-changing trans-
formations also need to be considered, although they are outside the
scope of this study.

It is also of interest to investigate what happens to the writhe
during reconnections. Akin to what was found for the connected-sum
type of formation of knotted DNA molecules*?, we find that cumula-
tive writhe is conserved during the elementary knot fusion/fission
processes (Extended Data Fig. 9e). However, interestingly, this is not

the case during internal intra-heliknoton reconnections nor more
complex reconnections that go beyond the process of fusion and fis-
sion of elementary knots (Extended Data Fig. 9d).

Chirality and topology

Chirality of the LC host medium is essential for heliknoton stability as
the chiralterminthe free-energy functional allows for the (meta)stabil-
ity of both helical background and heliknotons. Reversing the handed-
ness of the host medium gives origin to the hopfions of opposite charge
Q (refs. 33,34), which can be checked by consistently vectorizing the
circulations of preimages*’. The vortex knots, preimage links and host
chiral LC medium are chiral, with the knot chirality preserved during
elementary relinking operations within fusion and fission (Extended
Data Fig.10a,b). In fact, all isotopes of vortex atoms can be thought
of as obtained by relinking operations within the knots. Switching
handedness of the host medium leads to energy-minimizing knots of
opposite handedness, too. Although most known knots in mathemat-
ics are chiral and achiral knots are rather rare, one can ask whether
achiral knots can be possibly obtained from the fusion of energetically
stabilized elementary chiral knots. Although we did not obtain such
achiralknotsinexperiments or numerical analyses so far, we identified
ascenarioinwhichspecific series of band surgeries could lead to such
achiral knots (Extended Data Fig. 10c), provided that both end and
intermediate states are energy-minimizing structures under suitable
material parameters and voltage-driving schemes, or in response to
other external stimuli. Thus, our experimentally accessible system
canbeusedto explore theinterplay between chirality at hierarchically
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Fig. 6 | Formation of complex knots through the fusion of simple ones. a,b, Two
Q = 2fused knot dimers shown ina, which previously formed through fusion of
pairs of individual trefoil-shaped vortex knots (Extended Data Fig. 6), hybridize
together to form a tetramer shown inb. The fusion was driven by switching
voltage from -3.7 Vto -4 V. Insets show simplified vortex knot schematics, where
each closed loop is differently coloured. ¢, Graph state formed by reconnections
within avortex knot tetramer, with the circled four-valent node of vortex lines
that can be resolved into different knot states depending on relinking; detailed
configurations of vortex lines and the corresponding simplified knot schematics
oftheentire knots areillustrated in the boxed inset, where the top visualizations
use the scheme shown in Fig. 2g and in the bottom ones, each closed-loop
componentis differently coloured. d-g, Two Q = 3 trimers shownind, each
obtained by fusing three elementary heliknotons, sequentially reconnect to
produce a Q = 6 heliknoton (e), which evolvesinto transient (f) and then stable
complex graph with several nodes (g) while conserving Q = 6; for dynamics, see

Supplementary Video 6. The inset ind schematically shows distinctly coloured
closed-loop vortex components prior to the reconnection depictedine. The
detailed configurations of vortex lines in the region of fusion are shown in the
bottominsets of e-gaccordingto the schemealsousedinc.h,i,Eight Q = 1
heliknotons arranged closely together, as shown in h, fuse to form a vortex graph
with Q = 8,inresponse to applying 4V (h,i).j, A fused state of 18 elementary
heliknotons relaxed from a perturbed lattice to form aninterconnected graph
with Q = 18 (Extended Data Fig. 8; Supplementary Video 7 shows the dynamics of
the simulated POM); the complex knot is produced via the fusion of individual
knots from an array by pulsing (three times) with voltage amplitudes between
1.5Vand3V.Thesimulated POMs of the knotted structures are shown asinsetsin
h-j, which are obtained for crossed polarizers indicated by white double arrows.
Parameters used in simulations are sample thickness d =25 pm and pitch

p =5 um;vortex cores are coloured by the n(r) orientation according to the
scheme shown in Fig. 2e.

different levels, from that of chiral carbon centres of chiral dopant
molecules within the LC to that of the chiral nematic host mediumand
to particle-like vortex knots embedded init.

Thetopology of a chiral LC can be viewed from different perspec-
tives®. Onone hand, the order-parameter space for three-dimensional
structures of non-polar n(r) is S?/Z,, which can be smoothly vectorized
for non-singular structures in three dimensions to yield an
order-parameter space of S2. From this viewpoint, the localized field

configurations are simply hopfions classified by the third homotopy
groups, 13 (S2/2,) or m3 (S?), which are identified with the group of
integers under addition, thatis, i3 (S2/2,) = m; (S?) = Z.Onthe other
hand, consideringthe mutually orthogonal x(r) and n(r) fields together,
the order-parameter space becomes the quotient space S3/Qg
(refs.10,48), where Qgis the quaternion group. In this framework, the
vortex lines studied here can be considered as one of the elements of
Qg, since m; (S3/Qg) = Qg, where unrestricted relinking is allowed
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because allthe vortexlines belong to the same element of Qg (ref. 48).
When on their own, knots of m; (S3/Qg) vortex lines would not neces-
sarily have topological protection asthey could be reduced to unknots,
muchlikein the case of vortices in water2. However, the dual nature of
our heliknotons manifests itself in the profound conservation of a
topologicalinvariant—the Hopfindex—during all observed dischirala-
tion vortex-relinking transformations.

The designs of artificial forms of matter and metamaterials with
pre-engineered physical properties are in great demand to power the
growth of modern technologies, but their atom-like building blocks
are typically nanofabricated. The studied dischiralation vortex knots
inchiral LCs exhibit particle-like meta-atom behaviour, with astriking
resemblance of vortex knot models of atoms proposed by Kelvin'. Their
promise for being the building blocks of metamatter stems from the
fact that, much like conventional atoms or nucleons, they are char-
acterized by integer-valued-Hopf-index topological invariants**+*,
analogues of baryon and atomic numbers. The ability of on-demand
reconnections within arrays and crystals of knots of various symme-
triesby applyingelectric fields locally using patterned electrodes, like
in displays®*, may allow for exploring the combinatorial diversity of
complex knotsand links that canbe realized within a chiral LC medium.
Beingrealized in the spatial structures of reconfigurable chiral LCs**,
our knots may induce topologically non-trivial configurations in the
phase or polarization of light with robust properties''. Therefore,
heliknotons may find technological utility in electro-optics, singular
optics and photonics. Furthermore, since similar topological objects
and reconnection processes can be realized in chiral magnets”, the
stability, fusion and fission of knots could be potentially used in spin-
tronics, data storage and unconventional computation.

Online content
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Methods

Materials and sample preparation

The chiral LC mixture used was prepared from4-cyano-4’-pentylbiphenyl
(5CB, EM Chemicals), doped with the left-handed chiral additive choles-
terol pelargonate (Sigma-Aldrich). To obtain a target pitch of p = 5-10 pm
for the mixture, the formula ¢4 = (HTP)"1p~! where ¢, is the mass
concentration of the chiral additive and HTP = 6.25 um™ refers to the
helical twisting power for cholesterol pelargonate in 5CB. The resulting
pitch of chiral LCs was confirmed using the Grandjean-Cano wedge cell
method™. For samples prepared to conduct nonlinear imaging, 80% of
the chiral 5CB mixture was mixed with19% of reactive mesogen RM-257
(Merck) and 1% photoinitiator Irgacure 369 (Sigma-Aldrich). To prepare
LC cells responsive to electric fields, indium-tin-oxide-coated glass
substrates were spin coated with PI-2555 (HD MicroSystems) at 2,700 rpm
for30 sand subsequently baked for 5 minat 90 °C, followed by an hour
at 180 °C. The polyimide-coated side was rubbed with a velvet cloth to
produceapreferred planar alignment for LC molecules. The as-prepared
indium-tin-oxide-coated glass substrates were then assembled into LC
cells using ultraviolet-curable glue with silica spheres whose diameters
range from20 pm to 30 pminserted between the substrates to provide
awell-defined cell gap. The indium-tin-oxide-coated glass was then
soldered with copper wiresand attached toavoltage supply (GFG-8216-A,
GW Instek) to control the voltage across the cell. The assembled cells
were filled with chiral LC mixtures through capillary forces.

Generating and imaging localized heliknotons in chiral LCs

All the experiments were performed at room temperature. The gen-
eration of heliknotons was carried out by holographic laser tweezers
focusing a10-30-mW laser beam produced by an ytterbium-doped
continuous-wave fibre laser (YLR-10-1064, IPG Photonics) into the cell,
when a voltage of -2-3 V at 1 kHz was applied across the sample. The
holographic laser tweezers setup can produce arbitrary patterns of
laser intensity within the sample, though a focused beam that locally
disrupts the orientational order of the LC material is generally sufficient
to create initial conditions for the system that relax into heliknotons
when asuitable voltage is applied. The beam only needs to be applied
for a few seconds to initialize a heliknoton. Once generated, a laser
power of -5 mW can be utilized to steer heliknotons and guide their
interaction and assembly, thereby forming lattices, arrays and hybrid-
ized vortex knots and simultaneously adjusted by the applied voltage.
The pairwise interaction between heliknotons can be modulated by
increasing or reducing the voltage, initiating vortex reconnection
events dependent onthe positions and orientations of the heliknotons
involved. POM images were taken with an IX-81 Olympus microscope
incorporated with the holographic laser tweezers mentioned above,
using a pair of orthogonally orientated polarizers, to allow for in situ
imaging by a charge-coupled device camera (Flea FMVU-13S2C-CS,
Point Grey Research). Several high-numerical-aperture objectives
ranging from x100, x40 and x20 magnifications (numerical aperture
of1.4,0.75and 0.4, respectively) were used in experiments to observe
detailed structures of individual heliknotons or assemblies and crystals
of multiple heliknotons with alarger field of view.

Three-dimensional nonlinear optical imaging

To resolve the detailed structure within heliknotons and fused
heliknoton structures, we utilized a three-photon emission fluores-
cence polarizing microscopy setup, which is directly integrated with
the IX-81 microscope described above. To prepare samples for
three-photon emission fluorescence polarizing microscopy, after
generatingsoliton structuresina cell with the polymerizable chiral LC
mixture, ultraviolet light from a20-W mercury lamp was concentrated
onto asmall region of interest through an aluminium foil mask with a
pinhole tolocally polymerize and preserve the orientational order by
crosslinking the reactive mesogens. The small polymerization region
allows heliknotonsto be generated and ‘frozen” at multiple spots within

acellsequentially,improving the throughput. Once polymerized, the
cellwas splitapart and most of the unpolymerized 5CB molecules were
washed away withisopropylalcoholand replaced with index-matching
immersion oil. This procedure was done to minimize birefringence of
the LC material, which canlead to imaging artifacts, and maintain the
LC n(r) configurations. A Ti-sapphire oscillator (Chameleon Ultrall,
Coherent) operating at 870 nm with 140-fs pulses at 80-MHz repetition
rate was used to excite the remaining SCB molecules by three-photon
absorption. The fluorescence signalis filtered with a417/60-nm band-
passfilter and detected in the forward-detection mode using a photo-
multiplier tube (H5784-20, Hamamatsu). The signal intensity of the
three-photon absorption process scales with cos® (8), where S is the
relative angle between the long axis of the 5CB molecule and the polari-
zation vector of light. For imaging scans done in this work, circularly
polarized light, obtained by aquarter-wave plate, was utilized to extract
the preimages of n (r) aligned along the far-field helical axis X,, corre-
sponding to regions with the lowest fluorescence signal. Isosurfaces
extracted from experimental imaging were then analysed and con-
trasted with the corresponding numerical structure relaxed from initial
conditions matching the experimental starting configuration.

Numerical modelling of heliknotons via energy minimization
Numerical modelling of fusion and fission of heliknotons and other
knotted solitonic structures is based on minimizing the Frank-Oseen
free-energy functional:

F[n (l‘)] = Felastic [ll (l‘)] + Felectric [n (I‘)] (2)

viathefinite-difference method. Here F,,s;caccounts for elasticenergy
penalties incurred due to splay (ky), twist (k,), bend (k33) and
saddle-splay (k,4) deformations and takes the form

Fenasic[n(®)] = f {2 -m+ Zn- (Vxn) + 2mp)’
3

+2 M x (Vxm’ - 2V [n(V-m)+nx (V xm]}.

The saddle-splay energy contributes to the energetics of defects
and surface-anchoring energy*>**. Since the n(r) configurations con-
sidered in this work are continuous and strong anchoring conditions
areapplied, we set k,, to zero. The other elastic constants ;; (6.4 pN),
k»,(3.0 pN) and &35 (10.0 pN) take the experimentally determined values
of 5CB. Similarly, the electric contribution is defined by

Foeere[n®] = = 30 [ &rles B2+ den B’ @

where Eistheappliedfield, &, = 8.854 x 102 F m~lis the permittivity of

vacuum, ¢, is the dielectric coefficient perpendicular to the director
axis and Ac is the dielectric anisotropy of the LC medium. For 5CB, As
and ¢, take the values of 13.8 and 5.2, respectively. The equations of
motion forthe director field were obtained by varying the total energy
functional and replacing the derivatives with their fourth-order
finite-difference counterparts. This, subsequently, yields a set of cou-
pledalgebraic equations at each grid point to locally update the director
field. To ensure numerical stability, an under-relaxation routine was
performed such that the successive numerical solution is a weighted
average of the old and new solutions: n; — an; + (1 - a) n. The parameter
a € [0,1]isgenerally setto « = 0.1and was chosen empirically to ensure
a convergent solution. To account for local distortions in the electric
field due to the dielectric nature of the LC material, after each subse-
quent update for the director field, the voltage is updated by minimizing
the free energy with respect to the electric field and substituting the
derivatives of voltage with fourth-order finite-difference derivatives.
This yields an equation to update the electric field at each grid point
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evolving the voltage simultaneously as the director field is relaxed.

Periodic boundaries were assigned to the planes perpendicular to the

helical axis, whereas hard boundary conditions were defined onthe top

and bottom of the cell. High-throughput grid calculations were per-

formed in parallel via code written in C++with CUDA acceleration.
Heliknotons are initialized from the ansatz®*"

0 (1) = q() 'Npg (0 q(r), ®)

where ﬁhg (F) = cos (2rz/p) X + sin (2rz/p) ydefines the background heli-
cal director field, p is the pitch and q(r) = cos (mQr/p) + sin (nQr/p) ¥
is a quaternion. Here Q is an integer that defines the charge of the
heliknotonandis setto unity for elementary heliknotons. In our model-
ling, to obtain the final heliknoton ansatz n (r), the zcomponent of n (r)
isinverted:

ny=ny, ny=n, n,=-n, (6)

For initial conditionsinvolving multiple elementary heliknotons,
acut-offradiusis chosen to be the pitch p to allow for the embedding
of multiple heliknotonsin a uniform helical background. This s carried
out by superimposing the ansatz configurations for heliknotons local-
ized at differentlocations {r;}. The ansatzabove is then relaxed accord-
ing to the energy-minimizing procedure described above.

To calibrate the elapsed time in simulations to match that of the
experiments, wereconstruct the sameinitial conditions for both exper-
iment and numerical simulations of the reconnection corresponding
toFig. 3 and Extended Data Fig. 6. For anode density of 25°p~3, we find
the time elapsed for each iteration to be 0.205 ms.

Fusion and fission response times

We explore the dynamic characteristics of elementary heliknotons
fusing and splitting apart by pulsing the applied voltage. Here we
describe the dependence of the response times 7, (7,) as a function of
the voltage amplitude in detail. Although acomplete characterization
of the switching dynamics is beyond the scope of this work, the most
relevant parameter allowing one to tune the switching dynamicsis the
applied voltage magnitude (Extended Data Fig. 7). Given a pair of
heliknotons in the trefoil state just before (after) a fusion event, the
response time z, (7,) diverges for a critical voltage dependent on the
separation distance and the relative orientation of the heliknoton-
heliknoton pair. This critical voltage can be interpreted as the voltage
that typically stabilizes a four-valent intermediate graph topology
instead of completing the reconnection event. As the applied voltage
deviates from the critical voltage, the response times sharply drop and
saturate to finite subsecond values. Note that the response times in
Extended Data Fig. 7 are somewhat smaller than those observed in
Fig.5b,cduetothecloser distance at which the heliknotons were initial-
izedinthis context. The set of parameters used above canbe translated
to other experimental geometries by noting the Frank-Oseen
free-energy functional can berescaled by the pitch without influencing
the equations of motion. Thus, the response time (neglecting initial
conditions) appearsto depend only onthe dimensionless electric field

defined by E = /£oAe/K (V/d), where d is the thickness of the cell
expressed in units of pitch p and K is the average elastic constant at
room temperature.

Visualization and topological characterization of heliknotons

The helical axis field x(r) is obtained by constructing the chirality tensor
C;j = dinjeny, where Einstein summation convention is assumed and
obtaining the dominant principal eigenvector, which defines the ori-
entation of the local non-polar helical axis x(r). Local regions within
heliknotons that do not have a well-defined chiral axis correspond to
vortex lines. In this work, we colour these vortex lines according to
theirlocal director orientation onthe s?sphere. Vortex knots obtained

by sampling the raw grid points are often coarse. Toimprove the quality
of these knots, vortices are first smoothed via Taubin smoothing to
ensure a faithful reconstruction of the knot topologies®. These
smoothedisosurface dataare then usedto constructagraph, whichis
traversed to find link components before and after knot reconnections.
When graphs can be successfully resolved intolinks, the corresponding
knot diagrams are imported into the KnotPlot freeware®” for
three-dimensional visualization, after which they can further analysed.
Ribbons of splay-bend in a tubular neighbourhood about the
vortex lines are produced by constructing a tensor Q(x) = X® X —1/3
and calculating the splay-bend parameter Ssp = 0;0;Q; (here Einstein
summationis assumed)*. The blue and yellow ribbons indicate regions
with Sgz > 0 and Sgg < 0, respectively, and correspond to isosurfaces
of Sgg values of 10% of the average positive splay-bend (S;B> and 10%
oftheaverage negative splay-bend <S§B>within the tubular neighbour-
hood of the vortex knot. To produce smooth ribbons close to the vortex
coresinwhich yisill-defined, Ssgat each grid pointislocally averaged
withits nearest neighbours.

Hopfindices of elementary and hybridized heliknotons are numer-
ically computed according to the following procedure described
elsewhere®®*°, First, we make the identification b' = elF;, = e%9;A,,
allowing us to associate the quantity A with a vector potential of
b = VxA. The Hopfindex Q canthen be writtenas Q = ﬁ Sdrb-A).
It follows that on computing b, the vector potential Ais obtained from
numericalintegration and Q can be obtained. Allnumerical derivatives
are performed with fourth-order accuracy, yielding Hopfindices that
agree within numerical error with the number of heliknotonsinitialized.
The Hopf charge may also be determined by counting the linking num-
ber of different vectorized preimages*. The north- and south-pole
preimages correspond to the director orientations along X, or the z
axis. These preimages can be numerically extracted by computing
isosurfaces according to the condition |n(r) — n/| < n, where g is a
numerical tolerance setto 0.1 correspondingtoasmallneighbourhood
of allowed vectorized n(r) orientations surrounding the target
orientation n,.

Simulated POM movies were generated by applying asimple Jones
matrix approach. We begin with a homogeneous input vector
Eo=(10 )T representing linearly polarized light along the x axis of a
given wavelength A. Rays of light are assumed to propagate along the
far-field helical axis X, (along the z axis) of the cell followed by a crossed
polarizer aligned with the y axis. For asmall LC volume of thickness Az
with the director aligned with the x axis, the corresponding Jones

matrixis
eibei  Q
Jo= ( ) >’ (7)
0 el

where 6, = 2mn,Az/Aand 6 = 2mn.;Az/A are the phases of the fast and
slowaxes, respectively. The extraordinary (n.) and ordinary (n,) refrac-
tiveindices arerelated to the effective refractive index accounting for
the out-of-plane angle 6 of the director and is given by

None

: ()]
\/cos2 () n2 +sin” () 2

Nefr =

In a medium of 5CB, n, and n, assume the values of 1.77 and 1.58,
respectively. More generally, for directors with an angle ¢ from the
X axis in the x-y plane, a rotation R(¢) € SO (2) can be applied to
Joaccording to J(6,¢) =R (¢)Jo (6) R(®)" . Applying this Jones matrix
ansatz to the discretized grid geometry above, the effective Jones
matrix for each point (x, y) inthe focal plane is obtained by multiplying
successiveJones matrices fromdifferent layers together corresponding
to acolumn with N, elements along the helical axis:

Mx.y)= [ K60y, 2),¢(x.,2)). ©)

1<i<N,
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The output polarization for a given wavelength is obtained by
applying M (x,y) to the input polarization and selecting the second

component e(y’l) due to the output polarizer. The normalized intensity
iscomputed from the squared magnitude of the output. This procedure
is carried out for 650-, 550- and 450-nm light, with relative intensities
of1.0,0.6 and 0.3, respectively, determined by the spectral content of
thelightsourceusedintheexperiments. For still POMs, the open-source
software Nemaktis® with the ability to model more complex optical
effects via ray-tracing and beam propagation (Extended Data Fig. 4b,
bottom)was found yieldingimages generally consistent with the ones
modelled by the Jones matrix approach. We found that both our Jones
matrix approach and Nemaktis yield results that agree well with the
experiments.

Tracking interactions between heliknotons via POM imaging
Totrack the separation vector between two heliknotons during fusion
and fission using POM, we make use of their key property: heliknotons
have orientations and positions along the far-field helical axis coupled,
thereby undergoing a screw-like rotational motion when translated
along the far-field helical axis'. In the POM video (Supplementary
Video 2), by recording the change in a relative angle describing the
heliknoton’s azimuthal orientation, the heliknoton’s dynamics across
thesample thickness (along the zaxis and far-field helical axis) canbe
tracked, inadditiontotrackingitslateral displacement. It follows that
by defining ¢ to be the relative angle between the long axes of the two
heliknotons, one obtains ¢ = 2ms,/p, where s, is their separation in z.
Since the in-plane heliknoton separation can be directly determined
from the POM images, the full separation vector between the two
heliknotons canbereconstructed. The same procedure can be applied
tosimulated POM images of numerically simulated heliknotons as well,
to enable adirect comparison of fusion/fission between experiments
andsimulations. In experimental cells that are less than 4pin thickness,
heliknotonstend to persistinthe midplane of the cell, allowing ¢ tobe
easily determined as the heliknotons are perturbed from equilibrium
by changing the voltage or laser tweezers manipulation.

Characterization of knot topology

A crucial aspect of our findings is the translation of our vortex knots,
and the simplified diagrams introduced to faithfully represent their
topologies and site-specific reconnections. We choose to represent
thesereconnectionsindiagramsviablue and greenbands correspond-
ingtoband surgeries associated with internal and external heliknoton
reconnections, respectively (Fig. 4 and Extended Data Fig. 9d-g).
Additionally, information about the local winding number of the
vortices is also important as reconnections often occur through a
reconnection mechanism involving the annihilation (fusion) or pair
creation (fission) between the vortex segments of opposite winding
number. We find that for all links obtained, all reconnections analysed
can be identified with the mathematical operation of coherent band
surgery in which orientations are preserved**. From the diagrams
produced, one can track the evolution of the writhe as vortex knots
and links undergo reconnections**?*, The writhe serves as a simple
measure of complexity in the knots we obtain as they are generated
fromright-handed trefoil building blocks in which the action of incor-
porating another trefoil into acomplex composite knot only increases
the writhe (Extended Data Fig. 9).

Like the writhe, one can compute the so-called reconnection num-
ber foragivenknot or link. The reconnection number of aknot or link
is the least number of reconnections that need to be performed to
transform it to an unknot**, In general, this number is not known,
but computable bounds on it from below exist (such as the so-called
signature of the knot) and a very particular upper bound is always
known that we shall call the R-number of the knot or link and denote by
R(K),where Kis thelink. In this case, one simply smooths crossings such
that the local knot orientation is preserved (Extended Data Fig. 9a)®.

The circles generated by this action are called Seifert circles**. The
R-number is defined as*

R=c—-s+1, (10)

where cis the number of crossings in the original diagram and sis the
number of Seifert circles. The meaning of the formula is that one can
performreconnections at R crossings (it is lower than the total number
of crossings) and obtain an unknot®. This is shown in Extended Data
Fig. 9b for the trefoil knot and implicitly for other examples in the
figure. Once one has the reconnection numbers for a reconnection
pathway (K; — K;), it follows that the relative R-number |R(K;) — R(K)|is
awell-defined quantity that estimates from above the minimal number
of reconnections necessary to transform K; to K;. If the link K has all
positive crossings (Extended Data Fig. 9), then R(K) is equal to the
reconnection number of K. In general, for any K, the link or knot K can
be transformed into an unknotin R(K) reconnections. R(K) is the least
among all the possible unknottings when Kis positive.
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a

b

C
Extended Data Fig. 1| POM micrographs of laser-tweezer-driven vortex vortex knots by incrementally fusing elementary ones greater complexity (b) and
reconnections. a, Two elementary heliknotons spontaneously fusingintoa obtaining a “tangle” of fused heliknotons (c). Crossed polarizer orientations are
dimer; here sample thickness d =30 um, pitch p = 5um, and voltage U=3.4 V. indicated by white double arrows. The relevant parameters ared =15um,
b, ¢, Laser tweezer manipulation of heliknotons to construct more complex p=4.5um,andU=21Vinbandd=17.5um,p=54um,andU=1.8Vinc.
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a
b
c
Extended DataFig. 2 | Fusion of complex knots from a lattice of elementary pitchp=5.4 um, and applied voltage U=1.8 Vin the first frameand 2.3 Vin
heliknotons. a-c, Time evolution of several heliknoton lattices perturbed from subsequent frames. In (a) and (¢), d=16 pm, p = 6.9 um, and U=1.7 Vin the first
equilibrium by increasing the applied voltage. Black double arrows indicate frame and 2.1V in subsequent frames. The real-time dynamics of transformations
crossed polarizer orientations. In (b), sample thickness d =17.5 pm, corresponding toaand cisshowninSIVideo 8.
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a

b

Cc
Extended Data Fig. 3| Laser-tweezer-guided fusion of chains and clusters of dynamicsis shownin SIVideo 9. Black arrows show crossed polarizer
heliknotons. a, Various fused heliknoton assembly guided by laser tweezers. orientations. In (a-c), sample thickness d =16 pm, pitch p = 6.9 um, and voltage
b, ¢, In-situ optical manipulation of heliknoton chains fusing with heliknoton U=17V.

dimers at different controlled contact sites. The corresponding real-time
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Extended Data Fig. 4 | Structure of fused heliknotons reconstructed
numerically and experimentally. a, Simulated midplane cross-sections of a
fused heliknoton colored according to director orientations corresponding to
the SZsphere in the right column. Parameters used: sample thickness 20 um,
pitch 5 um, applied voltage 2.8 V. White and black loops visualize the north-and
south-pole preimages (with director orientations colinear to cell normal 2) of the
director field, respectively. b, Experimental (top) and numerical (bottom) POM
images of the fused heliknotons shown in a. White arrows indicate crossed

<

<

¢

‘L

5 um
y C
t—> 5um

polarizer orientations. ¢, Reconstructed experimental (top) and numerical
(bottom) nonlinear fluorescence images obtained using circularly polarized laser
excitation. Dark regions correspond to north-and south-pole preimages while
bright regions are coplanar with director orientations confined to the cross-
sectional plane.d, North- and south-pole preimages extracted from
experimental 3PEF-PM imaging (top) and corresponding numerical simulations
(bottom). Preimages are colored according to the S2-based scheme shownina.
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2

Extended DataFig. 5| Zoo of knots with different Hopfindices obtained via
knot fusion. Integers at the top-left of each row are the expected Hopfindex
values and numbers above each structure are the corresponding numerically
computed Hopfindices. Cores of vortex knots are colored by their director
orientation on the S2sphere defined in Fig. 2e and Extended Data Fig. 4a.

SIVideo 10 shows dynamics of fusion of heliknotons with the net total Hopfindex
of Q = 3and Q = 4.Bottom-right insets are the simplified multi-component links
generated by KnotPlot software. Dots between structures with Hopfindex 8 and
18 imply the vast variety of knots that exist between the two structures but have

notbeen shown in this figure.
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Extended Data Fig. 6 | Vortex reconnections during fusion of two heliknotons. arrow indicates the temporal progression of evolution of the two trefoilsin ainto
a-e, Vortex fusion of two separate heliknotons into a three-component link thelink seenine. The parameters used are: sample thickness d =25 um,
visualized with colored vortex knots (according to the scheme in Fig. 2e) and pitchp=5um, and voltage U=39 V.

ribbons of splay and bend colored according to the scheme in Fig. 2g. The time
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Extended Data Fig. 7| Reconnection switching response times. a, Response approaching each other at 45 degrees with respect to X, (corresponding to
times 7, (7,) for two heliknotons reconnecting (separating) along the far-field Figs.2d, fand 5c). Simulations were performed for a cell of thickness 25 pm and
helical axis X, (as shownin Fig. 5a, b) and b, two heliknotons reconnecting while chiral LC pitch 5 pm.
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Extended Data Fig. 8 | Numerically simulated heliknoton lattice hybridization corresponding vortex knots colored by director orientationsin the vortex

CEIETD)

for Q = 18.a-e, Evolution of a heliknoton lattice (a) once prompted to evolve cores according to the scheme in Fig. 2e. Crossed white double arrows denote
from aninitial configuration into a knotted graph (e) by pulsing with voltages the crossed polarizer orientation used to compute the POM micrographs. The
between1.5-3 V (b-e)ina cell with thickness 50 pm and pitch 10 pm. Top row simulation was performed in the one-constant (obtained as an average of Frank
shows the POM micrographs of the lattice and the bottom row shows the elastic constants) approximation to reduce computation time.
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Extended Data Fig. 9| Writhe and reconnection numbers for knot
transformations. a, Areconnection event between two vortices (top).
Areconnection event (r) atacrossing results in asmoothed crossing (bottom).

b, Reconnection of a trefoil knot. Dashed linesin (a, b) denote reconnection sites.

¢, Calculations for writhe w (top) and reconnection number R (bottom) for a
trefoil knot. On the top, red and blue arrows denote the sign of a crossing as
+1and -1, respectively. Gray (black) lines on the trefoil refer to +1/2 (-1/2) winding
number vortex segments, as defined in Fig. 2c. On the bottom, red arrows serve
asguides to the eye to track the local orientation of the trefoil knot. Here c refers
to the number of crossings (marked with red dashes) and s to the number of
Seifert circles (black loops) obtained after smoothing the crossings. d, e, Writhe
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w and reconnection numbers R before and after reconnection for a single trefoil
(c) and two trefoil knots (e). Large black arrows in d, e with band diagram
schematics (see Figs. 4 and 5) relate the initial link (K;) to the final link (K;).

The blue shaded box highlights the region where reconnections occured.

f,g, Oriented knot diagrams and their corresponding Seifert circle diagrams used
to compute the writhe and reconnection numbers for each knot denoted as K.
e-g, Red arrows marking crossings indicate a positive contribution to the writhe.
Top-rightinsets show simplified KnotPlot schematics for the knots obtained.
Blue and green lines (d-g) in the upper panels denote intra- and inter-heliknoton
reconnections, respectively.
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Extended DataFig. 10 | Left- and right-handed vortex knots. a, b, Left and
right-handed knot diagrams and their KnotPlot representations summarize
results for aleft-handed and a right-handed chiral host LC medium, respectively.
Knot diagrams and their reconnection sites are presented to illustrate the
one-to-one correspondence between a given knot and the confirmed existence
of its mirrored counterpart in amedium of opposite handedness. The direction
and handedness of the helical chiral nematic background (with helical axis
denoted by X) is shown schematically in the first row. Gray (black) lines on
schematics refer to the local vortex winding number which is +1/2 (-1/2), as
defined in Fig. 2c. Blue and green bands delineate intra- and inter-heliknoton
reconnections, respectively. i-ivand v-viii correspond to the simulated left- and
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right-handed knots, respectively, obtained through re-linking of vortex lines as
described above. ¢, Top row describes a typically observed fusion of two
right-handed trefoil knots, while the bottom row depicts a hypothetical
reconnection between aright- and left-handed trefoil knots that could produce
anachiral knot, albeit such opposite-chirality knots so far could not be stabilized
next to one another in left- or right-handed or achiral nematic LCs. Letters “L”
and “R” denote left- or right-handedness of respective knots. Below arrows are
the corresponding band surgery diagrams of the reconnected knots. Top-right
insets show the simplified knots where the bottom-right knotis identified as an
achiral knot.
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