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Fusion and fission of particle-like chiral 
nematic vortex knots
 

Darian Hall    1, Jung-Shen Benny Tai    1, Louis H. Kauffman2,3 & 
Ivan I. Smalyukh    1,3,4,5 

Vortex knots have been seen decaying in many physical systems. Here 
we describe topologically protected vortex knots, which remain stable 
and undergo fusion and fission and conserve a topological invariant. The 
host medium, a chiral nematic liquid crystal, exhibits intrinsic chirality 
of molecular alignment, whereas cores of the vortex lines are structurally 
achiral regions in which a molecular twist cannot be defined. We can 
reversibly switch between fusion and fission of these vortex knots by 
applying electric pulses. This reveals the physical embodiments of concepts 
in knot theory, such as connected sums of knots and band surgeries. Our 
findings demonstrate the interplay of chirality effects at hierarchical levels 
from constituent molecules to the host medium and the energetically 
stable chiral vortex knots. This emergent physical behaviour may enable 
applications in electro-optics and photonics in which such fusion and fission 
processes of vortex knots can be used for controlling light.

Lord Kelvin’s attempts to develop physics models of chemical elements 
led to the modern-day knot theory1–4, a branch of pure mathematics, as 
well as to concepts of chirality and topology that play essential roles 
across the entire nature’s hierarchy, from elementary particles to soft, 
biological and quantum matter and to cosmology5–17. Fascinating experi-
mental analogues of Kelvin’s vortex knot models of atoms were recently 
studied in common media like water12, but complex knots were found 
to decay to simpler counterparts and disappear after a series of recon-
nections of the vortex lines, so far finding no technological utility. On 
the other hand, liquid crystals (LCs) are known for their widespread 
applications, ranging from information displays to soft robotics and 
biodetection18–28. However, their technological utility mainly relies on 
the continuous deformations of the orientational order of rod-like mol-
ecules in response to fields and other stimuli20–27, even though topological 
defects are often used in some functionality designs, like mechanical 
actuation, guided nanoscale self-assembly and beamsteering19,23,28,29. 
At the same time, recent developments in nematic colloids and chiral 
LCs allowed for controllably realized closed loops and knots of vortex 
lines and particle-like topological solitons stabilized by chirality in the 
bulk of chiral media10,30–39. Among them are the so-called ‘heliknotons’10, 

particle-like solitons that contain knotted vortex lines with structurally 
achiral core regions in which the twist cannot be defined, which can be 
referred to as ‘dischiralation’ vortex lines, in analogy to dislocations and 
disclinations in ordered media in which positional and orientational 
order is disrupted, respectively. However, the possibilities of using exter-
nal stimuli for inducing fusion, fission and various reconnections of such 
topological objects, including inter-transformations between distinct 
states, as well as the dynamics of such processes have not been studied, 
although the control of particle-induced knots of disclination defects by 
laser tweezers was demonstrated32. Could the electric switching of such 
fascinating topological objects further enhance the vast electro-optic 
technological potential of LCs, in addition to providing vivid demonstra-
tions and experimental tests of the mathematical knot theory at work? 
Towards this goal, we explore how low-voltage electric fields can guide 
controlled transformations of stable Kelvin-atom-like vortex knots in 
chiral LCs through fusion, fission and more complex relinking of knots.

Fission and fusion of atoms release massive amounts of energy, 
whereas the net total number of nucleons, protons and neutrons is 
conserved. Anyons in quantum computing40, skyrmions in optics41, and 
many other particles and topological quasiparticles can exhibit similar 
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the knots, the helical axis field χ(r), around which molecules twist, is 
spatially uniform and orthogonal to confining substrates. Localized 
vortex knots in χ(r), regions in which the directionality of twist can-
not be defined, are obtained by locally melting and quenching the 
LC using laser tweezers incorporated into an inverted microscope 
imaging setup. These localized knots are the so-called heliknotons, 
topological solitons with the hopfion topology in the material director 
field n(r) (Fig. 1d,e), but exhibiting singular vortex lines in χ(r) (Fig. 1b)10. 
Due to the dielectric coupling between the electric field and spatially 
localized n(r) and χ(r), the structure of heliknotons strongly depends 
on the magnitude of the applied voltage, expanding (shrinking) with 
increasing (reducing) voltage. The ensuing stability of different knotted 
structures at lower or higher voltages enables reversible transforma-
tions between them, allowing us to finely tune vortex knot interac-
tions, reconnections and complexity via applying electrical pulses or 
a continuously changing voltage.

Although the connected sum of knots is a pure mathematical 
concept of reconnecting strands of two different knots through the 
so-called band surgery operation (Fig. 2a), similar reconnections can 
also emerge in biological contexts42, preserving the number of under/
overcrossings within the ensuing composite knot. Our vortex knots 
with disrupted twisting in their cores (Fig. 2b) commonly also exhibit 
more complex types of fusion, reconnecting simultaneously at two 
sites of the interacting knots (Fig. 2c–g and Supplementary Video 1). 

processes, but they are hidden from direct experimental observations 
and often difficult to control. We describe how topologically protected 
vortex knots in the chiral LC medium undergo directly observable 
reconnections and conserving integer-valued topological invariants, 
mimicking nuclear fusion and fission. Much like in subatomic sys-
tems, our soft-matter analogues of fusion and fission always lead to 
a lower energy of the final state. Interestingly, pulses of electric field 
can controllably alter the energetics of these states and sequentially 
fuse or split the same particle-like vortex knots, which would be impos-
sible to achieve with subatomic-physics counterparts of our knotted 
particle-like objects. The facile control of such localized knotted struc-
tures in the chiral LC’s helical axis field promises knot-theory-guided 
photonic and electro-optic applications and unconventional compu-
tation, as well as data storage and spintronics applications for similar 
knots in magnetic systems9–11, in addition to providing insights into 
topologically analogous phenomena in fields ranging from cosmology 
to particle physics.

Electric-pulse-controlled interactions between 
knots
Our chiral nematics are confined in a geometry similar to that of 
electro-optic devices and displays22,24 (Fig. 1a–c), where the chiral LC 
is sandwiched between transparent indium tin oxide electrodes, to 
which a 1-kHz alternating-current voltage is applied. Far away from 
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Fig. 1 | Heliknotons as both dischiralation vortex knots and hopfions. a, LC cell 
geometry with indium-tin-oxide-coated substrates, allowing the application of a 
tunable voltage to a sample containing vortex knots, where each separate 
closed-loop component in the schematic is differently coloured. b, Schematic of 
a vortex knot with the helical axis field χ(r) cross-sections depicting the local 
χ(r) field around the vortex at position r. c, Schematic showing that χ(r) is the 
helical axis field around which the LC molecules and director field n(r) twist.  

d, Twist in the vectorized director field n(r) in the cross-section of a small part of 
the heliknoton (left) and the corresponding helical axis field χ(r) (right). The red 
circle indicates a –1/2 dischiralation region in the vortex knot’s cross-section. e, 
Hopfion topology of the heliknoton in n(r): preimages in ℝ3 (and 𝕊𝕊3) correspond 
to distinct points in 𝕊𝕊2, which form interlinked closed loops coloured by their 
orientation on 𝕊𝕊2, as indicated by the dashed double arrows.
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The vortex lines forming the knots can have locally defined winding 
numbers of 1/2 or –1/2 (Fig. 2c,g), characterizing the local cross-sections 
of these defects, where the winding numbers quantify the angle by 
which χ(r) rotates around the vortex line when one navigates around 
its core once, divided by 2π. During the interaction, fragments of vortex 
lines of opposite winding number (±1/2) annihilate simultaneously at 
the two sites, effectively leading to two band surgeries (Fig. 2c–g). Such 
transformations first lead to a two-component link and then, with the 
subsequent reconnections, to a four-component link (Fig. 2c–g). To 
gain insights into how these transformations take place in our chiral 
nematic system, we visualize the smoothly vectorized n(r) with the 
help of its colour-coded order-parameter space, the two-sphere 𝕊𝕊2 
(Fig. 2d,e). This analysis reveals that n(r) stays continuous during such 
reconnections as the knots approach and fuse, having cores of merging 
vortex lines exhibit locally the same n(r) orientation. To reveal the 

behaviour of singular χ(r) during reconnection, we also visualize 
regions with strong bend and splay distortions in χ(r) (Fig. 2f,g). This 
reveals the fine details of the local annihilation of opposite-winding- 
number vortex line fragments, resulting in the reconnection, where 
the ±1/2 winding number of a given vortex fragment is encoded in the 
splay–bend pattern (Fig. 2f,g).

Polarizing optical microscopy (POM), coupled with numerical 
POM and free-energy modelling of the system (Fig. 3 and Supplemen-
tary Video 2), reveals how the fusion of individual heliknotons pro-
gresses upon changing the applied voltage. The evolution of the 
separation vector (Fig. 3e) tracks the dynamics of heliknotons as they 
fuse together. The relinking pathways extracted from the experimen-
tal images and from the energy-minimizing evolution of the n(r) and 
χ(r) fields closely match (Fig. 3f,g and Supplementary Video 3). Inter-
estingly, relinking, both within an individual heliknoton and between 
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Fig. 2 | Vortex reconnections in a helical twisted background of the chiral LC.  
a, Connected sum of two trefoil knots. b, Schematic of a dischiralation vortex line 
with the core in the form of a region in which the helical axis field χ (r) is singular 
(undefined) within a chiral LC. The top inset shows the local χ (r) and the 
molecular twist at a point corresponding to the single black double arrow in a 
neighbourhood of the vortex line. c, Schematic of the vortex reconnections 
between the vortex knots of two heliknotons, where the grey and black segments 
indicate +1/2 and –1/2 vortex line fragments, respectively. The dashed red lines 
represent the locations of the corresponding cross-sections of χ (r) depicted in 
planes perpendicular to the local vortex cores. The red circles highlight regions 
of reconnection progressing from left to middle; additional intra-heliknoton 
reconnections transform the dischiralation vortex knots depicted in the middle- 
to-right schematics. d, Two heliknotons undergoing a paired reconnection event, 
transforming from two trefoils (frame one) to multicomponent links (frames 3–5)  
coloured according to the director orientation shown in e. The red circles 
highlight regions in which reconnections progress through the intermediate 
formation of vertices of a four-valent graph, in the process indicated in c.  
e, Colour-mapping scheme of the vectorized director orientation n(r) based on 

the 𝕊𝕊2 sphere (top left), where all the possible orientations of the unit vector are 
uniquely represented by the colours, as illustrated for the helical structure (top 
right). In the flattened version of the coloured unit sphere (bottom), the arrows 
show the directions of increasing azimuthal and polar angles describing the 
orientations of n(r), where the white centre corresponds to the north pole and 
black periphery denotes the south pole of 𝕊𝕊2. f, Reconnections (shown in d) 
visualized with ribbons of splay and bend, where the dual-band and tri-band 
ribbons distinguish between the +1/2 and –1/2 winding numbers of dischiralation 
lines, respectively. Positive splay and bend regions of deformed χ(r) are shown in 
blue and the negative counterparts, in yellow, as depicted in g. Cross-sectional 
slices show the local χ(r) orientation and regions of strong splay and bend, both 
within their actual locations in the sample and as separate enlarged subpanels in 
the insets below and above. g, Schematic of the χ(r) orientation and the 
corresponding splay–bend geometry and the colour scheme for each 
dischiralation local structure type. Reconnections in d and f were initiated by 
reducing the voltage from 2.8 V (first three frames) to 2 V (last two frames) in a 
20-μm-thick cell with an LC pitch of 5 μm. Supplementary Video 1 shows the 
corresponding dynamics.
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an interacting pair, can be driven along different kinetic pathways to 
yield complex knots (Fig. 4 and Extended Data Figs. 1–6), which can 
be understood in terms of possible band surgeries between the vortex 
line segments within individual knots or their pairs. In addition to the 
various types of double reconnection (Figs. 2–4), the reconnections 
representing more classical analogues of mathematical ‘connected 
sum of knots’ (Fig. 2a) are observed when heliknotons approach each 
other with the separation vector parallel to the far-field helical axis 
χ0 (Fig. 5a,b and Supplementary Video 4), which can be induced by 
subsecond pulses of the electric field. The relinking response times 
τa and τo, defined as times needed for the fusion- or fission-type knot 
relinking to occur after the electric field is turned on or off, respec-
tively, also occur in the subsecond range (Fig. 5b). Relinking times for 
double reconnection and reconnections of vortex lines within indi-
vidual heliknotons are also characterized by times in the 
subsecond-to-second range, although somewhat longer pulses are 
typically needed to prompt these topological transformations 
(Fig. 5c,d and Supplementary Video 5). The response times can be 
tuned by controlling the electric field pulse amplitude, where τa (τo) 
can be shortened by increasing (reducing) the strength of the pulse 
(Extended Data Fig. 7). Although the band surgeries associated with 
knot transformations are classified as incoherent3,43–45 in nature in 
most cases, the examples shown in Fig. 5a,b can be considered as 
physical manifestations of the mathematically coherent (preserving 
orientation) band surgery2,3, with oriented constituent vortex knots 
undergoing fusion.

Complex knots, graphs and analogues of 
high-baryon-number particles formed via fusion
Beyond single- and multicomponent knots and links, large composite 
structures formed via the fusion of many separate knots also exhibit 
topological features of graphs, which, in our case, are structures com-
posed of edges in the form of vortex lines and vertices at their junctions 
(Fig. 6). Although three-dimensional spatial graphs are commonly 
seen as transient states separating the distinct knots before and after 
relinking (Figs. 2–5), for large structures formed via the fusion of many 
knots, they also emerge as energy-minimizing or metastable states 
(Fig. 6c–j and Supplementary Videos 6–10). The visualization of n(r) 
in the zoomed-in regions of complex inter-vortex’s junctions forming 
graphs confirms that the material director field remains non-singular 
within them (Fig. 6), as well as illustrates the details of branching, con-
nections and reconnections of the vortex lines in the χ(r) field. Some 
of the components of complex vortex knots have multiple transfor-
mations between the local 1/2 and –1/2 structures along the closed 
loops, whereas the other components can maintain a single winding 
number, corresponding to 1/2 or –1/2 (Figs. 2c–g, 4 and 6c (insets) and 
Extended Data Fig. 6).

Although fusion and fission of two elementary heliknotons already 
has many diverse scenarios (Figs. 2–5), dependent on the relative direc-
tionality of the fusion of knots, even more possibilities arise for such 
processes involving more than two heliknotons (Fig. 6 and Extended 
Data Figs. 1–3). The pathways of the fusion of knots can be controlled 
by tuning the applied voltage and using laser tweezers, where the latter 
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Fig. 3 | Orientation-dependent fusion of vortex knots. a–d, POM time series 
showing an initial array of six vortex knots after they are perturbed from the 
initial equilibrium configuration by changing voltage (a); three heliknotons fuse 
while three others remain individualized (b); the fused trimer hybridizes with one 
more heliknoton to form a tetramer, alongside two individual heliknotons (c); the 
remaining two individual heliknotons fuse to form the final configuration of a 
dimer (right) next to a tetramer (left) (d). Scale bars, 10 μm. The black double 
arrows show the orientation of crossed polarizers. The bottom-right insets are 
the corresponding numerically simulated POMs. Angle ψ defines the relative 
in-plane angle between the long axes of two interacting heliknotons. Sample 
thickness d = 16 μm and pitch p = 6.9 μm; the applied voltage U = 1.7 V in a and 
U = 2.1 V in b–d. Temporal progression is shown by arrows between the frames, 
with the elapsed time marked on them. Supplementary Video 1 shows the 

corresponding dynamics. e, Relative heliknoton–heliknoton positions and the 
visualization depicting the orientation parameters (θel, ϕ) defined relative to the 
inter-heliknoton separation vector rs and the uniform far-field helical 
background of the sample. f,g, Experimental (f) and numerically simulated (g) 
trajectories of the separation vector for the two far-right trefoils in a–d. The knot 
insets in f (visualized with the help of KnotPlot freeware52) show the simplified 
vortex knot topology at the beginning, middle and end of the interaction 
process. The experimental and simulated dependencies are coloured based on 
the elapsed time according to the colour scheme shown in f. The schematic of the 
insets in f have each closed-loop components represented by different colours. 
The colours of the knot insets in g represent the director orientations in the 
non-singular cores of vortices, according to the scheme shown in Fig. 2e. The 
corresponding dynamics are shown in Supplementary Video 3.
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allows us to spatially translate heliknotons and to locally melt or realign 
the chiral LC in between the vortex knots, thereby prompting the 
desired reconnections to occur. Within the interior of a single 
heliknoton, the knotting topology can be controlled by changing the 
applied voltage. In the simplest case, the trefoil vortex state transforms 
into a three-component link by reducing the voltage (Fig. 4a). The cor-
responding reverse transformation can be induced by increasing the 
voltage. Proximity to other heliknotons can influence the interior 
knotting even in the absence of inter-heliknoton relinking, in  
some cases, producing the Solomon link (Fig. 4a) due to attractive 
heliknoton–heliknoton interactions. At first sight, the relation between 
the complex diverse knots and the concept of quasiatoms is elusive 
because the numbers of components (vortex loops and knots) as well 
as the numbers of crossings change during successive reconnections 
related to fusion and fission and other knot transformations. One would 
expect having integer invariants characterizing the quasiparticle knots 
that could represent the effective ‘baryon numbers’ or the effective 
number of nucleons. Despite the large spectrum of relinking possibili-
ties and within the voltage range of stability of individual and fused 
knots, we find that the cumulative Hopf index of heliknotons, defined 
in the material field n(r), is conserved during fusion, fission and various 
other transformations. Indeed, characterizing the Hopf index as an 
integral, we find that the Hopf indices follow the addition of compo-
nents during fusion and stay conserved as the number of elementary 
heliknotons taking part in interactions/transformations (Figs. 2–6 and 
Extended Data Figs. 4 and 5). For a solitonic unit vector field n(r) embed-
ded in ℝ3 whose far-field background allows for compactification into 
𝕊𝕊3, the Hopf index Q can be obtained as38,46

Q = 1
64π2∫

ℝ3
d3rϵijkAiFjk, (1)

where Fij = ϵabcn
a∂in

b∂jn
c, ϵ is the Levi–Civita symbol and Ai is defined 

as Fij =
1
2
(∂iAj − ∂jAi); Einstein summation convention is used and 

details of the calculation are presented in the Methods. For all the stud-
ied transformations, the Hopf indices obtained via the integration of 

topological charge density before and after the relinking of vortices 
match (up to numerical errors) with the corresponding numerical 
integration values (Extended Data Fig. 5). These values of Hopf index 
are also consistent with the geometric analysis and interpretation of 
this topological invariant as the linking number between the preimages 
of any pair of distinct points on 𝕊𝕊2, the order-parameter space of vec-
torized n(r) (Extended Data Fig. 4)46,47. Figure 6 and Extended Data 
Figs. 5, 6 and 8 show examples of different ‘isotopes’ that have the same 
Hopf index formed from the same initial heliknoton structures but 
with different vortex knotting and linking details. Interestingly, the 
fusion of elementary heliknotons helps to make complex analogues 
of high-baryon-number nucleons15 or high-atomic-number chemical 
elements, like in the original Kelvin’s vortex atom model and in topo-
logical Skyrme models of nucleons1–4.

Elasticity-mediated interactions and 
reconnections of vortex knots
The facile attractive interaction that leads to ‘double reconnections’ 
(Figs. 2 and 3) via the annihilation of vortex fragments with local oppo-
site elementary winding numbers of ±1/2 can be understood as stem-
ming from the attractive elasticity-mediated local interaction between 
the vortex regions of opposite winding numbers situated in the proxim-
ity of one another. This is both analogous and different from what was 
observed for vortices in water12, where the possibility of reconnections 
to occur depends on the directionality of swirling flows around the 
vortex cores. At the same time, other scenarios are possible, too, in 
which locally graph-like configurations can form as transient states, 
embedding a superposition of reconnected states that can take place 
(Figs. 5a and 6). Among other particularly interesting reconnection 
scenarios is the generation of a vortex loop that simultaneously recon-
nects multiple knots and serves as some kind of ‘glue’, fusing together 
the dischiralation vortex cores (Fig. 6e–g and Supplementary Video 6).

Since the Hopf index of our vortex-knot-containing structures is 
conserved before and after the reconnections that mediate the fusion 
and fission processes, one can ask: what is the minimum number of 
reconnections needed to go from one knot to another and keep Q 

Fig. 3f,g

Fig. 2d,f

a b

Fig. 4 | Vortex knot reconnection pathways. a, Band surgery schematics of the 
admissible reconnections that occur within a single heliknoton. b, Band surgery 
schematics of the observed trefoil–trefoil reconnections. The annotations 
connect the schematics to transformations demonstrated in Figs. 2 and 3. The 
black-filled circles along the diagonal abbreviate alternative combinatorial 
reconnection pathways, which could be obtained by choosing different 
reconnection sites along the upper and lower branches, respectively. The grey 
(black) fragments within the knots denote +1/2 (–1/2) vortex fragments (Fig. 2c). 
Surgeries within heliknotons are coloured in blue, whereas inter-heliknoton 
reconnections are coloured in green. The blue-shaded (green-shaded) regions 

indicate an active reconnection pathway within (between) heliknotons 
corresponding to four-valent vertices (Fig. 2a, middle). KnotPlot-visualized52 
insets show the simplified representations of fused vortex knots after 
reconnections. The arrows indicate reversible pathways induced by changing 
the applied voltage. Although different pathways can be preselected by 
means like relative initial positions, sample thickness, pitch, surface boundary 
conditions, voltage amplitude, frequency and various kinetic voltage-driving 
schemes, the detailed explorations of such means of control is beyond the 
present study’s scope.
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constant? For all the studied knots that appear to have crossings of 
positive type both before and after the fusion/fission processes, a 
lower-bound estimate for it, and upper bound as well, can be obtained 
by calculating the reconnection numbers (or signature topological 
invariants) by following the recently introduced topological analysis 
of reconnections45. The relative reconnection number, determined as 
the difference |R(Ki) − R(Kf)| between the numbers of reconnections 
needed to unknot each of the knots, is indeed found to be the lower 
bound and, in some special instances, equals the number of reconnec-
tions that we observe (Extended Data Fig. 9). For example, the relative 
reconnection number for a single heliknoton undergoing internal 
reconnections is 2, consistent with what we observe. In a more compli-
cated example involving two pairs of heliknotons consisting of 
three-linked rings (Fig. 4b (left) and Extended Data Fig. 9g), we again 
find the observed number of reconnections separating the two knots 
saturates the lower bound |R(Ki) − R(Kf)| = 3. Furthermore, since the 
application of special external stimuli such as very strong fields can 
destroy elementary heliknotons and lead to changes in Hopf index Q 
of fused composite knot soliton states, the multiplicity of vortex recon-
nections associated with such knot-destroying and Q-changing trans-
formations also need to be considered, although they are outside the 
scope of this study.

It is also of interest to investigate what happens to the writhe 
during reconnections. Akin to what was found for the connected-sum 
type of formation of knotted DNA molecules42, we find that cumula-
tive writhe is conserved during the elementary knot fusion/fission 
processes (Extended Data Fig. 9e). However, interestingly, this is not 

the case during internal intra-heliknoton reconnections nor more 
complex reconnections that go beyond the process of fusion and fis-
sion of elementary knots (Extended Data Fig. 9d).

Chirality and topology
Chirality of the LC host medium is essential for heliknoton stability as 
the chiral term in the free-energy functional allows for the (meta)stabil-
ity of both helical background and heliknotons. Reversing the handed-
ness of the host medium gives origin to the hopfions of opposite charge 
Q (refs. 33,34), which can be checked by consistently vectorizing the 
circulations of preimages47. The vortex knots, preimage links and host 
chiral LC medium are chiral, with the knot chirality preserved during 
elementary relinking operations within fusion and fission (Extended 
Data Fig. 10a,b). In fact, all isotopes of vortex atoms can be thought 
of as obtained by relinking operations within the knots. Switching 
handedness of the host medium leads to energy-minimizing knots of 
opposite handedness, too. Although most known knots in mathemat-
ics are chiral and achiral knots are rather rare, one can ask whether 
achiral knots can be possibly obtained from the fusion of energetically 
stabilized elementary chiral knots. Although we did not obtain such 
achiral knots in experiments or numerical analyses so far, we identified 
a scenario in which specific series of band surgeries could lead to such 
achiral knots (Extended Data Fig. 10c), provided that both end and 
intermediate states are energy-minimizing structures under suitable 
material parameters and voltage-driving schemes, or in response to 
other external stimuli. Thus, our experimentally accessible system 
can be used to explore the interplay between chirality at hierarchically 
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Fig. 5 | Electrical switching of fusion and fission in vortex knots.  
a, Reconnection of trefoils coloured according to the scheme shown in Fig. 2e, 
with the top insets visualizing splay–bend ribbons at the reconnection site before 
(left), during (middle) and after (right) the reconnection. The top insets show the 
details of structure change in the region of reconnections, based on the colour 
scheme shown in Fig. 2g. The knots in the bottom inset show the simplified knot 
topology before and after the reconnection (Supplementary Video 4). b, Knotted 
vortex length for repeated fusion and fission of trefoil vortices depicted in a. The 
purple and orange shades correspond to the length of separated trefoils and red 
triangles refer to the length of their connected sum. c, Switching between trefoil 

knots (purple and orange markers) and the multicomponent links (blue and 
cyan) shown in Fig. 2d–f, repeated multiple times (Supplementary Video 5).  
The red triangles refer to the intermediate graph structure facilitating the 
reconnection. d, Switching between a single trefoil knot (red) and three-linked 
loops (purple, orange and cyan). In b–d, the total knot length is plotted as the 
solid black curves; the dashed black lines are guides for the eye when the number 
of components changes. Top: applied voltage magnitude U of the pulse train.  
τa (τo) denotes the time interval between a switch in electric pulses and the 
corresponding link-changing fusion (fission) event. The parameters used are 
sample thickness d = 25 μm and pitch p = 5 μm.
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different levels, from that of chiral carbon centres of chiral dopant 
molecules within the LC to that of the chiral nematic host medium and 
to particle-like vortex knots embedded in it.

The topology of a chiral LC can be viewed from different perspec-
tives33. On one hand, the order-parameter space for three-dimensional 
structures of non-polar n(r) is 𝕊𝕊2/ℤ2, which can be smoothly vectorized 
for non-singular structures in three dimensions to yield an 
order-parameter space of 𝕊𝕊2. From this viewpoint, the localized field 

configurations are simply hopfions classified by the third homotopy 
groups, π3 (𝕊𝕊2/ℤ2) or π3 (𝕊𝕊2), which are identified with the group of 
integers under addition, that is, π3 (𝕊𝕊2/ℤ2) = π3 (𝕊𝕊2) = ℤ. On the other 
hand, considering the mutually orthogonal χ(r) and n(r) fields together, 
the order-parameter space becomes the quotient space 𝕊𝕊3/Q8   
(refs. 10,48), where Q8 is the quaternion group. In this framework, the 
vortex lines studied here can be considered as one of the elements of 
Q8, since π1 (𝕊𝕊3/Q8) = Q8 , where unrestricted relinking is allowed 
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Fig. 6 | Formation of complex knots through the fusion of simple ones. a,b, Two 
Q = 2 fused knot dimers shown in a, which previously formed through fusion of 
pairs of individual trefoil-shaped vortex knots (Extended Data Fig. 6), hybridize 
together to form a tetramer shown in b. The fusion was driven by switching 
voltage from ~3.7 V to ~4 V. Insets show simplified vortex knot schematics, where 
each closed loop is differently coloured. c, Graph state formed by reconnections 
within a vortex knot tetramer, with the circled four-valent node of vortex lines 
that can be resolved into different knot states depending on relinking; detailed 
configurations of vortex lines and the corresponding simplified knot schematics 
of the entire knots are illustrated in the boxed inset, where the top visualizations 
use the scheme shown in Fig. 2g and in the bottom ones, each closed-loop 
component is differently coloured. d–g, Two Q = 3 trimers shown in d, each 
obtained by fusing three elementary heliknotons, sequentially reconnect to 
produce a Q = 6 heliknoton (e), which evolves into transient (f) and then stable 
complex graph with several nodes (g) while conserving Q = 6; for dynamics, see 

Supplementary Video 6. The inset in d schematically shows distinctly coloured 
closed-loop vortex components prior to the reconnection depicted in e. The 
detailed configurations of vortex lines in the region of fusion are shown in the 
bottom insets of e–g according to the scheme also used in c. h,i, Eight Q = 1 
heliknotons arranged closely together, as shown in h, fuse to form a vortex graph 
with Q = 8, in response to applying 4 V (h,i). j, A fused state of 18 elementary 
heliknotons relaxed from a perturbed lattice to form an interconnected graph 
with Q = 18 (Extended Data Fig. 8; Supplementary Video 7 shows the dynamics of 
the simulated POM); the complex knot is produced via the fusion of individual 
knots from an array by pulsing (three times) with voltage amplitudes between 
1.5 V and 3 V. The simulated POMs of the knotted structures are shown as insets in 
h–j, which are obtained for crossed polarizers indicated by white double arrows. 
Parameters used in simulations are sample thickness d = 25 μm and pitch 
p = 5 μm; vortex cores are coloured by the n(r) orientation according to the 
scheme shown in Fig. 2e.
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because all the vortex lines belong to the same element of Q8 (ref. 48). 
When on their own, knots of π1 (𝕊𝕊3/Q8) vortex lines would not neces-
sarily have topological protection as they could be reduced to unknots, 
much like in the case of vortices in water12. However, the dual nature of 
our heliknotons manifests itself in the profound conservation of a 
topological invariant—the Hopf index—during all observed dischirala-
tion vortex-relinking transformations.

The designs of artificial forms of matter and metamaterials with 
pre-engineered physical properties are in great demand to power the 
growth of modern technologies, but their atom-like building blocks 
are typically nanofabricated. The studied dischiralation vortex knots 
in chiral LCs exhibit particle-like meta-atom behaviour, with a striking 
resemblance of vortex knot models of atoms proposed by Kelvin1. Their 
promise for being the building blocks of metamatter stems from the 
fact that, much like conventional atoms or nucleons, they are char-
acterized by integer-valued-Hopf-index topological invariants46,47,49, 
analogues of baryon and atomic numbers. The ability of on-demand 
reconnections within arrays and crystals of knots of various symme-
tries by applying electric fields locally using patterned electrodes, like 
in displays24, may allow for exploring the combinatorial diversity of 
complex knots and links that can be realized within a chiral LC medium. 
Being realized in the spatial structures of reconfigurable chiral LCs19,50, 
our knots may induce topologically non-trivial configurations in the 
phase or polarization of light with robust properties14,51. Therefore, 
heliknotons may find technological utility in electro-optics, singular 
optics and photonics. Furthermore, since similar topological objects 
and reconnection processes can be realized in chiral magnets11, the 
stability, fusion and fission of knots could be potentially used in spin-
tronics, data storage and unconventional computation.
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Methods
Materials and sample preparation
The chiral LC mixture used was prepared from 4-cyano-4′-pentylbiphenyl 
(5CB, EM Chemicals), doped with the left-handed chiral additive choles-
terol pelargonate (Sigma-Aldrich). To obtain a target pitch of p = 5–10 μm 
for the mixture, the formula cd = (HTP)−1p−1  where cd is the mass  
concentration of the chiral additive and HTP = 6.25 μm−1 refers to the 
helical twisting power for cholesterol pelargonate in 5CB. The resulting 
pitch of chiral LCs was confirmed using the Grandjean–Cano wedge cell 
method10. For samples prepared to conduct nonlinear imaging, 80% of 
the chiral 5CB mixture was mixed with 19% of reactive mesogen RM-257 
(Merck) and 1% photoinitiator Irgacure 369 (Sigma-Aldrich). To prepare 
LC cells responsive to electric fields, indium-tin-oxide-coated glass 
substrates were spin coated with PI-2555 (HD MicroSystems) at 2,700 rpm 
for 30 s and subsequently baked for 5 min at 90 °C, followed by an hour 
at 180 °C. The polyimide-coated side was rubbed with a velvet cloth to 
produce a preferred planar alignment for LC molecules. The as-prepared 
indium-tin-oxide-coated glass substrates were then assembled into LC 
cells using ultraviolet-curable glue with silica spheres whose diameters 
range from 20 µm to 30 μm inserted between the substrates to provide 
a well-defined cell gap. The indium-tin-oxide-coated glass was then 
soldered with copper wires and attached to a voltage supply (GFG-8216-A, 
GW Instek) to control the voltage across the cell. The assembled cells 
were filled with chiral LC mixtures through capillary forces.

Generating and imaging localized heliknotons in chiral LCs
All the experiments were performed at room temperature. The gen-
eration of heliknotons was carried out by holographic laser tweezers 
focusing a 10–30-mW laser beam produced by an ytterbium-doped 
continuous-wave fibre laser (YLR-10-1064, IPG Photonics) into the cell, 
when a voltage of ~2–3 V at 1 kHz was applied across the sample. The 
holographic laser tweezers setup can produce arbitrary patterns of 
laser intensity within the sample, though a focused beam that locally 
disrupts the orientational order of the LC material is generally sufficient 
to create initial conditions for the system that relax into heliknotons 
when a suitable voltage is applied. The beam only needs to be applied 
for a few seconds to initialize a heliknoton. Once generated, a laser 
power of ~5 mW can be utilized to steer heliknotons and guide their 
interaction and assembly, thereby forming lattices, arrays and hybrid-
ized vortex knots and simultaneously adjusted by the applied voltage. 
The pairwise interaction between heliknotons can be modulated by 
increasing or reducing the voltage, initiating vortex reconnection 
events dependent on the positions and orientations of the heliknotons 
involved. POM images were taken with an IX-81 Olympus microscope 
incorporated with the holographic laser tweezers mentioned above, 
using a pair of orthogonally orientated polarizers, to allow for in situ 
imaging by a charge-coupled device camera (Flea FMVU-13S2C-CS, 
Point Grey Research). Several high-numerical-aperture objectives 
ranging from ×100, ×40 and ×20 magnifications (numerical aperture 
of 1.4, 0.75 and 0.4, respectively) were used in experiments to observe 
detailed structures of individual heliknotons or assemblies and crystals 
of multiple heliknotons with a larger field of view.

Three-dimensional nonlinear optical imaging
To resolve the detailed structure within heliknotons and fused 
heliknoton structures, we utilized a three-photon emission fluores-
cence polarizing microscopy setup, which is directly integrated with 
the IX-81 microscope described above. To prepare samples for 
three-photon emission fluorescence polarizing microscopy, after 
generating soliton structures in a cell with the polymerizable chiral LC 
mixture, ultraviolet light from a 20-W mercury lamp was concentrated 
onto a small region of interest through an aluminium foil mask with a 
pinhole to locally polymerize and preserve the orientational order by 
crosslinking the reactive mesogens. The small polymerization region 
allows heliknotons to be generated and ‘frozen’ at multiple spots within 

a cell sequentially, improving the throughput. Once polymerized, the 
cell was split apart and most of the unpolymerized 5CB molecules were 
washed away with isopropyl alcohol and replaced with index-matching 
immersion oil. This procedure was done to minimize birefringence of 
the LC material, which can lead to imaging artifacts, and maintain the 
LC n (r) configurations. A Ti-sapphire oscillator (Chameleon Ultra II, 
Coherent) operating at 870 nm with 140-fs pulses at 80-MHz repetition 
rate was used to excite the remaining 5CB molecules by three-photon 
absorption. The fluorescence signal is filtered with a 417/60-nm band-
pass filter and detected in the forward-detection mode using a photo-
multiplier tube (H5784-20, Hamamatsu). The signal intensity of the 
three-photon absorption process scales with cos6 (β), where β is the 
relative angle between the long axis of the 5CB molecule and the polari-
zation vector of light. For imaging scans done in this work, circularly 
polarized light, obtained by a quarter-wave plate, was utilized to extract 
the preimages of n (r) aligned along the far-field helical axis χ0, corre-
sponding to regions with the lowest fluorescence signal. Isosurfaces 
extracted from experimental imaging were then analysed and con-
trasted with the corresponding numerical structure relaxed from initial 
conditions matching the experimental starting configuration.

Numerical modelling of heliknotons via energy minimization
Numerical modelling of fusion and fission of heliknotons and other 
knotted solitonic structures is based on minimizing the Frank–Oseen 
free-energy functional:

F [n (r)] = Felastic [n (r)] + Felectric [n (r)] (2)

via the finite-difference method. Here Felastic accounts for elastic energy 
penalties incurred due to splay (k11), twist (k22), bend (k33) and 
saddle-splay (k24) deformations and takes the form

Felastic[n(r)] = ∫d3r { k11
2
(∇ ⋅ n)2 + k22

2
[n ⋅ (∇ × n) + 2π/p]2

+ k33

2
[n × (∇ × n)]2 − k24

2
∇ ⋅ [n(∇ ⋅ n) + n × (∇ × n)]} .

(3)

The saddle-splay energy contributes to the energetics of defects 
and surface-anchoring energy53,54. Since the n(r) configurations con-
sidered in this work are continuous and strong anchoring conditions 
are applied, we set k24 to zero. The other elastic constants k11 (6.4 pN), 
k22 (3.0 pN) and k33 (10.0 pN) take the experimentally determined values 
of 5CB. Similarly, the electric contribution is defined by

Felectric[n(r)] = − 1
2 ε0∫d3

r[ε⟂E2 + Δε(n ⋅ E)2], (4)

where E is the applied field, ε0 = 8.854 × 10−12 Fm−1 is the permittivity of 
vacuum, ε⟂ is the dielectric coefficient perpendicular to the director 
axis and Δε is the dielectric anisotropy of the LC medium. For 5CB, Δε 
and ε⟂ take the values of 13.8 and 5.2, respectively. The equations of 
motion for the director field were obtained by varying the total energy 
functional and replacing the derivatives with their fourth-order 
finite-difference counterparts. This, subsequently, yields a set of cou-
pled algebraic equations at each grid point to locally update the director 
field. To ensure numerical stability, an under-relaxation routine was 
performed such that the successive numerical solution is a weighted 
average of the old and new solutions: ni → αni + (1 − α)n′i. The parameter 
α ∈ [0, 1] is generally set to α = 0.1 and was chosen empirically to ensure 
a convergent solution. To account for local distortions in the electric 
field due to the dielectric nature of the LC material, after each subse-
quent update for the director field, the voltage is updated by minimizing 
the free energy with respect to the electric field and substituting the 
derivatives of voltage with fourth-order finite-difference derivatives. 
This yields an equation to update the electric field at each grid point 
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evolving the voltage simultaneously as the director field is relaxed. 
Periodic boundaries were assigned to the planes perpendicular to the 
helical axis, whereas hard boundary conditions were defined on the top 
and bottom of the cell. High-throughput grid calculations were per-
formed in parallel via code written in C++ with CUDA acceleration.

Heliknotons are initialized from the ansatz6,9,17

n′ (r) = q(r)−1N⃗bg (r)q (r) , (5)

where N⃗bg ( ⃗r) = cos (2πz/p) x̂ + sin (2πz/p) ŷ defines the background heli-
cal director field, p is the pitch and q (r) = cos (πQr/p) + sin (πQr/p) ̂r   
is a quaternion. Here Q is an integer that defines the charge of the 
heliknoton and is set to unity for elementary heliknotons. In our model-
ling, to obtain the final heliknoton ansatz n (r), the z component of n (r) 
is inverted:

nx = n′x, ny = n′y, nz = −n′z. (6)

For initial conditions involving multiple elementary heliknotons, 
a cut-off radius is chosen to be the pitch p to allow for the embedding 
of multiple heliknotons in a uniform helical background. This is carried 
out by superimposing the ansatz configurations for heliknotons local-
ized at different locations {ri}. The ansatz above is then relaxed accord-
ing to the energy-minimizing procedure described above.

To calibrate the elapsed time in simulations to match that of the 
experiments, we reconstruct the same initial conditions for both exper-
iment and numerical simulations of the reconnection corresponding 
to Fig. 3 and Extended Data Fig. 6. For a node density of 253p−3, we find 
the time elapsed for each iteration to be 0.205 ms.

Fusion and fission response times
We explore the dynamic characteristics of elementary heliknotons 
fusing and splitting apart by pulsing the applied voltage. Here we 
describe the dependence of the response times τa (τo) as a function of 
the voltage amplitude in detail. Although a complete characterization 
of the switching dynamics is beyond the scope of this work, the most 
relevant parameter allowing one to tune the switching dynamics is the 
applied voltage magnitude (Extended Data Fig. 7). Given a pair of 
heliknotons in the trefoil state just before (after) a fusion event, the 
response time τa (τo) diverges for a critical voltage dependent on the 
separation distance and the relative orientation of the heliknoton–
heliknoton pair. This critical voltage can be interpreted as the voltage 
that typically stabilizes a four-valent intermediate graph topology 
instead of completing the reconnection event. As the applied voltage 
deviates from the critical voltage, the response times sharply drop and 
saturate to finite subsecond values. Note that the response times in 
Extended Data Fig. 7 are somewhat smaller than those observed in 
Fig. 5b,c due to the closer distance at which the heliknotons were initial-
ized in this context. The set of parameters used above can be translated 
to other experimental geometries by noting the Frank–Oseen 
free-energy functional can be rescaled by the pitch without influencing 
the equations of motion. Thus, the response time (neglecting initial 
conditions) appears to depend only on the dimensionless electric field 

defined by Ẽ = √ε0Δε/K̄ (V/d̃), where d̃ is the thickness of the cell 
expressed in units of pitch p and K̄  is the average elastic constant at 
room temperature.

Visualization and topological characterization of heliknotons
The helical axis field χ(r)  is obtained by constructing the chirality tensor 
Cij = ∂inlϵjlknk, where Einstein summation convention is assumed and 
obtaining the dominant principal eigenvector, which defines the ori-
entation of the local non-polar helical axis χ(r). Local regions within 
heliknotons that do not have a well-defined chiral axis correspond to 
vortex lines. In this work, we colour these vortex lines according to 
their local director orientation on the 𝕊𝕊2 sphere. Vortex knots obtained 

by sampling the raw grid points are often coarse. To improve the quality 
of these knots, vortices are first smoothed via Taubin smoothing to 
ensure a faithful reconstruction of the knot topologies55. These 
smoothed isosurface data are then used to construct a graph, which is 
traversed to find link components before and after knot reconnections. 
When graphs can be successfully resolved into links, the corresponding 
knot diagrams are imported into the KnotPlot freeware52 for 
three-dimensional visualization, after which they can further analysed. 
Ribbons of splay–bend in a tubular neighbourhood about the  
vortex lines are produced by constructing a tensor ℚ (χ) = χ⊗ χ − 1/3 
and calculating the splay–bend parameter SSB = ∂i∂jℚij (here Einstein 
summation is assumed)56. The blue and yellow ribbons indicate regions 
with SSB > 0 and SSB < 0, respectively, and correspond to isosurfaces 
of SSB values of 10% of the average positive splay–bend ⟨S+SB⟩ and 10%  
of the average negative splay–bend ⟨S−SB⟩ within the tubular neighbour-
hood of the vortex knot. To produce smooth ribbons close to the vortex 
cores in which χ  is ill-defined, SSB at each grid point is locally averaged 
with its nearest neighbours.

Hopf indices of elementary and hybridized heliknotons are numer-
ically computed according to the following procedure described 
elsewhere38,46. First, we make the identification bi = ϵijkFjk = ϵijk∂jAk , 
allowing us to associate the quantity A  with a vector potential of 
b = ∇∇∇×A. The Hopf index Q can then be written as Q = 1

64π2
∫d3r(b ⋅ A). 

It follows that on computing b, the vector potential A is obtained from 
numerical integration and Q can be obtained. All numerical derivatives 
are performed with fourth-order accuracy, yielding Hopf indices that 
agree within numerical error with the number of heliknotons initialized. 
The Hopf charge may also be determined by counting the linking num-
ber of different vectorized preimages47. The north- and south-pole 
preimages correspond to the director orientations along χ0 or the z 
axis. These preimages can be numerically extracted by computing 
isosurfaces according to the condition |n (r) − nt| < η , where η is a 
numerical tolerance set to 0.1 corresponding to a small neighbourhood 
of allowed vectorized n (r)  orientations surrounding the target  
orientation nt.

Simulated POM movies were generated by applying a simple Jones 
matrix approach. We begin with a homogeneous input vector 
E0 = ( 1 0 )T representing linearly polarized light along the x axis of a 
given wavelength λ. Rays of light are assumed to propagate along the 
far-field helical axis χ0 (along the z axis) of the cell followed by a crossed 
polarizer aligned with the y axis. For a small LC volume of thickness Δz  
with the director aligned with the x axis, the corresponding Jones 
matrix is

J0 = (
eiδeff 0

0 eiδ0
) , (7)

where δ0 = 2πnoΔz/λ and δeff = 2πneffΔz/λ are the phases of the fast and 
slow axes, respectively. The extraordinary (ne) and ordinary (no) refrac-
tive indices are related to the effective refractive index accounting for 
the out-of-plane angle θ of the director and is given by

neff =
none

√cos2 (θ)n2
e + sin2 (θ)n2

o

. (8)

In a medium of 5CB, ne and no assume the values of 1.77 and 1.58, 
respectively. More generally, for directors with an angle ϕ from the  
x axis in the x–y plane, a rotation R (ϕ) ∈ SO (2)  can be applied to  

J0 according to J (θ,ϕ) = R (ϕ) J0 (θ)R(ϕ)
T . Applying this Jones matrix  

ansatz to the discretized grid geometry above, the effective Jones 
matrix for each point (x, y) in the focal plane is obtained by multiplying 
successive Jones matrices from different layers together corresponding 
to a column with Nz elements along the helical axis:

M(x, y) = ∏
1≤i≤Nz

J(θ(x, y, zi),ϕ(x, y, zi)). (9)
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The output polarization for a given wavelength is obtained by 
applying M (x, y) to the input polarization and selecting the second 

component e(λ)y  due to the output polarizer. The normalized intensity 
is computed from the squared magnitude of the output. This procedure 
is carried out for 650-, 550- and 450-nm light, with relative intensities 
of 1.0, 0.6 and 0.3, respectively, determined by the spectral content of 
the light source used in the experiments. For still POMs, the open-source 
software Nemaktis57 with the ability to model more complex optical 
effects via ray-tracing and beam propagation (Extended Data Fig. 4b, 
bottom) was found yielding images generally consistent with the ones 
modelled by the Jones matrix approach. We found that both our Jones 
matrix approach and Nemaktis yield results that agree well with the 
experiments.

Tracking interactions between heliknotons via POM imaging
To track the separation vector between two heliknotons during fusion 
and fission using POM, we make use of their key property: heliknotons 
have orientations and positions along the far-field helical axis coupled, 
thereby undergoing a screw-like rotational motion when translated 
along the far-field helical axis10. In the POM video (Supplementary 
Video 2), by recording the change in a relative angle describing the 
heliknoton’s azimuthal orientation, the heliknoton’s dynamics across 
the sample thickness (along the z axis and far-field helical axis) can be 
tracked, in addition to tracking its lateral displacement. It follows that 
by defining ψ to be the relative angle between the long axes of the two 
heliknotons, one obtains ψ = 2πsz/p, where sz is their separation in z. 
Since the in-plane heliknoton separation can be directly determined 
from the POM images, the full separation vector between the two 
heliknotons can be reconstructed. The same procedure can be applied 
to simulated POM images of numerically simulated heliknotons as well, 
to enable a direct comparison of fusion/fission between experiments 
and simulations. In experimental cells that are less than 4p in thickness, 
heliknotons tend to persist in the midplane of the cell, allowing ψ to be 
easily determined as the heliknotons are perturbed from equilibrium 
by changing the voltage or laser tweezers manipulation.

Characterization of knot topology
A crucial aspect of our findings is the translation of our vortex knots, 
and the simplified diagrams introduced to faithfully represent their 
topologies and site-specific reconnections. We choose to represent 
these reconnections in diagrams via blue and green bands correspond-
ing to band surgeries associated with internal and external heliknoton 
reconnections, respectively (Fig. 4 and Extended Data Fig. 9d–g). 
Additionally, information about the local winding number of the 
vortices is also important as reconnections often occur through a 
reconnection mechanism involving the annihilation (fusion) or pair 
creation (fission) between the vortex segments of opposite winding 
number. We find that for all links obtained, all reconnections analysed 
can be identified with the mathematical operation of coherent band 
surgery in which orientations are preserved3,45. From the diagrams 
produced, one can track the evolution of the writhe as vortex knots 
and links undergo reconnections3,42–45. The writhe serves as a simple 
measure of complexity in the knots we obtain as they are generated 
from right-handed trefoil building blocks in which the action of incor-
porating another trefoil into a complex composite knot only increases 
the writhe (Extended Data Fig. 9).

Like the writhe, one can compute the so-called reconnection num-
ber for a given knot or link. The reconnection number of a knot or link 
is the least number of reconnections that need to be performed to 
transform it to an unknot43,45. In general, this number is not known, 
but computable bounds on it from below exist (such as the so-called 
signature of the knot) and a very particular upper bound is always 
known that we shall call the R-number of the knot or link and denote by 
R(K), where K is the link. In this case, one simply smooths crossings such 
that the local knot orientation is preserved (Extended Data Fig. 9a)45. 

The circles generated by this action are called Seifert circles3,45. The 
R-number is defined as45

R = c − s + 1, (10)

where c is the number of crossings in the original diagram and s is the 
number of Seifert circles. The meaning of the formula is that one can 
perform reconnections at R crossings (it is lower than the total number 
of crossings) and obtain an unknot45. This is shown in Extended Data 
Fig. 9b for the trefoil knot and implicitly for other examples in the 
figure. Once one has the reconnection numbers for a reconnection 
pathway (Ki → Kf), it follows that the relative R-number |R(Ki) − R(Kf)| is 
a well-defined quantity that estimates from above the minimal number 
of reconnections necessary to transform Ki to Kf . If the link K has all 
positive crossings (Extended Data Fig. 9), then R(K) is equal to the 
reconnection number of K. In general, for any K, the link or knot K can 
be transformed into an unknot in R(K) reconnections. R(K) is the least 
among all the possible unknottings when K is positive.

Data availability
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Extended Data Fig. 1 | POM micrographs of laser-tweezer-driven vortex 
reconnections. a, Two elementary heliknotons spontaneously fusing into a 
dimer; here sample thickness d = 30 μm, pitch p = 5 μm, and voltage U = 3.4 V.  
b, c, Laser tweezer manipulation of heliknotons to construct more complex 

vortex knots by incrementally fusing elementary ones greater complexity (b) and 
obtaining a “tangle” of fused heliknotons (c). Crossed polarizer orientations are 
indicated by white double arrows. The relevant parameters are d = 15 μm,  
p = 4.5 μm, and U = 2.1 V in b and d = 17.5 μm, p = 5.4 μm, and U = 1.8 V in c.
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Extended Data Fig. 2 | Fusion of complex knots from a lattice of elementary 
heliknotons. a–c, Time evolution of several heliknoton lattices perturbed from 
equilibrium by increasing the applied voltage. Black double arrows indicate 
crossed polarizer orientations. In (b), sample thickness d = 17.5 μm,  

pitch p = 5.4 μm, and applied voltage U = 1.8 V in the first frame and 2.3 V in 
subsequent frames. In (a) and (c), d = 16 μm, p = 6.9 μm, and U = 1.7 V in the first 
frame and 2.1 V in subsequent frames. The real-time dynamics of transformations 
corresponding to a and c is shown in SI Video 8.
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Extended Data Fig. 3 | Laser-tweezer-guided fusion of chains and clusters of 
heliknotons. a, Various fused heliknoton assembly guided by laser tweezers.  
b, c, In-situ optical manipulation of heliknoton chains fusing with heliknoton 
dimers at different controlled contact sites. The corresponding real-time 

dynamics is shown in SI Video 9. Black arrows show crossed polarizer 
orientations. In (a–c), sample thickness d = 16 μm, pitch p = 6.9 μm, and voltage 
U = 1.7 V.
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Extended Data Fig. 4 | Structure of fused heliknotons reconstructed 
numerically and experimentally. a, Simulated midplane cross-sections of a 
fused heliknoton colored according to director orientations corresponding to 
the 𝕊𝕊2 sphere in the right column. Parameters used: sample thickness 20 μm, 
pitch 5 μm, applied voltage 2.8 V. White and black loops visualize the north- and 
south-pole preimages (with director orientations colinear to cell normal ̂z) of the 
director field, respectively. b, Experimental (top) and numerical (bottom) POM 
images of the fused heliknotons shown in a. White arrows indicate crossed 

polarizer orientations. c, Reconstructed experimental (top) and numerical 
(bottom) nonlinear fluorescence images obtained using circularly polarized laser 
excitation. Dark regions correspond to north- and south-pole preimages while 
bright regions are coplanar with director orientations confined to the cross-
sectional plane. d, North- and south-pole preimages extracted from 
experimental 3PEF-PM imaging (top) and corresponding numerical simulations 
(bottom). Preimages are colored according to the 𝕊𝕊2 -based scheme shown in a.
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Extended Data Fig. 5 | Zoo of knots with different Hopf indices obtained via 
knot fusion. Integers at the top-left of each row are the expected Hopf index 
values and numbers above each structure are the corresponding numerically 
computed Hopf indices. Cores of vortex knots are colored by their director 
orientation on the 𝕊𝕊2 sphere defined in Fig. 2e and Extended Data Fig. 4a. 

 SI Video 10 shows dynamics of fusion of heliknotons with the net total Hopf index 
of Q = 3 and Q = 4. Bottom-right insets are the simplified multi-component links 
generated by KnotPlot software. Dots between structures with Hopf index 8 and 
18 imply the vast variety of knots that exist between the two structures but have 
not been shown in this figure.
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Extended Data Fig. 6 | Vortex reconnections during fusion of two heliknotons. 
a–e, Vortex fusion of two separate heliknotons into a three-component link 
visualized with colored vortex knots (according to the scheme in Fig. 2e) and 
ribbons of splay and bend colored according to the scheme in Fig. 2g. The time 

arrow indicates the temporal progression of evolution of the two trefoils in a into 
the link seen in e. The parameters used are: sample thickness d = 25 μm,  
pitch p = 5 μm, and voltage U = 3.9 V.
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Extended Data Fig. 7 | Reconnection switching response times. a, Response 
times τa (τo) for two heliknotons reconnecting (separating) along the far-field 
helical axis χ0 (as shown in Fig. 5a, b) and b, two heliknotons reconnecting while 

approaching each other at 45 degrees with respect to χ0 (corresponding to  
Figs. 2d, f and 5c). Simulations were performed for a cell of thickness 25 μm and 
chiral LC pitch 5 μm.
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Extended Data Fig. 8 | Numerically simulated heliknoton lattice hybridization 
for Q = 18. a–e, Evolution of a heliknoton lattice (a) once prompted to evolve 
from an initial configuration into a knotted graph (e) by pulsing with voltages 
between 1.5-3 V (b–e) in a cell with thickness 50 μm and pitch 10 μm. Top row 
shows the POM micrographs of the lattice and the bottom row shows the 

corresponding vortex knots colored by director orientations in the vortex 
cores according to the scheme in Fig. 2e. Crossed white double arrows denote 
the crossed polarizer orientation used to compute the POM micrographs. The 
simulation was performed in the one-constant (obtained as an average of Frank 
elastic constants) approximation to reduce computation time.
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Extended Data Fig. 9 | Writhe and reconnection numbers for knot 
transformations. a, A reconnection event between two vortices (top).  
A reconnection event (r) at a crossing results in a smoothed crossing (bottom).  
b, Reconnection of a trefoil knot. Dashed lines in (a, b) denote reconnection sites. 
c, Calculations for writhe w (top) and reconnection number R (bottom) for a 
trefoil knot. On the top, red and blue arrows denote the sign of a crossing as  
+1 and −1, respectively. Gray (black) lines on the trefoil refer to +1/2 (-1/2) winding 
number vortex segments, as defined in Fig. 2c. On the bottom, red arrows serve 
as guides to the eye to track the local orientation of the trefoil knot. Here c refers 
to the number of crossings (marked with red dashes) and s to the number of 
Seifert circles (black loops) obtained after smoothing the crossings. d, e, Writhe 

w and reconnection numbers R before and after reconnection for a single trefoil 
(c) and two trefoil knots (e). Large black arrows in d, e with band diagram 
schematics (see Figs. 4 and 5) relate the initial link (Ki) to the final link (Kf).  
The blue shaded box highlights the region where reconnections occured.  
f, g, Oriented knot diagrams and their corresponding Seifert circle diagrams used 
to compute the writhe and reconnection numbers for each knot denoted as K. 
e–g, Red arrows marking crossings indicate a positive contribution to the writhe. 
Top-right insets show simplified KnotPlot schematics for the knots obtained. 
Blue and green lines (d–g) in the upper panels denote intra- and inter-heliknoton 
reconnections, respectively.
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Extended Data Fig. 10 | Left- and right-handed vortex knots. a, b, Left and 
right-handed knot diagrams and their KnotPlot representations summarize 
results for a left-handed and a right-handed chiral host LC medium, respectively. 
Knot diagrams and their reconnection sites are presented to illustrate the 
one-to-one correspondence between a given knot and the confirmed existence 
of its mirrored counterpart in a medium of opposite handedness. The direction 
and handedness of the helical chiral nematic background (with helical axis 
denoted by χ) is shown schematically in the first row. Gray (black) lines on 
schematics refer to the local vortex winding number which is +1/2 (-1/2), as 
defined in Fig. 2c. Blue and green bands delineate intra- and inter-heliknoton 
reconnections, respectively. i-iv and v-viii correspond to the simulated left- and 

right-handed knots, respectively, obtained through re-linking of vortex lines as 
described above. c, Top row describes a typically observed fusion of two 
right-handed trefoil knots, while the bottom row depicts a hypothetical 
reconnection between a right- and left-handed trefoil knots that could produce 
an achiral knot, albeit such opposite-chirality knots so far could not be stabilized 
next to one another in left- or right-handed or achiral nematic LCs. Letters “L” 
and “R” denote left- or right-handedness of respective knots. Below arrows are 
the corresponding band surgery diagrams of the reconnected knots. Top-right 
insets show the simplified knots where the bottom-right knot is identified as an 
achiral knot.
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