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Strong magnetic fields applied to metals confine electrons into Landau

orbits, except at the boundaries at which frequent surface collisions disrupt
their cyclotron motion. Intwo-dimensional systems, these boundary states
form dissipationless chiral edge channels in the quantum Hall regime. By
contrast, the quantum limit of three-dimensional (3D) metals is traditionally
thought to differ fundamentally and instead contains gapless Landau bands,

lacking quantized Hall conductance or dissipationless transport. Here we
demonstrate enhanced surface conductionin the quantum limit of the

3D semimetal bismuth, characterized by the counterintuitive increase in
conductivity as material is removed by micropatterning. The conductance
ofthe 3D chiral boundary states—3D analogues of quantum Hall states in
two dimensions—naturally accounts for this behaviour and for the highly
non-local transport observed in micrometre-sized crystalline bismuth
structures. These findings introduce an approach for engineering and
exploiting chiral conduction on the surfaces of 3D materials, offering a
design space for geometries beyond the simple one-dimensional boundary
modes of two-dimensional systems.

The quantum Hall effect (QHE) is a remarkable manifestation of
topology in matter, accompanied by non-trivial observables such
asdissipationless transport and a Hall effect quantized to e*/hirre-
spective of the material’s parameters'™. The motion of electrons
in two dimensions is semiclassically constrained by perpendicular
magnetic fields to cyclotron orbits, which, on quantization, leads to
discrete, flat energy bands—the Landau levels. The bulk electronic
spectrumis, thus, gapped, whereas the boundary of the system hosts
gapless chiral edge states that arise from the interrupted cyclotron
motion skipping along the edge. The topological invariant charac-
terizing this systemis the number of filled Landau levels, which, in
turn, determines the number of chiral edge channels (Fig. 1a). By
contrast, in three-dimensional (3D) systems, electrons may move
along the magnetic field direction without being affected by the

Lorentzforce. The electron momentum k, along the field (commonly
denoted as the zdirection), thus, serves as an additional degree of
freedom, which, in a semiclassical picture, leads to the well-known
helical motion of free electrons along the magnetic field direction.
In the quantum picture, Landau levels are now macroscopically
degenerate one-dimensional dispersive modes, with k, being the
appropriate quantum number. For a metallic band structure, in
other words, agapless band structure in the absence of amagnetic
field, one generically obtains partially occupied Landau bands with
a well-defined Fermi momentum in a magnetic field. Hence, the
bulk remains gapless even with a magnetic field, in contrast to the
two-dimensional (2D) case. This leaves noroom for any strictly quan-
tized, topological observables and implies a natural hybridization
of any surface states with the bulk states.
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Fig.1|Magnetic-field-induced chiral boundary states of the 3D band structure
in the quantum limit. a, Schematic of a 2D quantum Hall system. Under strong
magnetic fields, electrons are semiclassically constrained to cyclotron orbits,
and their energy levels are quantized into discrete Landau levels (grey lines).
Along the boundary of the system, electrons are confined to the chiral edge states
(orange and blue), which propagate in one direction without backscattering. The
number of chiral edge states is determined by the number of filled Landau levels.
b, Schematic of a3D system under strong magnetic fields. Here electron motion
inthe plane perpendicular to the magnetic field is confined to a cyclotron orbit,
whereas it can propagate along the magnetic field direction (z), forming a helical
trajectory in the semiclassical picture. Hence, a 3D system has one-dimensional
dispersive Landau bands (grey lines) in the k,, momentum space. For every k, lying
between momentaat which the lowest Landau level crosses the Fermi level, chiral
boundary states (orange and blue) exist in the k, momentum space at fixed k,. The
number of chiral boundary modes is determined by the number of occupied
(k,-dispersive) Landau levels.

Yet, akin to the 2D case, 3D semiclassical electron trajectories at
the surfaces parallel to the magnetic field cannot complete cyclotronic
motion and yield skipping orbits. These states and their transport prop-
erties are the main focus of this work. Semiclassically, skipping orbits
can contribute to ballistic or diffusive transport depending on the
momentum conservationrules at the scattering event, often subsumed
into aspecularity coefficient. Regardless of specularity, however, these
modes are strictly chiral as the sign of the Lorentz force yields a definite
sense of circulation and, therefore, of dominant surface propagation.
In a quantum mechanical picture, the modes form a 3D analogue of
the chiral edge states characterized by the two momenta preserved
by the surface. For concreteness, we label the momentum along the
magnetic field k,and the one surface momentum k,, in analogy to 2D
QHE systems. Sucha 3D system retains close links to the quantum Hall
system, which is most evident for the k, = O state that is equivalent to
the 2D QHE edge states embedded in three dimensions. Even for each
finite value of k,, the system realizes a 2D quantum Hall state with a
number of chiralboundary modes determined by the number of occu-
pied (k,-dispersive) Landau levels (Fig. 1b). These are generic surface
states that appear on surfaces parallel to the magnetic fieldin 3D Lan-
dau bands, in contrast to the gapless Dirac surface states found in 3D
topologicalinsulators®. Onthe other hand, these chiralboundary states
are comparable with the chiral states resulting from a Fermi arcin Weyl
semimetals under amagnetic field’. The main differenceis that the gap
ofthe former is given by the cyclotrongap betweenthe Landaubands,
whereas for the latter, the gap is the band energy scale separating the

Weyl points (for example, spin-orbit coupling). The transport contri-
bution of such chiral boundary states is also similar to that of Fermiarc
states in a Weyl semimetal as they carry a non-quantized Hall current
andalongitudinal currentwith long lifetimes®®. The latter is a result of
the substantially reduced phase space for backward scattering, which
requires either large momentum transfer to other surface states or
scatteringinto bulk states.

The fate ofthe QHE, particularly the question of how quantization
is restored in three dimensions, is a long-standing topic®°, which
recently sparked intense research activities due to the discovery of
approximately quantized Hall plateaus in low-carrier-density 3D sys-
temssuch asZrTe;and Cd,As, (refs.14-19). Quantized Hall and zero lon-
gitudinal resistance in these special cases could arise from finite gaps
due to, for instance, charge density instabilities in Landau bands" .
Of particular interestis the quantum limit—asituationin which charge
carriersonly occupy the lowest Landau level.

In contrast to these bulk characterizations, the chiral boundary
states in the quantum limit of 3D metals have not received similar
attention. Importantly, the design space for boundaries of 3D systems
is much larger than in 2D systems. In momentum space, the degrees
of freedom live on a one-dimensional Fermi surface compared with
zero-dimensional Fermi points of a chiral edge mode. Beyond these
degrees of freedom, the 2D surface of a 3D system can be engineered
into complex shapes, thereby tuning and controlling the participation
of chiral surface modes in transport.

Bismuth has been a pivotal semimetal in the study of quantum
phenomenaduetoits low carrier density and highly anisotropic Fermi
surface?*?. Although its classification as a higher-order topological
insulator in the absence of amagnetic field has received attention* %,
the application of even a moderate magnetic field can drive all the elec-
tron pockets at the L points or the hole pocket at the T point into the
quantumlimit depending onthefield orientation®. Hereafter, with the
quantum limit, we refer to the quantum limit of electron pockets. The
field orientation/magnitude in this work cannot drive the hole pocket
into this limit”. In our work, we cut microscopic crystalline conduc-
tors of varying 3D shapes from macroscopic bismuth crystals using
focused-ion-beam (FIB) machining. These micrometre-sized structures
aressufficiently large tobeinthe bulk limit without finite-size quantiza-
tion effects, yet sufficiently small to show significant transport from
chiral boundary states. Most strikingly, cutting trenches or grooves
into the surface substantially increases the sample conductance under
quantum-limit magnetic fields applied parallel to the sample’s surface.
Thisisin contrast to the usual expectation of decreasing conductance
when material and, hence, conduction channels are removed from a
conductor, acommon scaling trend indeed observed in the bismuth
structures at zero field. The response of channels along the grooves to
the magnetic field orientation and the pronounced non-local transport
strongly supportascenario of chiralboundary statesin the 3D Landau
band structure in the quantum limit. Specifically, the high-field con-
ductanceincreases astrenches are added one by one, with the increase
being proportional to the depth of the trenches. No strict quantization
is detected or expected owing to the gapless bulk and the resulting
finite lifetime of the chiral carriers. In addition, current flow along the
edges of these channels are detected even between far-away contacts,
anon-local signature at odds with a local conduction picture. These
results demonstrate how chiral currents in the 3D quantum limit can
be distributed across multiple designed etches, a shape-engineering
freedom absentin the 2D world.

Results

The studied samples consist of rectilinear bars carved by FIB machin-
ing fromabismuth single crystal (Fig. 2). The details of the fabrication,
particularly the great care taken to avoid any residual thermal mismatch
strain by membrane suspending the bismuth structures, are detailed in
Methods. As FIB machiningis a maskless, direct-write technique, such
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Fig.2|Seeding chiral boundary states via FIB-cut grooves. a, Schematic

of chiral boundary states in a microstructured bismuth with FIB-cut grooves.
Under strong magnetic fields driving the system into the quantum limit, bulk
states are quantized, and chiral boundary states along the side surfaces parallel
to the magnetic field dominate the charge conduction of the cuboid bismuth
microstructure. By cutting grooves on the top surface with FIB, additional
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conduction paths are formed along the sidewalls of FIB-cut grooves. b, Scanning
electron microscopy images of amicrostructured bismuth before (top) and after
(bottom) cutting seven grooves. ¢, Temperature-dependent electrical resistivity
p(T) of the microstructured bismuth with increasing number of grooves Non its
surface. The inset shows the conductance of N-groove state Gynormalized by
that of the pristine state Gyat T=2K.

structures can be modified sequentially and the effect of the modifica-
tionsis probed one by one. Here individual grooves of approximately
0.3 pm x 0.3 um cross-section are added to the device to iteratively
track the transport response to such surface modifications. Without
magnetic fields, the conduction of our devices is mainly governed by
the bulk conductance, as expected. The temperature-dependent resis-
tivity p(T) agrees well with measurements on the bulk bismuth crystal,
withexcess scattering from finite-size effects (Supplementary Note 1).
The comparatively low residual resistivity ratio of the parent crystal of
around p(300 K)/p(2 K) =27 indicates amoderate crystalline quality of
bismuth, which was chosen on purpose to reduce classical finite-size
effects and bulk conduction, to focus on the influence of the surface
on transport. Measurements with an increasing number of grooves
along the channel up to N=7 are overlaid, and barely any differences
arenotable over the entire range of temperatures (7=2-300 K; Fig. 2c).
This is not surprising given the minute modification amounting to a
total loss of 2% of the material. On closer inspection, the conductance
of the device with Ngrooves, G,, decreases as a function of Nup to
2% (Fig. 2c, inset), which matches the loss of material and, therefore,
agrees with the expectation of removing bulk channels. These results
are entirely compatible with dominant bulk conductionin adevice at
zero field, as expected for asemimetal.

Next, out-of-plane magnetic fields are applied to drive the material
into the quantum limit and probe the evolution of conduction (Fig. 3).

The magnetoresistance (MR) R(B) is quadratic in B around zero field
followed by strong, B-linear growth, which abruptly terminates at a
clear kink at B*= 2.7 T, above which a saturated, sublinear behaviour
isobserved (Supplementary Fig.2). This field scale coincides with the
quantumlimit By = 2.5 T of electron pockets at the L points in this field
direction® obtained self-consistently from quantum oscillations (Sup-
plementary Note 2). Although the bulk crystal and microsample behave
similarly in the low-field regime, they strongly differ in the quantum
limit: the MRin the bulk crystal continues to grow without anomalies,
asexpected for the well-known nearly compensated semimetal behav-
iour of bismuth (Supplementary Fig.1)?*, Asimple bulk band picture
(for example, a two-band model) cannot account for this behaviour
over the entire field range (Supplementary Note 3). Therefore, this
observation points to the sizable surface conduction in the quantum
limit, which naturally is more dominant in the microscopic bar. The
link to the quantum limit strongly suggests that chiral boundary states
playanimportantrole,aconnection that canbe further substantiated
by experiments.

The evolution of MR when adding grooves provides such atest for
surface conduction. Indeed, the MR monotonically decreases asafunc-
tionof N, whichis prominent in high magnetic fields above B* (Fig. 3a).
For example, at B=14 T, the resistance decreases from R = 80 Q of the
pristine (N=0) sampletoR = 74 Q of the seven-groove (N=7) sample, a
reduction of approximately 7.5% (Fig. 3a, inset). Such a stronger effect
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Fig.3|Magnetotransport of FIB-cut grooves. a, Magnetic-field-dependent
electrical resistance R(B) of the N-groove state with B || bisectrix and /|| binary at
T=2K.Theinset shows R(B) in high magneticfields (B>10 T). b, Conductance of
grooves Gy, as a function of Nwith a magnetic field of 10 Tat 2 K. The parallel-
conductor model is used in estimating Gg,oo.es (Methods). ¢, Angle-dependent
electrical resistance R(0) of the N-groove state, where the magnetic field B(0.2 T,
14 T) isrotating in the plane perpendicular to the current direction (/ || trigonal)

at T=2K.d, Schematic of the chiral boundary states in the microstructured
bismuth with different field angles. When the system s in the quantum limit,
chiral boundary states (highlighted with the orange area) along sidewalls
parallel to the magnetic field dominate the surface conduction. Cutting grooves
effectively increases the surface area of the chiral boundary states under the
out-of-plane magnetic field (6 = 0°) but make negligible change with the in-plane
magnetic fields (6 = 90°).

ofthegroovesis opposite to the zero-field behaviour, as adding grooves
increases the conductance above the quantum limit despite the reduc-
tioninthe cross-sectional area (Fig. 3b). All these experiments are well
reproducedinfour bismuth microstructures despite adistinct variance
inthegroove depth and width (Supplementary Note 4), strengthening
theevidence for conduction channelsalong the grooves. The additional
surface conduction along the grooves reduces current flowing through
thebulk, thereby consistently decreasing the Hall voltage of the device
(SupplementaryFig.5). As the grooves are connected between the cur-
rent contacts bypassing the voltage contacts, they have anindirect and
subdominant effect on the Hall voltage compared with the sidewalls of
arectilinear bar (Supplementary Note 5). We note that this experiment
has no analogy in two dimensions as the number of edge modesina
2D system is given by the Landau level index alone, regardless of the
sample geometry. Thus, it is impossible to address the debate about
whether currents runonthe edge orinthe bulkinthe 2D QHE by similar
geometric sample designs'.

Afurther test of the chiral surface states involves the MR depend-
enceonthefield angle (Fig.3c,d).Itis yetanother unique feature of 3D
mesostructures in the quantum limit, as 2D QHE is purely driven by
orbital effects that only depend on the scalar projection of the mag-
netic field onto the plane. In three dimensions, the field direction’s
role is much richer as it sets the quantization direction for the Landau
levels with respect to the surfaces. At low fields below the quantum
limit (B=0.2T), the angle-dependent MR R(6) of the bars shows a 60°
periodicity, reflecting the three-fold rotational symmetry of the crystal
lattice and the bulk electronic system (with a weak two-fold component
from classical ballistics; Supplementary Note 2)*%°. Onthe other hand,

R(6) inthe quantum limit (B =14 T) exhibits astrong two-fold symmetric
response, which clearly reflects the sample shape instead of the lattice
symmetry. The minimal value of the resistance is found for fields parallel
tothelongsideface of the bar (8 =90°), which correspondstothelarger
surface of therectangular bars. A shallower local minimumreplacesthe
maximumMRinlowfieldsat@=0° whenthefieldisalongtheshortface.
We conclude that the excess conductivity is notanintrinsic property of
thebar, butselectively arisesin those sidewalls parallel to the magnetic
field, whichis where the chiral edge currents are located.

This point is further strengthened when the grooved samples
are considered. The grooves cause a substantial difference in the
angle-dependent MR. Under an out-of-plane magnetic field of 14 T
(6=0°), MR of the device with N = 6 grooves decreases almost 15% from
the pristine state, in stark contrast to the negligible change observed
at 6=90°. An explanation is found when considering the projected
surfacearea. Althoughfor 8 = 0°, the effective sidewall areaisincreased
by the grooves, their net effect on the surface area for =90° is zero
(Fig.3d). Thefield selectivity of the conductive surface further speaks
againstinadvertent surface modifications from FIB fabrication. Indeed,
Xe-based machining of an elemental metal yields high-quality surfaces
without compositional disorder and asharply terminated single-crystal
surface covered by few nanometres of nanocrystallite bismuth (Sup-
plementary Note 6 provides anin-depth surface analysis viascanning
transmission electron microscopy). The intrinsic nature of the chiral
edge conductance in the quantum limit further reflects in reports
of parallel-field-enhanced transport in macroscopic bismuth single
crystals on the millimetre scale, where a substantial contribution of
surface currentsto the transport depends on the shape of the crystal®.
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Fig. 4 |Non-local magnetotransport of FIB-cut grooves. a, Landau band
structure of bismuth when amagnetic field B=15 T is applied along the bisectrix
axis (V,=1,500). The magnetic field is strong enough for all electron pockets at
the L point from different valleys (e,~e,) to be in the quantum limit, except the
hole pocket (h) at the T point. The dashed orange line indicates the K, momentum
for the surface spectral density inb. The insets depict the sketch of the Brillouin
zone and Fermi surfaces of bismuth. b, Surface spectral density forB=15T fora
slab thickness of N, =1,500 unit cells. The localized states on opposite sidewalls
are differentiated by yellow and blue. The chiral surface states (CS) manifest
animbalance between right- and left-moving modes on each surface, whereas
the trivial surface states (TS) come in pairs of right and left movers per surface.

B(M

B(M

¢, Conductance of individual groove G, as a function of groove depth, with
B=14Talong the bisectrix at T=2 K. The error bars represent the variation
obtained by averaging two longitudinal voltage pairs of the Hall-bar structure.

d, Scanning electron microscopy image of a non-local geometry device, after
cutting three grooves (red lines) between each longitudinal electrodes pair (top).
Bottom: schematics of the local (left) and non-local configurations (right) of
current and voltage electrodes. The effective current paths via chiralboundary
statesin the device are highlighted as arrows. e,f, Magnetic-field-dependent local
resistance R, (e) and non-local Ry, (f) at T=2K, where R, = V,1,//, before (black)
and after (red) cutting three grooves.

The experimental observations unequivocally demonstrate sub-
stantial charge transport carried by chiral edge currents, which natu-
rally arise from microscopic modelling in tight-binding calculations
(Methods). The calculated Landau band structure of bismuth captures
the experimental situation with the electron pockets at the L points
fromthreevalleysbeingin the quantumlimit,and ahole pocket at the
T point thatis not (Fig. 4a). Here the occupied momentum range of k,
atthelowest Landau band contributesto chiralboundary states, which
is highlighted in the (side) surface spectral function (Fig. 4b). In this
picture, thenumber of surface modes contributing to transport should
scalewiththe groove depth, though the effect of hybridization between
modes and confinement for shallow grooves (less than 300 nm deep)
may lead to small modifications fromalinear relation. Thelinear rela-
tionisindeed confirmed by varying the depth of the grooves withinthe
same device and estimating the conductance of each groove, denoted
as Ggoove (Fig. 4c and Supplementary Note 4).

Adifferent possible origin of the excess conductance observedin
our experiments may be regular surface states, especially well known
to be metallic and abundant in bismuth®. Indeed, our calculations
consistently yield surface states corresponding to large Fermisurfaces
(Supplementary Fig. 7). However, they are difficult to reconcile with
an enhancement in sidewall conductivity that follows the direction
of the magnetic field. The size of the Fermi surface implies that the
surface is far from the quantum limit under laboratory fields; hence,

asemiclassical descriptionisapplicable. Inthis surface-state scenario,
the semiclassical surface may either bein a clean limit w .t > 1or dirty
limitw.r < 1(w.isthecyclotron frequency and ris therelaxationtime).
Within the diffusion picture of the dirty limit, magnetic fields have a
negligible effect on transport from a Kohler scaling argument, con-
trary to the experimental observation. This leaves only asurface state
in the clean limit, in which the magnetic field ought to completely
suppress the conductance in surfaces normal to the field. Hence, car-
riers in perpendicular fields would be localized, whereas sidewalls
under parallel fields remain highly conductive dueto the lack of orbital
effects. This scenario is also at odds with our observations. First, the
zero-field resistivity increases when adding grooves, despite the grow-
ing surface-to-bulk ratio. Further, these surface states do not appear
as Shubnikov-de Haas oscillations despite the need for themto be in
the clean limit. Last, a clean-limit surface is difficult to reconcile with
thenanocrystalline, disordered nature of the FIB-irradiated surface. In
particular, naturally introduced nanometric roughness on the sidewall,
duetoion-beaminteractions that depend on the crystallographic ori-
entation of bismuth (Supplementary Note 7), should strongly suppress
conduction viatrivial surface states; however, our observation shows
that surface conduction remains robust against such roughness. This
is consistent with the chiral-boundary-state scenario, as they remain
unimpeded by such surface disorder akin to the robust nature of the
2D QHE edges.
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A further direct test for chiral boundary states is the strong
non-locality of transport emerging in the quantum limit. In quan-
tum Hall states, quantum spin Hall states and topological insulators,
non-locality hasbeen akey observable to demonstrate their non-trivial
charge flow® ¢, To this end, we probe a rectangular microstructure
with six electrodes, three close-by ones on each side (5-um spacing)
separated by a96-um-long block of bismuth (Fig. 4d). In this geometry,
we can first probe the local resistance R, = V,/I, which arises from cur-
rents flowing across the whole microstructure. This can be compared
withthe non-localresistance Ry, = Vy /I, where currents flow withinone
side of the microstructure and non-local signals are received between
voltage electrodes on the opposite side. The ohmic contributionto the
non-local voltages at distance L given the local spacing of electrodes
wis suppressed by a factor exp(-tiL/w) when L > w (refs. 36,37). The
zero-field voltage measured in the non-local configuration is consist-
ently observed to be reduced by a factor of 100 compared with the
local current configuration (R, = 0.01R,). Connecting these far-away
electrodes by grooves should enhance non-locality and increase the
far-away voltage signals above the ohmic limit given they host chiral
conductive states. This isindeed observed experimentally.

Atzerofield, no change to the non-local signal from added grooves
is observed, as expected from the negligible change in shape, further
excluding the addition of atrivial conductive layer. Below the quantum
limit, Ry, (B) exhibits substantially enhanced quantum oscillations,
reflecting the sensitivity of chargeinjection to Landau quantization. As
the material enters the quantum limit, Ry, (B) steeplyrises. In particular,
this rise begins only beyond the kink of the local MR at B*= 2.7 T. Evi-
dently, the current distribution substantially changesin the quantum
limit, and the sublinearity of Ry, (B) in high fields is associated with
substantial surface currents. Although R, (B) increases by 32% from6 T
to14 T, Ry, (B) remains at a saturated value in the high-field region. Such
behaviour is naturally expected from chiral boundary states, which,
once formed inthe quantum limit, exhibit no further field dependence.

Outlook

Our results highlight the importance of chiral boundary states in
gapless 3D metals in the quantum limit. The natural absence of quan-
tization in such gapless systems may mislead one to underestimate
theirrolein conduction. Their longlifetime remains finite due tofinite
scattering matrix elements to the gapless bulk, with similarities to the
situation in the quantum spin Hall effect. First, our results provide a
viewpoint on the importance of surface phenomenain interpreting
signatures of strongly correlated physics in the 3D quantum limit
studied by transport, such as the valley-polarized high-field state
of bismuth or the cascade of field-induced phase transitions in the
quantum limit of graphite*-***°, Compatible observations of excess
conductance on surfaces parallel to the magnetic field suggest that
such physics may well influence—if not dominate—the quantum-limit
transport of macroscopic crystals at high purity. Second, the much
richer design space of boundaries of 3D objects will provide a versa-
tile platform to tune and design response functions in the quantum
limit, with non-trivial tuning via the magnetic field direction. Surface
shapes with rotational symmetries differing from the crystalline sym-
metries and the direct writing of chiral channels are natural directions
to explore such physics in the 3D quantum limit. Next to the inves-
tigations of gapped and quantized topological phases of matter, it
appearsthe physics of gapless quantum-limit metals deserves closer
attention, too.
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Methods

Membrane-based microstructuring

Single crystals of bismuth were commercially obtained from MaTecK.
For microstructuring, we adopted amembrane-based microstructur-
ing technique to avoid residual thermal mismatch strain. Lamellae
were cut from asingle crystal of bismuth using a Xe-plasmaFIB system.
To achieve a smoothly polished surface on the lamella, a protection
layer was deposited in situ by Pt deposition with the assistance of an
electronbeam, followed by FIB-assisted deposition. Trenches onboth
sides of the lamella were cut using Xe FIB with an acceleration voltage
of 30 kVand a current of 60 nA (Xe, 30 kV, 60 nA). Final polishing under
grazing incidence was performed by Xe (30 kV,1nA). The lamella was
then transferred to a gold-coated SiN, membrane (50-nm-thick SiN,,
10/150-nm-thick Ti/Au) in situ by a micromanipulator. FIB-assisted
Pt deposition was used to establish electrical contacts between the
lamellaand the gold layer. All electrodes were then separated by cutting
the gold-coated SiN, membrane by Xe (30 kV, 1 nA). Additionally, all
gold-coated SiN,membranes connected to the electrodes were cut into
springs to release strain. Before final patterning, the top surface was
exposed to Xe (8 kV,0.1nA) toremove overspray from the Pt deposition
process. Finally, the lamellawas patterned into the desired shape with
Xe (30 kV, 1nA). Grooves were cut with Xe (30 kV, 3 pA) with a typical
dose 0f100-200 pC pm™.

Parallel-conductor model

We consider conduction channels along the grooves as parallel conduc-
torsisolated fromtherest bulk and surface to quantify the conductance
of conduction channels. Inthis model, the applied electric current /.,
is divided into grooves (/yo.ves) and the rest bulk and surface (/,yistine),
and theirratiois decided by their conductance Ggqoves aNd Gpyistine. From
this model, we can estimate the conductance of grooves as Gg,ooyes =
Gpristinelgrooves/lpristine = Gprisline(ltotal - Iprisline)/lprisline = Gpristine(Itotal/lpristine - 1)
We first look at /,ine- If We neglect the effect of the removed portion
of bismuth by cutting grooves (indeed negligible, as shownin Fig. 2c),
the measured R = V,,/I ..., should be the same for every N. Hence, for
N =1, we can get /e from the relation V., (N = 0)/1,401 = Vie (N)/ L yistine-
Second, we focus on G- Since we measured R of the microstructure
with the four-probe method, we should scale this to R ;.. Whichiis the
resistance of the entire length of the microstructure between the cur-
rentelectrodes, where the grooves are also connected. From the rela-
tion R=pl/A (pis the resistivity and [ (A) is the length (cross-sectional
area) of amicrostructure), we take Ryisine = RL/L4,, Where Land Ly, are
distances between the current and voltage electrodes in a Hall-bar
structure, respectively. Afterwards, we get Gpyigine = 1/Ryristine DY Neglect-
ing the Hall effect contribution for simplicity, and take this value for
every Nto calculate Gy oyes-

Tight-binding calculation
We modeltheelectronicstructure of bismuthinatight-binding approx-
imation using the modelintroduced inref. 41, including the notation of
lattice parameters @ and ¢, as well as primitive lattice vectorsa, i=1,2,3
(Supplementary Fig. 9). Our objective is to model the surface states
on the sidewalls of the groove. Such states may have two origins: (1)
bismuth has (non-topological) surface states and (2) in a magnetic
field, chiral boundary modes connecting bulk Landau levels emerge.
We chose the Cartesian coordinates to align with the crystallo-
graphic axes as follows: binary, y axis; bisectrix, zaxis; trigonal, x axis.
The magnetic field is applied parallel to the bisectrix—the z axis—and
the surface normal we consider is the binary, meaning the y axis. We
choose a gauge, in which both surface momenta k, and k, are good
quantum numbers. For this slab calculation, the unit cell needs to be
doubled (compared with the primitive one) and weintroduce the new
lattice vectorse,=a, - a,, e,=a, +a, +a, e;=a,. Notethate,and e, are
pointing in the binary and trigonal directions, respectively. The slab
thicknessin units of |e,|is reported as N,. The magnetic field entersboth

asaZeeman field and through orbital coupling via Peierl’s substitution.
For the former, we use a g factor of g =20, representing an average of
the valley-specific and anisotropic g-tensor reported for bismuth (since
weareinterestedinafield range of up to 20 T only, this approximation
is sufficient). Note that the smallest non-zero magnetic field in the
bisectrix direction that canbe accommodated in a system with periodic
boundary conditionsin all directions—this corresponds to a cluster of
N, x1x1unitcellsinthee, e,and e; directions—is given by

_ 6T ¢o _23,000T

TcaN, 2n " " N, (1)

where ¢, = h/e, and c and a are the lattice constants of bismuth. For a
realisticfield of B~15 T, we, thus, need aslab width of N, =1,500. Given
alattice constant in this direction of a =4.5 A, this would correspond
toathickness of w= 0.7 pm.

With this tight-binding model, we numerically solve for the energy
spectrum e, ,and eigenstates |k, a ), where alabels all other degrees of
freedom except momentum (k = (k,, k,)). The surface spectral function
is given by states

A ) = SIM{TAGK,© ~ )Py} ®

where Py, projects states onto the unit cells on the surface of the slab
and nis aregularization set to 10 meV.

Figure 4a shows the Landau level spectrum for periodic bound-
ary conditions and a magnetic field B=15T. As mentioned above,
to include a magnetic field of this size, we need N, =1,500. For this
field, the electron-like L pockets are in the quantum limit with the
zeroth, non-spin degenerate Landau level below the Fermi energy?,
whereasthe hole-like T pocket has its top three Landau levels occupied
(with spin near-degeneracy), totalling to six Landau bands above the
Fermilevel.

We calculate the surface spectral function for the same param-
eters for open-boundary conditions (Fig. 4b), clearly featuring the
chiral boundary states around the L point (the full spectral function
along this k, cut is shown in Supplementary Fig. 7b). For comparison,
Supplementary Fig. 7a shows the same cut without a magnetic field,
with theinset showing the surface Fermisurface structure. We observe
extensive Fermi contours spanning the entire surface Brillouin zone.
Note that in this geometry, one of the three L points and the T point
project to the same surface momentum, and the other two L points
project to another surface momentum, as indicated.

Data availability

The data that support the findings of this study are available via Fig-
share at https://doi.org/10.6084/m9.figshare.30428701.v1. Source
dataare provided with this paper.
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