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Transport evidence for chiral surface states 
from three-dimensional Landau bands
 

Junho Seo    1  , Chunyu Mark Guo    1, Carsten Putzke    1, Xiangwei Huang2,3, 
Berit H. Goodge    4, Yip Chun Wong    5, Mark H. Fischer    5  , 
Titus Neupert    5   & Philip J. W. Moll    1 

Strong magnetic fields applied to metals confine electrons into Landau 
orbits, except at the boundaries at which frequent surface collisions disrupt 
their cyclotron motion. In two-dimensional systems, these boundary states 
form dissipationless chiral edge channels in the quantum Hall regime. By 
contrast, the quantum limit of three-dimensional (3D) metals is traditionally 
thought to differ fundamentally and instead contains gapless Landau bands, 
lacking quantized Hall conductance or dissipationless transport. Here we 
demonstrate enhanced surface conduction in the quantum limit of the 
3D semimetal bismuth, characterized by the counterintuitive increase in 
conductivity as material is removed by micropatterning. The conductance 
of the 3D chiral boundary states—3D analogues of quantum Hall states in 
two dimensions—naturally accounts for this behaviour and for the highly 
non-local transport observed in micrometre-sized crystalline bismuth 
structures. These findings introduce an approach for engineering and 
exploiting chiral conduction on the surfaces of 3D materials, offering a 
design space for geometries beyond the simple one-dimensional boundary 
modes of two-dimensional systems.

The quantum Hall effect (QHE) is a remarkable manifestation of 
topology in matter, accompanied by non-trivial observables such 
as dissipationless transport and a Hall effect quantized to e2/h irre-
spective of the material’s parameters1–3. The motion of electrons 
in two dimensions is semiclassically constrained by perpendicular 
magnetic fields to cyclotron orbits, which, on quantization, leads to 
discrete, flat energy bands—the Landau levels. The bulk electronic 
spectrum is, thus, gapped, whereas the boundary of the system hosts 
gapless chiral edge states that arise from the interrupted cyclotron 
motion skipping along the edge. The topological invariant charac-
terizing this system is the number of filled Landau levels, which, in 
turn, determines the number of chiral edge channels (Fig. 1a). By 
contrast, in three-dimensional (3D) systems, electrons may move 
along the magnetic field direction without being affected by the 

Lorentz force. The electron momentum kz along the field (commonly 
denoted as the z direction), thus, serves as an additional degree of 
freedom, which, in a semiclassical picture, leads to the well-known 
helical motion of free electrons along the magnetic field direction. 
In the quantum picture, Landau levels are now macroscopically 
degenerate one-dimensional dispersive modes, with kz being the 
appropriate quantum number. For a metallic band structure, in 
other words, a gapless band structure in the absence of a magnetic 
field, one generically obtains partially occupied Landau bands with 
a well-defined Fermi momentum in a magnetic field. Hence, the 
bulk remains gapless even with a magnetic field, in contrast to the 
two-dimensional (2D) case. This leaves no room for any strictly quan-
tized, topological observables and implies a natural hybridization 
of any surface states with the bulk states.
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Weyl points (for example, spin–orbit coupling). The transport contri-
bution of such chiral boundary states is also similar to that of Fermi arc 
states in a Weyl semimetal as they carry a non-quantized Hall current 
and a longitudinal current with long lifetimes6–8. The latter is a result of 
the substantially reduced phase space for backward scattering, which 
requires either large momentum transfer to other surface states or 
scattering into bulk states.

The fate of the QHE, particularly the question of how quantization 
is restored in three dimensions, is a long-standing topic5,9–19, which 
recently sparked intense research activities due to the discovery of 
approximately quantized Hall plateaus in low-carrier-density 3D sys-
tems such as ZrTe5 and Cd3As2 (refs. 14–19). Quantized Hall and zero lon-
gitudinal resistance in these special cases could arise from finite gaps 
due to, for instance, charge density instabilities in Landau bands14–16. 
Of particular interest is the quantum limit—a situation in which charge 
carriers only occupy the lowest Landau level.

In contrast to these bulk characterizations, the chiral boundary 
states in the quantum limit of 3D metals have not received similar 
attention. Importantly, the design space for boundaries of 3D systems 
is much larger than in 2D systems. In momentum space, the degrees 
of freedom live on a one-dimensional Fermi surface compared with 
zero-dimensional Fermi points of a chiral edge mode. Beyond these 
degrees of freedom, the 2D surface of a 3D system can be engineered 
into complex shapes, thereby tuning and controlling the participation 
of chiral surface modes in transport.

Bismuth has been a pivotal semimetal in the study of quantum 
phenomena due to its low carrier density and highly anisotropic Fermi 
surface20,21. Although its classification as a higher-order topological 
insulator in the absence of a magnetic field has received attention22–25, 
the application of even a moderate magnetic field can drive all the elec-
tron pockets at the L points or the hole pocket at the T point into the 
quantum limit depending on the field orientation21. Hereafter, with the 
quantum limit, we refer to the quantum limit of electron pockets. The 
field orientation/magnitude in this work cannot drive the hole pocket 
into this limit21. In our work, we cut microscopic crystalline conduc-
tors of varying 3D shapes from macroscopic bismuth crystals using 
focused-ion-beam (FIB) machining. These micrometre-sized structures 
are sufficiently large to be in the bulk limit without finite-size quantiza-
tion effects, yet sufficiently small to show significant transport from 
chiral boundary states. Most strikingly, cutting trenches or grooves 
into the surface substantially increases the sample conductance under 
quantum-limit magnetic fields applied parallel to the sample’s surface. 
This is in contrast to the usual expectation of decreasing conductance 
when material and, hence, conduction channels are removed from a 
conductor, a common scaling trend indeed observed in the bismuth 
structures at zero field. The response of channels along the grooves to 
the magnetic field orientation and the pronounced non-local transport 
strongly support a scenario of chiral boundary states in the 3D Landau 
band structure in the quantum limit. Specifically, the high-field con-
ductance increases as trenches are added one by one, with the increase 
being proportional to the depth of the trenches. No strict quantization 
is detected or expected owing to the gapless bulk and the resulting 
finite lifetime of the chiral carriers. In addition, current flow along the 
edges of these channels are detected even between far-away contacts, 
a non-local signature at odds with a local conduction picture. These 
results demonstrate how chiral currents in the 3D quantum limit can 
be distributed across multiple designed etches, a shape-engineering 
freedom absent in the 2D world.

Results
The studied samples consist of rectilinear bars carved by FIB machin-
ing from a bismuth single crystal (Fig. 2). The details of the fabrication, 
particularly the great care taken to avoid any residual thermal mismatch 
strain by membrane suspending the bismuth structures, are detailed in 
Methods. As FIB machining is a maskless, direct-write technique, such 

Yet, akin to the 2D case, 3D semiclassical electron trajectories at 
the surfaces parallel to the magnetic field cannot complete cyclotronic 
motion and yield skipping orbits. These states and their transport prop-
erties are the main focus of this work. Semiclassically, skipping orbits 
can contribute to ballistic or diffusive transport depending on the 
momentum conservation rules at the scattering event, often subsumed 
into a specularity coefficient. Regardless of specularity, however, these 
modes are strictly chiral as the sign of the Lorentz force yields a definite 
sense of circulation and, therefore, of dominant surface propagation. 
In a quantum mechanical picture, the modes form a 3D analogue of 
the chiral edge states characterized by the two momenta preserved 
by the surface. For concreteness, we label the momentum along the 
magnetic field kz and the one surface momentum kx, in analogy to 2D 
QHE systems. Such a 3D system retains close links to the quantum Hall 
system, which is most evident for the kz = 0 state that is equivalent to 
the 2D QHE edge states embedded in three dimensions. Even for each 
finite value of kz, the system realizes a 2D quantum Hall state with a 
number of chiral boundary modes determined by the number of occu-
pied (kz-dispersive) Landau levels (Fig. 1b). These are generic surface 
states that appear on surfaces parallel to the magnetic field in 3D Lan-
dau bands, in contrast to the gapless Dirac surface states found in 3D 
topological insulators4. On the other hand, these chiral boundary states 
are comparable with the chiral states resulting from a Fermi arc in Weyl 
semimetals under a magnetic field5. The main difference is that the gap 
of the former is given by the cyclotron gap between the Landau bands, 
whereas for the latter, the gap is the band energy scale separating the 
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Fig. 1 | Magnetic-field-induced chiral boundary states of the 3D band structure 
in the quantum limit. a, Schematic of a 2D quantum Hall system. Under strong 
magnetic fields, electrons are semiclassically constrained to cyclotron orbits, 
and their energy levels are quantized into discrete Landau levels (grey lines). 
Along the boundary of the system, electrons are confined to the chiral edge states 
(orange and blue), which propagate in one direction without backscattering. The 
number of chiral edge states is determined by the number of filled Landau levels. 
b, Schematic of a 3D system under strong magnetic fields. Here electron motion 
in the plane perpendicular to the magnetic field is confined to a cyclotron orbit, 
whereas it can propagate along the magnetic field direction (z), forming a helical 
trajectory in the semiclassical picture. Hence, a 3D system has one-dimensional 
dispersive Landau bands (grey lines) in the kz momentum space. For every kz lying 
between momenta at which the lowest Landau level crosses the Fermi level, chiral 
boundary states (orange and blue) exist in the kx momentum space at fixed kz. The 
number of chiral boundary modes is determined by the number of occupied  
(kz-dispersive) Landau levels.
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structures can be modified sequentially and the effect of the modifica-
tions is probed one by one. Here individual grooves of approximately 
0.3 μm × 0.3 μm cross-section are added to the device to iteratively 
track the transport response to such surface modifications. Without 
magnetic fields, the conduction of our devices is mainly governed by 
the bulk conductance, as expected. The temperature-dependent resis-
tivity ρ(T) agrees well with measurements on the bulk bismuth crystal, 
with excess scattering from finite-size effects (Supplementary Note 1). 
The comparatively low residual resistivity ratio of the parent crystal of 
around ρ(300 K)/ρ(2 K) ≈ 27 indicates a moderate crystalline quality of 
bismuth, which was chosen on purpose to reduce classical finite-size 
effects and bulk conduction, to focus on the influence of the surface 
on transport. Measurements with an increasing number of grooves 
along the channel up to N = 7 are overlaid, and barely any differences 
are notable over the entire range of temperatures (T = 2–300 K; Fig. 2c). 
This is not surprising given the minute modification amounting to a 
total loss of 2% of the material. On closer inspection, the conductance 
of the device with N grooves, GN, decreases as a function of N up to 
2% (Fig. 2c, inset), which matches the loss of material and, therefore, 
agrees with the expectation of removing bulk channels. These results 
are entirely compatible with dominant bulk conduction in a device at 
zero field, as expected for a semimetal.

Next, out-of-plane magnetic fields are applied to drive the material 
into the quantum limit and probe the evolution of conduction (Fig. 3). 

The magnetoresistance (MR) R(B) is quadratic in B around zero field 
followed by strong, B-linear growth, which abruptly terminates at a 
clear kink at B* ≈ 2.7 T, above which a saturated, sublinear behaviour 
is observed (Supplementary Fig. 2). This field scale coincides with the 
quantum limit BQL ≈ 2.5 T of electron pockets at the L points in this field 
direction21 obtained self-consistently from quantum oscillations (Sup-
plementary Note 2). Although the bulk crystal and microsample behave 
similarly in the low-field regime, they strongly differ in the quantum 
limit: the MR in the bulk crystal continues to grow without anomalies, 
as expected for the well-known nearly compensated semimetal behav-
iour of bismuth (Supplementary Fig. 1)21,26. A simple bulk band picture 
(for example, a two-band model) cannot account for this behaviour 
over the entire field range (Supplementary Note 3). Therefore, this 
observation points to the sizable surface conduction in the quantum 
limit, which naturally is more dominant in the microscopic bar. The 
link to the quantum limit strongly suggests that chiral boundary states 
play an important role, a connection that can be further substantiated 
by experiments.

The evolution of MR when adding grooves provides such a test for 
surface conduction. Indeed, the MR monotonically decreases as a func-
tion of N, which is prominent in high magnetic fields above B* (Fig. 3a). 
For example, at B = 14 T, the resistance decreases from R ≈ 80 Ω of the 
pristine (N = 0) sample to R ≈ 74 Ω of the seven-groove (N = 7) sample, a 
reduction of approximately 7.5% (Fig. 3a, inset). Such a stronger effect 
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Fig. 2 | Seeding chiral boundary states via FIB-cut grooves. a, Schematic 
of chiral boundary states in a microstructured bismuth with FIB-cut grooves. 
Under strong magnetic fields driving the system into the quantum limit, bulk 
states are quantized, and chiral boundary states along the side surfaces parallel 
to the magnetic field dominate the charge conduction of the cuboid bismuth 
microstructure. By cutting grooves on the top surface with FIB, additional 

conduction paths are formed along the sidewalls of FIB-cut grooves. b, Scanning 
electron microscopy images of a microstructured bismuth before (top) and after 
(bottom) cutting seven grooves. c, Temperature-dependent electrical resistivity 
ρ(T) of the microstructured bismuth with increasing number of grooves N on its 
surface. The inset shows the conductance of N-groove state GN normalized by 
that of the pristine state G0 at T = 2 K.
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of the grooves is opposite to the zero-field behaviour, as adding grooves 
increases the conductance above the quantum limit despite the reduc-
tion in the cross-sectional area (Fig. 3b). All these experiments are well 
reproduced in four bismuth microstructures despite a distinct variance 
in the groove depth and width (Supplementary Note 4), strengthening 
the evidence for conduction channels along the grooves. The additional 
surface conduction along the grooves reduces current flowing through 
the bulk, thereby consistently decreasing the Hall voltage of the device 
(Supplementary Fig. 5). As the grooves are connected between the cur-
rent contacts bypassing the voltage contacts, they have an indirect and 
subdominant effect on the Hall voltage compared with the sidewalls of 
a rectilinear bar (Supplementary Note 5). We note that this experiment 
has no analogy in two dimensions as the number of edge modes in a 
2D system is given by the Landau level index alone, regardless of the 
sample geometry. Thus, it is impossible to address the debate about 
whether currents run on the edge or in the bulk in the 2D QHE by similar 
geometric sample designs1.

A further test of the chiral surface states involves the MR depend-
ence on the field angle (Fig. 3c,d). It is yet another unique feature of 3D 
mesostructures in the quantum limit, as 2D QHE is purely driven by 
orbital effects that only depend on the scalar projection of the mag-
netic field onto the plane. In three dimensions, the field direction’s 
role is much richer as it sets the quantization direction for the Landau 
levels with respect to the surfaces. At low fields below the quantum 
limit (B = 0.2 T), the angle-dependent MR R(θ) of the bars shows a 60° 
periodicity, reflecting the three-fold rotational symmetry of the crystal 
lattice and the bulk electronic system (with a weak two-fold component 
from classical ballistics; Supplementary Note 2)27–29. On the other hand, 

R(θ) in the quantum limit (B = 14 T) exhibits a strong two-fold symmetric 
response, which clearly reflects the sample shape instead of the lattice 
symmetry. The minimal value of the resistance is found for fields parallel 
to the long sideface of the bar (θ = 90°), which corresponds to the larger 
surface of the rectangular bars. A shallower local minimum replaces the 
maximum MR in low fields at θ = 0°, when the field is along the short face. 
We conclude that the excess conductivity is not an intrinsic property of 
the bar, but selectively arises in those sidewalls parallel to the magnetic 
field, which is where the chiral edge currents are located.

This point is further strengthened when the grooved samples 
are considered. The grooves cause a substantial difference in the 
angle-dependent MR. Under an out-of-plane magnetic field of 14 T 
(θ = 0°), MR of the device with N = 6 grooves decreases almost 15% from 
the pristine state, in stark contrast to the negligible change observed 
at θ = 90°. An explanation is found when considering the projected 
surface area. Although for θ = 0°, the effective sidewall area is increased 
by the grooves, their net effect on the surface area for θ = 90° is zero 
(Fig. 3d). The field selectivity of the conductive surface further speaks 
against inadvertent surface modifications from FIB fabrication. Indeed, 
Xe-based machining of an elemental metal yields high-quality surfaces 
without compositional disorder and a sharply terminated single-crystal 
surface covered by few nanometres of nanocrystallite bismuth (Sup-
plementary Note 6 provides an in-depth surface analysis via scanning 
transmission electron microscopy). The intrinsic nature of the chiral 
edge conductance in the quantum limit further reflects in reports 
of parallel-field-enhanced transport in macroscopic bismuth single 
crystals on the millimetre scale, where a substantial contribution of 
surface currents to the transport depends on the shape of the crystal29.
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Fig. 3 | Magnetotransport of FIB-cut grooves. a, Magnetic-field-dependent 
electrical resistance R(B) of the N-groove state with B ∥ bisectrix and I ∥ binary at 
T = 2 K. The inset shows R(B) in high magnetic fields (B > 10 T). b, Conductance of 
grooves Ggrooves as a function of N with a magnetic field of 10 T at 2 K. The parallel-
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electrical resistance R(θ) of the N-groove state, where the magnetic field B (0.2 T, 
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at T = 2 K. d, Schematic of the chiral boundary states in the microstructured 
bismuth with different field angles. When the system is in the quantum limit, 
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The experimental observations unequivocally demonstrate sub-
stantial charge transport carried by chiral edge currents, which natu-
rally arise from microscopic modelling in tight-binding calculations 
(Methods). The calculated Landau band structure of bismuth captures 
the experimental situation with the electron pockets at the L points 
from three valleys being in the quantum limit, and a hole pocket at the 
T point that is not (Fig. 4a). Here the occupied momentum range of kz 
at the lowest Landau band contributes to chiral boundary states, which 
is highlighted in the (side) surface spectral function (Fig. 4b). In this 
picture, the number of surface modes contributing to transport should 
scale with the groove depth, though the effect of hybridization between 
modes and confinement for shallow grooves (less than 300 nm deep) 
may lead to small modifications from a linear relation. The linear rela-
tion is indeed confirmed by varying the depth of the grooves within the 
same device and estimating the conductance of each groove, denoted 
as Ggroove (Fig. 4c and Supplementary Note 4).

A different possible origin of the excess conductance observed in 
our experiments may be regular surface states, especially well known 
to be metallic and abundant in bismuth30. Indeed, our calculations 
consistently yield surface states corresponding to large Fermi surfaces 
(Supplementary Fig. 7). However, they are difficult to reconcile with 
an enhancement in sidewall conductivity that follows the direction 
of the magnetic field. The size of the Fermi surface implies that the 
surface is far from the quantum limit under laboratory fields; hence, 

a semiclassical description is applicable. In this surface-state scenario, 
the semiclassical surface may either be in a clean limit ωcτ ≫ 1 or dirty 
limit ωcτ ≪ 1 (ωc is the cyclotron frequency and τ is the relaxation time). 
Within the diffusion picture of the dirty limit, magnetic fields have a 
negligible effect on transport from a Kohler scaling argument, con-
trary to the experimental observation. This leaves only a surface state 
in the clean limit, in which the magnetic field ought to completely 
suppress the conductance in surfaces normal to the field. Hence, car-
riers in perpendicular fields would be localized, whereas sidewalls 
under parallel fields remain highly conductive due to the lack of orbital 
effects. This scenario is also at odds with our observations. First, the 
zero-field resistivity increases when adding grooves, despite the grow-
ing surface-to-bulk ratio. Further, these surface states do not appear 
as Shubnikov–de Haas oscillations despite the need for them to be in 
the clean limit. Last, a clean-limit surface is difficult to reconcile with 
the nanocrystalline, disordered nature of the FIB-irradiated surface. In 
particular, naturally introduced nanometric roughness on the sidewall, 
due to ion-beam interactions that depend on the crystallographic ori-
entation of bismuth (Supplementary Note 7), should strongly suppress 
conduction via trivial surface states; however, our observation shows 
that surface conduction remains robust against such roughness. This 
is consistent with the chiral-boundary-state scenario, as they remain 
unimpeded by such surface disorder akin to the robust nature of the 
2D QHE edges.
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c, Conductance of individual groove Ggroove as a function of groove depth, with 
B = 14 T along the bisectrix at T = 2 K. The error bars represent the variation 
obtained by averaging two longitudinal voltage pairs of the Hall-bar structure. 
d, Scanning electron microscopy image of a non-local geometry device, after 
cutting three grooves (red lines) between each longitudinal electrodes pair (top). 
Bottom: schematics of the local (left) and non-local configurations (right) of 
current and voltage electrodes. The effective current paths via chiral boundary 
states in the device are highlighted as arrows. e,f, Magnetic-field-dependent local 
resistance RL (e) and non-local RNL (f) at T = 2 K, where RL(NL) = VL(NL)/I, before (black) 
and after (red) cutting three grooves.
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A further direct test for chiral boundary states is the strong 
non-locality of transport emerging in the quantum limit. In quan-
tum Hall states, quantum spin Hall states and topological insulators, 
non-locality has been a key observable to demonstrate their non-trivial 
charge flow31–36. To this end, we probe a rectangular microstructure 
with six electrodes, three close-by ones on each side (5-μm spacing) 
separated by a 96-μm-long block of bismuth (Fig. 4d). In this geometry, 
we can first probe the local resistance RL = VL/I, which arises from cur-
rents flowing across the whole microstructure. This can be compared 
with the non-local resistance RNL = VNL/I, where currents flow within one 
side of the microstructure and non-local signals are received between 
voltage electrodes on the opposite side. The ohmic contribution to the 
non-local voltages at distance L given the local spacing of electrodes 
w is suppressed by a factor exp(–πL/w) when L ≫ w (refs. 36,37). The 
zero-field voltage measured in the non-local configuration is consist-
ently observed to be reduced by a factor of 100 compared with the 
local current configuration (RNL ≈ 0.01RL). Connecting these far-away 
electrodes by grooves should enhance non-locality and increase the 
far-away voltage signals above the ohmic limit given they host chiral 
conductive states. This is indeed observed experimentally.

At zero field, no change to the non-local signal from added grooves 
is observed, as expected from the negligible change in shape, further 
excluding the addition of a trivial conductive layer. Below the quantum 
limit, RNL(B) exhibits substantially enhanced quantum oscillations, 
reflecting the sensitivity of charge injection to Landau quantization. As 
the material enters the quantum limit, RNL(B) steeply rises. In particular, 
this rise begins only beyond the kink of the local MR at B* ≈ 2.7 T. Evi-
dently, the current distribution substantially changes in the quantum 
limit, and the sublinearity of RNL(B) in high fields is associated with 
substantial surface currents. Although RL(B) increases by 32% from 6 T 
to 14 T, RNL(B) remains at a saturated value in the high-field region. Such 
behaviour is naturally expected from chiral boundary states, which, 
once formed in the quantum limit, exhibit no further field dependence.

Outlook
Our results highlight the importance of chiral boundary states in 
gapless 3D metals in the quantum limit. The natural absence of quan-
tization in such gapless systems may mislead one to underestimate 
their role in conduction. Their long lifetime remains finite due to finite 
scattering matrix elements to the gapless bulk, with similarities to the 
situation in the quantum spin Hall effect. First, our results provide a 
viewpoint on the importance of surface phenomena in interpreting 
signatures of strongly correlated physics in the 3D quantum limit 
studied by transport, such as the valley-polarized high-field state 
of bismuth or the cascade of field-induced phase transitions in the 
quantum limit of graphite21,38,39. Compatible observations of excess 
conductance on surfaces parallel to the magnetic field suggest that 
such physics may well influence—if not dominate—the quantum-limit 
transport of macroscopic crystals at high purity. Second, the much 
richer design space of boundaries of 3D objects will provide a versa-
tile platform to tune and design response functions in the quantum 
limit, with non-trivial tuning via the magnetic field direction. Surface 
shapes with rotational symmetries differing from the crystalline sym-
metries and the direct writing of chiral channels are natural directions 
to explore such physics in the 3D quantum limit. Next to the inves-
tigations of gapped and quantized topological phases of matter, it 
appears the physics of gapless quantum-limit metals deserves closer 
attention, too.
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Methods
Membrane-based microstructuring
Single crystals of bismuth were commercially obtained from MaTecK. 
For microstructuring, we adopted a membrane-based microstructur-
ing technique40 to avoid residual thermal mismatch strain. Lamellae 
were cut from a single crystal of bismuth using a Xe-plasma FIB system. 
To achieve a smoothly polished surface on the lamella, a protection 
layer was deposited in situ by Pt deposition with the assistance of an 
electron beam, followed by FIB-assisted deposition. Trenches on both 
sides of the lamella were cut using Xe FIB with an acceleration voltage 
of 30 kV and a current of 60 nA (Xe, 30 kV, 60 nA). Final polishing under 
grazing incidence was performed by Xe (30 kV, 1 nA). The lamella was 
then transferred to a gold-coated SiNx membrane (50-nm-thick SiNx, 
10/150-nm-thick Ti/Au) in situ by a micromanipulator. FIB-assisted 
Pt deposition was used to establish electrical contacts between the 
lamella and the gold layer. All electrodes were then separated by cutting 
the gold-coated SiNx membrane by Xe (30 kV, 1 nA). Additionally, all 
gold-coated SiNx membranes connected to the electrodes were cut into 
springs to release strain. Before final patterning, the top surface was 
exposed to Xe (8 kV, 0.1 nA) to remove overspray from the Pt deposition 
process. Finally, the lamella was patterned into the desired shape with 
Xe (30 kV, 1 nA). Grooves were cut with Xe (30 kV, 3 pA) with a typical 
dose of 100–200 pC μm−2.

Parallel-conductor model
We consider conduction channels along the grooves as parallel conduc-
tors isolated from the rest bulk and surface to quantify the conductance 
of conduction channels. In this model, the applied electric current Itotal 
is divided into grooves (Igrooves) and the rest bulk and surface (Ipristine), 
and their ratio is decided by their conductance Ggrooves and Gpristine. From 
this model, we can estimate the conductance of grooves as Ggrooves =  
GpristineIgrooves/Ipristine = Gpristine(Itotal – Ipristine)/Ipristine = Gpristine(Itotal/Ipristine – 1). 
We first look at Ipristine. If we neglect the effect of the removed portion 
of bismuth by cutting grooves (indeed negligible, as shown in Fig. 2c), 
the measured R = Vxx/Itotal should be the same for every N. Hence, for 
N ≥ 1, we can get Ipristine from the relation Vxx(N = 0)/Itotal = Vxx(N)/Ipristine. 
Second, we focus on Gpristine. Since we measured R of the microstructure 
with the four-probe method, we should scale this to Rpristine, which is the 
resistance of the entire length of the microstructure between the cur-
rent electrodes, where the grooves are also connected. From the rela-
tion R = ρl/A (ρ is the resistivity and l (A) is the length (cross-sectional 
area) of a microstructure), we take Rpristine = RL/L4p, where L and L4p are 
distances between the current and voltage electrodes in a Hall-bar 
structure, respectively. Afterwards, we get Gpristine = 1/Rpristine by neglect-
ing the Hall effect contribution for simplicity, and take this value for 
every N to calculate Ggrooves.

Tight-binding calculation
We model the electronic structure of bismuth in a tight-binding approx-
imation using the model introduced in ref. 41, including the notation of 
lattice parameters a and c, as well as primitive lattice vectors ai, i = 1, 2, 3  
(Supplementary Fig. 9). Our objective is to model the surface states 
on the sidewalls of the groove. Such states may have two origins: (1) 
bismuth has (non-topological) surface states and (2) in a magnetic 
field, chiral boundary modes connecting bulk Landau levels emerge.

We chose the Cartesian coordinates to align with the crystallo-
graphic axes as follows: binary, y axis; bisectrix, z axis; trigonal, x axis. 
The magnetic field is applied parallel to the bisectrix—the z axis—and 
the surface normal we consider is the binary, meaning the y axis. We 
choose a gauge, in which both surface momenta kx and kz are good 
quantum numbers. For this slab calculation, the unit cell needs to be 
doubled (compared with the primitive one) and we introduce the new 
lattice vectors e1 = a2 – a1, e2 = a1 + a2 + a3, e3 = a3. Note that e1 and e2 are 
pointing in the binary and trigonal directions, respectively. The slab 
thickness in units of ∣e1∣ is reported as Ny. The magnetic field enters both 

as a Zeeman field and through orbital coupling via Peierl’s substitution. 
For the former, we use a g factor of g = 20, representing an average of 
the valley-specific and anisotropic g-tensor reported for bismuth (since 
we are interested in a field range of up to 20 T only, this approximation 
is sufficient). Note that the smallest non-zero magnetic field in the 
bisectrix direction that can be accommodated in a system with periodic 
boundary conditions in all directions—this corresponds to a cluster of 
Ny × 1 × 1 unit cells in the e1, e2 and e3 directions—is given by

B = 6π
caNy

ϕ0
2π ≈ 23,000T

Ny
, (1)

where ϕ0 = h/e, and c and a are the lattice constants of bismuth. For a 
realistic field of B ≈ 15 T, we, thus, need a slab width of Ny = 1,500. Given 
a lattice constant in this direction of a = 4.5 Å, this would correspond 
to a thickness of w ≈ 0.7 μm.

With this tight-binding model, we numerically solve for the energy 
spectrum ϵk,α and eigenstates |k,α ⟩, where α labels all other degrees of 
freedom except momentum (k = (kx, kz)). The surface spectral function 
is given by states

A(k,ω) = 1
π Im{Tr[G(k,ω − iη)P̂surf]}, (2)

where P̂surf  projects states onto the unit cells on the surface of the slab 
and η is a regularization set to 10 meV.

Figure 4a shows the Landau level spectrum for periodic bound-
ary conditions and a magnetic field B ≈ 15 T. As mentioned above, 
to include a magnetic field of this size, we need Ny = 1,500. For this 
field, the electron-like L pockets are in the quantum limit with the 
zeroth, non-spin degenerate Landau level below the Fermi energy21, 
whereas the hole-like T pocket has its top three Landau levels occupied 
(with spin near-degeneracy), totalling to six Landau bands above the 
Fermi level.

We calculate the surface spectral function for the same param-
eters for open-boundary conditions (Fig. 4b), clearly featuring the 
chiral boundary states around the L point (the full spectral function 
along this kz cut is shown in Supplementary Fig. 7b). For comparison, 
Supplementary Fig. 7a shows the same cut without a magnetic field, 
with the inset showing the surface Fermi surface structure. We observe 
extensive Fermi contours spanning the entire surface Brillouin zone. 
Note that in this geometry, one of the three L points and the T point 
project to the same surface momentum, and the other two L points 
project to another surface momentum, as indicated.

Data availability
The data that support the findings of this study are available via Fig-
share at https://doi.org/10.6084/m9.figshare.30428701.v1. Source 
data are provided with this paper.
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