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Abstract

Sections

Tissue-resident memory T (Ty,,) cells were originally identified as
atissue-sequestered population of memory T cells that show lifelong
persistence in non-lymphoid organs. That definition has slowly evolved
with the documentation of Ty, cells having variable terms of tissue
residency combined with a capacity to return to the wider circulation.
Nonetheless, reductionist experiments have identified an archetypical
population of Ty, cells showing intrinsic permanent residency in awide
range of non-lymphoid organs, with one notable exception: the lungs.
Despite the fact that memory T cells generated during a respiratory
infection are maintained in the circulation, local T, cell numbersin the
lung decline concomitantly withadecayin T cell-mediated protection.
This Perspective describes the mechanisms that underpin long-term

T celllodgement in non-lymphoid tissues and explains why residency is
transient for select Ty cell subsets. In doing so, it highlights the unusual
nature of memory T cell egress from the lungs and speculates on the
broader disease implications of this process, especially during infection
with SARS-CoV-2.
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Perspective

Introduction

Memory T cells can show a range of persistence within non-lymphoid
compartments. Many lymphocytes move freely through the various
organs unimpeded before exiting the tissue via the draining lymphatic
vessels'. Recognition of antigen leads to their transient retention*
while physical barriers may slow the return of cells to the circulation’.
Finally, asubset of T cellsis specialized for purely localized patterns of
immunesurveillance®” and only poorly exits the tissues, if at all®. These
tissue-resident memory T (Tgy) cells” have a cell-autonomous limitation
intheir recirculation capacity'®~'*and show a superior ability to control
localized infections in a number of settings" ™. In this Perspective,
I detail the transcription networks that define sequestered Ty, cells,
identifying CD103*CD8" memory T cells as the key population of mem-
ory CD8' T cells that encompasses all the hallmarks of permanent tissue
residency. Finally, I describe how these archetypical Ty, cells show an
unusual pattern of egress from the lungs and discuss how this impacts
the course of respiratory infections, including SARS-CoV-2.

Identifying tissue-resident memory T cells

Trucells wereinitially identified as a distinct, sessile T cell subset that
coexisted alongside tissue-emigrating T cells®. This was a break from
the prevailing understanding of tissue T cellsbased onearly lymphocyte
circulationexperiments®>'®”, At that time, the widely accepted view was
that these T cells were simply recirculating memory cells that either
happenedto be found in non-lymphoid tissuesin large numbers** or,
alternatively, were trapped by some sort of gating mechanisms or by
structural barriers such as the basement membrane that lines epithelia®.
Theidentification of aunique Ty, cell subset meant that non-lymphoid
tissues contained at least two populations of memory T cells, each
with its own distinct phenotype and functional properties. One was a
recirculating subset that at the time was thought to comprise effector
memory T (T cells” and the other, the newly identified permanently
resident Ty, cell population.

A major challenge from that point onwards has been distin-
guishing non-migrating Ty, cells from recirculating memory T cells,
largely because of the phenotypic overlap between these popula-
tions. Forexample, Ty cells do not express CC-chemokine receptor 7
(CCR?7) — areceptor required for entry into lymphoid tissues and the
marker that was originally used to differentiate Ty, cells (identified as
CCR7-negative) from lymphoid-tissue-constrained central memory T
(Tow) cells (identified as CCR7-positive)”. Separately, CD69 had been
proposed to be a pan-Tyy, cell identifier?, yet it is upregulated by both
antigen-specific and nonspecific stimuli** and a substantial frac-
tion of migratory T cells express this molecule once in the tissues™.
Compounding the confusion is the extensive heterogeneity seen in
both circulating and tissue-resident memory T cell populations*7,
expanded by a history of natural infection®. Therefore, although com-
binations of surface markers can cover arange of Tyy,-like tissue cells, it
would be fair to say that to date there remains no unifying phenotypic
identifier for this population.

CD103*CD8" Ty, cells: the archetypical Ty cell

Althoughit has proven difficult to identify Tgy cells by definitive pheno-
typic means, therapeutic and experimental interventions can eliminate
allcirculating T cells from the blood, leaving long-term tissue residents
astheonly memory T cells remainingin non-lymphoid compartments.
Two approaches have proven particularly useful in this regard. The
first exploits T cell responses against a transplantation mismatch to
selectively eliminate cells in the circulation® > whereas the second uses

amore versatile cytolytic antibody-based technique for the same pur-
pose??**3, Of additional importance is the in vivo infusion of labelling
antibodies before tissue analysesto exclude cellsthat are simplyinthe
vasculature®. This technique eliminates confounding contributions by
blood-borne cells and is critical when examining highly vascularized
organs such as the lung, although it does not identify Ty, cells per se.

Oneofthestriking features of the mouse Ty, cells that remain after
circulating T cells are depleted from the tissues is the dominance of
a population of CD8" T cells expressing the CD103 (also known as oE
integrin) subunit of the aEB7 integrin complex**. CD103* Ty cells are
highly enriched in the environmentally exposed epithelia of the skin,
small intestine and female reproductive tract®'®*, At these epithelial
sites, interaction between E7 and its abundantly expressed target
ligand E-cadherin® probably plays arolein cell adhesion and retention.
However, CD103"CD8" Ty, cells are also found in non-epithelial tissues
such as the brain'>¥, and although CD103 has variously been impli-
cated as being important for Ty, cell development®°, its expression
is not ubiquitous® and therefore not mandatory for all forms of T cell
residency. Nonetheless, tissue-lodged CD103°CD8" memory T cells are
highly resistant to equilibration across parabiotic pairs*, are uniquely
spared from elimination by the approaches mentioned above**°, selec-
tively survive for prolonged periods in transplanted tissues in mice®*
as well as in humans*** and persist independently of antigen recogni-
tion"**.Moreover, CD103*'CD8" memory T cells are usually not foundin
secondary lymphoid organs™** — with one striking exception**¢ to be
describedindetail below. Thus, although not all Ty, cells express CD103,
the balance of evidence argues that CD103*CD8" tissue T cells are true
Trucells, making this an easily identifiable archetypical population and
anideal reductionist means for delineating tissue residency mechanisms.

RUNX3 and TGFB in CD8"* T, cell development
Early experiments in mice comparing the transcriptomes of
CD103'CD8" Tyy cells isolated from a range of organs with those
of their circulating counterparts provided some of the first insights
into the transcription networks critical for Ty cell development and
survival'>*, Not surprisingly, genes associated with tissue egress were
found to be downregulated in Ty, cells, including Ccr7 and the genes
encoding the sphingosine-1-phosphate receptors SIPR1and SIPR5"™,
Without the downregulation of these receptors, the precursors of Ty,
cells return to the circulation, thereby dampening Tg,, cell develop-
ment'*. Other genes that come into play are those involved in dealing
with local metabolite availability”***° and those that prolong T cell
survival®, with both sets of genes necessary to maintain a long-lived
sequestered T cell population. Further experiments fleshed out how
transcription factors control the various networks, such astheinvolve-
ment of KLF2, which modulates the expression of SIPR1and CCR7".
Following this, key upstream gene regulators were identified, such
as T-bet and EOMES?**° as well as BLIMP1 and the BLIMP1 homologue
HOBIT**%; of note, BLIMP1and HOBIT are also involved in the develop-
mentof innate-like lymphocytes that permanently reside in mouse tis-
sues, such as natural killer cells and natural killer T cells™. Most recently,
an overarching transcription factor has come into focus. RUNX3 has
beenidentified as contributing to Ty cell formation, and it directly or
indirectly regulates BLIMP1and KLF2 expression as well asmodulating
downstream retention components®’. This contribution s particularly
striking as RUNX3 is a pivotal player in CD8" T cell development and
functionality>*>,

As the network analyses evolved, one commonality to emerge
was the involvement of TGF( in Ty, cell development and survival
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in arange of tissues and organs®**>°*%, TGF[3 appears to use a non-
canonical signalling pathway*’ that controls much of the CD8" Ty,
cell gene expression signature®. It has been shown to facilitate tissue
entry via selectin upregulation® and can regulate a broad range of
transcription regulators and cytokine-driven survival factors during
CD8* Ty cell development™*-°, Combined, there is now a wealth of
dataregarding the tenets of transcriptional control of Ty, cell forma-
tion, which largely pivots around a TGF3-RUNX3 axis, at least in the
case of the mouse CD8" Ty, cell subset.

Trm cell re-entry into the circulation

Although Ty, cells were originally shown to persist in non-lymphoid
organs in quasi-perpetuity®, there have been subsequent descriptions
of Tgy cell egress with the resultant ‘ex-Tyy, cells’ ultimately being incor-
porated into the circulation®**2, CD8* Ty, cellnumbers show an intrin-
sic decline in organs such as the lung and liver*>*, but not in tissues
such asthe skin and smallintestine, where the cells effectively remain
in place for life once lodged®*'. However even for these fixed popula-
tions, Tgy cells canbe forced to leave using in situ antigen stimulation
via peptide challenge®**. Such active dislodgement is not universal,
with CD103°CD8" Ty, cells sometimes remaining resident in the tis-
sue even after multiple rounds of cell division initiated by local infec-
tion®%**, Perhaps tellingly, when CD103*CD8" Ty, cells are selectively
dislodged by intervention, the resultant ex-Tyy cells appear toadopta
phenotypeintermediate betweenthose of upstream resident memory
Tcellsand conventional recirculating memory T cell populations, with
a CD103 expression status that is either undefined or reported to be
transient®**, Moreover, when these same cells are directly isolated
from non-lymphoid compartments, they are inferior in their capacity
to enter the circulation compared to counterparts extracted from
lymphoid organs®.

It remains difficult to reconcile these conflicting results, but
studies on CD8" Ty cells in the liver and recent revelations regard-
ing the basis for CD4" T cell residency provide valuable insight that
might explain egress variability. Although much moreis known about
CDS8" Ty cells, there are many examples of CD4" Ty, cell-type coun-
terparts'>?”®, Comparisons make it clear that the two are unrelated
interms of mechanistic underpinnings and they can exhibit quite dis-
tinct patterns of tissue residency even in the same organ®*’. As noted
above, the archetypical CD103*CD8" Ty cells use a set of TGF3-driven
transcriptional networks to shut down tissue egress, upregulate
survival factors and tailor metabolic pathways. By contrast, few of
these networks have been associated with CD4" Ty, cell residency,
whichinstead relies on retention mechanisms variously operating via
cell aggregation, antigen-specific T cell activation and chemotactic
agents®®*’ (Fig.1). Thereason why CD4"and CD8" Ty cells are likely to
differ at the mechanistic levelis the pivotal role RUNX3 playsin Tgy, cell
development and survival®. This transcription factor is repressed
in CD4" T cells by the opposing gene regulator ThPOK (also known
as ZBT7B), which is itself a lineage-determining factor’®”". Although
natural RUNX3 upregulation can convert CD4"* T cells to an unconven-
tional CD8aa" intraepithelial regulatory T cell population with CD8*
T cell-like qualities’, the intrinsic paucity of RUNX3 expression in
conventional CD4" Ty, cells results in low CD103 levels in these cells
and more transient tissue residency as a direct consequence of their
inability to access the RUNX3-mediated pathways downstream of
TGFB signalling™”,

Somewhat analogous to their CD4" tissue-resident T cell coun-
terparts, mouse liver CD8" Ty, cells are also deficient in CD103
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Fig.1|Subtypes of tissue-resident memory T cells based on transcription
profiles. The mechanism promoting permanent residency in non-lymphoid
tissues for the CD103'CD8" tissue-resident memory T (Tgy) cell population
involves a RUNX3-driven transcriptional network that is downstream of TGF3
receptor signalling®>*°, This transcription programme is missing in CD4" Tgy,
cells as a consequence of deficiencies in RUNX3 expression”. Instead, these
populations use acombination of cell aggregation and extrinsic chemokine
networks for tissue retention®®*’, The typical CD103*CD8" Ty, cell transcription
programme is also missing in CD103" liver-like Ty, cells because of deficiencies
in TGFf engagement®.

expression’. These cells show medium-to-long-term tissue residency™,
but not the almost lifelong persistence of Ty, cells in organs such as
skinand smallintestine*"®. Although the liver T cells are fully capable
of responding to TGFf, local requirements negate this capacity, result-
ing in an immature or less differentiated CD103™ Ty, cell population
(Fig.1) withaninferior term of residency combined with more flexible
reprograming compared to mature CD103" Ty, cell counterparts®.
Collectively, the results show that although CD103™ Ty, cells canreside
intissues for aconsiderable period, they can exhibit arange of sponta-
neous egress and reprogramming capabilities because of deficiencies
in TGFB-mediated maturation. Given the heterogeneous nature of
tissue-resident T cells, including variable CD103* T cell content across
different organs® and the known recruitment of recirculating T cells by
the peptide stimulation used for Ty, cell dislodgement™, itis possible
that less differentiated populations analogous to the liver CD103™ Ty,
cells may preferentially contribute to the egress process. Regardless,
although some Ty, cells can leave the tissues and enter the circula-
tion, the balance of data argues that for the archetypical CD103°CDS8"*
Tru cells, this process is not constitutive and when it does happen, it
usually results in cells that do not phenocopy their direct upstream
antecedents.

Trm cells in the lungs

From the discussion above, it can be reasonably argued that because
they fully engage the TGFB-RUNX3 residency programme, mouse
CD103"CDS8"tissue T cellsfit the original Ty, cell definition®; specifically,
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Fig. 2|Selective and constitutive egress of lung CD103*CD8" Ty, cells.
Inflammation associated with infection of tissues such as skin, small intestine and
reproductive tract (left panels) and lung (right panels) leads to the recruitment
ofavariety of CD4" and CD8" T cells that combat the invading pathogens (part a).
These populations include effector memory T (T, cells that continuously
recirculate between non-lymphoid organs and blood as well as tissue-resident
memory T (Tyy,) cell precursors (not shown). Following resolution of the infection
(partb), most of the recruited T cells exit or die, leaving localimmunosurveillance
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torecirculating Ty, cells and the more potent Ty, cells. Over time, some Tgy, cell
subsets selectively disappear (part ¢, left panel), resulting in a resident population
highly enriched in long-lived CD103*CD8" Ty, cells that afford long-term local
immunity against re-infection (partd, left panel). In the lungs, CD103°CD8" Ty,
cells are gradually lost after the infection has resolved and instead accumulate
inthe proximal draining lymph nodes (part ¢, right panel) leaving the lower
respiratory tract deficientin CD103"CD8" Ty, cells and thus susceptible to
re-infection (partd, right panel).

they form a distinct subset of memory T cells that remains lodged in
peripheral compartments in virtual perpetuity. However, there isone
organ where the CD103°CD8" T cells do not abide by this rule, and its
uniqueness has important disease implications. Unlike the situation
inother tissues, CD103"CD8" Ty cells in the lung do not require local
antigen stimulation for dislodgement®. Also unusually, the egressing

memory T cells retain cell surface expression of CD103 post-exit,
meaning that the lung-draining lymph nodes are unique in having a
substantive subset of memory CD8 T cells with this marker**®, Lung
CD103'CD8’ Tgy cells are fully mature and unremarkable in terms of
their TGF requirement for development and survival*®. They also
express the gene signatures associated with tissue residency'*?,
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including a cluster of Ty, cell-associated transcription factors, namely
HOBIT, NR4A1, aryl hydrocarbon receptor (AhR) and BHLHE40"*7>7¢,
Inall critical aspects, they resemble Ty, cells from other tissues, mean-
ing that their exit from the lung is probably an organ-specific feature
rather than due toacell-intrinsic programme. Such a mechanistic dis-
tinctionisimportant, asit would suggest that the egress process would
probably capture Ty cellsbeyond the archetypical CD103°CD8" subset
that was used to define this phenomenon and would do so regardless
of where they fall on a maturation and term-of-residency continuum.

Exacting experiments by Stolley and colleagues* proved that the
resultant draining lymph node-resident memory T cells were indeed
constitutively derived from upstream lung tissue counterparts, pos-
sibly dislodged as a consequence of virus-induced tissue damage’””®
or the interruption of tonic TGFf signalling needed to retain Ty, cells
in tissues’’. Although the resultant lymph node accumulation offers
an additional avenue to maintain regional protection**°, memory
T cell exit helps to explain one of the intriguing conundrums associ-
ated withimmune protectionin the lungs. It haslong been known that
T cellimmunity in the lung wanes over time, with this first reported for
respiratory infections withinfluenza virus and Sendai virus in mice®"*.
This decline in lung-based immunity occurs despite virus-specific
memory cells persisting in the circulation®***%*, Non-T,, cell-based
mechanisms were originally proposed to describe the behaviour of
lung T cell populations®*~%, variously confounded by blood-borne
cells that are particularly problematic when dealing with this highly
vascularized organ®. More recently, it was shown that the waning local
immunity correlates with declining lung Ty cell numbers in mouse
after influenza virus infection®** and in humans after respiratory
syncytial virus challenge®. Although other mechanisms have been
posited toaccount for this Ty cell attrition, such as the selective death
of lung Ty, cells**®* or the disappearance of structures associated with
focal damage®, none exclude concurrent tissue egress. Once lost, lung
Tgru cells are difficult to replace in the absence of renewed infection
owing to the strict antigen recognition requirements for effective
lodgement® >, which are optional in many other tissues® including
theupper respiratory tract’. Overall, arange of mechanistic overlays
would imply thatlosing Ty, cells over timeis important for this organ —
forexample, to limit ongoing damage toits delicate oxygen-exchange
architecture”.

Finally, the natural decay of lung Ty, cells stands in stark contrast
towhatisseen elsewherein thebody, where CD103*CD8"* Ty, cell popu-
lations canremain tightly contained (Fig. 2). CD103"CD8" Ty, cells show
long-term persistence in organs such as the brain, skin and cervicov-
aginal tissue®***?, despite the loss of their CD103™ counterparts. The
extent to which these spatial and temporal restrictions can operate
was dramatically illustrated by experiments that lodged CD103°CD8*
Trucellsinasmall patch of skin, thus confining effective protection to
just that location while leaving the remainder of the torso under the
inferior control of memory cells in the blood®®. By contrast, lung
Tru cell residency is unstable and transient, resulting in surveillance
thatisincreasingly dependent onrecirculating populations over time,
with a concomitant declineinlocal T cellimmunity.

Trm cell lung egress and immunity to SARS-CoV-2

Atthetime of this writing and nearly three years since the emergence of
the SARS-CoV-2virusinlate 2019°*%*, the COVID-19 pandemic continues
to be amajor challenge in many parts of the world. Despite reports
showing that circulating antiviral T cellimmunity canbe cross-reactive
against emerging variants®, long lived”*”” and associated with better

disease outcomes’®’’, immunity from combinations of COVID-19
vaccination and SARS-CoV-2 infection has been found to steadily
decline’®®'?!, One possible contributor may be that anti-SARS-CoV-2
tissue-resident T cells that are pivotal forimmune protection show the
same type of numerical decay as reported for mouse CD103*CD8" Ty,
cells. Employing strategies that slow Tg,, cell loss'® could be advanta-
geous, as might approaches that circumvent the lung altogether. The
upper respiratory tract, especially the nasal mucosa, is a prime target
with respect to the latter possibility as it does not show the Ty, cell
decline that is intrinsic to the lung®. Alternatively, it may be that Ty,
cellsare actually counterproductive, leading to tissue damage. This is
especially poignant because repeated antigen encounters extend the
durability of CD103*CD8* Ty, cells in the lung'®, yet a recent report
found that experiencing successive SARS-CoV-2 infections progres-
sively increases the risk of adverse health outcomes'®. In terms of their
potential to contribute to tissue damage, TRM cells have an innate
immune alarm and recruitment function®'**, and the innate response
has been shown to be a key mediator of COVID-19-associated lung
pathology''%,

Conclusion

Overall, Ty, cells provide superior protection against tissue-localized
infection, primarily because of constraints in their migration capabili-
ties. Despite proving to be long-lived and effective in arange of different
infectious diseases, lung Ty, cells have an unusual propensity for tissue
exitreflected in a decay in local T cell immunity. Such a feature may
have evolved to protect this organ against long-term damage or
may simply be a by-product of some unique anatomical feature
intrinsic to lung function. Given the ability of Ty cells to respond to
infectionwith animmediacy unmatched by the blood-based memory
populations, thereis aneedtofocusontheir depositionin the different
compartments of the respiratory system, especially in settings or
sub-regions that support their long-term survival.

Published online: 9 December 2022
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