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Perspective Check for updates

Unique properties of tissue-
resident memory T cells in the 
lungs: implications for COVID-19 
and other respiratory diseases
Francis R. Carbone     

Abstract

Tissue-resident memory T (TRM) cells were originally identified as 
a tissue-sequestered population of memory T cells that show lifelong 
persistence in non-lymphoid organs. That definition has slowly evolved 
with the documentation of TRM cells having variable terms of tissue 
residency combined with a capacity to return to the wider circulation. 
Nonetheless, reductionist experiments have identified an archetypical 
population of TRM cells showing intrinsic permanent residency in a wide 
range of non-lymphoid organs, with one notable exception: the lungs. 
Despite the fact that memory T cells generated during a respiratory 
infection are maintained in the circulation, local TRM cell numbers in the 
lung decline concomitantly with a decay in T cell-mediated protection. 
This Perspective describes the mechanisms that underpin long-term 
T cell lodgement in non-lymphoid tissues and explains why residency is 
transient for select TRM cell subsets. In doing so, it highlights the unusual 
nature of memory T cell egress from the lungs and speculates on the 
broader disease implications of this process, especially during infection 
with SARS-CoV-2.
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a more versatile cytolytic antibody-based technique for the same pur-
pose27,32,33. Of additional importance is the in vivo infusion of labelling 
antibodies before tissue analyses to exclude cells that are simply in the 
vasculature34. This technique eliminates confounding contributions by 
blood-borne cells and is critical when examining highly vascularized 
organs such as the lung, although it does not identify TRM cells per se.

One of the striking features of the mouse TRM cells that remain after 
circulating T cells are depleted from the tissues is the dominance of 
a population of CD8+ T cells expressing the CD103 (also known as αE 
integrin) subunit of the αEβ7 integrin complex23,33. CD103+ TRM cells are 
highly enriched in the environmentally exposed epithelia of the skin, 
small intestine and female reproductive tract8,10,35. At these epithelial 
sites, interaction between αEβ7 and its abundantly expressed target 
ligand E-cadherin36 probably plays a role in cell adhesion and retention. 
However, CD103+CD8+ TRM cells are also found in non-epithelial tissues 
such as the brain12,37, and although CD103 has variously been impli-
cated as being important for TRM cell development38–40, its expression 
is not ubiquitous37 and therefore not mandatory for all forms of T cell 
residency. Nonetheless, tissue-lodged CD103+CD8+ memory T cells are 
highly resistant to equilibration across parabiotic pairs41, are uniquely 
spared from elimination by the approaches mentioned above23,30, selec-
tively survive for prolonged periods in transplanted tissues in mice8,33 
as well as in humans42,43 and persist independently of antigen recogni-
tion15,37. Moreover, CD103+CD8+ memory T cells are usually not found in 
secondary lymphoid organs15,44 — with one striking exception45,46 to be 
described in detail below. Thus, although not all TRM cells express CD103, 
the balance of evidence argues that CD103+CD8+ tissue T cells are true  
TRM cells, making this an easily identifiable archetypical population and 
an ideal reductionist means for delineating tissue residency mechanisms.

RUNX3 and TGFβ in CD8+ TRM cell development
Early experiments in mice comparing the transcriptomes of 
CD103+CD8+ TRM cells isolated from a range of organs with those 
of their circulating counterparts provided some of the first insights 
into the transcription networks critical for TRM cell development and 
survival10,39. Not surprisingly, genes associated with tissue egress were 
found to be downregulated in TRM cells, including Ccr7 and the genes 
encoding the sphingosine-1-phosphate receptors S1PR1 and S1PR510,11. 
Without the downregulation of these receptors, the precursors of TRM 
cells return to the circulation, thereby dampening TRM cell develop-
ment11,47. Other genes that come into play are those involved in dealing 
with local metabolite availability7,48,49 and those that prolong T cell 
survival23, with both sets of genes necessary to maintain a long-lived 
sequestered T cell population. Further experiments fleshed out how 
transcription factors control the various networks, such as the involve-
ment of KLF2, which modulates the expression of S1PR1 and CCR711. 
Following this, key upstream gene regulators were identified, such 
as T-bet and EOMES23,50 as well as BLIMP1 and the BLIMP1 homologue 
HOBIT51,52; of note, BLIMP1 and HOBIT are also involved in the develop-
ment of innate-like lymphocytes that permanently reside in mouse tis-
sues, such as natural killer cells and natural killer T cells51. Most recently, 
an overarching transcription factor has come into focus. RUNX3 has 
been identified as contributing to TRM cell formation, and it directly or 
indirectly regulates BLIMP1 and KLF2 expression as well as modulating 
downstream retention components53. This contribution is particularly 
striking as RUNX3 is a pivotal player in CD8+ T cell development and 
functionality54,55.

As the network analyses evolved, one commonality to emerge 
was the involvement of TGFβ in TRM cell development and survival 

Introduction
Memory T cells can show a range of persistence within non-lymphoid 
compartments. Many lymphocytes move freely through the various 
organs unimpeded before exiting the tissue via the draining lymphatic 
vessels1–3. Recognition of antigen leads to their transient retention4 
while physical barriers may slow the return of cells to the circulation5. 
Finally, a subset of T cells is specialized for purely localized patterns of 
immune surveillance6,7 and only poorly exits the tissues, if at all8. These 
tissue-resident memory T (TRM) cells9 have a cell-autonomous limitation 
in their recirculation capacity10–12 and show a superior ability to control 
localized infections in a number of settings13–15. In this Perspective,  
I detail the transcription networks that define sequestered TRM cells, 
identifying CD103+CD8+ memory T cells as the key population of mem-
ory CD8+ T cells that encompasses all the hallmarks of permanent tissue 
residency. Finally, I describe how these archetypical TRM cells show an 
unusual pattern of egress from the lungs and discuss how this impacts 
the course of respiratory infections, including SARS-CoV-2.

Identifying tissue-resident memory T cells
TRM cells were initially identified as a distinct, sessile T cell subset that 
coexisted alongside tissue-emigrating T cells8. This was a break from 
the prevailing understanding of tissue T cells based on early lymphocyte 
circulation experiments5,16,17. At that time, the widely accepted view was 
that these T cells were simply recirculating memory cells that either 
happened to be found in non-lymphoid tissues in large numbers18–20 or, 
alternatively, were trapped by some sort of gating mechanisms or by 
structural barriers such as the basement membrane that lines epithelia5. 
The identification of a unique TRM cell subset meant that non-lymphoid 
tissues contained at least two populations of memory T cells, each 
with its own distinct phenotype and functional properties. One was a 
recirculating subset that at the time was thought to comprise effector 
memory T (TEM) cells17 and the other, the newly identified permanently 
resident TRM cell population.

A major challenge from that point onwards has been distin-
guishing non-migrating TRM cells from recirculating memory T cells, 
largely because of the phenotypic overlap between these popula-
tions. For example, TRM cells do not express CC-chemokine receptor 7 
(CCR7) — a receptor required for entry into lymphoid tissues and the 
marker that was originally used to differentiate TEM cells (identified as 
CCR7-negative) from lymphoid-tissue-constrained central memory T 
(TCM) cells (identified as CCR7-positive)17. Separately, CD69 had been 
proposed to be a pan-TRM cell identifier21, yet it is upregulated by both 
antigen-specific and nonspecific stimuli22 and a substantial frac-
tion of migratory T cells express this molecule once in the tissues23. 
Compounding the confusion is the extensive heterogeneity seen in 
both circulating and tissue-resident memory T cell populations24–27, 
expanded by a history of natural infection28. Therefore, although com-
binations of surface markers can cover a range of TRM-like tissue cells, it 
would be fair to say that to date there remains no unifying phenotypic 
identifier for this population.

CD103+CD8+ TRM cells: the archetypical TRM cell
Although it has proven difficult to identify TRM cells by definitive pheno-
typic means, therapeutic and experimental interventions can eliminate 
all circulating T cells from the blood, leaving long-term tissue residents 
as the only memory T cells remaining in non-lymphoid compartments. 
Two approaches have proven particularly useful in this regard. The 
first exploits T cell responses against a transplantation mismatch to 
selectively eliminate cells in the circulation29–31 whereas the second uses 
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in a range of tissues and organs23,40,56–58. TGFβ appears to use a non-
canonical signalling pathway59 that controls much of the CD8+ TRM 
cell gene expression signature60. It has been shown to facilitate tissue 
entry via selectin upregulation61 and can regulate a broad range of 
transcription regulators and cytokine-driven survival factors during 
CD8+ TRM cell development11,23,50. Combined, there is now a wealth of 
data regarding the tenets of transcriptional control of TRM cell forma-
tion, which largely pivots around a TGFβ–RUNX3 axis, at least in the 
case of the mouse CD8+ TRM cell subset.

TRM cell re-entry into the circulation
Although TRM cells were originally shown to persist in non-lymphoid 
organs in quasi-perpetuity8, there have been subsequent descriptions 
of TRM cell egress with the resultant ‘ex-TRM cells’ ultimately being incor-
porated into the circulation33,41,62. CD8+ TRM cell numbers show an intrin-
sic decline in organs such as the lung and liver30,41, but not in tissues 
such as the skin and small intestine, where the cells effectively remain 
in place for life once lodged8,41. However even for these fixed popula-
tions, TRM cells can be forced to leave using in situ antigen stimulation 
via peptide challenge33,44. Such active dislodgement is not universal, 
with CD103+CD8+ TRM cells sometimes remaining resident in the tis-
sue even after multiple rounds of cell division initiated by local infec-
tion8,63,64. Perhaps tellingly, when CD103+CD8+ TRM cells are selectively 
dislodged by intervention, the resultant ex-TRM cells appear to adopt a 
phenotype intermediate between those of upstream resident memory 
T cells and conventional recirculating memory T cell populations, with 
a CD103 expression status that is either undefined or reported to be 
transient33,44. Moreover, when these same cells are directly isolated 
from non-lymphoid compartments, they are inferior in their capacity 
to enter the circulation compared to counterparts extracted from 
lymphoid organs33,65.

It remains difficult to reconcile these conflicting results, but 
studies on CD8+ TRM cells in the liver and recent revelations regard-
ing the basis for CD4+ T cell residency provide valuable insight that 
might explain egress variability. Although much more is known about 
CD8+ TRM cells, there are many examples of CD4+ TRM cell-type coun-
terparts13,27,66. Comparisons make it clear that the two are unrelated 
in terms of mechanistic underpinnings and they can exhibit quite dis-
tinct patterns of tissue residency even in the same organ29,67. As noted 
above, the archetypical CD103+CD8+ TRM cells use a set of TGFβ-driven 
transcriptional networks to shut down tissue egress, upregulate 
survival factors and tailor metabolic pathways. By contrast, few of 
these networks have been associated with CD4+ TRM cell residency, 
which instead relies on retention mechanisms variously operating via 
cell aggregation, antigen-specific T cell activation and chemotactic  
agents68,69 (Fig. 1). The reason why CD4+ and CD8+ TRM cells are likely to 
differ at the mechanistic level is the pivotal role RUNX3 plays in TRM cell  
development and survival53. This transcription factor is repressed  
in CD4+ T cells by the opposing gene regulator ThPOK (also known 
as ZBT7B), which is itself a lineage-determining factor70,71. Although 
natural RUNX3 upregulation can convert CD4+ T cells to an unconven-
tional CD8αα+ intraepithelial regulatory T cell population with CD8+ 
TRM cell-like qualities72, the intrinsic paucity of RUNX3 expression in 
conventional CD4+ TRM cells results in low CD103 levels in these cells 
and more transient tissue residency as a direct consequence of their 
inability to access the RUNX3-mediated pathways downstream of 
TGFβ signalling53,73.

Somewhat analogous to their CD4+ tissue-resident T cell coun-
terparts, mouse liver CD8+ TRM cells are also deficient in CD103 

expression74. These cells show medium-to-long-term tissue residency74, 
but not the almost lifelong persistence of TRM cells in organs such as 
skin and small intestine41,65. Although the liver T cells are fully capable 
of responding to TGFβ, local requirements negate this capacity, result-
ing in an immature or less differentiated CD103− TRM cell population 
(Fig. 1) with an inferior term of residency combined with more flexible 
reprograming compared to mature CD103+ TRM cell counterparts65. 
Collectively, the results show that although CD103− TRM cells can reside 
in tissues for a considerable period, they can exhibit a range of sponta-
neous egress and reprogramming capabilities because of deficiencies 
in TGFβ-mediated maturation. Given the heterogeneous nature of 
tissue-resident T cells, including variable CD103+ T cell content across 
different organs37 and the known recruitment of recirculating T cells by 
the peptide stimulation used for TRM cell dislodgement32, it is possible 
that less differentiated populations analogous to the liver CD103− TRM 
cells may preferentially contribute to the egress process. Regardless, 
although some TRM cells can leave the tissues and enter the circula-
tion, the balance of data argues that for the archetypical CD103+CD8+ 
TRM cells, this process is not constitutive and when it does happen, it 
usually results in cells that do not phenocopy their direct upstream 
antecedents.

TRM cells in the lungs
From the discussion above, it can be reasonably argued that because 
they fully engage the TGFβ–RUNX3 residency programme, mouse 
CD103+CD8+ tissue T cells fit the original TRM cell definition8; specifically, 
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Fig. 1 | Subtypes of tissue-resident memory T cells based on transcription 
profiles. The mechanism promoting permanent residency in non-lymphoid 
tissues for the CD103+CD8+ tissue-resident memory T (TRM) cell population 
involves a RUNX3-driven transcriptional network that is downstream of TGFβ 
receptor signalling53,60. This transcription programme is missing in CD4+ TRM 
cells as a consequence of deficiencies in RUNX3 expression73. Instead, these 
populations use a combination of cell aggregation and extrinsic chemokine 
networks for tissue retention68,69. The typical CD103+CD8+ TRM cell transcription 
programme is also missing in CD103− liver-like TRM cells because of deficiencies 
in TGFβ engagement65.
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they form a distinct subset of memory T cells that remains lodged in 
peripheral compartments in virtual perpetuity. However, there is one 
organ where the CD103+CD8+ T cells do not abide by this rule, and its 
uniqueness has important disease implications. Unlike the situation 
in other tissues, CD103+CD8+ TRM cells in the lung do not require local 
antigen stimulation for dislodgement45. Also unusually, the egressing 

memory T cells retain cell surface expression of CD103 post-exit, 
meaning that the lung-draining lymph nodes are unique in having a 
substantive subset of memory CD8+ T cells with this marker45,46. Lung 
CD103+CD8+ TRM cells are fully mature and unremarkable in terms of 
their TGFβ requirement for development and survival58. They also 
express the gene signatures associated with tissue residency10,12, 
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Fig. 2 | Selective and constitutive egress of lung CD103+CD8+ TRM cells. 
Inflammation associated with infection of tissues such as skin, small intestine and 
reproductive tract (left panels) and lung (right panels) leads to the recruitment  
of a variety of CD4+ and CD8+ T cells that combat the invading pathogens (part a).  
These populations include effector memory T (TEM) cells that continuously 
recirculate between non-lymphoid organs and blood as well as tissue-resident 
memory T (TRM) cell precursors (not shown). Following resolution of the infection 
(part b), most of the recruited T cells exit or die, leaving local immunosurveillance 

to recirculating TEM cells and the more potent TRM cells. Over time, some TRM cell 
subsets selectively disappear (part c, left panel), resulting in a resident population 
highly enriched in long-lived CD103+CD8+ TRM cells that afford long-term local 
immunity against re-infection (part d, left panel). In the lungs, CD103+CD8+ TRM 
cells are gradually lost after the infection has resolved and instead accumulate 
in the proximal draining lymph nodes (part c, right panel) leaving the lower 
respiratory tract deficient in CD103+CD8+ TRM cells and thus susceptible to  
re-infection (part d, right panel).
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including a cluster of TRM cell-associated transcription factors, namely 
HOBIT, NR4A1, aryl hydrocarbon receptor (AhR) and BHLHE407,51,75,76. 
In all critical aspects, they resemble TRM cells from other tissues, mean-
ing that their exit from the lung is probably an organ-specific feature 
rather than due to a cell-intrinsic programme. Such a mechanistic dis-
tinction is important, as it would suggest that the egress process would 
probably capture TRM cells beyond the archetypical CD103+CD8+ subset 
that was used to define this phenomenon and would do so regardless 
of where they fall on a maturation and term-of-residency continuum.

Exacting experiments by Stolley and colleagues45 proved that the 
resultant draining lymph node-resident memory T cells were indeed 
constitutively derived from upstream lung tissue counterparts, pos-
sibly dislodged as a consequence of virus-induced tissue damage77,78 
or the interruption of tonic TGFβ signalling needed to retain TRM cells 
in tissues79. Although the resultant lymph node accumulation offers 
an additional avenue to maintain regional protection45,80, memory 
T cell exit helps to explain one of the intriguing conundrums associ-
ated with immune protection in the lungs. It has long been known that 
T cell immunity in the lung wanes over time, with this first reported for 
respiratory infections with influenza virus and Sendai virus in mice81,82. 
This decline in lung-based immunity occurs despite virus-specific 
memory cells persisting in the circulation30,82–84. Non-TRM cell-based 
mechanisms were originally proposed to describe the behaviour of 
lung T cell populations81,85–87, variously confounded by blood-borne 
cells that are particularly problematic when dealing with this highly 
vascularized organ34. More recently, it was shown that the waning local 
immunity correlates with declining lung TRM cell numbers in mouse 
after influenza virus infection83,84 and in humans after respiratory 
syncytial virus challenge88. Although other mechanisms have been 
posited to account for this TRM cell attrition, such as the selective death 
of lung TRM cells30,84 or the disappearance of structures associated with 
focal damage67, none exclude concurrent tissue egress. Once lost, lung 
TRM cells are difficult to replace in the absence of renewed infection 
owing to the strict antigen recognition requirements for effective 
lodgement67,83,89, which are optional in many other tissues37 including 
the upper respiratory tract90. Overall, a range of mechanistic overlays 
would imply that losing TRM cells over time is important for this organ — 
for example, to limit ongoing damage to its delicate oxygen-exchange 
architecture91.

Finally, the natural decay of lung TRM cells stands in stark contrast 
to what is seen elsewhere in the body, where CD103+CD8+ TRM cell popu-
lations can remain tightly contained (Fig. 2). CD103+CD8+ TRM cells show 
long-term persistence in organs such as the brain, skin and cervicov-
aginal tissue8,39,92, despite the loss of their CD103− counterparts. The 
extent to which these spatial and temporal restrictions can operate 
was dramatically illustrated by experiments that lodged CD103+CD8+ 
TRM cells in a small patch of skin, thus confining effective protection to 
just that location while leaving the remainder of the torso under the  
inferior control of memory cells in the blood8,63. By contrast, lung  
TRM cell residency is unstable and transient, resulting in surveillance 
that is increasingly dependent on recirculating populations over time, 
with a concomitant decline in local T cell immunity.

TRM cell lung egress and immunity to SARS-CoV-2
At the time of this writing and nearly three years since the emergence of 
the SARS-CoV-2 virus in late 201993,94, the COVID-19 pandemic continues 
to be a major challenge in many parts of the world. Despite reports 
showing that circulating antiviral T cell immunity can be cross-reactive 
against emerging variants95, long lived96,97 and associated with better 

disease outcomes98,99, immunity from combinations of COVID-19 
vaccination and SARS-CoV-2 infection has been found to steadily 
decline100,101. One possible contributor may be that anti-SARS-CoV-2 
tissue-resident T cells that are pivotal for immune protection show the 
same type of numerical decay as reported for mouse CD103+CD8+ TRM 
cells. Employing strategies that slow TRM cell loss102 could be advanta-
geous, as might approaches that circumvent the lung altogether. The 
upper respiratory tract, especially the nasal mucosa, is a prime target 
with respect to the latter possibility as it does not show the TRM cell 
decline that is intrinsic to the lung90. Alternatively, it may be that TRM 
cells are actually counterproductive, leading to tissue damage. This is 
especially poignant because repeated antigen encounters extend the 
durability of CD103+CD8+ TRM cells in the lung102, yet a recent report 
found that experiencing successive SARS-CoV-2 infections progres-
sively increases the risk of adverse health outcomes103. In terms of their 
potential to contribute to tissue damage, TRM cells have an innate 
immune alarm and recruitment function32,104, and the innate response 
has been shown to be a key mediator of COVID-19-associated lung 
pathology105,106.

Conclusion
Overall, TRM cells provide superior protection against tissue-localized 
infection, primarily because of constraints in their migration capabili-
ties. Despite proving to be long-lived and effective in a range of different 
infectious diseases, lung TRM cells have an unusual propensity for tissue 
exit reflected in a decay in local T cell immunity. Such a feature may  
have evolved to protect this organ against long-term damage or  
may simply be a by-product of some unique anatomical feature 
intrinsic to lung function. Given the ability of TRM cells to respond to 
infection with an immediacy unmatched by the blood-based memory 
populations, there is a need to focus on their deposition in the different 
compartments of the respiratory system, especially in settings or  
sub-regions that support their long-term survival.

Published online: 9 December 2022
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