

Retraction Note: Exploring the quantum speed limit with computer games

<https://doi.org/10.1038/s41586-020-2515-2>

Retraction to: *Nature* <https://doi.org/10.1038/nature17620>

Published online 13 April 2016

Jens Jakob W. H. Sørensen, Mads Kock Pedersen, Michael Munch,
Pinja Haikka, Jesper Halkjær Jensen, Tilo Planke,
Morten Ginnerup Andreasen, Miroslav Gajdacz, Klaus Mølmer,
Andreas Lieberoth & Jacob F. Sherson

We, the authors, are regretfully retracting this Article owing to an error in our computer code that means the quantitative results reported are not valid. We thank A. Grønlund and D. Sels, whose independent efforts^{1,2} pointed to potential problems with our optimization algorithm. The error was identified by A. Grønlund, who has provided a detailed account³ of the error and its effect on the quantitative results in our Article. For more recent and comprehensive explorations of the performance differences between player-seeded and randomly seeded algorithms, we refer to our recent work⁴.

1. Sels, D. Stochastic gradient ascent outperforms gamers in the Quantum Moves game. *Phys. Rev. A* **97**, 040302 (2018)
2. Grønlund, A. Algorithms clearly beat gamers at Quantum Moves: a verification. Preprint at <https://arxiv.org/abs/1904.01008> (2019).
3. Grønlund, A. Explaining the poor performance of the KASS algorithm implementation. Preprint at <https://arxiv.org/abs/2003.05808> (2020).
4. Jensen, J. H. M. et al. Crowdsourcing human common sense for quantum control. Preprint at <https://arxiv.org/abs/2004.03296> (2020).