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Brain-wide dynamics linking sensation to 
action during decision-making

Andrei Khilkevich1,2 ✉, Michael Lohse1,2 ✉, Ryan Low1, Ivana Orsolic1, Tadej Bozic1, 
Paige Windmill1 & Thomas D. Mrsic-Flogel1 ✉

Perceptual decisions rely on learned associations between sensory evidence and 
appropriate actions, involving the filtering and integration of relevant inputs to 
prepare and execute timely responses1,2. Despite the distributed nature of task-relevant 
representations3–10, it remains unclear how transformations between sensory input, 
evidence integration, motor planning and execution are orchestrated across brain 
areas and dimensions of neural activity. Here we addressed this question by recording 
brain-wide neural activity in mice learning to report changes in ambiguous visual 
input. After learning, evidence integration emerged across most brain areas in sparse 
neural populations that drive movement-preparatory activity. Visual responses 
evolved from transient activations in sensory areas to sustained representations in 
frontal-motor cortex, thalamus, basal ganglia, midbrain and cerebellum, enabling 
parallel evidence accumulation. In areas that accumulate evidence, shared population 
activity patterns encode visual evidence and movement preparation, distinct from 
movement-execution dynamics. Activity in movement-preparatory subspace is driven 
by neurons integrating evidence, which collapses at movement onset, allowing  
the integration process to reset. Across premotor regions, evidence-integration 
timescales were independent of intrinsic regional dynamics, and thus depended  
on task experience. In summary, learning aligns evidence accumulation to action 
preparation in activity dynamics across dozens of brain regions. This leads to highly 
distributed and parallelized sensorimotor transformations during decision-making. 
Our work unifies concepts from decision-making and motor control fields into a 
brain-wide framework for understanding how sensory evidence controls actions.

To link external events to beneficial actions, the brain must learn to 
transform relevant sensory input to drive the neural dynamics that 
underlie movement preparation and execution1,11. Where and how these 
transformations occur in the brain remain unclear.

When individuals make decisions based on ambiguous sensory 
information over time, the brain is thought to gradually accumulate 
the relevant input into an integrated neural representation that deter-
mines the upcoming choice1. Neural activity reflecting the integration 
of sensory evidence has been reported in several brain areas1,8,12–22, 
most prominently in cortical areas such as frontal-premotor cor-
tex8,13,14,22 and posterior parietal cortex15–18, and their immediate down-
stream targets such as the striatum19–21. However, recent studies have 
uncovered a broader encoding of sensory inputs, choice and actions 
throughout the brains of trained animals3,5,6,9, raising questions about 
where sensory input is transformed into integrated task-relevant 
representations that guide action, and how widely distributed these 
representations are. It also remains unclear whether specific brain 
areas specialize in integration of sensory evidence owing to their 
inherent properties8,23–26, or whether learning shapes the nature of 
this computation.

Here we address how integrated sensory evidence is converted to a 
choice and ultimately action. Action initiation is preceded by a build- 
up of preparatory activity that is observed in many brain areas4,14,27–32  
(also referred as choice-related activity), which in motor and premo-
tor regions appears distinct from and orthogonal to the pattern of 
population activity that drives movement execution4,33–35 (see ref. 36  
for debate). Although evidence integration has been reported to 
modulate the preparatory activity of individual neurons in certain 
brain regions14,18,37–41, the effect of evidence integration on the evolving 
neural dynamics surrounding movement33,34, as well as the brain regions 
involved42–44, remain to be understood on a brain-wide scale. In parti
cular, it is unclear how segregated or parallelized the transformations 
between evidence integration, movement preparation and execution 
are across brain areas as well as across dimensions of neural activity.

To understand the brain-wide transformation of sensory input into 
choice and action, it is necessary to use tasks that can distinguish sen-
sory and decision-related processes from action signals that domi-
nate global brain activity3,5,6,9. Such tasks, pioneered in non-human 
primates1,16,45–47, have recently been adapted for rodents3,14,48–50, ena-
bling greater access to interrogate the underlying circuit mechanisms 
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as well as unbiased, brain-wide measurements with dense electrode 
recordings3,5,51.

In this study, we describe how sensory evidence propagates and is 
transformed across the brain as mice engage in a task that requires 
temporal integration of visual input, designed to separate the influence 
of sensory evidence and movement on neural responses14. Our results 
reveal that ambiguous sensory input becomes integrated within widely 
distributed multi-regional premotor circuits in a learning-dependent 
manner, driving the preparatory phase of movement-related neural 
dynamics that eventually trigger the initiation of appropriate actions.

To study how relevant sensory input is transformed across the brain 
prior to a decision, we trained food-restricted, head-fixed mice on a 
visual change detection task designed to dissociate ongoing visual 
evidence observation from movement-related activity14. Mice were 
trained to be stationary on a running wheel while observing a drifting 
grating stimulus, whose speed fluctuated noisily every 50 ms around 
a geometric mean temporal frequency (TF) of 1 Hz (σ = 0.25 octaves), 
and to report a sustained increase in its speed by licking a reward spout 
(Fig. 1a). The mice were motivated to react promptly upon detect-
ing a change by limiting the time in which the reward was accessible 
(Methods). Since changes in speed were often ambiguous, their timing 
unpredictable and the change in magnitude was randomized, mice had 
to continuously track the sensory stimulus for a prolonged duration 
(3–15.5 s) prior to the change. To ensure mice remained still during 
this time, any licking or movement on the running wheel prior to the 
stimulus change caused the trial to be aborted (Methods).

The detection performance of the mice improved with the size of 
the change in stimulus TF (Fig. 1b). At the same time, their reaction 
times were hundreds of milliseconds faster for large stimulus changes 
(Fig. 1b), similar to other reaction-time tasks requiring temporal inte-
gration1. Furthermore, the average stimulus speed preceding ‘early 
licks’ (Fig. 1c), which occasionally occur during the baseline stimulus 
prior to change, was increased during approximately 0.3 to 1 s before 
early lick (Fig. 1c). This suggests that at least some early licks are trig-
gered by fluctuations in the baseline stimulus and that sensory informa-
tion influences the mouse’s judgments on the timescale of hundreds 
of milliseconds.

Thus, by encouraging mice to continuously monitor ambiguous sen-
sory evidence while controlling for their movement, this task enables us 
to examine how the brain processes sensory evidence and transforms 
it into action commands.

Brain-wide encoding of sensory input
To understand how the brain of trained mice transforms visual stimu-
lus speed into goal-directed licking in this task, we performed dense 
silicon electrode recordings (Neuropixels probes51) from 15,406 units 
spanning 51 brain regions (that is, 12,772 units from regions with more 
than 40 manually curated, good and stable units; Extended Data Fig. 1, 
Supplementary Table 1 and Methods) distributed across the cortex, 
basal ganglia, hippocampus, thalamus, midbrain, cerebellum and hind-
brain (Fig. 1d–f, 15 mice, 114 recording sessions, 167 probe insertions 
and 50,997 trials), while capturing high-speed videos of the face and 
pupil as well as movements of the running wheel (Fig. 1f).

To identify which neurons encode visual evidence (stimulus TF), lick 
preparation and lick execution, we utilized single-cell Poisson gener-
alized linear models (GLMs) that fit trial-to-trial neural activity from 
task-related events, stimuli and behaviour (Fig. 1g and Extended Data 
Fig. 2). By using a cross-validated nested test (that is, holding out a pre-
dictor of interest to assess its contribution to neural activity), we identi-
fied the neurons that significantly encode different variables of interest 
while accounting for variance captured by other predictors (Methods).

In agreement with the prevalence of motor-related signals in the 
brain3–6,9, lick execution was encoded globally with the activity of at least 
50% of neurons recorded encoding this action (Fig. 1k,l and Extended 

Data Fig. 3a). Using videography to establish the onset of lick execu-
tion, we also identified a smaller, yet substantial fraction of neurons 
encoding lick preparatory activity (that is, modulation of activity within 
1.25 s leading up to a lick), also distributed globally (Fig. 1h,k,l). A sparser 
fraction of neurons encoded subtle fluctuations in stimulus TF dur-
ing the baseline period on trials devoid of mouse movements (5–45%; 
referred to as TF-responsive units;  Methods). These neurons were 
distributed across the majority of brain areas. Although the largest con-
tingent of TF-responsive units were found in the visual system (visual 
cortex, visual thalamus and superficial superior colliculus), significant 
fractions (5–25%) were also observed in most areas outside the visual 
system, including regions of the frontal cortex (secondary motor cor-
tex (MOs), anterior cingulate cortex (ACA), medial prefrontal cortex 
(mPFC), frontal pole (FRP), orbitofrontal cortex (ORB) and primary 
motor cortex (MOp)), basal ganglia (striatum (caudoputamen; CP), 
globus pallidus external segment (GPe) and sibstantia nigra reticular 
part (SNr)), hippocampus (dentate gyrus (DG), CA1, CA3 and subiculum 
(SUB)), midbrain (midbrain reticular nucleus (MRN), anterior pretectal 
nucleus (APN), multimodal and motor superior colliculus (SCm) and 
nucleus of the posterior commisure (NPC)) and cerebellum (lobules 4/5 
(Lob4/5), simplex lobule (SIM), central lobule 3 (CENT3), CRUS1/2 and 
deep cerebellar nuclei (DCN)). Of note, these multi-regional responses 
to visual input could not be explained by other variables that might 
correlate with fluctuations in stimulus TF because fast or slow TF pulses 
did not trigger consistent movements of the face or running wheel 
(Fig. 1i), there was an absence of TF-responsive cells in the medulla and 
orofacial motor/premotor nuclei whose activity reflects movements 
of the mouth and tongue (Fig. 1h,k,l), and the GLM was unable to pre-
dict responses to TF fluctuations without the stimulus TF as predictor 
(Extended Data Fig. 2f,g).

Together, these results show that sensory evidence representations 
are surprisingly widespread, with a sparse subpopulation of neurons 
tracking behaviourally subthreshold fluctuations of relevant sensory 
input in almost all brain areas, but excluding the nuclei controlling 
orofacial movements which become engaged when mice report their 
decision. These sparse, distributed representations of visual evidence 
ultimately give rise to the initiation of movement which itself recruits 
activity in more than half of neurons across the brain.

Timescales of sensory responses across the brain
To determine how sensory evidence propagates in activity across 
the brain, we quantified neural responses to momentary samples of 
stimulus TF during baseline period when mice did not lick or move. 
We aligned neural responses to fast TF pulses (50 ms stimulus samples 
1× s.d. above baseline TF of 1 Hz; Fig. 2a–c and Methods), and quanti-
fied their peak time (Fig. 2d) and duration (full width at half peak value; 
Fig. 2f), which closely matched those estimated by the GLM (Fig. 2e,g 
and Extended Data Fig. 5a–d). As expected, brain regions in early visual 
system (dorsal lateral geniculate complex (LGd), primary visual cortex 
(VISp) and superficial superior colliculus (SCs)) responded earliest to 
fast TF pulses with brief responses that faithfully tracked the stimulus 
TF (Fig. 2b,d–i). By contrast, brain regions outside the visual system 
containing TF-responsive units responded significantly more delayed 
to fast TF pulses (Fig. 2b–e,h) and exhibited more prolonged responses 
than neurons in visual areas (Fig. 2b,c,f,g,i and Extended Data Fig. 4). 
Specifically, neurons in frontal motor cortex, basal ganglia, cerebellum 
and some regions of the midbrain and thalamus maintained the represen-
tation of sensory evidence for several hundred milliseconds beyond the 
duration of the stimulus sample that triggered the response (Fig. 2b,c,f).

Parallel sensory integration in premotor areas
The longer timescales of neural responses to fast TF pulses outside 
the visual system suggests that these areas can integrate multiple 
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samples of behaviourally relevant visual input. Indeed, previous mod-
elling of mouse behaviour in this task shows that mice are guided 
by TF fluctuations unfolding over several hundred milliseconds14. 
Although this suggests that mice use temporal integration of stimu-
lus TF to detect changes, they may also respond to outliers in stim-
ulus to guide their lick responses. To disambiguate between these 

behavioural strategies (integration versus outlier detection), we 
applied a combination of analytical and modelling approaches to 
mouse behaviour to show that mice indeed do use integration of 
evidence over a timescale of around 0.25 s. First, the decay time (τ) 
of the early lick-triggered stimulus average (psychophysical kernel; 
see ref. 52) is 0.27 s, a time course significantly longer than predicted 
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Fig. 1 | Widespread representation of sensory evidence, lick preparation 
and lick execution across the mouse brain during noisy visual change 
detection. a, Schematic of the visual change detection task for head-fixed 
mice. b, Psychometric and reaction-time curves (mean and 95% confidence 
interval; two-sided Student’s t-test; n = 114 sessions, 15 mice). c, Mean stimulus 
TF (with 95% confidence interval) preceding early licks during the baseline 
period. Dashed lines indicate linear mean (1.016 Hz) of baseline stimulus TF.  
d, Number of units recorded per recording session. e, Brain map of number of 
units recorded per area across all recording sessions of trained mice. f, Example 
time series across two trials (a rewarded trial and an early lick trial) of stimulus 
TF, spike times across simultaneously recorded neurons (two probes), face 
motion energy (from videography), pupil size and running wheel movement. 
HPC, hippocampus; TH, thalamus. g, Schematic of single-trial Poisson GLM. 
Prep., preparation. h, Mean firing rate around early licks (left), and mean 
response to fast and slow TF pulses during baseline period (right) for an 

example neuron in MOs and trigeminal motor nucleus (V), together with  
GLM predicted (on 10% held-out data) mean activity (dashed lines, with 95% 
confidence interval). Exec., execution; PSTH, peristimulus time histogram.  
i, Mean (with 95% confidence interval) face motion energy (from videography 
(Methods)) around early licks, and around fast and slow TF pulses. j, Brain maps 
with labelled brain regions. See Supplementary Table 2 for definitions of 
abbreviations. k, Brain maps of percentage of units encoding lick execution 
(top row), lick preparation (middle row) and stimulus TF fluctuations during 
the baseline period in the absence of movement (bottom row). l, Percentage of 
units encoding lick execution, lick preparation and stimulus TF fluctuations 
during baseline across all brain regions with more than 40 units recorded. 
Resp., response. See Supplementary Table 1 for number of units recorded in 
each brain area and Supplementary Table 2 for definitions of brain region 
abbreviations. *P < 0.05, **P < 0.01, ***P < 0.001.
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by an artificial agent relying solely on an outlier detection strategy 
(Fig 3a,b and Methods). Second, mice are more likely to lick when two 
fast pulses occur within 0.25 s of each other than would be predicted 
by the joint independent effect of two fast pulses (Fig 3d and Extended 
Data Fig. 6e–i). Moreover, the independent effect of two fast pulses 
fully explained the data of the outlier-detection agent (Extended 
Data Fig. 6h,i). Finally, a simple leaky-integrator model with a 0.25 s 
decay time (τ) better predicts early lick times and single-trial hit reac-
tion times than when this model is not allowed to integrate evidence  
(Extended Data Fig. 7b–h).

Given that lick responses depend on integrating the stimulus TF over 
several hundred milliseconds, we next determined the neural correlates 
of this integration process. We reasoned that a prolonged response 
to a fast TF pulse serves as a neural substrate for temporal integration 
of multiple fast TF pulses, by allowing responses to successive fast TF 
pulses to build on each other. By finding instances during the baseline 
period when two fast TF pulses occurred at a given delay from each 
other (Fig. 3e and Methods), we calculated the average response across 
all TF-responsive units in a brain region to those pulses, and measured 
the amount of response facilitation to the second fast pulse relative 
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95% confidence interval; brain areas in each group are listed in Supplementary 
Table 1). i, Fast TF pulse response half-peak widths across major brain area 
groupings (median and 95% confidence interval). Wilcoxon rank sum test. 
Values of n for each brain area grouping are presented in Supplementary 
Table 1 and definitions of brain area abbreviations can be found in 
Supplementary Table 2. NS, not significant.
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to the first fast pulse response (Fig. 3f,g, and Fig. 3e for single-neuron 
examples; Methods). The majority of early and higher-order visual 
areas did not show facilitated responses to the second fast pulse even 
at a 0.1 s interval between the pulses (Fig. 3g,h and Extended Data 
Fig. 5e), whereas thalamic lateral posterior nucleus (LP) and hippocam-
pal regions showed facilitation of up to 0.2–0.3 s inter-pulse delay. 
Across non-visual thalamus, facilitation was observed only in ventral 
anterior-lateral complex (VAL) and parafascicular nucleus (PF), the key 
nodes in cortico-cerebellar and cortico-basal-ganglia loops, respec-
tively29,53,54. Most regions in frontal cortex, basal ganglia, cerebellum 
and midbrain exhibited significant facilitation around 0.2–0.4 s from 
the first fast pulse (Fig. 3g,h), resembling the behavioural integration 
timescales (Fig. 3b,d). The amount of relative facilitation to the second 
fast TF pulse correlated with response duration to a single fast TF pulse 
across brain regions (Fig. 3i), highlighting that one is a prerequisite 
for the other.

Thus far, we had isolated the sensory evidence representations by 
studying them in the absence of movement (that is, baseline period of 
the trial). Typically, however, neural representations of sensory integra-
tion are studied by examining neural responses during presentation 

of stimuli that trigger the learned response, when there is an overlap 
of multiple correlated signals related to sensory integration, move-
ment preparation and execution1,37,55. There, evidence integration is 
inferred by the ramping of neural responses that scale with stimulus 
strength37. Similarly, we found that in regions that integrate pulses 
of sensory evidence during the baseline period (Fig. 3e–h), such as 
MOs, the slopes of ramping activity in the change period scaled with 
the magnitude of the TF change (Fig. 3j). Notably, the TF-responsive 
subpopulation responded more strongly than the rest (Fig. 3k), with 
its ramping activity starting and peaking considerably earlier.

To account for the influence of the mouse’s movement on these 
response profiles, we used the visual response components of the 
GLM fitted separately to neural responses for each change magnitude 
(Fig. 3l,m and Methods). In most areas outside of the visual system and 
hippocampus, the visual response components of TF-responsive neu-
rons showed ramp-like activity that steepened with increasing change 
magnitudes, suggesting that these neural populations implement 
temporal integration of sensory evidence as mice report the change 
(Fig. 3l–o, Extended Data Fig. 7n,o and Methods). Moreover, for com-
parison, early visual areas, such as SCs, exhibited step-like, sustained 
responses to different change magnitudes (Fig. 3l–o and Extended Data 
Fig. 7n,o), thus signalling the change in stimulus TF, but without integra-
tion. This is consistent with the early visual system faithfully tracking the 
fluctuations in sensory input, whereas downstream structures have the 
capacity to integrate the stimulus stream, essentially denoising it, thus 
making sensory change detection easier (Extended Data Fig. 7k–m).
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exponential decay fits. b, Decay time of the exponential fits in a. c, Schematic 
showing how lick probability is affected by two fast TF pulses that either 
integrate temporally (black) or act independently (indep.; green). d, Difference 
between observed early lick probability after two sequential fast TF pulses and 
the one predicted from their independent effect (Extended Data Fig. 6e–g), 
normalized by the probability from independent effect, shown as a function of 
delay between pulses. Data are mean with 95% confidence intervals. e, Responses 
to a single fast TF pulse (black) or a sequence of two fast pulses separated  
by 0 s (left) or 0.2 s (right) in example neurons from SCs and MOs. f, Average 
response to a sequence of two fast TF pulses separated by 0.2 s delay from all 
TF-responsive neurons in SCs (left) and MOs (right). g, Facilitation of response 
to the second fast TF pulse as a function of delay between two pulses for 
TF-responsive units in SCs and MOs. h, Same as g, but for all brain regions with 
at least ten TF-responsive units. Only time points with 95% confidence interval 
above zero (bootstrap test) are shown. i, Pearson correlation between second 
fast TF pulse facilitation and the median half-peak width of response to fast TF 
pulse across brain regions (P value based on t-statistic). Correlation excludes 
brain regions without significant facilitation, shown as open circles. j, Average 
activity of MOs units aligned to TF change onset on hit trials, split by change 
magnitude. Reaction times (RTs) per magnitude are shown as median (dots) 
with ranges between 25th and 75th percentiles. k, Same as j, but with the MOs 
population split into TF-responsive (shades of purple) and TF non-responsive 
(shades of orange) units. Darker colours correspond to larger change 
magnitudes. l,m, Mean GLM weights tracking activity after change (change 
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brain area abbreviations can be found in Supplementary Table 2. In all panels, 
shaded regions or error bars indicate 95% confidence intervals.
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These results reveal that temporal integration of sensory evidence is 
a parallel, distributed, multi-regional computation—implemented by 
transforming transient responses to sensory input in visual areas into 
prolonged representations of integrated sensory evidence in frontal 
cortex, basal ganglia, cerebellum, thalamus and midbrain structures—
which does not propagate to motor execution nuclei in the medulla.

Learning enables widespread sensory integration
We next tested whether the encoding of sensory evidence outside the 
visual system is intrinsic to the brain regions themselves or a result 
of learning the relevant stimulus–reward associations. We recorded 
neural activity in untrained mice (6,215 units, 45 sessions, 6 mice) 
that had been exposed to the same stimuli but given random rewards 
(Fig. 4a,b and Methods), thus never associated changes in stimulus TF 
with reward. As expected, we found significant fractions of neurons 
encoding fluctuations in stimulus TF in the visual system (SCs, LGd, 
LP and VISp) and parts of the midbrain (APN and SCm) in untrained 
mice. However, we did not find cells with prominent TF responses 
in frontal-motor cortex, cerebellum, striatum or MRN—regions that 
in trained mice respond to TF fluctuations (Fig. 4c–e and Extended 
Data Fig. 8a). This demonstrates that encoding of sensory evidence 
in regions outside the visual system—where the sensory evidence is 
integrated—to a large degree, emerges with learning.

To test whether the integrative properties of neurons in non-visual 
areas are shaped by learning, we assessed whether stimulus integra-
tion can be predicted from intrinsic timescales of neural firing of each 
area. Intrinsic timescales of activity in cortical areas in non-human 
primates and rodents, defined as the time constant of autocorrelation 
function of each neuron’s activity, have been suggested to determine 
duration of task-relevant responses8,23. However, we did not find intrin-
sic timescales of neural activity (measured in the inter-trial periods 
devoid of visual stimuli and movement) to correlate with the duration 
of fast TF pulse responses across different brain regions (Fig. 4f,g) or 
in individual neurons (Extended Data Fig. 8b–e). Notably, the intrin-
sic timescales of individual brain regions were similar in trained and 
untrained mice, indicating that they are an intrinsic property of each 
area that is unaffected by learning (Fig. 4h,i). Together, these results 
imply that representation and integration of sensory evidence emerge 
with learning in most association and premotor areas outside of the 
visual system.

Evidence-encoding cells initiate preparatory activity
We next explored how the integrated sensory evidence is transformed 
into preparation of an action that reports the decision. Preparatory 
activity before action initiation has been observed in multiple brain 
areas during motor planning and in decision-making tasks4,15,28,30, 
including our task (Figs. 1j and 5a). Given that neurons downstream 
of the visual system encode both sensory evidence and lick prepara-
tion (Fig. 1j and Extended Data Fig. 3d), we tested whether evidence 
integration and preparatory activity engage similar patterns of activ-
ity in these brain regions. We computed the alignment of population 
vectors between responses to a single fast TF pulse (Fig. 5a,b, left) 
and preparatory activity before the early lick onset (Fig. 5a,b, right) 
of TF-responsive subpopulations in different brain regions. In MOs 
(Fig. 5c) and other areas outside of the visual system capable of integrat-
ing sensory evidence—including frontal cortex, cerebellum, midbrain 
and basal ganglia—these population vectors were significantly aligned 
(Fig. 5d), whereby neurons that increase their firing to fast TF pulses 
also increase their activity prior to lick initiation, and vice versa (Fig. 5c). 
By contrast, no such relationship was observed in areas that do not 
integrate sensory evidence (Fig. 5d), such as SCs (Fig. 5c). These results 
imply a widespread coupling between integration of sensory evidence 
and movement preparation, as previously observed in monkey lateral 

intraparietal area (LIP) and frontal cortex22,37, but which we find to be 
far more widespread across sparse subpopulations of frontal cortex, 
basal ganglia, cerebellum, thalamus and midbrain.

If accumulation of evidence contributes to the build-up of prepara-
tory activity, we would expect the neural subpopulations that integrate 

6 mice, 45 sessions, 6,215 single units
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evidence to be recruited first prior to a decision to a lick, and that brain 
regions with longer timescales of integration would have an earlier 
onset of preparatory activity. Indeed, prior to hit-lick onset during 
the change period, the TF-responsive populations were recruited 
significantly earlier than the TF non-responsive populations in areas 
integrating sensory evidence, including the frontal cortex, basal gan-
glia, cerebellum and midbrain (Fig. 5e–g, Extended Data Fig. 9b,c and 
Methods). The earliest differences in activation were observed across 
several brain subdivisions, including ACA, MOs, striatum (CP) and 
Lob4/5 (Extended Data Fig. 9b,c). Moreover, the onset of preparatory 
activity of the TF-responsive subpopulation scaled with the duration of 

response to a fast TF pulse (Fig. 5h and Extended Data Fig. 9d), reveal-
ing that the longer timescales of integration lead to an earlier onset of 
preparatory activity. Together, these results demonstrate that accumu-
lation of evidence contributes to the build-up of preparatory activity 
in multiple brain regions downstream of the visual system.

Brain-wide orthogonal dynamics surrounding action
Previous studies have found that population activity in motor cor-
tex transitions between orthogonal sets of dimensions (subspaces) 
before and after movement onset33,34. Following movement onset, 
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See Supplementary Table 2 for definitions of brain region abbreviations.
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activity occupies a ‘movement’ subspace, in which projections of 
activity closely resemble the muscle activity during movement execu-
tion. Prior to movement onset, the patterns of activity are different 
and confined to an orthogonal subspace (‘movement-null’), wherein 
activity builds up or persists, but does not drive the movement itself. 
To understand the neural dynamics during the transition between 
movement preparation and execution in our task, we applied the 
same analysis framework to each brain region population activity 
on hit-lick trials, by decomposing population activity into projec-
tions onto movement and movement-null dimensions (Methods). We 
defined the movement dimensions as those that captured the best 
similarity with the activity of orofacial motor and premotor nuclei that 
drive licking56,57 (Extended Data Fig. 10b,c), and a set of movement-null 
dimensions orthogonal to them, wherein activity can reside without 
directly affecting licking.

We first tested whether the preparatory activity occupies a move-
ment subspace or is orthogonal to it, as previously demonstrated in 
primary and premotor cortex33–35 (Fig. 6a, orthogonal modes hypo
thesis). Figure 6b–d shows MOs activity aligned to hit-lick onset and 
projected onto the first movement and movement-null dimensions 
(see also Extended Data Fig. 10b–d). Relative occupancy of these sub-
spaces around lick onset (Fig. 6e,f and Methods) revealed that pre-lick 
activity in MOs predominantly resided within the movement-null 
subspace (Fig. 6e, and was largely one-dimensional (Extended Data 
Fig. 10c)), and then transitioned into the movement subspace after the 
lick onset. Of note, preparatory activity was confined to the movement- 
null subspace across all other brain regions (Fig. 6f and Extended Data 
Fig. 11a,b).

Shortly following lick onset, population activity transitioned from 
movement-null into the movement subspace, almost concurrently 
throughout the brain. This state transition could result only from 
an increase in activity within movement subspace (Extended Data 
Fig. 11a) or also from a decrease in activity within the moment-null 
subspace following lick onset. Consistent with the latter, activity within 
movement-null subspace peaked and then sharply decreased imme-
diately after the lick onset in most brain regions that had preparatory 
activity (Fig. 6f, green line, and Extended Data Fig. 11b, c).

Together, these results reveal that the abrupt transitions in neural 
dynamics between orthogonal movement-null and movement sub-
spaces at movement onset is a general computational feature observed 
in most association and premotor brain areas.

Linking evidence integration and motor dynamics
If accumulation of visual evidence drives preparatory activity, which 
resides in movement-null subspace, one would expect TF-responsive 
units to have a disproportionate contribution to activity in movement- 
null subspace. To test this, we decomposed projections onto move-
ment and movement-null dimensions into a sum of contributions from 
TF-responsive units and the rest of the population (see Methods). For 
example, in MOs, we observed a disproportional contribution from 
TF-responsive subpopulation to the preparatory activity within the 
movement-null subspace (Fig. 6c,g). Applying this analysis across all 
brain regions, we found that the TF-responsive subpopulation contrib-
uted disproportionately to the preparatory activity in a more restricted 
subset of areas (Fig. 6h and Extended Data Fig. 11d,e): frontal cortex 
(ACA, MOs, MOp, ORB and mPFC), cerebellum (Lob4/5, SIM and DCN), 
basal ganglia (CP, SNr/globus pallidus internal segment (GPi) and GPe), 
as well as some regions of the midbrain (MRN, NPC and SCm) and thala-
mus (VAL and ventrobasal complex (VB)). Notably, these predominantly 
premotor areas integrated evidence over longer timescales (Extended 
Data Fig. 11f; see also Fig. 5h), emphasizing the link between evidence 
accumulation and preparatory activity.

Sensory evidence should no longer be informative of choice once the 
animal has committed to its decision. Accordingly, the contribution 

of TF-responsive units to preparatory activity in movement-null sub-
space collapsed to chance level after lick onset in most premotor areas 
in which TF-responsive units disproportionately drove preparatory 
activity (Fig. 6h; see Extended Data Fig. 11g for a comparable analysis in 
movement subspace). This collapse is consistent with the cessation of 
evidence accumulation despite the continuous presence of the change 
stimulus (see also Fig. 3j–l).

Consistent with the observations that preparatory activity 
and responses to pulses of sensory evidence are aligned within 
TF-responsive population of neurons (Fig. 5c,d) and that the prepara-
tory activity of the entire population is confined to the movement-null 
subspace (Fig. 6f), we found that a response to TF pulse is aligned with 
the dimension that captures the most variance of the preparatory activ-
ity (first movement-null dimension) in most regions beyond the early 
visual system (Fig. 6i,j, top, k and Extended Data Fig. 12a). By contrast, 
responses to fast TF pulses were not positively aligned with the first 
movement dimension in any brain region group (Fig. 6i, j, bottom, k). 
Consequently, outside of the early visual system, we find that the inte-
gration of sequential pulses of evidence primarily takes place along the 
first movement-null dimension (Fig. 6k–m and Extended Data Fig. 12b). 
This provides an explanation for how sensory evidence can recruit 
activity across the majority of brain regions without directly driving 
the movement.

Discussion
Here we describe the brain-wide neural implementation of evidence 
integration, movement preparation and execution—the key processes 
underpinning decision-making—revealing a global mechanism for 
transforming ambiguous sensory evidence into goal-directed actions. 
We show that evidence integration is a widespread phenomenon that 
emerges with learning and is implemented in a sparse population of 
neurons across most premotor areas. In these neurons, the timescales 
of integration are independent of intrinsic regional dynamics, suggest-
ing that they are shaped by task experience. Notably, evidence integra-
tion and movement preparation are encoded in the same subspace of 
population activity across the brain, orthogonal to movement-related 
dynamics. Activity in this subspace was driven by neurons integrating 
evidence and collapsed at movement onset, allowing the integration 
process to reset, whereupon activity transitioned into a different sub-
space for movement execution concurrently across the brain. Our work 
links evidence accumulation onto motor dynamics on a brain-wide 
scale, unifying concepts from motor control and decision-making fields 
into a common framework for understanding how sensory evidence 
controls actions through global neural mechanisms.

Our finding that only expert mice exhibited robust encoding of 
visual input in almost all brain areas outside the visual system is con-
sistent with previous reports of learning increasing the connectivity 
and correlations between cortical and subcortical regions58–60, which 
may explain the distributed encoding of task variables across cortical 
and subcortical structures in trained animals3,4,14. We now show that 
these learning-induced multi-regional representations of task-relevant 
stimuli are not simply a distributed echo of the sensory input, but a 
transformed and integrated representation explicitly used to guide 
decisions. In association and premotor areas, such as frontal-premotor 
cortex, basal ganglia, cerebellum, parts of midbrain and thalamus, the 
prolonged responses to individual samples of evidence enabled their 
integration on a timescale of several hundred milliseconds, consis
tent with timescales of behavioural integration (Fig. 3 and Extended 
Data Fig. 6). This is a key distinction from visual areas, such as VISp and 
SCs (and primate middle temporal visual area37 (MT)), where neurons 
do not integrate evidence (Fig. 3). Consequently, the integration of 
ambiguous task-relevant stimuli becomes a multi-regional distributed 
process implemented in a sparse population of neurons, and one that 
emerges with training as mice learn the value of the relevant stimulus 
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feature. Notably, in our task both neural and behavioural evidence 
integration is ‘leaky’, consistent with the idea that in dynamic sensory 
environments perfect integration is not an optimal behavioural strat-
egy52. Instead, leaky integration of a noisy stimulus stream is beneficial 

as it increases the signal relative to noise by temporally smoothing the 
input (Extended Data Fig. 7k–m).

We found that the timescales of integration are as diverse across the 
entire brain as has been shown across cortex8,14. However, evidence 
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Fig. 6 | Preparatory activity occupies movement-null subspace, is dominated 
by TF-responsive subpopulation and is aligned with responses to pulses  
of sensory evidence. a, Schematic of two hypothetical ways population 
activity can transition from movement preparation to execution. Preparatory 
activity and action execution proceed either along the same mode of activity 
(single mode hypothesis) or are orthogonal to each other (orthogonal modes 
hypothesis). Dim., dimension. b, Mean projection of all MOs neuron activities 
around lick on hit trials onto the first movement dimension, defined by activity 
in orofacial nuclei in the time window around lick (grey; see Methods). Projection 
of activity of TF-responsive subpopulation of MOs is shown in blue (Methods; 
scale on the right); projection from a random (rand.) sample of MOs neurons 
(grey; matched to number of TF-responsive neurons; scale on the right).  
c, Projection of MOs activity onto the first movement-null dimension during hit 
trials. d, Same as b,c, but shown in a state-space formed from first movement 
and movement-null dimensions. Dots correspond to the state of MOs activity 
in 10-ms bins. Time relative to lick onset is indicated by colour. e, Relative 
occupancy of MOs activity in movement versus movement-null subspaces as  
a function of time (Methods). f, Same as e, but across brain regions (excluding 
brain regions with poor goodness of fit (R2 < 0.8) to activity in orofacial nuclei; 
Extended Data Fig. 10d). Only time points with relative occupancy significantly 
different from zero (P < 0.05, bootstrap test) are shown (also for h). Brain regions 
are sorted according to the earliest latency of significant relative occupancy. 
Time of peak occupancy in movement-null subspace is shown by the green line. 

g, Relative contribution of TF-responsive subpopulation to movement-null  
and movement subspaces. The grey line indicates the value expected from a 
random sample of neurons from MOs (matched to number of TF-responsive 
neurons). h, Same as g, but shown across brain regions sorted by latency of 
significant contribution of TF-responsive subpopulation. Top, fraction of trials 
with ongoing change epoch. i, Projections of MOs population responses to 
pulses of sensory evidence onto the first movement-null (top) and movement 
(bottom) dimensions. j, Cosine of the angle between population response to a 
fast TF pulse and first movement-null (top) and movement (bottom) dimensions. 
Data pooled across grouped brain regions (mean ± 95% confidence interval; 
bootstrap test). k, MOs population responses to pulses of sensory evidence  
(0–0.5 s after the pulse onset), shown in state-space formed by first movement 
and movement-null dimensions. Overlaid, MOs preparatory activity (grey)  
up to 100 ms before hit-lick onset (note the different scale). l, Peak value of 
projections of MOs responses to a slow or fast TF pulse, or two sequential fast 
or two sequential slow TF pulses, onto the first movement-null dimension.  
m, Same as l, but for groups of brain regions (bootstrap test). BG, basal ganglia; 
CB, cerebellum; FC, frontal cortex; MB, midbrain; Vis.E., visual (early); Vis.H., 
visual (higher). In all panels, shaded regions or error bars indicate bootstrapped 
95% confidence intervals (Methods). Values of n for each brain region or brain 
region group are presented in Supplementary Table 1 and definitions of brain 
area abbreviations can be found in Supplementary Table 2.
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integration times were not explained by the intrinsic timescales within 
each area, previously suggested to be predictive of response duration 
and ability to integrate stimuli in cortex of non-human primates and 
mice, respectively8,23–26. A possible reason for this discrepancy may 
be that our task allows estimation of both the intrinsic timescales and 
stimulus integration times in the absence of potentially confounding 
movement signals. In this study, we found that intrinsic timescales 
remain stable with learning, confirming they are an inherent prop-
erty of each area. In fact, decoupling of intrinsic timescales from inte-
gration times may be advantageous because it allows task demands 
to sculpt the timescales of integration26,61. This decoupling may be 
implemented by learning mechanisms59,62 that shape the activity 
propagating in multi-regional long-range loops involving cortex, basal 
ganglia, cerebellum, thalamus and midbrain, as observed during motor  
planning28,29,35,53,54.

To understand how evidence integration leads to action, we adopted a 
framework developed for understanding the neural dynamics of move-
ment generation, which identifies the relationship between modes of 
population activity that precede and follow action onset33,34,63. Using 
this framework, we demonstrate that neural dynamics of lick prepara-
tion and lick execution occupy distinct, orthogonal subspaces in most 
subdivisions of the brain, as previously shown in primate primary and 
premotor cortex during arm movements33,34 and more recently in the 
mouse brain during memory-guided movements4. Of note, the sub-
populations of neurons capable of integrating sensory evidence initi-
ated and dominated preparatory activity in movement-null subspace. 
We found preparatory activity to originate earliest in regions with the 
longest integration timescales, such as frontal cortex, basal ganglia and 
cerebellum, and then transition abruptly into an orthogonal subspace 
upon movement initiation almost instantaneously in all brain regions 
investigated. This demonstrates that the transformation of accumu-
lated evidence into movement planning and execution takes place 
within and across subspaces of neural activity that are shared across 
multi-regional circuits, rather than proceeding successively across a 
subset of specialized brain areas. Future research should determine the 
degree to which the principles of brain-wide neural dynamics obser
ved in our study generalize to tasks involving multiple sensorimotor  
contingencies.

A clear advantage of orthogonalizing neural dynamics during 
decision-making is that it allows computations such as evidence 
accumulation, movement preparation or movement execution to pro-
ceed within the same population of neurons64. Our results highlight a 
particular advantage of occupying the movement-null subspace as 
it allows evidence integration to take place without directly causing 
movement. Accordingly, the lack of responses to visual evidence in 
the orofacial nuclei in medulla, which become active only upon lick 
initiation, demonstrates that brain-wide preparatory activity patterns 
driven by sensory evidence are incapable of driving the activity in motor 
circuits that control mouth and tongue movements.

The transition of population activity from movement-null to move-
ment subspace is thought to proceed via a brief release of activity 
occupying movement-null subspace as an input to the movement sub-
space34, which triggers the action. In a delayed response task using an 
explicit auditory Go cue, a trigger signal in premotor cortex depends 
on a pedunculopontine nucleus (PPN)/MRN–thalamic circuit35. Our 
task, however, requires an internally generated trigger when sufficient 
evidence is accumulated. Future work is needed to elucidate the regions 
that generate the trigger signal, with likely candidates receiving infor-
mation from areas with early onsets of preparatory activity such as 
ACA, MOs, CP and Lob4/5. Conversely, an action initiation signal may 
propagate to the movement-null subspace, since the contribution of 
evidence-accumulating neurons to the movement-null subspace col-
lapsed shortly following action onset, even though the change stimulus 
was still present, thus allowing the integration process to reset. This 
observation suggests that evidence-integrating neurons perform this 

function only when it is relevant and before the mouse has commit-
ted to an action. These findings imply that activity in one orthogonal 
subspace can influence the activity in the other subspace, highlighting 
the dynamic interplay between movement-null and movement-related 
neural dynamics.

In summary, we demonstrate that learning recruits a neural subpopu-
lation that is widely distributed across the brain, which concurrently 
integrates evidence and drives movement preparation, allowing sen-
sory evidence to control global neural dynamics required for genera-
tion of behavioural responses.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-024-07908-w.

1.	 Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 
535–574 (2007).

2.	 Hanks, T. D. & Summerfield, C. Perceptual decision making in rodents, monkeys, and 
humans. Neuron 93, 15–31 (2017).

3.	 Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, 
action and engagement across the mouse brain. Nature 576, 266–273 (2019).

4.	 Chen, S. et al. Brain-wide neural activity underlying memory-guided movement. Cell 187, 
676–691 (2024).

5.	 Allen, W. E. et al. Thirst regulates motivated behavior through modulation of brainwide 
neural population dynamics. Science 364, 253 (2019).

6.	 Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural 
dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).

7.	 International Brain Laboratory. A brain-wide map of neural activity during complex 
behaviour. Preprint at bioRxiv https://doi.org/10.1101/2023.07.04.547681 (2023).

8.	 Pinto, L., Tank, D. W. & Brody, C. D. Multiple timescales of sensory-evidence accumulation 
across the dorsal cortex. eLife 11, e70263 (2022).

9.	 Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. 
Science 364, 255 (2019).

10.	 Siegel, M., Buschman, T. J. & Miller, E. K. Cortical information flow during flexible 
sensorimotor decisions. Science 348, 1352–1355 (2015).

11.	 Inagaki, H. K. et al. Neural algorithms and circuits for motor planning. Annu. Rev. 
Neurosci. 45, 249–271 (2022).

12.	 Deverett, B., Koay, S.A., Oostland, M. & Wang, S. H.-H. Cerebellar involvement in an 
evidence-accumulation decision-making task. eLife 7, e36781 (2018).

13.	 Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation 
by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

14.	 Orsolic, I., Rio, M., Mrsic-Flogel, T. D. & Znamenskiy, P. Mesoscale cortical dynamics 
reflect the interaction of sensory evidence and temporal expectation during perceptual 
decision-making. Neuron 109, 1861–1875.e10 (2021).

15.	 Shadlen, M. N. & Newsome, W. T. Neural basis of a perceptual decision in the parietal 
cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

16.	 Huk, A. C. & Shadlen, M. N. Neural activity in macaque parietal cortex reflects temporal 
integration of visual motion signals during perceptual decision making. J. Neurosci. 25, 
10420–10436 (2005).

17.	 Yao, J. D., Gimoto, J., Constantinople, C. M. & Sanes, D. H. Parietal cortex is required for 
the integration of acoustic evidence. Curr. Biol. 30, 3293–3303.e4 (2020).

18.	 Hanks, T. D. et al. Distinct relationships of parietal and prefrontal cortices to evidence 
accumulation. Nature 520, 220–223 (2015).

19.	 Ding, L. & Gold, J. I. Caudate encodes multiple computations for perceptual decisions.  
J. Neurosci. 30, 15747–15759 (2010).

20.	 Yartsev, M. M., Hanks, T. D., Yoon, A. M. & Brody, C. D. Causal contribution and dynamical 
encoding in the striatum during evidence accumulation. eLife 7, e34929 (2018).

21.	 Bolkan, S. S. et al. Opponent control of behavior by dorsomedial striatal pathways 
depends on task demands and internal state. Nat Neurosci 25, 345–357 (2022).

22.	 Gold, J. I. & Shadlen, M. N. Representation of a perceptual decision in developing 
oculomotor commands. Nature 404, 390–394 (2000).

23.	 Murray, J. D. et al. A hierarchy of intrinsic timescales across primate cortex. Nat Neurosci 
17, 1661–1663 (2014).

24.	 Runyan, C. A., Piasini, E., Panzeri, S. & Harvey, C. D. Distinct timescales of population 
coding across cortex. Nature 548, 92–96 (2017).

25.	 Cavanagh, S. E., Hunt, L. T. & Kennerley, S. W. A diversity of intrinsic timescales underlie 
neural computations. Front. Neural Circuits https://doi.org/10.3389/fncir.2020.615626 
(2020).

26.	 Ossmy, O. et al. The timescale of perceptual evidence integration can be adapted to the 
environment. Curr. Biol. 23, 981–986 (2013).

27.	 Tanji, J. & Evarts, E. V. Anticipatory activity of motor cortex neurons in relation to direction 
of an intended movement. J. Neurophysiol. 39, 1062–1068 (1976).

28.	 Guo, Z. V. et al. Maintenance of persistent activity in a frontal thalamocortical loop. Nature 
545, 181–186 (2017).

29.	 Chabrol, F. P., Blot, A. & Mrsic-Flogel, T. D. Cerebellar contribution to preparatory activity 
in motor neocortex. Neuron 103, 506–519.e4 (2019).

https://doi.org/10.1038/s41586-024-07908-w
https://doi.org/10.1101/2023.07.04.547681
https://doi.org/10.3389/fncir.2020.615626


900  |  Nature  |  Vol 634  |  24 October 2024

Article
30.	 Weinrich, M., Wise, S. P. & Mauritz, K.-H. A neurophysiological study of the premotor 

cortex in rhesus monkey. Brain 107, 385–414 (1984).
31.	 Kornhuber, H. H. & Deecke, L. Hirnpotentialänderungen bei Willkürbewegungen und 

passiven Bewegungen des Menschen: Bereitschaftspotential u. reafferente Potentiale. 
Pflugers Arch. Gesamte Physiol. Menschen Tiere 284, 1–17 (1965).

32.	 Wu, Z. et al. Context-dependent decision making in a premotor circuit. Neuron 106,  
316–328.e6 (2020).

33.	 Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Cortical activity in the null 
space: permitting preparation without movement. Nat. Neurosci. 17, 440–448 (2014).

34.	 Elsayed, G. F., Lara, A. H., Kaufman, M. T., Churchland, M. M. & Cunningham, J. P. 
Reorganization between preparatory and movement population responses in motor 
cortex. Nat. Commun. 7, 13239 (2016).

35.	 Inagaki, H. K. et al. A midbrain–thalamus–cortex circuit reorganizes cortical dynamics to 
initiate movement. Cell 185, 1065–1081.e23 (2022).

36.	 Darlington, T. R. & Lisberger, S. G. Mechanisms that allow cortical preparatory activity 
without inappropriate movement. eLife 9, e50962 (2020).

37.	 Roitman, J. D. & Shadlen, M. N. Response of neurons in the lateral intraparietal area during 
a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002).

38.	 Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A. A relationship 
between behavioral choice and the visual responses of neurons in macaque MT.  
Vis. Neurosci. 13, 87–100 (1996).

39.	 Boyd-Meredith, J. T., Piet, A. T., Dennis, E. J., El Hady, A. & Brody, C. D. Stable choice 
coding in rat frontal orienting fields across model-predicted changes of mind. Nat. 
Commun. 13, 3235 (2022).

40.	 Bennur, S. & Gold, J. I. Distinct representations of a perceptual decision and the associated 
oculomotor plan in the monkey lateral intraparietal area. J. Neurosci. 31, 913–921 (2011).

41.	 Fitzgerald, J. K., Freedman, D. J. & Assad, J. A. Generalized associative representations in 
parietal cortex. Nat. Neurosci. 14, 1075–1079 (2011).

42.	 Stine, G. M., Trautmann, E. M., Jeurissen, D. & Shadlen, M. N. A neural mechanism for 
terminating decisions. Neuron 111, 2601–2613.e5 (2023).

43.	 Ding, L. & Gold, J. I. Neural correlates of perceptual decision making before, during,  
and after decision commitment in monkey frontal eye field. Cereb. Cortex 22, 1052–1067 
(2012).

44.	 Duan, C. A. et al. A cortico-collicular pathway for motor planning in a memory-dependent 
perceptual decision task. Nat. Commun. 12, 2727 (2021).

45.	 Newsome, W. T. & Park, E. B. A selective impairment of motion perception following 
lesions of the middle temporal visual area (MT). J. Neurosci. 8, 2201–2211 (1988).

46.	 Mountcastle, V. B., Steinmetz, M. A. & Romoa, R. Frequency discrimination in the sense of 
flutter: psychophysical measurements correlated with postcentral events in behaving 
monkeys. J. Neurosci. 10, 3032–3044 (1990).

47.	 Romo, R. & de Lafuente, V. Conversion of sensory signals into perceptual decisions. Prog. 
Neurobiol. 103, 41–75 (2013).

48.	 Brunton, B. W., Botvinick, M. M. & WangBrody, C. D. Rats and humans can optimally 
accumulate evidence for decision-making. Science 340, 95–97 (2013).

49.	 Pinto, L. et al. An accumulation-of-evidence task using visual pulses for mice navigating 
in virtual reality. Front. Behav. Neurosci. 12, 36 (2018).

50.	 Akrami, A., Kopec, C. D., Diamond, M. E. & Brody, C. D. Posterior parietal cortex represents 
sensory history and mediates its effects on behaviour. Nature 554, 368–372 (2018).

51.	 Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. 
Nature 551, 232–236 (2017).

52.	 Ruesseler, M., Weber, L. A., Marshall, T. R., O’Reilly, J. & Hunt, L. T. Quantifying decision- 
making in dynamic, continuously evolving environments. eLife 12, e82823 (2023).

53.	 Gao, Z. et al. A cortico-cerebellar loop for motor planning. Nature 563, 113–116 (2018).
54.	 Wang, Y. et al. A cortico-basal ganglia-thalamo-cortical channel underlying short-term 

memory. Neuron 109, 3486–3499.e7 (2021).
55.	 Park, I. M., Meister, M. L. R., Huk, A. C. & Pillow, J. W. Encoding and decoding in parietal 

cortex during sensorimotor decision-making. Nat. Neurosci. 17, 1395–1403 (2014).
56.	 Takatoh, J. et al. Constructing an adult orofacial premotor atlas in Allen mouse CCF. eLife 

10, e67291 (2021).
57.	 Guo, H. et al. Whole-brain monosynaptic inputs to hypoglossal motor neurons in mice. 

Neurosci. Bull. 36, 585–597 (2020).
58.	 Lemke, S. M., Ramanathan, D. S., Guo, L., Won, S. J. & Ganguly, K. Emergent modular 

neural control drives coordinated motor actions. Nat. Neurosci. 22, 1122–1131 (2019).
59.	 Xiong, Q., Znamenskiy, P. & Zador, A. M. Selective corticostriatal plasticity during 

acquisition of an auditory discrimination task. Nature 521, 348–351 (2015).
60.	 Peters, A. J., Fabre, J. M. J., Steinmetz, N. A., Harris, K. D. & Carandini, M. Striatal activity 

topographically reflects cortical activity. Nature 591, 420–425 (2021).
61.	 Piet, A. T., El Hady, A. & Brody, C. D. Rats adopt the optimal timescale for evidence 

integration in a dynamic environment. Nat. Commun. 9, 4265 (2018).
62.	 Herzfeld, D. J., Kojima, Y., Soetedjo, R. & Shadmehr, R. Encoding of error and learning to 

correct that error by the Purkinje cells of the cerebellum. Nat. Neurosci. 21, 736–743 (2018).
63.	 Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Ryu, S. I. & Shenoy, K. V. Cortical 

preparatory activity: representation of movement or first cog in a dynamical machine? 
Neuron 68, 387–400 (2010).

64.	 Aoi, M. C., Mante, V. & Pillow, J. W. Prefrontal cortex exhibits multidimensional dynamic 
encoding during decision-making. Nat. Neurosci. 23, 1410–1420 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons licence, 
and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, 
visit http://creativecommons.org/licenses/by/4.0/.

© Crown 2024

http://creativecommons.org/licenses/by/4.0/


Methods

Animals
All experiments were performed under the UK Animals (Scientific Pro-
cedures) Act of 1986 (PPL: PD867676F) following local ethical approval 
by the Sainsbury Wellcome Centre Animal Welfare Ethical Review Body. 
A total of 21 C57BL/6 J male mice (age = 34.5 ± 15.8 weeks (mean ± s.d.)) 
were used for electrophysiological recordings. Fifteen mice first under-
went head-fixed behavioural training prior to acute electrophysiologi-
cal recordings (see ‘Task and training stages’), and six mice (untrained 
mice) only underwent habituation to the recording setup prior to acute 
electrophysiological recording.

Prior to behavioural training and recordings, all mice were implanted 
with a head-fixation bar under approximately 1.5% isoflurane and 
administration of Meloxicam (5 mg kg−1) to allow for head-fixation 
during behavioural training and electrophysiological recordings.

During training, mice were co-housed with littermates in individually 
vented cages. After implantation of the recording chamber, mice were 
singly housed to protect the implant. Mice were housed in reversed 
day–night cycle lighting conditions, with the ambient temperature and 
humidity set to 23 °C and 56% relative humidity, respectively.

Behavioural task
The design of the behavioural task was as previously described in 
ref. 14. In brief, mice were head-fixed and placed on a polystyrene 
wheel. Two monitors (21.5 inch, 1,920 × 1,080, 60 Hz) were placed on 
each side of the mouse at approximately 20 cm from the mouse head. 
The monitors were gamma corrected to 40 cd m−2 of maximum lumi-
nance using custom MATLAB scripts utilizing PsychToolbox-3. The 
stimulus presentation was controlled by custom written software in 
MATLAB utilizing PsychToolbox-3. The visual stimulus was a sinusoidal 
grating with the spatial frequency of 0.04 cycles per degree resulting in 
3 grating periods shown on a screen. Each trial began with a presenta-
tion of a grey texture covering both screens. After a randomized delay 
(at least 3 s plus a random sample from an exponential distribution 
with the mean of 0.5 s), the baseline stimulus appeared. The TF of the 
grating was drawn every 50 ms (3 monitor frames) from a lognormal 
distribution, such that log2-transformed TF had the mean of 0 and 
s.d. of 0.25 octaves and the geometric mean of 1 Hz. The direction of 
drift was randomized trial to trial between upward or downward drift. 
The sustained increase in TF, referred to in the text as change period, 
occurred after a randomized delay (3–15.5 s) from the start of baseline 
period and lasted for 2.15 s. For early and late blocks training (stage 8), 
change period times were sampled between [3, 8] s and [10.5, 15.5] s, 
respectively, with the delay from the earliest allowed change period 
sampled from an exponential distribution with a mean of 4 s. Random 
15% of trials were assigned as no-change trials and did not have a change 
period. For stage 8 training, 10% of trials were designated to be probe 
trials and had a change time drown from the distribution of the other 
block type. Because there were no qualitative differences in neural 
TF pulse response between early and late blocks (data not shown) we 
have combined data from both block types for analyses throughout 
this manuscript. Findings related to stage 8 (early and late blocks) will 
be presented in an upcoming paper.

Mice were trained to report sustained increases in TF by licking the 
spout to trigger reward delivery (drop of soy milk). Licks that occurred 
outside of the change period are referred in the text as early licks. If 
mice moved on the wheel (movement exceeding 2.5 mm in a 50-ms 
window) in either direction, the trial was aborted (stages 7 and 8). If 
mice did not lick within 2.15 s from the change onset, the trial was con-
sidered a miss trial.

Training stages. Following the implantation of the headplate, mice 
were allowed to recover for a week. After that, mice went through sev-
eral stages of training:

(1) �Mice were handled for 3 to 7 days, until mice were comfortable with 
being handled by the experimenter. During this stage mice were also 
habituated to being restrained by being placed into a soft cloth for 
a short period of time. After the brief restraints they were given a 
small amount of soy milk as reward.

(2) �Next, mice were put on food restriction. Mouse weight was monitored 
daily with the amount of food given adjusted per mouse to keep them 
sufficiently motivated for getting rewards and keep their weight 
no lower than 85% of the original weight prior to food restriction.

(3) �Next, mice were head-fixed and placed on the running wheel of the 
behavioural training setup with the monitors turned off. Mice were 
allowed to freely run on the wheel, but not encouraged to. Typically, 
there were 3 habituation sessions, with the duration progressive 
increasing from 15 to 45 min.

(4) �Next, mice were introduced to the visual stimuli used in the task. 
Mice were initially shown only trials with two largest changes of TF 
(2 and 4 Hz, lasting 2.15 s), followed by a reward auto-delivery 1.5 s 
after the change onset. After mice started to robustly make licks 
during the change period that preceded the reward auto-delivery, 
they were transitioned to the next stage.

(5) �Here only hit trials were rewarded, early licks and running did not 
result in termination of the trial.

(6) �After mice robustly detected strong changes in the previous step, 
we introduced trials with weaker changes in TF (1.25 Hz, 1.35 Hz and 
1.5 Hz). Additionally, a consequence of an early lick outside of the 
change period was a mild air-puff to the mouse’s right cheek and a 
termination of the trial.

(7) �After mice detected weaker changes as well (assessed as higher hit 
rate compared to no-change trials), they were transitioned to the 
next stage where in order to initiate the trial start (start of the base-
line stimulus), mice were required to remain stationary on the run-
ning wheel for at least 3 s plus a random sample from an exponential 
distribution with the mean of 0.5 s. Additionally, after the trial start, 
a trial was aborted as a consequence of a movement on the wheel.

(8) �Finally, after mice reached sufficient proficiency at the previous 
stage, early and late blocks were introduced. During the session 
start, a block type was randomly chosen. A block was defined as a 
period of the session during which a mouse completed 30 hit trials. 
After completion of a block of trials, the block type was switched 
to the other block type (early to late or vice versa).

Six mice that were used in the untrained control experiment  
(Fig. 4e–h) went through training stages 1–3 above. Following that, 
they were shown the same stimuli as the trained mice, with the differ-
ence that their movements on the wheel or licking the spout did not 
terminate a trial nor trigger reward. Instead, they were given rewards 
at random times with inter-reward intervals drawn from the uniform 
distribution of 60 ± 15 s.

Behavioural setup and data acquisition. Reward delivery (soya milk) 
was controlled by a solenoid pinch valve (161P011, NResearch) and deliv-
ered to the mouse via a spout positioned in front of it. Mouse licking the 
spout was measured by a piezo element (TDK PS1550L40N) coupled to 
the spout and amplified with a custom-made amplifier system. Running 
wheel movement was measured with a rotary encoder (model Kübler) 
that was connected to the wheel axle. All behavioural data and events, 
such as piezo signal voltage trace, valve or change period on/off state,  
etc., were acquired via analogue and digital channels of PXIe-6341  
acquisition card (National Instruments) with SpikeGLX (https://github.
com/billkarsh/SpikeGLX) at 8,474 Hz.

Behavioural data analysis
Psychometric performance, reaction times and lick-triggered 
stimulus average. Psychometric curves were calculated per session 
by counting the amount of hits relative to all trials where mice did not 
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early lick nor abort. Mean hit rates (performance) and parametric 95% 
confidence intervals (s.e.m. × 1.96) of hit rates were calculated across 
sessions (n = 114) per change size. Mean reaction times and parametric 
95% confidence intervals were calculated across sessions (n = 114) per 
change size, and p-values were estimated from t-tests.

Lick-triggered stimulus average was estimated by extracting the 
TF pulses from −1.5 to 0 s preceding early licks and averaged across 
all trials, revealing mean stimulus TF prior to early licks. Parametric 
95% confidence intervals were estimated by calculating the s.e.m. of 
TF values at each 50 ms bin (TF pulse resolution) prior to an early lick 
and multiplying the s.e.m. by 1.96.

Simple behavioural leaky-integrator model. In order to formally test 
if mice behaviourally integrated stimulus evidence (TF pulses) over 
time in our task, we constructed a simple behavioural leaky-integrator 
model with two adjustable parameters: decay time (τ), and threshold. 
We fitted these two parameters by estimating which decay time and 
threshold predicted most early lick times (from 2 s after trial start, to 
exclude trial onset licks) correctly for each mouse and then determined 
the average best-fit decay time and threshold values across mice. For 
each early lick trial, we calculated the integrated log-scaled TF with 
decay across the entire trial up until the early lick.

For each early lick trial, we then estimated whether a threshold cross-
ing of the integrated TF had been predicted within a second preceding 
an actual early lick onset. If this was the case, we considered the model 
to have predicted the early lick time. If not, we considered the model 
to not have correctly predicted that trial. We did this for all early lick 
trials, using a 58 × 151 parameter space: 58 possible decay times span-
ning from 0.05 s decay time (that is, no integration) to 1,000 s decay 
time (that is, perfect integration): (50 log-spaced decay times spanning 
0.050–3 s, as well as 8 additional very long decay times: 4, 5, 6, 7, 8, 9, 
20, 1,000 s), and 151 linearly spaced thresholds spanning [0.01–0.16]. 
Significance testing of best decay time across mice (that is, larger than 
no integration (0.05 s)) was done with a t-test.

We also tested if the best-fit decay/integration time parameter esti-
mated from predicting early lick times also outperformed a model with 
no integration when predicting single-trial hit reaction times (that is, 
a trial type which the parameters were not optimized on). We did this 
by comparing actual and predicted reaction times per change size, 
and calculated Pearson’s correlation between actual reaction times 
and predicted reaction times per change size. We calculated this by 
either looking at all reaction times, or only including a subset of tri-
als with reaction times under a defined value (that is, reaction-time 
cut-off). This was done to better detect if any of the models specifically 
struggled to predict very late reaction times which may be modulated 
by non-sensory factors such as such as inattention or lack of engage-
ment. Finally, for significance testing (that is, paired t-test) of whether 
a model with no integration (decay time = 0.05 s) versus a model with 
the best-fit decay/integration time (estimated from early lick trials as 
described above), were significantly different at predicting single-trial 
reaction times, we z-scored actual and predicted reaction times per 
change size (to account for change size mean reaction-time differ-
ences), and calculated the correlation between all actual reaction times 
(1 s reaction-time cut-off) and all predicted reaction times of a model 
with or without integration per mouse, and performed a paired t-test 
(across mice) of the correlation values from integration versus no 
integration models.

Outlier detection agent. To test whether mice accumulate evidence 
over time or merely respond to the instantaneous stimulus, we for-
mulated a null model where behavioural responses are produced via a 
stochastic outlier detection strategy. Here, an internal decision occurs 
when a noisy sensory representation of the stimulus crosses a decision 
boundary, and a response occurs after a stochastic delay. The response 
is triggered by a single, instantaneous value of the stimulus. However, 

owing to the stochastic delay, responses may show a gradually decaying 
statistical dependence on the stimulus history, and may even mimic 
evidence accumulation strategies such as integration42.

Model. According to the outlier detection model, behavioural 
responses are generated independently for each trial as follows. Let 
si be the stimulus amplitude (log TF) at each time point ti. We chose 
time points to correspond with video frames of the stimulus, which 
were presented at 60 Hz (3 frames per TF pulse). At each time point, a 
noisy sensory representation Zi is formed as the sum of the stimulus 
amplitude and independent and identically distributed (i.i.d.) Gaussian 
sensory noise εi (with mean zero and variance σ2):

Z s ε= +i i i

ε σ(0, )i i.i.d.
2N

An internal decision to respond occurs at time D, given by the first 
time point where the sensory representation exceeds a decision bound 
b (or ∞ if the bound is not crossed before the stimulus ends):

∪D t Z b= min{ > } {∞}i i

The hazard function of the decision time is thus:











∣ ∣
∏ ∏H d p Z b Φ

b s
σ

( ) = ( ≤ ) =
−

D
i t d

i
i t d

i

≤ ≤i i

where Φ is the standard normal cumulative density function (CDF).
A motor response begins at time R, given by the decision time plus 

an independent, nonnegative stochastic delay ∆ representing the dura-
tion of nondecision processes (for example, decision to motor delays):

R D Δ= +

The delay has a shifted log-logistic distribution with location α, scale 
β and shape γ, and can be obtained by exponentiating a logistic random 
variable and then adding a constant. We constrained the location (α > 0) 
and shape (γ > 1) to give the distribution nonnegative support and a 
bump-like density that decreases on both sides of the mode. The delay 
time probability density function (PDF) and CDF are:
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Because the decision and delay times are independent, the marginal 
response time distribution is given by the convolution of the deci-
sion and delay time distributions. The marginal PDF and CDF of the 
response time are:

∑p r p d p r d( ) = ( ) ( − )R
d

D Δ

∑F r p d F r d( ) = ( ) ( − )R
d

D Δ

where the decision time probability mass function (PMF) pD can be 
computed from the hazard function HD above. Because delays are non-
negative, pΔ(r − d) = FΔ(r − d) = 0 for all d > r, so the above sums need only 
be computed over time steps up to the given response time.



The outlier detection model was implemented using custom Python 
software using the NumPy, SciPy, and PyTorch libraries. All computa-
tions involving probabilities were performed in log space, using func-
tions designed to avoid numerical under/overflow.

Fitting. A separate model was fit for each mouse in two stages. We first 
fit the delay time distribution using only trials with the largest change 
magnitude, then fit the remaining decision parameters using the entire 
dataset (excluding the abort trials). This two-stage approach relies on 
the assumption that delays are identically distributed across trials. In 
return, it allows more direct estimation of the delay time distribution, 
providing better ability to distinguish between outlier detection and 
longer-timescale strategies such as integration.

For each trial i, let n(i) be the number of time points, s s s= { , …, }i i
n

i( )
1
( ) ( )

i( )  
be the stimulus amplitudes, and c(i) be the time of the change point. 
For trials where a response occurred, let r(i) be the response time, meas-
ured as the onset of facial movement (see ‘Motion onset time estima-
tion’ section) and ℓ(i) be the subsequent lick time (measured at the 
reward spout).

Fitting the delay time distribution. We assumed that the greatest 
change magnitude (geometric mean TF 4 Hz) was large enough to trig-
ger an immediate decision at or near the change point. Under this 
assumption, the delay time on large-change hit trials can be approxi-
mated by the reaction time, which can be directly measured as the time 
elapsed between the change point and the onset of facial movement. 
Thus, we fit the delay time distribution (shifted log-logistic distribu-
tion) to reaction times on large-change hit trials (denoted Tbighit) by 
maximum likelihood, subject to the constraints described above:

∑ p r cmax log ( − )
α β γ i

Δ
i i

>0, >0, >1 ∈

( ) ( )

bighitT

This approach is conservative for our use of outlier detection as a 
null model. If the largest changes were not immediately followed by a 
decision, then delays would tend to be overestimated, causing the fit-
ted outlier detection model to display longer-timescale dependencies 
that are typically associated with evidence accumulation strategies 
such as integration. Thus, the risk of falsely rejecting this null model 
would not increase.

For the largest change magnitude, miss trials predominantly reflected 
task disengagement rather than typical sensory/motor delays, and were 
therefore excluded when fitting the delay time distribution. According 
to a hidden Markov model, disengagement was the a posteriori most 
probable state for the majority of large-change miss trials (95.2% of 
large-change misses were during a disengaged state).

Fitting decision parameters. The decision parameters (sensory noise 
variance and decision threshold) were subsequently fit using the entire 
dataset, holding the delay time distribution fixed. Here in the general 
case, the decision and delay times cannot be directly observed, and 
were marginalized out as latent variables. The decision parameters 
were chosen to maximize the log marginal likelihood of the observed 
response data:

T T
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For hit and early lick trials (denoted Tnonmiss), the likelihood is given 
by the marginal probability density of a response at the observed move-
ment onset time. For miss trials (denoted Tmiss), the response time is 
treated as right-censored; its precise value is unknown, but is known 
to exceed the last time point in the trial. The likelihood for miss trials 
is thus given by the marginal probability mass lying beyond this point.

Sampling. To statistically compare mouse behaviour to the outlier 
detection null model, we sampled 10,000 synthetic datasets from the 
model fitted for each mouse. For every quantity of interest, the value 
computed from the real data was compared to values computed from 

each synthetic dataset, comprising 10,000 samples from the null distri-
bution. Synthetic datasets were generated for each mouse as follows.

Each trial used the same change point and stimulus amplitudes pre-
sented in the real data. The real stimulus ended after the lick on trials 
where mice responded, leaving unknown future values that would have 
been presented had a lick not occurred. Such missing stimulus values 
were filled in by sampling from the same distribution used to produce 
the original stimuli (independently for each synthetic dataset).

Given the stimulus, a decision time and delay time were sampled from 
the distributions pD and pΔ described above. The sum of these quanti-
ties yielded a synthetic response time, representing movement onset.

To generate synthetic lick times, we assumed that the additional 
delay between movement onset and licking was i.i.d. across trials.  
We therefore sampled with replacement from the measured movement- 
to-lick delays in the real data. Synthetic lick times were obtained by 
adding sampled movement-to-lick delays to synthetic movement 
onset times.

Synthetic lick times were used to determine trial outcomes (hit, early 
lick, miss). Each trial was classified as a: hit if the lick occurred during 
the change period; early lick if the lick occurred before the change 
point; or miss if no lick occurred before the end of the change period.

Effect of magnitude and timing of TF pulses on probability of early 
licks. For analyses of the effect of TF pulses on probability of early licks 
we used the training data of the same 15 mice used for Neuropixels 
recordings. Here we only used sessions where mice reached robust 
proficiency of the task and were at the final training protocol (mean 
of 77.5 sessions per mouse). Note that here the time of lick onset was 
measured from the registration of lick by the spout as opposed to the 
videography analysis on Neuropixels recording sessions elsewhere 
in the manuscript. We used only trials where early licks happened at 
least 2 s after the baseline onset to decrease the influence of impulsive 
licks on results.

To empirically validate that mice use multiple pulses of sensory evi-
dence to influence their decision to lick during the baseline period, 
we analysed how early lick probability is influenced by magnitudes 
and timing of preceding TF pulses. First, we tested whether the devia-
tion of a single TF pulse relative to the mean baseline 1 Hz makes mice 
correspondingly more or less likely to make an early lick within the 
subsequent 0.2–1.0 s. For that we separated TF pulses by magnitude 
(in octaves) into 15 bins such that each bin contained approximately 
equal number of TF pulses. To calculate the conditional probability 
of early lick at a certain time after a TF pulse of a given magnitude, we 
found instances of such events (pulled across all sessions with robust 
performance for each mouse) and divided them by the total amount of 
early licks (Extended Data Fig. 6c). To calculate an overall influence of 
a TF pulse on early lick probability, we summed conditional probabili-
ties within a [−1, −0.2] s window relative to early lick onset (Extended 
Data Fig. 6d):

∑P P t(L TF) = (L TF( ))
t =−1

−0.2

∣ ∣

which can also be written as: P(L|TF) = P0 + ΔP(L|TF), where

∣∑P P t= (L TF( ) = 1 Hz)
t

0
=−1

−0.2

And can be thought as a chance level of making a lick without a devia-
tion of stimulus TF from the mean baseline TF value.

The empirical effect of two TF pulses on lick probability was calcu-
lated from behavioural data in a similar way. To compare the measured 
effect of two TF pulses with their expected effect if they influenced the 
lick probability independently, we calculated their cumulative inde-
pendent effect on early lick probability based on empirically measured 



Article
effect of a single TF pulse on early lick probability. The independent 
effect of two TF pulses with a delay of Δt s between them can then be 
written as follows:

P P P P P P(L TF , TF ) = + Δ (L ΔTF ) + Δ (L ΔTF ) − Δ (L ΔTF ) × Δ (L ΔTF )Ind 1 2 0 1 2 1 2

where:

∑P P t PΔ (L ΔTF ) = (L TF( )) −
t t

t

1
=−1−Δ

−0.2−Δ

0

∑P P t PΔ (L ΔTF ) = (L TF( )) −
t

2
=−1

−0.2

0

A deviation of lick probability after two TF pulses from the probability 
predicted by the independent effect of two TF pulses would indicate an 
interactive effect between pulses, which should be expected if mice uti-
lize integration of sensory evidence. To measure the relative difference 
between the behavioural result and the expected independent effect 
of two fast TF pulses (Fig. 3d and Extended Data Fig. 6i), we calculated:

I
P P

P
=

(L TF , TF ) − (L TF , TF )

(L TF , TF )
fast fast fast fast

fast fast

Ind

Ind

∣ ∣
∣

When applying this analysis to the outlier detection agent data, we 
used data only from trials that resulted in early licks, meaning that the 
model made a decision to initiate a lick during the baseline period and 
before the TF change epoch. For outlier detection agent model that 
was fitted to a particular mouse data, we sampled the same number of 
early lick trials across 4,000 synthetic datasets (see section above) as 
there were present across all behavioural sessions of that mouse. The 
data was then pulled across all models corresponding to different mice 
and analysis steps were applied to the combined dataset as described 
above for the mice data. This procedure was repeated 4,000 times to 
estimate non-parametric 95% confidence intervals of results from the 
outlier detection agent.

Electrophysiological recordings
Prior to acute electrophysiological recordings, we habituated mice to 
the electrophysiological recording setup for 2–7 days (depending on 
the performance of the mouse in the electrophysiological recording 
setup), to allow mice to perform optimally during electrophysiological 
recording sessions.

Surgery. Once mice were habituated to the recording setup, we impla
nted a recording chamber with one or two 3 mm craniotomies inside, 
together with a stainless-steel grounding wire in the contralateral hemi-
sphere, under 1.5% isoflurane together with administration of meloxi-
cam (5 mg kg−1) and dexamethasone (2–3 mg kg−1). During surgery a 
kapton disk (Laser Micromachining Limited) was placed on top of the 
dura inside each craniotomy. The disk had 19 holes with 0.5 mm dia
meter, arranged in a honeycomb shape, for keeping track of probe inser-
tions. The craniotomy and disk were covered with DuraGel (Cambridge 
NeuroTech) to protect the brain. A 1–2 mm tall plastic enclosure was 
then positioned around craniotomies and sealed around the edges with 
bone cement. Finally, we covered the plastic enclosure with a removable 
plastic cover, to create a rigid physical barrier over the DuraGel sealed 
craniotomy, to provide robust protection of the recording preparation 
between recording sessions. The mice were allowed to recover for 24 h 
before the first recording session took place.

Recordings. Electrophysiological data collection was done using Neu-
ropixels 1.0 probes (IMEC, Belgium) and collected with a PXI based 
system (National Instruments), and saved using SpikeGLX (https://
github.com/billkarsh/SpikeGLX). For trained mice, we recorded up 

to 13 sessions per mouse (167 probe insertion from 114 sessions total  
(15 mice)). For untrained mice, we recorded up to 9 sessions per mouse 
(89 probe insertions from 45 sessions total (6 mice)). Probes were 
dipped in CM-DiI (Sigma-Aldrich) prior to insertion. In each session, 
we inserted up to 2 probes at a time. The probes were always inserted 
at the same angle within the coronal plane (10° and −15° relative to the 
vertical axis) to aid subsequent histological probe tract tracing.

At the beginning of each session, we removed the plastic lid above 
the recording chamber exposing the DuraGel covered craniotomy, 
and inserted the probe(s) through the DuraGel using microcontrollers 
(Sensapex) at 5–10 μm s−1. The probe(s) was allowed to settle for 20 min, 
to increase stability throughout the recording session. At the end of 
the session probes were removed (at 15 μm s−1) and the plastic cover 
over the recording chamber was reattached for protection of record-
ing preparation.

The setup for presenting stimuli and monitoring behaviour were 
identical to the setups in which mice had been trained (see ‘Behav-
ioural task’).

Pre-processing and spike sorting of electrophysiological data. Elec-
trophysiological data was first filtered using CatGT (https://billkarsh.
github.io/SpikeGLX/#catgt) with modified form of common average 
referencing (-dlbdmx flag).

Spike sorting. We spike-sorted electrophysiological data from 
each probe in each session using KiloSort2.065 (https://github.com/
MouseLand/Kilosort). For initial selection of units undergoing fur-
ther curation, we only selected units designated as ‘good’ (based on 
cross-correlogram contamination) by KiloSort2.0.

Quality checks. For our electrophysiological recordings of trained 
mice, we manually inspected and curated, in Phy2.0 (https://github.
com/kwikteam/phy), every unit which KiloSort2.0 had designated as 
‘good’. For our recordings in trained mice this left 44,288 units to be 
manually inspected and curated, and 15,406 units were kept for analysis 
after manual curation. Based on the manual curation data from trained 
mouse recordings (see ‘Manual curation of spike-sorted units from 
trained mice’), we established a series of heuristics for creating auto-
matic curation of units (see ‘Automatic curation of spike-sorted units 
from untrained mice’) and used these for recordings from untrained 
mice.

Manual curation of spike-sorted units from trained mice. We manu-
ally inspected and curated all units which KiloSort2.0 had designated 
as good, based on cross-correlogram contamination. In Phy2.0, we first 
inspected and merged units that clearly belonged to the same cluster, 
but had been split by KiloSort2.0, or split the noise from signal in units 
with clearly separatable noise contamination. We then designated each 
unit into one of five categories:
(1) �Perfect, or almost perfect, with no/very minimal noise, drifting, 

cutting in/out for the full duration of recording.
(2) �Usable and good signal with some noise that cannot be extracted 

that lasts for the full duration of the recording.
(3) �Some drift, but possible physiological change in signal. Clear signal 

for most of duration of the recording.
(4) �Drifting/sudden loss, but otherwise usable/close to perfect. Clear 

signal for over 50% of the duration of the recording but requires 
only using a subset of the session.

(5) Noise/useless. Spike shape is not physiological.

Our goal was to remove from analyses units that had large contami-
nation with multi-unit activity, were not recorded throughout the full 
duration of a session, or were a result of artifacts in recorded signals. 
We therefore used units designated as category 1–3 above for all further 
analysis from trained mice.

Automatic curation of spike-sorted units from untrained mice. We 
next used the manual designations of units to establish a set of criteria 
for automatic detection of units we would include with manual curation. 

https://github.com/billkarsh/SpikeGLX
https://github.com/billkarsh/SpikeGLX
https://billkarsh.github.io/SpikeGLX/#catgt
https://billkarsh.github.io/SpikeGLX/#catgt
https://github.com/MouseLand/Kilosort
https://github.com/MouseLand/Kilosort
https://github.com/kwikteam/phy
https://github.com/kwikteam/phy


Based on the manual curation data above we established the following 
7 criteria for considering a unit good for analysis:

Firing rate criteria:
(1) Mean firing rate must be above 0.5 Hz.
(2) �Rolling 20-min average firing rate cannot drop below 30% (that is, 

70% drop from mean) of its mean firing rate.
(3) �Rolling 10-min average firing rate cannot drop below 20% (that is, 

80% drop from mean) of its mean firing rate.
(4) �Rolling 5-min average firing rate cannot drop below 10% (that is, 

90% drop from mean) of its mean firing rate.
(5) �Inter-spike interval (ISI) violations. Absolute refractory period needs 

to have <20% estimated contamination rate from other neurons 
(this is what Kilosort2.0 calls ‘good’).

(6) �If there are some spikes in the refractory period, the ISI peak in the 
first 5 ms cannot be within the first 2 ms.

(7) �ISI histograms cannot have sudden large spikes in their shape (that 
is, peak of ISI cannot be 4 times larger than the second highest peak—
that is usually its immediate neighbour).

These criteria selected approximately 90% of units we would have 
designated with categories 1 (perfect, or almost perfect) or 2 (usable 
and good signal with some noise) with manual curation, and excluded 
approximately 85% we would have designated as 4 (drifting/sudden 
loss) or 5 (noise) with manual curation.

This automatic selection of units was used to select units for analysis 
from untrained mice recordings and yielded 6,215 units out of 20,292 
‘good’ KiloSort2.0 units.

Clock-drift correction. A shared 1 Hz square wave signal was recorded 
on the clock of each headstage and National Instruments (NI) acquisi-
tion card using a SYNC option in SpikeGLX. Clock drift between spike 
times from different probes and behavioural events extracted from NI 
acquisition card recording was corrected post-hoc via TPrime (https://
billkarsh.github.io/SpikeGLX/#tprime) using the shared square wave 
signal.

Videography
Acquisition. High-speed videography of front (100 frames s−1, 640 × 512 
pixels) and side view (50 frames s−1, 976 × 1,024 pixels) of the mouse 
face was acquired using two Chameleon3 cameras (CM3-U3-13Y3M-CS, 
FLIR) with infrared illumination. The videos were acquired in an 8 bit 
greyscale format. Cameras were configured to send a TTL signal to 
the National Instruments PXIe board at the start of exposure of every 
acquired frame. These TTL signals were used to align frame times to 
the time of behavioural events and spike times.

Pupil size. In order to estimate the pupil size, we trained DeepLab-
Cut66 to track the pupil size and position using videos acquired with 
the side camera. The model was trained to track 12 points surround-
ing the mouse pupil. In order to assess the model performance, after 
the training the model was tested on videos from sessions not used  
for training. Pupil size was estimated as an area of an ellipsoidal best 
fit to the tracked 12 points surrounding the pupil.

Motion energy. For calculation of motion energy, we primarily used  
videos acquired with the front camera to access a finer temporal resolu-
tion (with the exception of 2 sessions where for technical reasons we 
used a lower jaw ROI from side camera video). To estimate motion onset 
times, we used ROI centred around the mouse’s face, though nearly 
identical results were obtained with lower jaw or whisker pad ROIs 
from the side camera (data not shown). Motion energy was defined as 
a square root of the sum of squared frame-to-frame pixel value differ-
ences, divided by the number of pixels within the ROI.

Movement onset time estimation. In order to find the onset times 
of orofacial movements, we wanted to estimate the typical noise level 

of the motion energy signal and find the time points where the signal 
significantly deviated from the noise-band level. As a first step, we 
calculated the distribution of motion energy values in a 2-s window 
centred around the lick registration times. We next fitted a mixture of 
Gaussian distributions with the goal to capture both contribution of 
the variance of motion energy values during the lick as well as due to 
noise. The mixture of three Gaussian distributions worked well to fit 
the data across all sessions and mice. The threshold for the presence of 
movement was defined as the mean plus two standard deviations of the 
Gaussian with the lowest value of the mean from the Gaussian mixture.

Finally, to find the time of motion onset time, we looked backwards 
in time from the time of lick registration by the piezo signal. The time 
point preceding the first instance of motion energy going below the 
threshold value defined above was considered the onset time of the 
orofacial movement.

Histology
For histological identification of the location of the recording probes 
and allocation of unit location in the mouse brain, we followed a pro-
tocol similar to ref. 67.

Serial 2-photon tomography for Neuropixels probe tract tracing.  
Following a terminal administration of pentobarbital, mice were per-
fused with a phosphate buffer solution (PBS) followed by 4% paraform-
aldehyde (PFA) solution. We post-fixed the brain in the 4% paraformal-
dehyde for a minimum of 24 h at approximately 5 C. Following fixation, 
brains were moved to PBS for a minimum of 12 h prior to imaging. 
For imaging, brains were embedded in 5% agarose gel and mounted 
onto a vibratome cutting stage under the microscope objective. The 
brains were imaged using serial section two-photon microscopy68. 
The microscope was controlled with ScanImage Basic (Vidrio Tech-
nologies), and custom software (BakingTray (https://github.com/
SainsburyWellcomeCentre/BakingTray)). Images were stitched into a 
full 3D rendering of the brain using custom software (StitchIt (https://
github.com/SainsburyWellcomeCentre/StitchIt)). We imaged the en-
tire brain (from the olfactory bulb to the beginning of the spinal cord) 
with a resolution of x: approximately 2 μm, y: approximately 2 μm, z: 
20 μm, with a 920 nm two-photon laser (100–150 mW power at sam-
ple). We sliced the brain in 40-μm sections, and imaged 2 z-planes 
(around 25 μm and around 45 μm from the tissue surface) into the 
remaining tissue following each 40-μm section. Two PMTs, one for 
capturing green (bandpass filter ET525/50 m) and red (bandpass filter 
ET570lp) fluorescence acquired the 2 channels of data subsequently 
used for analysis.

Neuropixels probe tract alignment to the Allen Common Coordi-
nate Framework atlas and estimation of unit location. Prior to image 
processing, we downsampled microscopy images to 10-μm voxels and 
registered the brain to the standardized Allen Common Coordinate 
Framework (Allen CCF69) using custom software (BrainRegister (https://
github.com/stevenjwest/brainregister)). We then manually traced 
each neuropixels probe tract through the brain in 3D using custom 
software (Lasagna (https://github.com/SainsburyWellcomeCentre/
lasagna)). Finally, we assessed the overall firing rates and LFP spectra 
of individual Neuropixels channels and compared it to atlas positions. 
Where needed, we manually adjusted the scaling of brain regions along 
the probe track to align responses on channels with features associated 
with anatomical locations using custom software (Ephys alignment 
tool (https://github.com/int-brain-lab/iblapps/tree/master/atlaselec-
trophysiology)70). Unit location was estimated from the location of the 
channel that had the largest absolute peak value of the mean waveform. 
For all analyses, we combined units across all subdivisions of a brain 
region (layers of cerebral cortex, dorsal and ventral divisions as ACAd 
and ACAv and in some cases functionally similar brain regions—see 
Supplementary Tables 1 and 2).

https://billkarsh.github.io/SpikeGLX/#tprime
https://billkarsh.github.io/SpikeGLX/#tprime
https://github.com/SainsburyWellcomeCentre/BakingTray
https://github.com/SainsburyWellcomeCentre/BakingTray
https://github.com/SainsburyWellcomeCentre/StitchIt
https://github.com/SainsburyWellcomeCentre/StitchIt
https://github.com/stevenjwest/brainregister
https://github.com/stevenjwest/brainregister
https://github.com/SainsburyWellcomeCentre/lasagna
https://github.com/SainsburyWellcomeCentre/lasagna
https://github.com/int-brain-lab/iblapps/tree/master/atlaselectrophysiology
https://github.com/int-brain-lab/iblapps/tree/master/atlaselectrophysiology
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Neural data analysis
Only brain regions with at least 40 units were analysed. Analyses 
specific to TF-responsive units were done only for brain regions with 
≥10 such units. No further sample size calculations were performed. 
Manual curation of units’ quality and stability was done without the 
knowledge of brain regions from which recordings were made. The 
subsequent analyses pipeline was applied in the same manner to data 
from all applicable brain regions, but the custom nature of analyses 
prevented investigators to remain blind to the identity of brain regions 
or dataset type (trained versus naive mice).

GLM of neural activity. Model. We binned neural activity in 50-ms bins 
(matching the duration of each TF pulse) aligned to trial start. We then 
fitted a Poisson generalized linear model to predict trial-to-trial neural 
activity as a function of a set of temporally unfolded task-related pre-
dictors that were present during a trial. Each predictor was extended 
temporally prior and/or post the timing of the predictor in 50-ms dis-
cretized steps (matching neural activity binning), with an independent 
weight estimated for each time step around the predictor. We predicted 
neural activity using 19 task-related predictors:

(1) TF fluctuations during baseline period (kernel length: 0–1.5 s); 
(2) Trial start (0–1 s); (3) Time since baseline start (from 1 s from trial 
start to change onset); (4–9) Six change onsets (a separate predictor 
for each change size (0–2 s)); (10) Lick preparation (−1.25–0 s prior to 
lick); (11) Lick execution (0–0.5 s post lick); (12) Air-puff (0–0.25 s); 
(13) Reward (0–0.4); (14) Abort (−1.25–0.25); (15) Phase of grating for 
upwards drift (12 phase bins from 0–360°); (16) Phase of grating for 
downwards drift (12 phase bins from 0–360°); (17) Video motion energy 
(−0.05–0.8 s); (18) Running wheel movement (−0.05–0.8 s); (19) Pupil 
diameter (−0.75–0.75 s).

We fit the model with L2 (ridge) regularization, optimized with cycli-
cal coordinate descent as implemented in GLMnet71 (α = 0). We trained 
a model for each neuron on 90% of the data, and cross-validated on 10% 
of the data, and iterated the predictions over a tenfold cross-validation. 
Within the training dataset we tuned the L2 regularization term using 
tenfold cross-validation.

Identification of units encoding TF, lick preparatory activity and/or 
lick execution activity. To identify which cells significantly responded 
to a predictor of interest (that is TF fluctuations during baseline, lick 
preparation epoch, or lick execution epoch), we first re-fitted reduced 
models similar to the full model on 90% of the data, with 10-fold 
cross-validation, except we removed a predictor(s) of interest: (1) For 
identification of TF-responsive units, we estimated a model where we 
removed the predictor estimating the responses to TF fluctuations 
during baseline. (2) For identification of units with lick preparation 
activity, we estimated a model where we removed the predictor esti-
mating the activity leading up to a lick. (3) For identification of units 
responding to lick execution, we estimated a model where we removed 
the predictor estimating activity during lick execution, the predictor 
estimating activity modulation by motion energy captured by videog-
raphy, and the predictor estimating activity modulation by running 
wheel movement.

For each 10% test set, for each neuron we then calculated the mean 
actual peri-event time histogram (PETH) as well as the mean predicted 
PETH of both the full model and the reduced model for the following 
types of events: (1) −0.15 to 0.75 s around fast and slow TF pulses (that 
is, TF values 0.5 s.d. from the mean TF during baseline); (2) −1.5 to 0 s 
prior to early lick onsets; and (3) 0 to 0.4 s post lick onset.

A unit was considered significantly encoding TF pulses during the 
baseline period if two criteria were satisfied: (1) The mean Pearson’s 
correlation prediction of the full model (across k-folds) from the com-
bined mean fast and slow TF pulse response (that is, mean fast TF pulse 
and mean slow TF pulse responses subtracted from each other) was 
>0.2; and (2) if the cross-validated prediction of the TF response after 

subtracting the predicted TF response of the reduced model with no 
TF fluctuation predictor—that is, residual prediction—was significant 
(P < 0.01 (t-test), n = 10 independent cross-validations). A unit was con-
sidered significantly encoding lick preparation if (1) the mean Pear-
son’s correlation prediction of the full model (across k-folds) of the 
mean activity leading up to a lick (−1.25 to 0 s) was >0.2; and (2) if the 
cross-validated prediction of the mean activity after subtracting the 
predicted mean activity of the reduced model with no lick preparation 
kernel—that is, residual prediction—was significant (P < 0.01 (t-test), 
n = 10 independent cross-validations). Finally, a unit was considered 
significantly encoding lick execution if (1) the mean Pearson’s correla-
tion prediction of the full model (across k-folds) of the mean activity 
following a lick (0 to 0.25 s) was >0.2; and (2) if the cross-validated 
prediction of the mean activity after subtracting the predicted mean 
activity of the reduced model with no lick preparation kernel—that is, 
residual prediction—was significant (P < 0.01 (t-test), n = 10 independ-
ent cross-validations).

Focality index. To assess how distributed TF encoding was across 
brain areas, before and after learning, we computed a focality index 
(F) (similar to Steinmetz et al.3) of the TF encoding:
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where pa is the proportion of neurons in an area that is encoding sti
mulus TF during the baseline period. If all TF encoding neurons were 
confined to a single area, this measure would take on the value of 1. 
If encoding was perfectly distributed across all areas recorded this 
measure would take on the value 1/Nareas. In order to compare between 
untrained and trained mice, we identified the common areas which 
had more than 40 units recorded in both trained and untrained 
mice. This left N = 24 areas from which to estimate the focality index. 
We estimated 95% confidence intervals and P values by bootstrap-
ping the neurons included in the estimation 10,000 times with  
replacement.

Peak time and width of GLM estimated TF kernels for TF-responsive 
neurons. To investigate the peak time and width of the GLM estimated 
TF kernel for assessing how sustained responses to TF fluctuations were 
based on GLM weights, we first identified the absolute peak value of the 
TF kernel; because the GLM was based on 50 ms binning of spike counts, 
peak times for the GLM TF kernel was in 50 ms resolution. In cases where 
the absolute peak position within 1 s was a negative weight, we flipped 
the kernel in order to calculate the width. We then estimated the full 
width at half maximum (FWHM) of each TF kernel around its peak using 
findpeaks in MATLAB. For each area, we calculated the median peak 
time and median FWHM across all TF-responsive units.

Ramping differences in GLM change kernels. To test how neurons 
accumulated evidence when they were presented with a rewarding 
sustained change in stimulus speed, we tested how the slope of the 
visual evoked ramping activity following a change onset was dependent 
on the amount of evidence (change size) being presented. To isolate 
the visual component of the activity following change onset, we used 
the GLM kernel which fits the activity following change onset until 
change offset, while linearly taking into account other variables which 
may contribute to activity such as pupil size, preparatory activity and 
movement-related activity (see Model).

We estimated the mean change kernel for each change size for 
TF-responsive and non-TF-responsive units separately for each area. 
In cases where responses to fast TF pulses were negative, we flipped 
the change kernel so every unit had responses aligned to positive fast 
TF pulses—this allowed the mean to capture the visual evidence activ-
ity ramp irrespective of sign. We then identified the time point for 
each change size where the change kernel reached 50% of its maximum 
weight (To control for noise fluctuations in kernel weights, we approxi-
mated the 50th percentile crossing by taking the mean time point of the 



33.33rd percentile, 50th percentile and 66.66th percentile crossing).  
We then calculated the degree to which activity ramping time scaled 
with change size, by regressing the 50th percentile crossing against 
change size. We estimated the non-parametric 95% confidence inter-
vals and P values of the relationship between change size and 50th 
percentile crossing (that is, ramping time/change size) by bootstrap-
ping with replacement (10,000 times) the neurons went into the mean 
change kernels, and then estimating the slope of the regression for 
each bootstrapped mean change kernels.

Propagation and widening of TF pulse evoked activity. Identification 
of TF pulse outlier events. Fast TF pulse was defined as TF fluctuations 
larger than 1 s.d. of baseline TF fluctuations (in log2 scale) above the 
mean TF value (TF > 1.19 Hz). Similarly, slow TF pulse was defined as 
TF fluctuations below 0.84 Hz.

For calculation of average response to TF outlier events, we consid-
ered only TF outlier events satisfying the following criteria:
(1) Later than 1 s from the baseline onset.
(2) �Earlier than 2 s + post pulse analysis window from the motion onset 

time on early lick or abort trials.
(3) Excluding the change period plus a post pulse analysis window.

The aim of these criteria was to exclude the influence of baseline 
onset, movement, or preparatory activity on the response to TF pulses.

Estimation of peak time and width of TF pulse evoked activity. For each 
unit defined as TF-responsive by the GLM analysis described above, 
we calculated a mean response to a fast pulse using outlier events that 
occurred during the baseline period and satisfied the criteria outlined 
above. Additionally, we calculated a mean response to TF pulses within 
[−0.5, 0.5] s.d. of the baseline TF fluctuations. The goal of this procedure 
was to capture continuous ramps of activity that some units exhibited 
and exclude their influence on the shape of response to a TF pulse. 
We applied the subtraction of this baseline response for all TF pulse 
response analysis unless explicitly stated.

Next, for the baseline subtracted mean response to a fast TF pulse, 
we calculated its peak time, as the time of the largest absolute change 
in firing rate within 1 s from the pulse onset, and a corresponding 
half-peak width.

Integration of multiple TF pulses. Because the noise in TF fluctua-
tions is random, by chance there are occurrences of two fast pulses 
separated by a certain delay. To study the integration of TF pulses, we 
found such instances of events where two fast pulses occurred at a 
given delay between the offset of the first and the onset of the second, 
additionally also satisfying the exclusion criteria outlined above. The 
mean response aligned to such events was considered a response to a 
sequence of two fast pulses.

For computing the mean response across all TF-responsive units 
within a brain region, in order to avoid averaging across responses with 
different signs, we flipped the sign of response for units that showed 
decreases in activity after a single fast pulse. For computing a z-score 
of response, the mean and s.d. were estimated from 0.5 s preceding 
the first pulse onset.

Facilitation by the second fast pulse. First, we measured an average 
of z-scored responses across the population of TF-responsive units 
within a brain region to a single fast TF pulse. We then computed the 
peak value of that response (r1fast), and a corresponding peak time. To 
find the size of response to a sequence of two fast pulses (r2fast), we 
found a time point at the same delay from the onset of the second fast 
pulse as the peak time of response to a single fast pulse and found a 
peak value of response within 100 ms centred around that time point. 
The relative facilitation to a sequence of fast pulses was defined as 
Δ =

r r
r

−2fast 1fast

1fast
.

To determine the confidence intervals for the results of this analysis, 
we bootstrapped with replacement (2,000 times) across TF-responsive 
neurons and repeated the analysis described above for each sample 

of neurons. Shaded regions indicate 2.5 and 97.5 percentiles of the 
resulting distribution.

Preparatory activity before the lick onset. To study change-aligned 
(Fig. 3) or hit lick-aligned (Fig. 5) activity, we computed z-score of mean 
PETH for each unit. z-Scoring was done using the mean and s.d. esti-
mated from activity during 2 s before the change onset.

For analysis shown on Fig. 5, for each brain region the fraction of 
significantly active units within a group (that is, TF-responsive) was 
measured by calculating at every time point a fraction of units with 
the absolute value of z-score larger than the significance threshold 
of 2.576 (corresponding to P < 0.01). Additionally, we subtracted the 
‘baseline’ level of activity calculated within [−2, −1.8] s before hit-lick 
onset, which for a few brain regions was larger than chance level likely 
due to non-normal distribution of firing rates or a small number of 
events used for estimation of the mean and s.d. The confidence inter-
vals were estimated by bootstrapping with replacement (5,000 times) 
across TF-responsive (or TF non-responsive) neurons and repeating the 
estimation of fraction of significantly active neurons for each sample 
of neurons.

The latency of activation of TF-responsive or TF non-responsive 
populations was defined as the earliest time point following which 
within a 100-ms window for at least 80 ms: (1) the lower 95% confidence 
interval of fraction of active units was above zero; and (2) the mean 
fraction of active units was above 0.1.

The latency of significant difference in activation between 
TF-responsive and TF non-responsive populations was estimated as 
the first time point where within a 100-ms window for at least 80 ms 
the confidence intervals of the difference in activation were above zero.

The latency of significant difference in activation across all units in 
each brain region (Extended Data Fig. 9a) was estimated as the first 
time point where within a 100-ms window: (1) the lower 95% confidence 
interval of fraction of active units was above zero; and (2) the mean 
fraction of active units was above 0.05.

Intrinsic timescales. We binned the neural activity into 50-ms bins 
(same binning was used in ref. 23). We then calculated the temporal  
autocorrelation (20 lags = 1 s) of spike counts using Pearson’s correla-
tion in the inter-trial intervals between −2.5 s to −0.5 s prior to trial 
onset for each neuron (in this period mice were seeing a grey screen, 
and trained mice had to remain stationary for at least 3 s for the trial 
to begin).

To determine the intrinsic timescale for each area, we fit an exponen-
tial decay function to the mean autocorrelation function of all the units 
recorded in the area. For single-neuron analysis of relationship between 
intrinsic timescales and TF width, we estimated the autocorrelation for 
each TF-responsive neuron separately. For areas or neurons with auto-
correlation functions with non-monotonic decay, we fit the exponential 
decay from the part of the autocorrelation where monotonic decay was 
happening (in a subset of areas this would mean offsetting the fit 1–3 
time bins). Finally, we calculated the τ (that is, the intrinsic timescale 
value) of the exponential decay (accounting for offset where necessary).

Population analysis
Similarity of TF pulse responses and lick preparation activity in 
TF-responsive populations. We assessed the similarity of TF responses 
and lick preparation activity across TF-responsive populations in each 
area by estimating the Pearson’s correlation of mean firing rates (within 
a 50-ms window around the mean activity peak time across neurons 
within the each area) following fast TF pulses (that is, >1 s.d. TF value) 
and their mean activity prior to early lick [−0.3 to 0 s] (after normalizing 
firing rates by subtracting baseline firing rates from both TF responses 
and lick preparation activity). We estimated the non-parametric 95% 
confidence intervals and P values by bootstrapping with replacement 
(10,000 times) the neurons going into the correlation.
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Pre-processing steps. For all units located within a given brain region, 
but not necessary simultaneously recorded, we first computed the 
mean neural responses across a given trial type (for results shown on 
Fig. 6b–h: hit trials during weak TF changes (1.25 and 1.35 Hz) aligned 
to the lick onset times, [−2, 1.5] s time window). Only trials with hit-lick 
onset times larger or equal 0.4 s from change onset were used. Neurons 
from sessions with less than 10 trials of a given type were excluded from 
this analysis. Firing rates were calculated as spike counts averaged in 
10 ms bins and smoothened by convolution with two-sided Gaussian 
with 30 ms s.d. The mean neural responses were combined into a firing 
rate matrix (but also see cross-validation section) with dimensions of 
Neurons × Time.

Neural data was pre-processed in the following way: first, to limit the 
dominant influence of high-firing units, we applied soft-normalization 
to each neuron’s firing rate, such that the neurons with strong responses 
had close to unity range of responses r = r

r r
/

7 + (max( ) − min( ))
. The cons

tant 7 was chosen as the roughly 20th percentile value of the firing  
rate range across all units. Second, the neural responses were mean- 
centred by subtracting the mean of each neuron’s activity across time 
and the mean activity across all neurons at every time point.

Definitions of movement and movement-null subspaces. We used the 
approach first utilized in ref. 33. There, the authors formalized a method 
to find a linear mapping between low-dimensional representation  
of activity in PMd/M1 and the muscles EMG data, which defines a 
movement subspace. A null-space relative to that subspace forms 
an orthogonal set of dimensions which activity can occupy without 
directly affecting the movement execution. To extend this analysis 
on our data, we used combined recordings of orofacial motor and 
premotor nuclei (V, IRN, SPVI and SPVO) as a proxy for activity of 
orofacial muscles involved in execution of a lick. While recordings 
from GRN could have also been included into this group, we kept 
it separate to allow the population analysis to be applied to that 
region because (1) we had a large number of units recorded from 
that region alone; and (2) it was the only nucleus in medulla with 
above-chance number of TF-responsive units, warranting a separate  
analysis.

We considered a possible mapping onto the movement subspace 
for each brain region. Our rationale was the following: there exist 
several parallel neural pathways that can drive the activity of orofacial 
nuclei neurons–from primary motor cortex, basal ganglia, cerebellar 
or midbrain output regions56,57,72. Thus, the modes of activity within 
these regions that map onto the movement subspace may have a causal 
role for the execution of licks. In general, however, these signals can 
also be caused by movement afference that is broadcasted globally3,5,9 
(Fig. 1k,l). It is impossible to differentiate between these two pos-
sibilities from our data alone and thus the existence of mapping of 
activity onto the movement subspace does not necessarily imply that 
the brain region is causally involved in execution of the lick. With that 
said, we did not find a good mapping onto a movement subspace for 
most of the early visual areas, olfactory regions and hippocampal 
input regions (Extended Data Fig. 10a), suggesting that existence 
of mapping onto the movement subspace is not possible across all 
brain regions.

The mapping onto movement subspace was defined as:

 ͠M WN= (1)

where M  and N͠  are low-dimensional representations of activity (pro-
jections onto main the principal components, the latter found via svd 
Matlab function) of neurons within the orofacial nuclei group and the 
target brain region, respectively, and W is a linear mapping operator 
onto the movement subspace.

Before finding a linear mapping, we also zeroed the initial state 
across projections on principal components by subtracting from each 

projection the mean value within [−2, −1.5] s from lick onset. This step 
avoided the need for using intercept in the linear fit and simplified the 
visualization of projections on principal components and movement/
movement-null dimensions. Linear mapping was found using only 
the time-period containing movement-related activity of orofacial 
nuclei [−0.1, 1.5] s around lick onset. This way we did not preclude 
the presence of preparatory activity on movement dimensions from 
the definition of the linear fit itself. A linear mapping to movement 
dimensions was found using linear regression with the Matlab func-
tion lsqnonlin.

Correspondingly, Wnull was a null-space of W and was found using 
the Matlab function null. We used two top principal components of 
orofacial nuclei activity (which captured 61% of the total cross-validated 
variance; Extended Data Fig. 10a,b) and 4 top principal components 
of activity in a target brain region to find W and Wnull operators (see 
Extended Data Fig. 10b–d). This choice resulted in both movement and 
movement-null subspaces being two-dimensional. We additionally 
ensured that norms of these operator are equal W W=null  in order 
to make the comparison between the movement and movement-null 
subspaces fair.

Since the definition of specific dimensions in movement-null sub-
space is to a degree arbitrary, we defined the first movement-null 
dimension by finding a rotation within the movement-null subspace 
that maximized the amount of variance captured by that dimension 
prior to lick onset. The second movement-null dimension was then 
simply orthogonal to the first dimension in movement-null subspace. 
This was used mainly to simplify visualization, with all subspace-related 
analyses done using both dimensions in each subspace.

The positive direction of movement dimensions was chosen 
such that the mean value of projection of orofacial nuclei activity 
within [−2, 0.5] s around lick onset was positive. The positive direc-
tion for movement-null dimensions was chosen such that the mean 
value of projection of activity within [−2, 0] s around lick onset was  
positive.

Subspace occupancy. Relative subspace occupancy at a moment of 
time t was defined as

O t
E t E t
E t E t

( ) =
( ) − ( )
( ) + ( )R

null m

null m

where Enull(t) and Em(t) are Euclidean distances within movement-null 
and movement subspaces, measured between the neural state at the 
current moment of time t and the initial time point (the mean across 2 
and 1.5 s before the lick onset). Values close to zero signify equal occu-
pancy between subspaces and positive values indicate a preferential 
occupancy of the movement-null subspace. The peak-normalized 
occupancy (Extended Data Fig. 11a,b) was defined as O t( ) = E t

E
( )

max( )
.

Decomposition of projections onto contributions from TF-responsive  
and TF non-responsive units. We decomposed the projections on main 
principal components into a sum of contributions from TF-responsive 
and the TF non-responsive units. For that, we used the knowledge 
of identity of each unit as TF-responsive or TF non-responsive and 
wrote down the principal components U (from the singular value  
decomposition (SVD) of the firing rate matrix N = USVT) as a sum of two  
parts as:


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where Ui is a loading of the ith unit.
With that, projections on principal components can be written as:

͠ ͠ ͠N U N U N U N N N= = + TF = + TF (3)T T T
TF non TF non



Substituting equation (3) into equation (1) gives projections onto 
movement dimensions as:

N WN N N= = + TF
mov

TF
mov

non
mov͠ ͠ ͠ ͠

and, correspondingly, projections on movement-null dimensions are 
written as:

͠ ͠ ͠ ͠N W N N N= = + TF
null

null TF
null

non
null

The relative contribution of TF-responsive units within movement 
and movement-null subspaces at the moment of time t was then defined 
as following:
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where the second multiplicative term ensures that the sign of con-
tribution is relative to the defined positive direction (see above) of 
dimensions within each subspace.

In order to test whether the contribution of TF-responsive units is 
larger than what is expected from a uniform contribution of the full 
population, we repeatedly randomly selected (2,000 times) the same 
number of units as there were TF-responsive ones from the whole popu-
lation and computed their contribution to projections on movement 
and movement-null dimensions as described above.

In addition to the analysis described above, we have also checked 
whether the above-chance contribution of TF-responsive units is a 
consequence of their level of activity, despite the normalization method 
that we used, or does it reflect a better correspondence of their activity 
to the population modes of activity within the movement-null sub-
space. For that we looked at the distribution of loadings along the first 
movement-null dimension–that captured the majority of prepara-
tory activity there. We found that the majority of brain regions where 
TF-responsive units had above-chance contribution to the preparatory 
activity also had larger absolute values of loadings along that dimension 
than the rest of the population (Extended Data Fig. 11d,e).

Cross-validation. Since our analyses were focused on characterizing 
the mean neural responses, the cross-validation procedure that we used 
was designed to test the stability of the mean neural responses and their 
corresponding low-dimensional representations across trials. For that, 
we split trials into two randomly assigned and equally sized groups (fit 
and test trials) and calculated the mean neural response per unit across 
each group of trials. We next combined firing rates of neurons from the 
same brain region(s) (but not necessarily simultaneously recorded) into 
a joint matrix. After applying the pre-processing steps outlined above, 
we had two firing rate matrices from fit and test trials.

For cross-validated PCA (Extended Data Fig. 10a), we applied SVD on 
the first (fit) matrix and measured how well the remaining (test) matrix 
is predicted by the reconstruction from SVD components found from 
the first matrix. Similarly, the projections of activity on main principal 
components (Extended Data Fig. 13) were done using the test data, 
projected onto principal components found from the fit data.

For further analyses utilizing movement and movement-null sub-
spaces, we applied SVD separately on each matrix and found their 
projections on first four main principal components. We then used 
low-dimensional representation of fit trials data to find linear mapping 
W and Wnull onto the movement and moment-null subspaces. Finally, 
we applied W and Wnull found from the fit data to the low-dimensional 
representation of the test data. This procedure was repeated 2,000 
times, the 95% confidence intervals shown in Fig. 6 illustrate the 2.5 and 

97.5 percentiles across projections of the test data. Because the sign 
of projection is arbitrary defined, we additionally applied a potential 
flipping of the sign of eigenvectors from each draw based on which 
direction had better alignment with the eigenvectors computed from 
the full firing rate matrix without the split into fit and test trials.

Responses to TF pulses. For each brain region, we constructed a firing 
rate matrix of all units responses to a fast TF pulse (or concatenating in 
time responses of each unit to different types of TF pulses for analysis 
shown in Fig. 6i,k–m), and used the same pre-processing steps as des
cribed above. The projections onto the movement and movement-null 
dimensions were done using loadings found from the analysis of hit 
licks activity described above (using the full firing rate matrix of hit-lick 
responses without the split into fit and test trials). Cross-validation of 
consistency of projections was done by randomly selecting half of TF 
outlier events, computing the mean firing rate across those events 
for each unit, applying the steps above to find the projections, and 
repeating this procedure 2,000 times. For analyses where different 
brain regions were combined into a common group, all units from those 
brain regions were combined into a joined firing rate matrix and the 
steps described above were applied.

Alignment of fast TF pulse response with a given dimension in move-
ment or movement-null subspace was calculated as a cosine of an angle 
between the projection onto a target dimension and a 4-dimensional 
vector of TF pulse response (2 movement and 2 movement-null dimen-
sions) at a time of the maximum Euclidean distance from the initial 
state across 4 dimensions within a 0.75-s window from the pulse onset. 
Similarly, for calculating the scaling of responses to different TF pulses 
along the first movement-null dimension, we found the sizes of pro-
jections at times of maximal Euclidean distance from the initial state 
within a 0.75-s window from the first TF pulse onset.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request. Source data are pro-
vided with this paper.

Code availability
Custom acquisition, post-processing and analysis code is available at 
https://github.com/BaselLaserMouse/Khilkevich_Lohse_2024.
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Extended Data Fig. 1 | Summary of recordings in trained mice. a, Number of cells recorded from trained mice in each Allen Brain Atlas designated region.  
b-f, Locations of all well-isolated and stable units, shown within a 3D rendering of Allen Common Coordinate Framework from five perspectives.
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Extended Data Fig. 2 | GLM Performance. a, Schematic of Poisson GLM.  
b, Cross-validated model prediction performance of single trial spike counts with 
full GLM model (r). c, Cross-validated model prediction performance of mean 
PSTH following fast and slow pulses (r). d, Cross-validated model prediction 
performance of mean PSTH leading up to an early lick (Lick preparation) (r).  
e, Cross-validated model prediction performance of mean PSTH after early lick 
(Lick execution) (r). f, GLM predictions on example neuron recorded in MOs. 
Top: GLM kernels which the predictions are made from. Bottom: Real vs full  
GLM predicted vs reduced GLM (without key predictor in model) PSTHs.  

g, GLM predictions on example neuron recorded in SCs. Top: GLM kernels 
which the predictions are made from. Bottom: Real vs full GLM predicted vs 
reduced GLM (without key predictor in model) PSTHs. h, Mean TF kernels 
across all areas with 10 or more TF-responsive units recorded (for averaging 
kernels are flipped when needed to always have a positive response). i, Mean 
lick preparation and lick execution kernels across all areas with 10 or more lick 
preparation neurons responsive units recorded (for averaging kernels are 
flipped when needed to always have a positive response).



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Encoding of temporal frequency fluctuations, lick 
preparation and lick execution across brain areas. a-c, Percentage of units 
encoding temporal frequency fluctuations during baseline, lick preparation, 
or lick execution in major area groupings with 95% binomial confidence 
intervals. a, Percentage lick execution units: All areas: p < 0.001 (Binomial test). 
b, Percentage lick preparation units: Early visual, Higher visual, Basal ganglia, 
Frontal cortex, Olfactory nuclei (OLF), Thalamus, Midbrain, Hippocampus, 
Cerebellum, Lateral hypothalamus (LHA), GRN (Medulla*), Medulla: p < 0.001 
(Binomial test), Medulla: p < 0.01 (Binomial test). c, Percentage TF Responsive 

units: Early visual, Higher visual, Basal ganglia, Frontal cortex, Thalamus, 
Midbrain, Hippocampus, Cerebellum, GRN (Medulla*): p < 0.001 (Binomial 
test), Olfactory nuclei (OLF), Lateral hypothalamus (LHA), and Medulla: 
p > 0.05 (Binomial test). Error bars in panels a-c are 95% binomial confidence 
intervals. Red areas designate chance level. See Supplementary Table 1 for n of 
each brain area grouping. d, Percentage overlap of encoding (estimated from 
GLM) of TF, lick preparation, and lick execution, in all areas with more than 40 
units recorded. y-axis is the source population (i.e., all TF responsive neurons, 
all lick preparation neurons, or all lick execution neurons).



Extended Data Fig. 4 | Responses of TF responsive neurons across the brain 
to fast or slow TF pulses and early licks. Activity (z-scored) of individual 
neurons around fast TF pulses (left), slow TF pulses (middle) and early licks 

(right) for all TF responsive units from all areas with 10 or more TF responsive 
units recorded. Major subdivisions of the brain grouped by colour. Each line 
represents one neuron.
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Extended Data Fig. 5 | Properties of responses to a single fast TF pulse  
from PSTHs and GLM + Relative facilitation by the second fast TF pulse  
as a function of delay from the first one. a-d, Comparison of peak time and 
response width of PSTHs following a fast TF pulse vs GLM TF kernels. a, Median 
peak time of response to a fast TF pulse estimated from PSTH (red) and median 
peak time of GLM TF kernel (blue), shown for each brain region. b, Correlation 
across brain regions between median peak time estimated from PSTH and 
median peak time of GLM TF kernel. c-d, Same as a-b, but for fast TF pulse 

response half-peak width. e, Relative facilitation by the second fast TF pulse, 
normalized by the response to a single fast TF pulse, shown as a function of 
delay between two fast TF pulses for each brain region with at least 10 TF 
responsive units (mean and 95% confidence intervals, bootstrap test 
(see Methods)). Values close to zero imply no facilitation (same size of response 
to the second fast TF pulse as to the first one), while values close to 100% imply 
doubling of the response size.



Extended Data Fig. 6 | Effect of magnitude and timing of TF pulses on 
probability of early licks. a, Mean performance (psychometric curves) for 
mice data (dashed black line, n = 15 mice) and outlier detection agent (purple). 
b, Mean reaction times per change magnitude for outlier detection agent 
(purple) and mice data (dashed black line, n = 15 mice). Error bars indicate  
95% confidence intervals across 4000 synthetic datasets of the model 
(see Methods). c, Conditional probability of early lick at a specific time after a 
TF pulse of given magnitude. Here and later early lick probability is shown 
relative to the probability at the mean baseline TF (1 Hz). d, Probability of early 
lick after a TF pulse of given magnitude (here and later cumulatively within  
[0.2, 1] s window). Mice data is shown in black, outlier detection agent – in 
purple (mean and non-parametric 95% confidence intervals, see Methods).  

e, Upper panel: probability of early lick after two sequential TF pulses of given 
magnitudes; middle panel: expected effect if both pulses influence early lick 
probability independently; lower panel: difference from the independent 
effect of TF pulses. f-g, The same format as in e, but for two TF pulses with 
100 ms or 500 ms delay between them. h, The same format as in c, but shown 
for data generated by the outlier detection agent (for two sequential TF pulses). 
i, Difference in probability of early lick relative to the independent effect  
after a sequence of two fast TF pulses (top right corner in lower panels e-g), 
normalized by the expected probability from the effect of independent pulses 
and shown as a function of delay between fast TF pulses. The results of the same 
analysis applied to the outlier detection agent data are shown in purple (mean 
and non-parametric 95% confidence intervals, see Methods).
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | A simple two parameter leaky integrator model 
supports behavioural evidence integration + GLM change kernels across 
individual areas and large area groupings. a, Schematic of the leaky- 
integrator model. b, Parameter search grid identifying which values the 
integration time and threshold best predicts early licks (i.e., correct predictions 
of early lick times (on single trials). c, Lick triggered stimulus average of early 
licks detected by the leaky integrator model, and early licks not detected by  
the model. d, Best-fit integration decay time of leaky-integrator model, shown 
per mouse (black dots) and mean across animals (n = 15 mice, error bar is 95% 
confidence intervals). ***p < 0.001, two sided t-test. e, Relationship between 
real reaction time and predicted reaction time from leaky integrator model 
(tau: 0.25 s) for change size 1.25 Hz of example mouse 12. Correlation is calculated 
across all reaction times. f, Same as f but for change size 1.35 Hz. g, Correlation 
between observed and predicted reaction times during the change period  
for outlier detection agent (no integration, top) and leaky-integrator model 
(bottom). Threshold parameters corresponding to best-fit were used for  
each model. The colour along each row corresponds to the correlation value 

between predicted hit lick reaction times and actual hit lick reaction times on 
trials with that change magnitude, conditioned by the maximum RT included 
for this analysis (cutoff time). h, Summary of panel g with results shown per 
mouse and RT combined across all change magnitudes (RT cutoff equal to 
1 second from change onset). n = 15 mice, ***p < 0.001, two sided t-test. i, Mean 
decision value (integrated TF) after filtering stimulus though a leaky integrator 
model with a tau of 0.25 s. j, Mean reaction time curve for leaky integrator model. 
k, Example trials around change onset when model has no integration. Note the 
similarity to change kernels of TF responsive units in the SCs in Fig 3l. l, Example 
trials around change onset when model has leaky integration (0.25 s tau). Note 
the similarity to change kernels of to TF responsive units in the MOs in Fig 3l.  
m, Leaky evidence integration smooths and denoises the noisy sensory input 
so that the signal-to-noise ratio (S/σ) is considerably larger 0.5 s after change 
onset, compared to no integration–- making detection of noisy changes easier. 
n, Change size specific GLM change kernels for all areas recorded with 10 or 
more TF responsive units. o, Change size specific change kernels for major area 
groupings. Dotted line indicates the 50% response crossing for each change size.
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Extended Data Fig. 8 | Intrinsic vs learned TF pulse response properties.  
a, Percentage of units encoding temporal frequency fluctuation during 
baseline in major area groupings with 95% binomial confidences in untrained 
and trained mice. Stars designate significance of difference (binomial test) in 
fractions between naïve and trained mice: n.s.: Not significant, ** p < 0.01, 
***p < 0.001, binomial tests. Error bars are 95% binomial confidence intervals. 
OLF: Olfactory nuclei, Ctx: Cortex. See Supplementary Table 1 for n of each 
brain area grouping. b, Intrinsic timescales (tau) estimated for each TF 
responsive unit across the brain vs the TF response width for those units. 
Intrinsic times scales do not correlate with TF response width at a single cell 

level (p > 0.05, Pearson correlation, p-value is based on t-statistic). c, Same as in 
a but with units divided into major area groups. No area group has significant 
correlation between intrinsic times scales and TF response width at a single cell 
level (p > 0.05, Pearson correlation, p-value is based on t-statistic). d, Same as 
Fig. 4g, but here areal intrinsic time scale is extracted from TF responsive units 
only. In agreement with Fig. 4g, there is no correlation (Pearson correlation, 
p-value is based on t-statistic) between areal intrinsic timescales and median TF 
response width. e, intrinsic timescales of TF responsive units are similar to the 
intrinsic timescales as areas as a whole (Pearson correlation, p-value is based 
on t-statistic).



Extended Data Fig. 9 | Differences in timing of preparatory activity 
between TF responsive and TF non-responsive populations. a, Fraction of 
active units (combined across TF responsive and TF non-responsive units) as a 
function of time from the hit lick onset, shown across brain regions. Shades of 
red indicate a higher level of activity. Time points with lower 95% confidence 
interval (bootstrap test, see Methods) smaller than zero are shown as white. 
Brain regions are sorted according to the time of the first significant activation 
(blue line, see Methods). Black line shows the time of first significant activation 
using the same criterion as for Fig. 5f,g. b, Difference in onsets of preparatory 
activity across TF responsive and TF non-responsive subpopulations. Positive 
values indicate that TF responsive subpopulation has an earlier preparatory 
activity. Significant differences from zero are indicated by number of stars  

and area shaded in grey indicates 95% confidence intervals (bootstrap test, 
see Methods). * p < 0.05, ** p < 0.01, ***p < 0.001. c, Difference in levels of 
activity between TF responsive and TF non-responsive subpopulations within 
each brain region. Shades of red indicate a higher level of activity across TF 
responsive subpopulation. Time points with non-significant differences 
(p ≥ 0.05, bootstrap test) in activity are shown as white. Brain regions are sorted 
according to the latency of the first significant difference in activation between 
TF responsive and non-responsive subpopulations (black line). d, Pearson 
correlation (p-value is based on t-statistic) across brain regions between the 
latency of the first significant difference in activation between TF responsive 
and TF non-responsive subpopulations and the median half-peak width of 
response to a fast pulse.
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Extended Data Fig. 10 | Definition of movement and movement-null 
subspaces. a, Cross-validated cumulative R-squared coefficient of activity 
aligned to the hit lick onset shown across first six principal components for 
each brain region. Brain regions are sorted by the maximum cumulative 
R-squared value. b, Projections onto first four principal components of 
orofacial nuclei activity aligned to the hit lick onset. Projections on the first  
two principal components define the temporal profiles of activity within the 
two-dimensional movement subspace. The amount of cross-validated variance 
(average across draws) captured by each principal component is indicated on 

each panel. c, Projections of MOs activity (orange) aligned to the hit lick onset 
onto two movement (top) and two movement-null (bottom) dimensions. 
Projections of orofacial nuclei activity onto movement dimensions are shown 
in brown. d, Average cross-validated R-squared coefficient of mapping onto  
the movement subspace, with brain regions ordered from the best to worst 
mapping accuracy. The minimal value of R-squared coefficient for a brain 
region to be considered to have a good mapping onto a movement subspace  
is shown as a dashed red line (0.8). In all panels shaded regions indicate 
non-parametric 95% confidence intervals (see Methods).



Extended Data Fig. 11 | Occupancy of movement and movement-null 
subspaces and contribution of TF-responsive subpopulation within them. 
a, Peak-normalized occupancy of movement subspace as a function of time for 
each brain region, relative to the hit lick onset time. Here and on panels b,c the 
order of brain regions is the same as on Fig. 6f. b, Peak-normalized occupancy of 
movement-null subspace as a function of time for each brain region. c, Average 
time of the peak occupancy within the movement-null subspace (green line), 
shown for each brain region. Shading indicates 95% confidence intervals.  
d, Distribution of loadings values along the first movement-null dimension  
that correspond to TF responsive (blue) and TF non-responsive (black) units  
in MOs. e, Minus log of p-value (blue line) for a paired 2-sided t-test between 

absolute values of loadings along the first movement-null dimension that 
correspond to TF responsive and TF non-responsive units. Dashed grey line 
indicates p = 0.05 level. c, Related to Fig. 6h. Comparison (Wilcoxon signed-rank 
test) of half-peak width of response to fast TF pulse between brain regions  
that had a disproportionate contribution of TF responsive subpopulation to 
preparatory activity in movement-null subspace (left bar, n = 16 brain regions) 
and the rest of brain regions (right bar, n = 12 brain regions). Bars indicate the 
mean across brain regions, error bars – 95% confidence intervals of the mean 
(bootstrap test, 2000 times). f, Relative contribution of TF responsive 
subpopulation within the movement subspace as a function of time for each 
brain region. Brain regions are shown in the same order as on Fig. 6h.
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Extended Data Fig. 12 | Alignment and scaling of TF pulse response 
projections on movement and movement-null dimensions. a, Cosine of  
the angle between population response to a fast TF pulse and movement or 
movement-null dimensions. Values that are significantly different from zero 
(p < 0.05, 2-sided bootstrap test) are indicated by the black outline. b, Peak 
value of projections onto the first movement-null dimension of responses to a 
slow, fast, two sequential slow, and two sequential fast TF pulses. Results are 

shown for each brain region as the mean and 95% confidence intervals over 
2000 cross-validations (see Methods). See Supplementary Table 1 for number 
of neurons in each brain region. Number of starts indicates a 2-sided bootstrap 
test p-value of difference from zero for population response to a single fast or 
slow TF pulse, or a significance of a difference between responses to one or two 
sequential TF pulses. * p < 0.05, ** p < 0.01, ***p < 0.001. Non-significant effects 
are not indicated.



Extended Data Fig. 13 | Breakdown of projections on main principal 
components by contributions from TF responsive and TF-nonresponsive 
units. Each row shows projections on four main principal components of 
population activity within a given brain region aligned to the hit lick onset 
(same as on Fig. 6). The time course of each projection (black) was decomposed 
into a sum of contributions from TF responsive (blue) and TF non-responsive 

(red) units. Grey line indicates projection expected from a random sample  
of the same size as there were TF responsive units, taken randomly (with 
replacement) from the full population. Data is shown as mean and 95% 
confidence intervals across 2000 cross-validations (see Methods). The amount 
of cross-validated variance captured by each principal component is indicated 
on top of each panel.
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