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Perceptual decisions rely onlearned associations between sensory evidence and
appropriate actions, involving the filtering and integration of relevant inputs to
prepare and execute timely responses*?. Despite the distributed nature of task-relevant
,itremains unclear how transformations between sensory input,

evidence integration, motor planning and execution are orchestrated across brain
areas and dimensions of neural activity. Here we addressed this question by recording
brain-wide neural activity in mice learning to report changes in ambiguous visual
input. After learning, evidence integration emerged across most brain areasin sparse
neural populations that drive movement-preparatory activity. Visual responses
evolved from transient activations in sensory areas to sustained representationsin
frontal-motor cortex, thalamus, basal ganglia, midbrain and cerebellum, enabling
parallel evidence accumulation. In areas that accumulate evidence, shared population
activity patterns encode visual evidence and movement preparation, distinct from
movement-execution dynamics. Activity in movement-preparatory subspaceis driven
by neuronsintegrating evidence, which collapses at movement onset, allowing
theintegration process to reset. Across premotor regions, evidence-integration
timescales were independent of intrinsic regional dynamics, and thus depended
ontask experience. In summary, learning aligns evidence accumulation to action
preparationinactivity dynamics across dozens of brain regions. This leads to highly
distributed and parallelized sensorimotor transformations during decision-making.
Our work unifies concepts from decision-making and motor control fieldsintoa
brain-wide framework for understanding how sensory evidence controls actions.

To link external events to beneficial actions, the brain must learn to
transform relevant sensory input to drive the neural dynamics that
underlie movement preparation and execution'". Where and how these
transformations occur in the brain remain unclear.

When individuals make decisions based on ambiguous sensory
information over time, the brain is thought to gradually accumulate
therelevantinputinto anintegrated neural representation that deter-
mines the upcoming choice’. Neural activity reflecting the integration
of sensory evidence has been reported in several brain areas'$22,
most prominently in cortical areas such as frontal-premotor cor-
tex®**2 and posterior parietal cortex® '8, and theirimmediate down-
stream targets such as the striatum' 2", However, recent studies have
uncovered abroader encoding of sensory inputs, choice and actions
throughout the brains of trained animals®>*%?, raising questions about
where sensory input is transformed into integrated task-relevant
representations that guide action, and how widely distributed these
representations are. It also remains unclear whether specific brain
areas specialize in integration of sensory evidence owing to their
inherent properties®**2¢, or whether learning shapes the nature of
this computation.

Here we address how integrated sensory evidence is convertedtoa
choice and ultimately action. Action initiation is preceded by a build-
up of preparatory activity that is observed in many brain areas**?3
(also referred as choice-related activity), which in motor and premo-
tor regions appears distinct from and orthogonal to the pattern of
population activity that drives movement execution***"> (see ref. 36
for debate). Although evidence integration has been reported to
modulate the preparatory activity of individual neurons in certain
brainregions'®** the effect of evidence integration on the evolving
neural dynamics surrounding movement®3*, aswell as the brain regions
involved****, remain to be understood on a brain-wide scale. In parti-
cular, itisunclear how segregated or parallelized the transformations
between evidence integration, movement preparation and execution
are across brain areas as well as across dimensions of neural activity.

To understand the brain-wide transformation of sensory input into
choiceandaction, itis necessary to use tasks that can distinguish sen-
sory and decision-related processes from action signals that domi-
nate global brain activity>>°, Such tasks, pioneered in non-human
primates"'®** have recently been adapted for rodents***$-%°, ena-
bling greater accesstointerrogate the underlying circuit mechanisms
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as well as unbiased, brain-wide measurements with dense electrode
recordings>>*,

In this study, we describe how sensory evidence propagates and is
transformed across the brain as mice engage in a task that requires
temporalintegration of visual input, designed to separate the influence
of sensory evidence and movement on neural responses'. Our results
reveal thatambiguous sensory input becomes integrated within widely
distributed multi-regional premotor circuits inalearning-dependent
manner, driving the preparatory phase of movement-related neural
dynamicsthat eventually trigger the initiation of appropriate actions.

To study how relevant sensory input is transformed across the brain
prior to a decision, we trained food-restricted, head-fixed miceona
visual change detection task designed to dissociate ongoing visual
evidence observation from movement-related activity'. Mice were
trained to be stationary on arunning wheel while observing a drifting
grating stimulus, whose speed fluctuated noisily every 50 ms around
ageometric mean temporal frequency (TF) of 1Hz (o= 0.25 octaves),
andtoreportasustainedincreaseinits speed by licking areward spout
(Fig. 1a). The mice were motivated to react promptly upon detect-
ing a change by limiting the time in which the reward was accessible
(Methods). Since changes in speed were often ambiguous, their timing
unpredictable and the change in magnitude was randomized, mice had
to continuously track the sensory stimulus for a prolonged duration
(3-15.5s) prior to the change. To ensure mice remained still during
this time, any licking or movement on the running wheel prior to the
stimulus change caused the trial to be aborted (Methods).

The detection performance of the mice improved with the size of
the change in stimulus TF (Fig. 1b). At the same time, their reaction
times were hundreds of milliseconds faster for large stimulus changes
(Fig.1b), similar to other reaction-time tasks requiring temporal inte-
gration'. Furthermore, the average stimulus speed preceding ‘early
licks’ (Fig. 1c), which occasionally occur during the baseline stimulus
prior to change, was increased during approximately 0.3 to 1s before
early lick (Fig. 1c). This suggests that at least some early licks are trig-
gered by fluctuationsin the baseline stimulus and that sensory informa-
tion influences the mouse’s judgments on the timescale of hundreds
of milliseconds.

Thus, by encouraging mice to continuously monitor ambiguous sen-
sory evidence while controlling for their movement, this task enables us
to examine how the brain processes sensory evidence and transforms
itinto action commands.

Brain-wide encoding of sensory input

Tounderstand how the brain of trained mice transforms visual stimu-
lus speed into goal-directed licking in this task, we performed dense
silicon electrode recordings (Neuropixels probes™) from 15,406 units
spanning 51brainregions (thatis, 12,772 units fromregions with more
than40 manually curated, good and stable units; Extended DataFig. 1,
Supplementary Table 1 and Methods) distributed across the cortex,
basal ganglia, hippocampus, thalamus, midbrain, cerebellum and hind-
brain (Fig. 1d-f, 15 mice, 114 recording sessions, 167 probe insertions
and 50,997 trials), while capturing high-speed videos of the face and
pupil as well as movements of the running wheel (Fig. If).

Toidentify which neurons encode visual evidence (stimulus TF), lick
preparation and lick execution, we utilized single-cell Poisson gener-
alized linear models (GLMs) that fit trial-to-trial neural activity from
task-related events, stimuli and behaviour (Fig. 1g and Extended Data
Fig.2).By usinga cross-validated nested test (thatis, holding outapre-
dictor ofinterest to assessits contribution to neural activity), we identi-
fied the neuronsthatsignificantly encode different variables of interest
while accounting for variance captured by other predictors (Methods).

In agreement with the prevalence of motor-related signals in the
brain®*’, lick execution was encoded globally with the activity of at least
50% of neurons recorded encoding this action (Fig. 1k,l and Extended

DataFig. 3a). Using videography to establish the onset of lick execu-
tion, we also identified a smaller, yet substantial fraction of neurons
encodinglick preparatory activity (thatis, modulation of activity within
1.25sleadinguptoalick), also distributed globally (Fig. 1h,k,I). Asparser
fraction of neurons encoded subtle fluctuations in stimulus TF dur-
ing the baseline period on trials devoid of mouse movements (5-45%;
referred to as TF-responsive units; Methods). These neurons were
distributed across the majority of brainareas. Although the largest con-
tingent of TF-responsive units were found in the visual system (visual
cortex, visual thalamus and superficial superior colliculus), significant
fractions (5-25%) were also observed in most areas outside the visual
system, including regions of the frontal cortex (secondary motor cor-
tex (MOs), anterior cingulate cortex (ACA), medial prefrontal cortex
(mPFC), frontal pole (FRP), orbitofrontal cortex (ORB) and primary
motor cortex (MOp)), basal ganglia (striatum (caudoputamen; CP),
globus pallidus external segment (GPe) and sibstantia nigra reticular
part (SNr)), hippocampus (dentate gyrus (DG), CA1, CA3 and subiculum
(SUB)), midbrain (midbrainreticular nucleus (MRN), anterior pretectal
nucleus (APN), multimodal and motor superior colliculus (SCm) and
nucleus of the posterior commisure (NPC)) and cerebellum (lobules 4/5
(Lob4/5),simplexlobule (SIM), central lobule 3 (CENT3), CRUS1/2 and
deep cerebellar nuclei (DCN)). Of note, these multi-regional responses
to visual input could not be explained by other variables that might
correlate with fluctuations in stimulus TF because fast or slow TF pulses
did not trigger consistent movements of the face or running wheel
(Fig.1i), there was an absence of TF-responsive cellsin the medullaand
orofacial motor/premotor nuclei whose activity reflects movements
of the mouth and tongue (Fig. 1h,k,1), and the GLM was unable to pre-
dictresponses to TF fluctuations without the stimulus TF as predictor
(Extended Data Fig. 2f,g).

Together, these results show that sensory evidence representations
are surprisingly widespread, with a sparse subpopulation of neurons
tracking behaviourally subthreshold fluctuations of relevant sensory
input in almost all brain areas, but excluding the nuclei controlling
orofacial movements which become engaged when mice report their
decision. These sparse, distributed representations of visual evidence
ultimately give rise to the initiation of movement whichitself recruits
activity in more than half of neurons across the brain.

Timescales of sensory responses across the brain

To determine how sensory evidence propagates in activity across
the brain, we quantified neural responses to momentary samples of
stimulus TF during baseline period when mice did not lick or move.
We aligned neural responses to fast TF pulses (50 ms stimulus samples
1x s.d. above baseline TF of 1 Hz; Fig. 2a-c and Methods), and quanti-
fied their peak time (Fig. 2d) and duration (full width at half peak value;
Fig. 2f), which closely matched those estimated by the GLM (Fig. 2e,g
and Extended DataFig. 5a-d). As expected, brain regionsin early visual
system (dorsal lateral geniculate complex (LGd), primary visual cortex
(VISp) and superficial superior colliculus (SCs)) responded earliest to
fast TF pulses with brief responses that faithfully tracked the stimulus
TF (Fig. 2b,d-i). By contrast, brain regions outside the visual system
containing TF-responsive units responded significantly more delayed
tofast TF pulses (Fig. 2b-e,h) and exhibited more prolonged responses
than neurons in visual areas (Fig. 2b,c,f,g,i and Extended Data Fig. 4).
Specifically, neurons in frontal motor cortex, basal ganglia, cerebellum
and someregions of the midbrainand thalamus maintained the represen-
tation of sensory evidence for several hundred milliseconds beyond the
duration of the stimulus sample that triggered the response (Fig. 2b,c,f).

Parallel sensory integration in premotor areas

The longer timescales of neural responses to fast TF pulses outside
the visual system suggests that these areas can integrate multiple
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Fig.1|Widespread representation of sensory evidence, lick preparation
and lick execution across the mouse brain during noisy visual change
detection. a, Schematic of the visual change detection task for head-fixed
mice. b, Psychometric and reaction-time curves (meanand 95% confidence
interval; two-sided Student’s t-test; n = 114 sessions, 15 mice). ¢, Mean stimulus
TF (with 95% confidence interval) preceding early licks during the baseline
period. Dashed linesindicate linear mean (1.016 Hz) of baseline stimulus TF.
d,Number of units recorded per recording session. e, Brain map of number of
unitsrecorded perareaacross allrecording sessions of trained mice. f, Example
time series across two trials (arewarded trial and an early lick trial) of stimulus
TF, spike times across simultaneously recorded neurons (two probes), face
motion energy (fromvideography), pupil size and running wheel movement.
HPC, hippocampus; TH, thalamus. g, Schematic of single-trial Poisson GLM.
Prep., preparation. h, Mean firing rate around early licks (left), and mean
responseto fastand slow TF pulses during baseline period (right) for an

samples of behaviourally relevant visualinput. Indeed, previous mod-
elling of mouse behaviour in this task shows that mice are guided
by TF fluctuations unfolding over several hundred milliseconds™.
Although this suggests that mice use temporal integration of stimu-
lus TF to detect changes, they may also respond to outliers in stim-
ulus to guide their lick responses. To disambiguate between these

892 | Nature | Vol 634 | 24 October 2024

example neuronin MOs and trigeminal motor nucleus (V), together with

GLM predicted (on10% held-out data) mean activity (dashed lines, with 95%
confidenceinterval). Exec., execution; PSTH, peristimulus time histogram.

i, Mean (with 95% confidence interval) face motion energy (from videography
(Methods)) around early licks, and around fast and slow TF pulses. j, Brain maps
withlabelled brainregions. See Supplementary Table 2 for definitions of
abbreviations. k, Brain maps of percentage of units encoding lick execution
(top row), lick preparation (middle row) and stimulus TF fluctuations during
thebaseline periodin the absence of movement (bottom row). 1, Percentage of
unitsencoding lick execution, lick preparation and stimulus TF fluctuations
duringbaseline across all brainregions with more than 40 units recorded.
Resp., response. See Supplementary Table 1for number of units recordedin
eachbrainareaand Supplementary Table 2 for definitions of brainregion
abbreviations.*P < 0.05,**P<0.01, ***P< 0.001.

behavioural strategies (integration versus outlier detection), we
applied a combination of analytical and modelling approaches to
mouse behaviour to show that mice indeed do use integration of
evidence over a timescale of around 0.25 s. First, the decay time (1)
of the early lick-triggered stimulus average (psychophysical kernel;
seeref.52)is 0.27 s, atime course significantly longer than predicted
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Fig.2|Propagation and widening of fast TF pulse responses across the brain.
a,Schematicof identification of fast (TF pulse >1s.d.) and slow (TF pulse <-1s.d.)
TF pulses fluctuating around the mean baseline stimulus TF. b, Single-neuron
examples of fastand slow TF pulse responses from selected areas across the
brain (meanwith 95% confidenceinterval).FR, firingrate. c, Fast TF pulse
responses of all TF-responsive neuronsinall brain areas with ten or more
TF-responsive units. d, Distribution of response peak times estimated from
fast TF pulseresponses for each brainareawith ten or more TF-responsive
units (grey line and circles indicate median peak time per area). e, Comparison
of median peak times estimated from fast TF pulse responses (left column)

and GLM weights tracking TF fluctuations (GLM TF kernels; see Extended Data
Fig. 2 forexample kernels; Methods) for eacharea (right column). f, Distribution

by an artificial agent relying solely on an outlier detection strategy
(Fig3a,band Methods). Second, mice are more likely to lick when two
fast pulses occur within 0.25 s of each other than would be predicted
by thejointindependent effect of two fast pulses (Fig 3d and Extended
Data Fig. 6e-i). Moreover, the independent effect of two fast pulses
fully explained the data of the outlier-detection agent (Extended
Data Fig. 6h,i). Finally, a simple leaky-integrator model witha 0.25s
decay time (7) better predicts early lick times and single-trial hit reac-
tion times than when this model is not allowed to integrate evidence
(Extended Data Fig. 7b-h).
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of fast TF pulse response half-peak widths (estimated from fast TF pulse
responses) for each areawith ten or more TF-responsive units (grey lineand
circlesindicate median peak time per area). g, Median fast TF pulse response
half-peak widths compared with half-peak widths of the GLM TF kernel. h, Fast
TF pulse response peak times across major brain area groupings (median and
95% confidenceinterval; brainareasin eachgrouparelisted in Supplementary
Table1).i, Fast TF pulse response half-peak widths across major brain area
groupings (medianand 95% confidence interval). Wilcoxon rank sum test.
Values of nfor each brainareagrouping are presented in Supplementary
Tableland definitions of brain area abbreviations canbe found in
Supplementary Table 2. NS, not significant.

Giventhatlick responses depend onintegrating the stimulus TF over
several hundred milliseconds, we next determined the neural correlates
of this integration process. We reasoned that a prolonged response
toafast TF pulse serves as aneural substrate for temporal integration
of multiple fast TF pulses, by allowing responses to successive fast TF
pulses tobuild on each other. By finding instances during the baseline
period when two fast TF pulses occurred at a given delay from each
other (Fig.3e and Methods), we calculated the average response across
all TF-responsive unitsinabrainregion to those pulses, and measured
the amount of response facilitation to the second fast pulse relative

Nature | Vol 634 | 24 October 2024 | 893



Article

a = Outlier detection agent b h sc 18
= Mouse data v 0.3 S &
= 1.08 1.06 T LGd
T ® Decay fits w
T 1.06 = — VISp
& 104 @ g,
- 1.04 g S VISI/pl
é 1.02 1.02 2 RSP
| .
100 TE 50 05 o o1 PPC
Time before lick (s) LP =
SCm IFR
oms | 0. 1 s gﬁ 0.4r — Mouse data ) APN - z
Eg 03 g)uther detection MRN s
] gent @
TF <= NPC 4
ag 0.2 ©
5T VAL @
) Data <& o1 vB g
3 Indep £3 w
s effect, 82 o RT :
S e 174
I [ PO &
g ghotl e g%
B e 0 01 02 03 0.4 05  ACA q
Tlme Time Delay between fast TF pulses (s) MOs £
et
S
e No delay 0.2 s delay ORB c
=4 SCs mPFC 2
T MOp =
i, _\’/\/LW'G :
2 &
© o
S0
o GPe o %
£-2 o o5 SNr/GPi ]
B4 7o SIM &
2y ° Lob4/s
£ AM DCN
s 0
z
-2
0.5 0.5
Time from first fast TF pulse ©) DG
f, s suB -
3 SCs 0 01 02 03 04 05
G4 M JQ j  Delay between fast TF puises ()
(o)
j=J
o T 150 No delay
g 0 5 s r=0.61
< 05 g | P=o003s .
Time from first fast TF pulse (s) o 2
£ § 100 Y
9 59 o ¢
Sy 100 c @ e
R S .
TSI B2 50 e O
52y 23 o
£§58 Su ©
2838 o0 s °
BTL =
T = 58 0
2o 7500 02 04 0 E 0.05 0.10 0.15 0.20
4 Fast TF pulse response half-peak width (s
Delay between fast TF pulses (s) pu P! peak width (s)
i e Visual (early), eFrontal Ctx,
] k40 n slope =-0.01 slope =-0.08
215 7 04 .
g 80 2 *s
410 £ 03
° 1 20 =)
g 5 £ . .
g 10 /?790\\.5ﬂ ~ g0 ' - -
<o 0 oilb—
05 0 05 10 15 05 0 05 10 15 0 1 2
Time from change (s) Time from change (s) Change size (octaves)
- °
31 TF-responsive units m 027 005N " amn  wun NS
< 06[ sCs 08y £5
S 04 0.4 58 O
g O E3% -005 +
z 0.2 1 ¢
g 02 A SWOA 22 010
g SRR 0 g8
< 0 m"T"015 R ot
S TF non-resp. units ~ —0-2 o & *@(\Q‘ Q\b 0((‘ @Q
5-02 \\w\\c\g R 'b‘O &
e -05 0 05 10 15 -05 0 1.0 (S o 0
© Time from change (s) Time from change (s) W@ @% \A\Q

to the first fast pulse response (Fig. 3f,g, and Fig. 3e for single-neuron
examples; Methods). The majority of early and higher-order visual
areas did not show facilitated responses to the second fast pulse even
ata 0.1sinterval between the pulses (Fig. 3g,h and Extended Data
Fig.5e), whereas thalamiclateral posterior nucleus (LP) and hippocam-
pal regions showed facilitation of up to 0.2-0.3 s inter-pulse delay.
Across non-visual thalamus, facilitation was observed only in ventral
anterior-lateral complex (VAL) and parafascicular nucleus (PF), the key
nodes in cortico-cerebellar and cortico-basal-ganglia loops, respec-
tively?**>** Most regions in frontal cortex, basal ganglia, cerebellum
and midbrain exhibited significant facilitation around 0.2-0.4 s from
the first fast pulse (Fig. 3g,h), resembling the behavioural integration
timescales (Fig. 3b,d). Theamount of relative facilitation to the second
fast TF pulse correlated with response duration to asingle fast TF pulse
across brain regions (Fig. 3i), highlighting that one is a prerequisite
for the other.

Thus far, we had isolated the sensory evidence representations by
studying themin the absence of movement (thatis, baseline period of
thetrial). Typically, however, neural representations of sensory integra-
tion are studied by examining neural responses during presentation
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Fig.3|Accumulation of visual evidence as abehavioural strategy and its
neuralimplementation across the brain.a, Mean stimulus TF preceding
early licksin mouse dataand outlier-detection agent. Red dashed lines show
exponential decay fits. b, Decay time of the exponential fitsin a. ¢, Schematic
showing how lick probability is affected by two fast TF pulses that either
integrate temporally (black) oractindependently (indep.; green). d, Difference
betweenobserved early lick probability after two sequential fast TF pulses and
theonepredicted fromtheirindependent effect (Extended Data Fig. 6e-g),
normalized by the probability fromindependent effect, shown as a function of
delay between pulses. Data are mean with 95% confidence intervals. e, Responses
toasingle fast TF pulse (black) or asequence of two fast pulses separated
by Os (left) or 0.2 s (right) in example neurons from SCs and MOs. f, Average
response toasequence of two fast TF pulses separated by 0.2 s delay fromall
TF-responsive neuronsin SCs (left) and MOs (right). g, Facilitation of response
tothesecondfast TF pulse asafunction of delay between two pulses for
TF-responsive unitsin SCsand MOs. h, Same as g, but for all brain regions with
atleastten TF-responsive units. Only time points with 95% confidence interval
above zero (bootstrap test) areshown. i, Pearson correlation between second
fast TF pulse facilitation and the median half-peak width of response to fast TF
pulseacrossbrainregions (Pvalue based on ¢-statistic). Correlation excludes
brainregions without significant facilitation, shownasopencircles. j, Average
activity of MOs units aligned to TF change onset on hit trials, split by change
magnitude. Reaction times (RTs) per magnitude are shown as median (dots)
with rangesbetween 25thand 75th percentiles. k, Same as j, but with the MOs
populationsplitinto TF-responsive (shades of purple) and TF non-responsive
(shades of orange) units. Darker colours correspond to larger change
magnitudes.l,m, Mean GLM weights tracking activity after change (change
kernels) from SCs (I) and MOs (m) units, derived from activity during change
periods. Kernels shown for TF-responsive and non-responsive units, across
different change magnitudes. Colour codingasink.Reaction times shownasin
j-a.u., arbitraryunits.n,Each dotis the time to 50% of the peak value (ramping
time) of the average change kernel across TF-responsive units in early visual
areas and frontal cortex (Ctx), shown per change magnitude. o, Scaling of
rampingtimeinactivity with change size: each pointrepresentsaslope
(inseconds per octave) of the linear fit to the dependence showninm, for each
group of brainregions. Bootstrap test. Values of nfor each brain region and
brainregiongroup are presented in Supplementary Table 1and definitions of
brain areaabbreviations can be found in Supplementary Table 2. In all panels,
shaded regions orerrorbarsindicate 95% confidence intervals.

of stimuli that trigger the learned response, when there is an overlap
of multiple correlated signals related to sensory integration, move-
ment preparation and execution*”**, There, evidence integration is
inferred by the ramping of neural responses that scale with stimulus
strength?. Similarly, we found that in regions that integrate pulses
of sensory evidence during the baseline period (Fig. 3e-h), such as
MOs, the slopes of ramping activity in the change period scaled with
the magnitude of the TF change (Fig. 3j). Notably, the TF-responsive
subpopulation responded more strongly than the rest (Fig. 3k), with
its ramping activity starting and peaking considerably earlier.

To account for the influence of the mouse’s movement on these
response profiles, we used the visual response components of the
GLMfitted separately to neural responses for each change magnitude
(Fig.3l,mand Methods). In most areas outside of the visual systemand
hippocampus, the visual response components of TF-responsive neu-
rons showed ramp-like activity that steepened withincreasing change
magnitudes, suggesting that these neural populations implement
temporal integration of sensory evidence as mice report the change
(Fig. 31-0, Extended Data Fig. 7n,0 and Methods). Moreover, for com-
parison, early visual areas, such as SCs, exhibited step-like, sustained
responses to different change magnitudes (Fig. 31-o and Extended Data
Fig.7n,0), thus signalling the change in stimulus TF, but without integra-
tion. Thisis consistent with the early visual system faithfully tracking the
fluctuationsin sensory input, whereas downstream structures have the
capacity tointegrate the stimulus stream, essentially denoisingit, thus
making sensory change detection easier (Extended Data Fig. 7k-m).



Theseresultsreveal that temporal integration of sensory evidence is
aparallel, distributed, multi-regional computation—implemented by
transforming transient responses to sensory inputin visual areas into
prolonged representations of integrated sensory evidence in frontal
cortex, basal ganglia, cerebellum, thalamus and midbrain structures—
which does not propagate to motor execution nuclei in the medulla.

Learning enables widespread sensory integration

We next tested whether the encoding of sensory evidence outside the
visual system is intrinsic to the brain regions themselves or a result
of learning the relevant stimulus-reward associations. We recorded
neural activity in untrained mice (6,215 units, 45 sessions, 6 mice)
that had been exposed to the same stimuli but given random rewards
(Fig.4a,band Methods), thus never associated changesin stimulus TF
with reward. As expected, we found significant fractions of neurons
encoding fluctuations in stimulus TF in the visual system (SCs, LGd,
LP and VISp) and parts of the midbrain (APN and SCm) in untrained
mice. However, we did not find cells with prominent TF responses
in frontal-motor cortex, cerebellum, striatum or MRN—regions that
in trained mice respond to TF fluctuations (Fig. 4c—e and Extended
Data Fig. 8a). This demonstrates that encoding of sensory evidence
in regions outside the visual system—where the sensory evidence is
integrated—to alarge degree, emerges with learning.

Totestwhether the integrative properties of neurons in non-visual
areas are shaped by learning, we assessed whether stimulus integra-
tioncanbe predicted fromintrinsic timescales of neural firing of each
area. Intrinsic timescales of activity in cortical areas in non-human
primates and rodents, defined as the time constant of autocorrelation
function of each neuron’s activity, have been suggested to determine
duration of task-relevant responses®?, However, we did not find intrin-
sic timescales of neural activity (measured in the inter-trial periods
devoid of visual stimuliand movement) to correlate with the duration
of fast TF pulse responses across different brain regions (Fig. 4f,g) or
inindividual neurons (Extended Data Fig. 8b-e). Notably, the intrin-
sic timescales of individual brain regions were similar in trained and
untrained mice, indicating that they are anintrinsic property of each
areathatis unaffected by learning (Fig. 4h,i). Together, these results
imply thatrepresentation and integration of sensory evidence emerge
with learning in most association and premotor areas outside of the
visual system.

Evidence-encoding cellsinitiate preparatory activity

We next explored how the integrated sensory evidenceis transformed
into preparation of an action that reports the decision. Preparatory
activity before action initiation has been observed in multiple brain
areas during motor planning and in decision-making tasks*'>5,
including our task (Figs. 1j and 5a). Given that neurons downstream
of the visual system encode both sensory evidence and lick prepara-
tion (Fig. 1j and Extended Data Fig. 3d), we tested whether evidence
integration and preparatory activity engage similar patterns of activ-
ity in these brain regions. We computed the alignment of population
vectors between responses to a single fast TF pulse (Fig. 5a,b, left)
and preparatory activity before the early lick onset (Fig. 5a,b, right)
of TF-responsive subpopulations in different brain regions. In MOs
(Fig.5¢c) and other areas outside of the visual system capable of integrat-
ing sensory evidence—including frontal cortex, cerebellum, midbrain
and basal ganglia—these population vectors were significantly aligned
(Fig. 5d), whereby neurons that increase their firing to fast TF pulses
alsoincreasetheir activity prior tolick initiation, and vice versa (Fig. 5¢).
By contrast, no such relationship was observed in areas that do not
integrate sensory evidence (Fig. 5d), such as SCs (Fig. 5¢). These results
imply awidespread coupling between integration of sensory evidence
and movement preparation, as previously observed in monkey lateral
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and premotor areas emerges with learning. a, Schematic of stimulus
presentation withrandom reward delivery used for recordings in untrained
mice (Methods). b, Brain maps of unit counts recorded from untrained mice.
IRI, inter-reward interval. ¢, Examples of top two (lowest Pvalue) fast
TF-responsive neuronsin trained mice (solid lines) or untrained mice (dashed
lines) in SCs, VISp, MOs, CP, SIM, DG, MRN and in the orofacial motor nucleus.
Norm.,normalized.d, Percentage TF-responsive unitsinall brainareas with
more than40 neuronsrecorded inboth trained and untrained mice. e, Focality
index of distribution of TF-responsive units across areas with more than
40neuronsrecordedinbothuntrained and trained mice. In untrained mice,
TF-responsive units were confined to amuch more limited set of brainregions,
compared to trained mice, leading to asignificantly higher focality index
(n=24overlappingbrainregions; P<0.001, bootstrap test (Methods)). Error
bars show 95% confidenceintervals (Methods). f, Examples of autocorrelation
functions fromwhich intrinsic timescales are estimated (thatis, Tof decay
ofautocorrelation function). Error bars are 95% bootstrapped confidence
intervals. g, Pearson correlation (Pvalue based on ¢-statistic) between intrinsic
timescales and median half-peak width of responses to a fast TF pulse for all
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(Pvalue based on t-statistic) betweenintrinsic timescales in untrained mice and
trained mice. i, Brain maps of intrinsic timescales of trained mice (left) and
untrained mice (right). See Supplementary Table 2 for definitions of brain
regionabbreviations.

intraparietal area (LIP) and frontal cortex?**, but which we find to be
far more widespread across sparse subpopulations of frontal cortex,
basal ganglia, cerebellum, thalamus and midbrain.

Ifaccumulation of evidence contributes to the build-up of prepara-
tory activity, we would expect the neural subpopulations that integrate
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Fig.5|Preparatory activityisled by TF-responsive subpopulations. a, Left,
meanresponses to a fast TF pulse of five example TF-responsive unitsin MOs
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firingrate) (bottom). Right, activity of the same neurons aligned to early lick
onset.b,Sameasa, but for TF-responsive unitsin SCs. Horizontal black lines
indicate windows of activity used to calculate the alignment of population
vectorsinc.c, Alignment (Pearson correlation; Pvalue based on t-statistic)
betweenresponses (baseline subtracted) of TF-responsive MOs or SCs units
toafast TF pulse and their preparatory activity before the early lick. d, Mean
alignment of population vectors (correlationin ¢) for each group of brain
regions (bootstrap test). See Supplementary Table 1for nof each brainregion
group. e, Fraction of significantly active units (P < 0.01, z-test) as a function of

evidencetoberecruitedfirst priortoadecisiontoalick,and thatbrain
regions with longer timescales of integration would have an earlier
onset of preparatory activity. Indeed, prior to hit-lick onset during
the change period, the TF-responsive populations were recruited
significantly earlier than the TF non-responsive populations in areas
integrating sensory evidence, including the frontal cortex, basal gan-
glia, cerebellum and midbrain (Fig. 5e-g, Extended Data Fig. 9b,c and
Methods). The earliest differencesin activation were observed across
several brain subdivisions, including ACA, MOs, striatum (CP) and
Lob4/5 (Extended Data Fig. 9b,c). Moreover, the onset of preparatory
activity of the TF-responsive subpopulation scaled with the duration of
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Time from lick onset (s)

Time from lick onset (s)

time, shown separately for TF-responsive and TF non-responsive units for six
examplebrainregions. Values of nfor eachbrainregionare presentedin
Supplementary Table 1. f, Fraction of active TF-responsive units (thresholded
by lower 95% confidence interval greater than zero, bootstrap test) asafunction
oftime from the hit-lick onset, shown for each brainregion. Brainregions are
sorted accordingto the time of the earliest, significantly active fraction (black
line; Methods). g, Same asf, but for the TF non-responsive subpopulation.

h, Relationship between the onset of preparatory activity in TF-responsive
units and theirmedian response duration to afast TF pulse across brain regions.
Pearson correlation and corresponding Pvalue from ¢-statistic are shown on top.
Inall panels, shaded regions and error bars indicate 95% confidence interval.
See Supplementary Table 2 for definitions of brain region abbreviations.

response to afast TF pulse (Fig. Shand Extended Data Fig. 9d), reveal-
ingthatthelonger timescales of integration lead to an earlier onset of
preparatory activity. Together, these results demonstrate that accumu-
lation of evidence contributes to the build-up of preparatory activity
in multiple brain regions downstream of the visual system.

Brain-wide orthogonal dynamics surrounding action

Previous studies have found that population activity in motor cor-
tex transitions between orthogonal sets of dimensions (subspaces)
before and after movement onset®***, Following movement onset,



activity occupies a ‘movement’ subspace, in which projections of
activity closely resemble the muscle activity during movement execu-
tion. Prior to movement onset, the patterns of activity are different
and confined to an orthogonal subspace (‘movement-null’), wherein
activity builds up or persists, but does not drive the movementitself.
To understand the neural dynamics during the transition between
movement preparation and execution in our task, we applied the
same analysis framework to each brain region population activity
on hit-lick trials, by decomposing population activity into projec-
tions onto movement and movement-null dimensions (Methods). We
defined the movement dimensions as those that captured the best
similarity with the activity of orofacial motor and premotor nuclei that
drivelicking®*’ (Extended Data Fig. 10b,c), and a set of movement-null
dimensions orthogonal to them, wherein activity canreside without
directly affecting licking.

We first tested whether the preparatory activity occupies a move-
ment subspace or is orthogonal to it, as previously demonstrated in
primary and premotor cortex® > (Fig. 6a, orthogonal modes hypo-
thesis). Figure 6b-d shows MOs activity aligned to hit-lick onset and
projected onto the first movement and movement-null dimensions
(seealso Extended Data Fig.10b-d). Relative occupancy of these sub-
spaces around lick onset (Fig. 6e,f and Methods) revealed that pre-lick
activity in MOs predominantly resided within the movement-null
subspace (Fig. 6e, and was largely one-dimensional (Extended Data
Fig.10c)), and thentransitioned into the movement subspace after the
lick onset. Of note, preparatory activity was confined to the movement-
null subspace across all other brain regions (Fig. 6f and Extended Data
Fig.11a,b).

Shortly following lick onset, population activity transitioned from
movement-null into the movement subspace, almost concurrently
throughout the brain. This state transition could result only from
anincrease in activity within movement subspace (Extended Data
Fig.11a) or also from a decrease in activity within the moment-null
subspace following lick onset. Consistent with the latter, activity within
movement-null subspace peaked and then sharply decreased imme-
diately after the lick onset in most brain regions that had preparatory
activity (Fig. 6f, green line, and Extended Data Fig. 11b, c).

Together, these results reveal that the abrupt transitions in neural
dynamics between orthogonal movement-null and movement sub-
spaces at movement onset is ageneral computational feature observed
in most association and premotor brain areas.

Linking evidence integration and motor dynamics

If accumulation of visual evidence drives preparatory activity, which
resides in movement-null subspace, one would expect TF-responsive
unitsto haveadisproportionate contribution to activity in movement-
null subspace. To test this, we decomposed projections onto move-
ment and movement-null dimensionsinto asum of contributions from
TF-responsive units and the rest of the population (see Methods). For
example, in MOs, we observed a disproportional contribution from
TF-responsive subpopulation to the preparatory activity within the
movement-null subspace (Fig. 6¢,g). Applying this analysis across all
brainregions, we found that the TF-responsive subpopulation contrib-
uted disproportionately to the preparatory activityinamorerestricted
subset of areas (Fig. 6h and Extended Data Fig. 11d,e): frontal cortex
(ACA,MOs, MOp, ORB and mPFC), cerebellum (Lob4/5,SIMand DCN),
basal ganglia (CP, SNr/globus pallidusinternal segment (GPi) and GPe),
aswell as some regions of the midbrain (MRN, NPC and SCm) and thala-
mus (VAL and ventrobasal complex (VB)). Notably, these predominantly
premotor areasintegrated evidence over longer timescales (Extended
DataFig. 11f; see also Fig. 5h), emphasizing the link between evidence
accumulation and preparatory activity.

Sensory evidence should nolonger be informative of choice once the
animal has committed to its decision. Accordingly, the contribution

of TF-responsive units to preparatory activity in movement-null sub-
space collapsed to chance level after lick onset in most premotor areas
in which TF-responsive units disproportionately drove preparatory
activity (Fig. 6h; see Extended DataFig. 11g for acomparable analysisin
movement subspace). This collapse is consistent with the cessation of
evidence accumulation despite the continuous presence of the change
stimulus (see also Fig. 3j-1).

Consistent with the observations that preparatory activity
and responses to pulses of sensory evidence are aligned within
TF-responsive population of neurons (Fig. 5c,d) and that the prepara-
tory activity of the entire populationis confined to the movement-null
subspace (Fig. 6f), we found that aresponse to TF pulseis aligned with
the dimensionthat captures the most variance of the preparatory activ-
ity (first movement-null dimension) in most regions beyond the early
visual system (Fig. 6i,j, top, kand Extended Data Fig.12a). By contrast,
responses to fast TF pulses were not positively aligned with the first
movement dimension in any brain region group (Fig. 6i, j, bottom, k).
Consequently, outside of the early visual system, we find that the inte-
gration of sequential pulses of evidence primarily takes place along the
firstmovement-null dimension (Fig. 6k-m and Extended Data Fig.12b).
This provides an explanation for how sensory evidence can recruit
activity across the majority of brain regions without directly driving
the movement.

Discussion

Here we describe the brain-wide neural implementation of evidence
integration, movement preparation and execution—the key processes
underpinning decision-making—revealing a global mechanism for
transforming ambiguous sensory evidenceinto goal-directed actions.
We show that evidence integration is a widespread phenomenon that
emerges with learning and is implemented in a sparse population of
neuronsacross most premotor areas. In these neurons, the timescales
ofintegration areindependent of intrinsic regional dynamics, suggest-
ing that they are shaped by task experience. Notably, evidence integra-
tion and movement preparation are encoded in the same subspace of
populationactivity across the brain, orthogonal to movement-related
dynamics. Activity in this subspace was driven by neuronsintegrating
evidence and collapsed at movement onset, allowing the integration
processtoreset, whereupon activity transitioned into a different sub-
space for movement execution concurrently across the brain. Our work
links evidence accumulation onto motor dynamics on a brain-wide
scale, unifying concepts from motor control and decision-making fields
into acommon framework for understanding how sensory evidence
controls actions through global neural mechanisms.

Our finding that only expert mice exhibited robust encoding of
visual input in almost all brain areas outside the visual system is con-
sistent with previous reports of learning increasing the connectivity
and correlations between cortical and subcortical regions®®*°, which
may explain the distributed encoding of task variables across cortical
and subcortical structures in trained animals>***. We now show that
these learning-induced multi-regional representations of task-relevant
stimuli are not simply a distributed echo of the sensory input, but a
transformed and integrated representation explicitly used to guide
decisions. Inassociation and premotor areas, such as frontal-premotor
cortex, basal ganglia, cerebellum, parts of midbrain and thalamus, the
prolonged responses to individual samples of evidence enabled their
integration on a timescale of several hundred milliseconds, consis-
tent with timescales of behavioural integration (Fig. 3 and Extended
DataFig. 6). Thisisakey distinction fromvisual areas, such as VISp and
SCs (and primate middle temporal visual area® (MT)), where neurons
do notintegrate evidence (Fig. 3). Consequently, the integration of
ambiguous task-relevant stimulibecomes amulti-regional distributed
processimplemented in asparse population of neurons, and one that
emerges with training as mice learn the value of the relevant stimulus
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Fig. 6 | Preparatory activity occupies movement-null subspace, is dominated
by TF-responsive subpopulation andis aligned withresponsesto pulses

of sensory evidence. a, Schematic of two hypothetical ways population
activity cantransition from movement preparation to execution. Preparatory
activity and action execution proceed either along the same mode of activity
(single mode hypothesis) or are orthogonal to each other (orthogonal modes
hypothesis). Dim., dimension. b, Mean projection of allMOs neuron activities
around lick on hittrials onto the first movement dimension, defined by activity
inorofacialnucleiinthe time window around lick (grey; see Methods). Projection
ofactivity of TF-responsive subpopulation of MOs is showninblue (Methods;
scaleontheright); projection fromarandom (rand.) sample of MOs neurons
(grey; matched to number of TF-responsive neurons; scale on theright).

¢, Projection of MOs activity onto the first movement-null dimension during hit
trials.d, Sameasb,c, but showninastate-space formed from first movement
and movement-null dimensions. Dots correspond to the state of MOs activity
in10-msbins. Time relative tolick onsetis indicated by colour. e, Relative
occupancy of MOs activity in movement versus movement-null subspaces as
afunction of time (Methods). f, Same as e, but across brainregions (excluding
brain regions with poor goodness of fit (R*< 0.8) to activity in orofacial nuclei;
Extended Data Fig.10d). Only time points with relative occupancy significantly
different fromzero (P<0.05,bootstrap test) are shown (also for h). Brainregions
aresorted accordingtothe earliest latency of significant relative occupancy.
Time of peak occupancy in movement-null subspace is shown by the greenline.

feature. Notably, in our task both neural and behavioural evidence
integrationis ‘leaky’, consistent with theidea thatin dynamic sensory
environments perfectintegrationis notan optimal behavioural strat-
egy*.Instead, leaky integration of anoisy stimulus stream is beneficial
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g, Relative contribution of TF-responsive subpopulation to movement-null
and movementsubspaces. The grey line indicates the value expected froma
random sample of neurons from MOs (matched to number of TF-responsive
neurons). h,Sameas g, but shown acrossbrainregionssorted by latency of
significant contribution of TF-responsive subpopulation. Top, fraction of trials
with ongoing change epoch.i, Projections of MOs population responses to
pulses of sensory evidence onto the first movement-null (top) and movement
(bottom) dimensions. j, Cosine of the angle between populationresponsetoa
fast TF pulse and first movement-null (top) and movement (bottom) dimensions.
Data pooled across groupedbrainregions (mean + 95% confidence interval;
bootstrap test). k, MOs population responses to pulses of sensory evidence
(0-0.5safter the pulse onset), shown instate-space formed by first movement
and movement-null dimensions. Overlaid, MOs preparatory activity (grey)

up to 100 msbefore hit-lick onset (note the different scale). 1, Peak value of
projections of MOs responses to aslow or fast TF pulse, or two sequential fast
ortwo sequential slow TF pulses, onto the first movement-null dimension.
m,Sameasl, but for groups of brainregions (bootstrap test). BG, basal ganglia;
CB, cerebellum; FC, frontal cortex; MB, midbrain; Vis.E., visual (early); Vis.H.,
visual (higher).In all panels, shaded regions or error bars indicate bootstrapped
95% confidenceintervals (Methods). Values of nfor each brainregion or brain
regiongroup are presented in Supplementary Table 1and definitions of brain
areaabbreviations canbe found in Supplementary Table 2.

asitincreasesthesignalrelative to noise by temporally smoothing the
input (Extended Data Fig. 7k-m).

We found that the timescales of integration are as diverse across the
entire brain as has been shown across cortex®™*. However, evidence



integration times were not explained by the intrinsic timescales within
eacharea, previously suggested to be predictive of response duration
and ability to integrate stimuli in cortex of non-human primates and
mice, respectively®?2¢, A possible reason for this discrepancy may
be that our task allows estimation of both the intrinsic timescales and
stimulusintegration times in the absence of potentially confounding
movement signals. In this study, we found that intrinsic timescales
remain stable with learning, confirming they are an inherent prop-
erty ofeacharea.Infact, decoupling of intrinsic timescales frominte-
gration times may be advantageous because it allows task demands
to sculpt the timescales of integration?*®', This decoupling may be
implemented by learning mechanisms®> that shape the activity
propagatingin multi-regional long-range loops involving cortex, basal
ganglia, cerebellum, thalamus and midbrain, as observed during motor
planning28'29'35'53'54.

Tounderstand how evidenceintegration leads toaction, we adopted a
framework developed for understanding the neural dynamics of move-
ment generation, whichidentifies the relationship between modes of
population activity that precede and follow action onset****¢*, Using
this framework, we demonstrate that neural dynamics of lick prepara-
tion and lick execution occupy distinct, orthogonal subspaces in most
subdivisions of the brain, as previously shownin primate primary and
premotor cortex during arm movements*>*and more recently in the
mouse brain during memory-guided movements*. Of note, the sub-
populations of neurons capable of integrating sensory evidence initi-
ated and dominated preparatory activity in movement-null subspace.
We found preparatory activity to originate earliest in regions with the
longest integration timescales, such as frontal cortex, basal gangliaand
cerebellum, and then transition abruptly into an orthogonal subspace
uponmovementinitiation almostinstantaneously in all brain regions
investigated. This demonstrates that the transformation of accumu-
lated evidence into movement planning and execution takes place
within and across subspaces of neural activity that are shared across
multi-regional circuits, rather than proceeding successively across a
subset of specialized brain areas. Future research should determine the
degree to which the principles of brain-wide neural dynamics obser-
ved in our study generalize to tasks involving multiple sensorimotor
contingencies.

A clear advantage of orthogonalizing neural dynamics during
decision-making is that it allows computations such as evidence
accumulation, movement preparation or movement execution to pro-
ceed within the same population of neurons®. Our results highlight a
particular advantage of occupying the movement-null subspace as
it allows evidence integration to take place without directly causing
movement. Accordingly, the lack of responses to visual evidence in
the orofacial nuclei in medulla, which become active only upon lick
initiation, demonstrates that brain-wide preparatory activity patterns
driven by sensory evidence areincapable of driving the activity in motor
circuits that control mouth and tongue movements.

The transition of population activity from movement-null to move-
ment subspace is thought to proceed via a brief release of activity
occupying movement-null subspace as aninput to the movement sub-
space®, which triggers the action. In a delayed response task using an
explicitauditory Go cue, a trigger signal in premotor cortex depends
on a pedunculopontine nucleus (PPN)/MRN-thalamic circuit®. Our
task, however, requires aninternally generated trigger when sufficient
evidenceisaccumulated. Future workis needed to elucidate the regions
thatgenerate the trigger signal, with likely candidates receiving infor-
mation from areas with early onsets of preparatory activity such as
ACA, MOs, CP and Lob4/5. Conversely, an action initiation signal may
propagate to the movement-null subspace, since the contribution of
evidence-accumulating neurons to the movement-null subspace col-
lapsed shortly following action onset, even though the change stimulus
was still present, thus allowing the integration process to reset. This
observation suggests that evidence-integrating neurons perform this

function only when it is relevant and before the mouse has commit-
ted to an action. These findings imply that activity in one orthogonal
subspace caninfluence the activity in the other subspace, highlighting
the dynamicinterplay between movement-nulland movement-related
neural dynamics.

Insummary, we demonstrate that learning recruits aneural subpopu-
lation that is widely distributed across the brain, which concurrently
integrates evidence and drives movement preparation, allowing sen-
sory evidence to control global neural dynamics required for genera-
tion of behavioural responses.
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Methods

Animals

All experiments were performed under the UK Animals (Scientific Pro-
cedures) Act of 1986 (PPL: PD867676F) following local ethical approval
by the Sainsbury Wellcome Centre Animal Welfare Ethical Review Body.
Atotal of 21 C57BL/6 ) male mice (age =34.5 + 15.8 weeks (mean +s.d.))
were used for electrophysiological recordings. Fifteen mice first under-
went head-fixed behavioural training prior to acute electrophysiologi-
cal recordings (see ‘Task and training stages’), and six mice (untrained
mice) only underwent habituation to the recording setup prior to acute
electrophysiological recording.

Prior tobehavioural training and recordings, all mice wereimplanted
with a head-fixation bar under approximately 1.5% isoflurane and
administration of Meloxicam (5 mg kg™) to allow for head-fixation
during behavioural training and electrophysiological recordings.

During training, mice were co-housed with littermatesinindividually
vented cages. Afterimplantation of the recording chamber, mice were
singly housed to protect the implant. Mice were housed in reversed
day-night cyclelighting conditions, with the ambient temperature and
humidity set to 23 °C and 56% relative humidity, respectively.

Behavioural task

The design of the behavioural task was as previously described in
ref. 14. In brief, mice were head-fixed and placed on a polystyrene
wheel. Two monitors (21.5inch, 1,920 x 1,080, 60 Hz) were placed on
eachside of the mouse at approximately 20 cm from the mouse head.
The monitors were gamma corrected to 40 cd m™ of maximum lumi-
nance using custom MATLAB scripts utilizing PsychToolbox-3. The
stimulus presentation was controlled by custom written software in
MATLAB utilizing PsychToolbox-3. The visual stimulus was a sinusoidal
grating with the spatial frequency of 0.04 cycles per degree resulting in
3 grating periods shownonascreen. Each trial began with a presenta-
tionof agrey texture covering both screens. After arandomized delay
(atleast 3 s plus arandom sample from an exponential distribution
withthe meanof 0.5 s), the baseline stimulus appeared. The TF of the
grating was drawn every 50 ms (3 monitor frames) from a lognormal
distribution, such that log,-transformed TF had the mean of O and
s.d.of 0.25 octaves and the geometric mean of 1 Hz. The direction of
drift was randomized trial to trial between upward or downward drift.
The sustainedincrease in TF, referred to in the text as change period,
occurred after arandomized delay (3-15.5 s) from the start of baseline
period and lasted for 2.15 s. For early and late blocks training (stage 8),
change period times were sampled between [3, 8] s and [10.5,15.5] s,
respectively, with the delay from the earliest allowed change period
sampled from an exponential distribution withamean of 4 s. Random
15% of trials were assigned as no-change trials and did not have achange
period. For stage 8 training, 10% of trials were designated to be probe
trialsand had achange time drown from the distribution of the other
block type. Because there were no qualitative differences in neural
TF pulse response between early and late blocks (data not shown) we
have combined data from both block types for analyses throughout
this manuscript. Findings related to stage 8 (early and late blocks) will
be presented in an upcoming paper.

Mice were trained to report sustained increases in TF by licking the
spout totrigger reward delivery (drop of soy milk). Licks that occurred
outside of the change period are referred in the text as early licks. If
mice moved on the wheel (movement exceeding 2.5 mmin a 50-ms
window) in either direction, the trial was aborted (stages 7 and 8). If
mice did not lick within 2.15 s from the change onset, the trial was con-
sidered a miss trial.

Training stages. Following the implantation of the headplate, mice
were allowed torecover for aweek. After that, mice went through sev-
eral stages of training:

(1) Mice were handled for 3 to 7 days, until mice were comfortable with
being handled by the experimenter. During this stage mice were also
habituated to being restrained by being placed into a soft cloth for
ashort period of time. After the brief restraints they were given a
small amount of soy milk as reward.

(2) Next, mice were put onfood restriction. Mouse weight was monitored
daily with theamount of food given adjusted per mouse to keep them
sufficiently motivated for getting rewards and keep their weight
no lower than 85% of the original weight prior to food restriction.

(3) Next, mice were head-fixed and placed on the running wheel of the
behavioural training setup with the monitors turned off. Mice were
allowedtofreely run onthe wheel, but not encouraged to. Typically,
there were 3 habituation sessions, with the duration progressive
increasing from 15 to 45 min.

(4) Next, mice were introduced to the visual stimuli used in the task.
Mice were initially shown only trials with two largest changes of TF
(2and 4 Hz, lasting 2.15 s), followed by a reward auto-delivery 1.5 s
after the change onset. After mice started to robustly make licks
during the change period that preceded the reward auto-delivery,
they were transitioned to the next stage.

(5) Here only hit trials were rewarded, early licks and running did not
result in termination of the trial.

(6) After mice robustly detected strong changes in the previous step,
weintroduced trials with weaker changesin TF (1.25 Hz,1.35 Hzand
1.5 Hz). Additionally, a consequence of an early lick outside of the
change period was a mild air-puffto the mouse’s right cheek and a
termination of the trial.

(7) After mice detected weaker changes as well (assessed as higher hit
rate compared to no-change trials), they were transitioned to the
nextstage whereinorder toinitiate the trial start (start of the base-
line stimulus), mice were required to remain stationary on the run-
ning wheelfor atleast 3 s plusarandom sample froman exponential
distribution withthe mean of 0.5 s. Additionally, after the trial start,
atrial was aborted as a consequence of amovement on the wheel.

(8) Finally, after mice reached sufficient proficiency at the previous
stage, early and late blocks were introduced. During the session
start, a block type was randomly chosen. A block was defined as a
period of the session during whicha mouse completed 30 hit trials.
After completion of a block of trials, the block type was switched
to the other block type (early to late or vice versa).

Six mice that were used in the untrained control experiment
(Fig. 4e-h) went through training stages 1-3 above. Following that,
they were shown the same stimuli as the trained mice, with the differ-
ence that their movements on the wheel or licking the spout did not
terminate a trial nor trigger reward. Instead, they were given rewards
atrandom times with inter-reward intervals drawn from the uniform
distribution of 60 £15s.

Behavioural setup and data acquisition. Reward delivery (soya milk)
was controlled by asolenoid pinch valve (161P011, NResearch) and deliv-
eredtothe mouse viaaspout positioned in front of it. Mouse licking the
spout was measured by a piezo element (TDK PS1550L40N) coupled to
the spoutand amplified with a custom-made amplifier system. Running
wheel movement was measured with arotary encoder (modelKiibler)
that was connected to the wheel axle. Allbehavioural dataand events,
such as piezo signal voltage trace, valve or change period on/off state,
etc., were acquired via analogue and digital channels of PXle-6341
acquisition card (National Instruments) with SpikeGLX (https://github.
com/billkarsh/SpikeGLX) at 8,474 Hz.

Behavioural data analysis

Psychometric performance, reaction times and lick-triggered
stimulus average. Psychometric curves were calculated per session
by counting the amount of hits relative to all trials where mice did not
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earlylick norabort. Mean hit rates (performance) and parametric 95%
confidenceintervals (s.e.m. x 1.96) of hit rates were calculated across
sessions (n =114) per change size. Mean reaction times and parametric
95% confidence intervals were calculated across sessions (n = 114) per
change ssize, and p-values were estimated from ¢-tests.

Lick-triggered stimulus average was estimated by extracting the
TF pulses from —-1.5to O s preceding early licks and averaged across
all trials, revealing mean stimulus TF prior to early licks. Parametric
95% confidence intervals were estimated by calculating the s.e.m. of
TF values at each 50 ms bin (TF pulse resolution) prior to an early lick
and multiplying the s.e.m. by 1.96.

Simple behavioural leaky-integrator model. Inorder to formally test
if mice behaviourally integrated stimulus evidence (TF pulses) over
timein our task, we constructed asimple behavioural leaky-integrator
model with two adjustable parameters: decay time (1), and threshold.
We fitted these two parameters by estimating which decay time and
threshold predicted most early lick times (from 2 s after trial start, to
excludetrial onset licks) correctly for each mouse and then determined
the average best-fit decay time and threshold values across mice. For
each early lick trial, we calculated the integrated log-scaled TF with
decay across the entire trial up until the early lick.

Foreachearlylick trial, we then estimated whether athreshold cross-
ingof theintegrated TF had been predicted withinasecond preceding
anactual early lick onset. If this was the case, we considered the model
to have predicted the early lick time. If not, we considered the model
to not have correctly predicted that trial. We did this for all early lick
trials, using a 58 x 151 parameter space: 58 possible decay times span-
ning from 0.05 s decay time (that is, no integration) to 1,000 s decay
time (thatis, perfectintegration): (50 log-spaced decay times spanning
0.050-3s, as well as 8 additional very long decay times: 4,5, 6,7,8, 9,
20,1,000s), and 151 linearly spaced thresholds spanning [0.01-0.16].
Significance testing of best decay time across mice (thatis, larger than
nointegration (0.05 s)) was done with a ¢-test.

Wealso tested if the best-fit decay/integration time parameter esti-
mated from predicting early lick times also outperformed a model with
nointegration when predicting single-trial hit reaction times (that s,
atrial type which the parameters were not optimized on). We did this
by comparing actual and predicted reaction times per change size,
and calculated Pearson’s correlation between actual reaction times
and predicted reaction times per change size. We calculated this by
either looking at all reaction times, or only including a subset of tri-
als with reaction times under a defined value (that is, reaction-time
cut-off). Thiswas done to better detect if any of the models specifically
struggled to predict very late reaction times which may be modulated
by non-sensory factors such as such as inattention or lack of engage-
ment. Finally, for significance testing (that is, paired ¢-test) of whether
amodel with nointegration (decay time =0.05 s) versus amodel with
the best-fit decay/integration time (estimated fromearly lick trials as
described above), were significantly different at predicting single-trial
reaction times, we z-scored actual and predicted reaction times per
change size (to account for change size mean reaction-time differ-
ences), and calculated the correlation between all actual reaction times
(1sreaction-time cut-off) and all predicted reaction times of amodel
with or without integration per mouse, and performed a paired ¢-test
(across mice) of the correlation values from integration versus no
integration models.

Outlier detection agent. To test whether mice accumulate evidence
over time or merely respond to the instantaneous stimulus, we for-
mulated anullmodel where behavioural responses are produced viaa
stochasticoutlier detection strategy. Here, aninternal decision occurs
when anoisy sensory representation of the stimulus crosses a decision
boundary, and aresponse occurs after astochastic delay. The response
istriggered by asingle, instantaneous value of the stimulus. However,

owing to the stochastic delay, responses may show agradually decaying
statistical dependence on the stimulus history, and may even mimic
evidence accumulation strategies such as integration*.

Model. According to the outlier detection model, behavioural
responses are generated independently for each trial as follows. Let
s;be the stimulus amplitude (log TF) at each time point ¢;. We chose
time points to correspond with video frames of the stimulus, which
were presented at 60 Hz (3 frames per TF pulse). At each time point, a
noisy sensory representation Z;is formed as the sum of the stimulus
amplitude andindependent andidentically distributed (i.i.d.) Gaussian
sensory noise &; (with mean zero and variance ¢%):

Zi=stg

&ia N, 07

Aninternal decision to respond occurs at time D, given by the first
time point where the sensory representation exceeds a decision bound
b (or «if the bound is not crossed before the stimulus ends):

D= min{t|Z> b} U {}
The hazard function of the decision time is thus:

Hyd)= [] pZ<b) =[] m(%j

ilt;=d ilt;i<d

where @is the standard normal cumulative density function (CDF).
A motor response begins at time R, given by the decision time plus

anindependent, nonnegative stochastic delay 4 representing the dura-

tion of nondecision processes (for example, decision to motor delays):

R=D+A

The delay has ashifted log-logistic distribution with location &, scale
Bandshapey, and canbe obtained by exponentiating alogistic random
variable and then adding a constant. We constrained the location (& > 0)
and shape (y >1) to give the distribution nonnegative support and a
bump-like density that decreases onboth sides of the mode. The delay
time probability density function (PDF) and CDF are:

(45)”

p,(4) =
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_ 1
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Because the decision and delay times areindependent, the marginal
response time distribution is given by the convolution of the deci-
sion and delay time distributions. The marginal PDF and CDF of the
response time are:

P = Y. py (), (r—d)
d

Fo(r) = Y. py (@) Fy(r =)
d

where the decision time probability mass function (PMF) p, can be
computed from the hazard function H,above. Because delays are non-
negative, p,(r—d) = F,(r— d) = 0foralld > r,so the above sums need only
be computed over time steps up to the given response time.



The outlier detection model was implemented using custom Python
software using the NumPy, SciPy, and PyTorch libraries. All computa-
tionsinvolving probabilities were performedin log space, using func-
tions designed to avoid numerical under/overflow.

Fitting. A separate model was fit for each mouse in two stages. We first
fitthe delay time distribution using only trials with the largest change
magnitude, then fit the remaining decision parameters using the entire
dataset (excluding the abort trials). This two-stage approachrelies on
the assumption that delays are identically distributed across trials. In
return, itallows more direct estimation of the delay time distribution,
providing better ability to distinguish between outlier detection and
longer-timescale strategies such as integration.

For each trial i, let n® be the number of time points, s = {s{", ..., s%,
be the stimulus amplitudes, and ¢ be the time of the change point.
For trialswhere aresponse occurred, let ” be the response time, meas-
ured as the onset of facial movement (see ‘Motion onset time estima-
tion’ section) and #? be the subsequent lick time (measured at the
reward spout).

Fitting the delay time distribution. We assumed that the greatest
change magnitude (geometric mean TF 4 Hz) was large enough to trig-
ger an immediate decision at or near the change point. Under this
assumption, the delay time on large-change hit trials can be approxi-
mated by thereactiontime, which canbe directly measured as the time
elapsed between the change point and the onset of facial movement.
Thus, we fit the delay time distribution (shifted log-logistic distribu-
tion) to reaction times on large-change hit trials (denoted Ty;gp;) by
maximum likelihood, subject to the constraints described above:

z logpA(r(i)_ C(i))

i€ Thighit

max
a>0,>0,y>1

This approach is conservative for our use of outlier detectionas a
null model. If the largest changes were not immediately followed by a
decision, then delays would tend to be overestimated, causing the fit-
ted outlier detection model to display longer-timescale dependencies
that are typically associated with evidence accumulation strategies
such as integration. Thus, the risk of falsely rejecting this null model
would notincrease.

For thelargest change magnitude, miss trials predominantly reflected
task disengagement rather than typical sensory/motor delays, and were
therefore excluded when fitting the delay time distribution. According
to a hidden Markov model, disengagement was the a posteriori most
probable state for the majority of large-change miss trials (95.2% of
large-change misses were during a disengaged state).

Fitting decision parameters. The decision parameters (sensory noise
variance and decision threshold) were subsequently fit using the entire
dataset, holding the delay time distribution fixed. Here in the general
case, the decision and delay times cannot be directly observed, and
were marginalized out as latent variables. The decision parameters
were chosen to maximize the log marginal likelihood of the observed
response data:

logp,(r)+ Y log(1-Fe(t,0))

(€T miss

max )

o%b .
{€Tnonmiss

For hitand early lick trials (denoted 7, ,,miss)- the likelihood is given
by the marginal probability density of aresponse at the observed move-
ment onset time. For miss trials (denoted 7,;;;), the response time is
treated as right-censored; its precise value is unknown, but is known
to exceed the last time point in the trial. The likelihood for miss trials
isthus given by the marginal probability mass lying beyond this point.

Sampling. To statistically compare mouse behaviour to the outlier
detection nullmodel, we sampled 10,000 synthetic datasets from the
model fitted for each mouse. For every quantity of interest, the value
computed from the real data was compared to values computed from

eachsynthetic dataset, comprising 10,000 samples from the null distri-
bution. Synthetic datasets were generated for each mouse as follows.

Eachtrial used the same change point and stimulus amplitudes pre-
sented in the real data. The real stimulus ended after the lick on trials
where miceresponded, leaving unknown future values that would have
been presented had alick not occurred. Such missing stimulus values
were filled in by sampling from the same distribution used to produce
the original stimuli (independently for each synthetic dataset).

Giventhe stimulus, a decision time and delay time were sampled from
the distributions p,and p, described above. The sum of these quanti-
ties yielded a synthetic response time, representing movement onset.

To generate synthetic lick times, we assumed that the additional
delay between movement onset and licking was i.i.d. across trials.
Wetherefore sampled withreplacement from the measured movement-
to-lick delays in the real data. Synthetic lick times were obtained by
adding sampled movement-to-lick delays to synthetic movement
onset times.

Syntheticlick times were used to determine trial outcomes (hit, early
lick, miss). Each trial was classified as a: hitif the lick occurred during
the change period; early lick if the lick occurred before the change
point; or missif no lick occurred before the end of the change period.

Effect of magnitude and timing of TF pulses on probability of early
licks. For analyses of the effect of TF pulses on probability of early licks
we used the training data of the same 15 mice used for Neuropixels
recordings. Here we only used sessions where mice reached robust
proficiency of the task and were at the final training protocol (mean
of 77.5 sessions per mouse). Note that here the time of lick onset was
measured from the registration of lick by the spout as opposed to the
videography analysis on Neuropixels recording sessions elsewhere
in the manuscript. We used only trials where early licks happened at
least 2 s after the baseline onset to decrease the influence of impulsive
licks onresults.

Toempirically validate that mice use multiple pulses of sensory evi-
dence to influence their decision to lick during the baseline period,
we analysed how early lick probability is influenced by magnitudes
and timing of preceding TF pulses. First, we tested whether the devia-
tion of a single TF pulse relative to the mean baseline 1 Hz makes mice
correspondingly more or less likely to make an early lick within the
subsequent 0.2-1.0 s. For that we separated TF pulses by magnitude
(in octaves) into 15 bins such that each bin contained approximately
equal number of TF pulses. To calculate the conditional probability
of early lick at a certain time after a TF pulse of a given magnitude, we
found instances of such events (pulled across all sessions with robust
performance for each mouse) and divided them by the total amount of
early licks (Extended Data Fig. 6¢). To calculate an overall influence of
aTF pulse onearly lick probability, we summed conditional probabili-
ties within a[-1, -0.2] s window relative to early lick onset (Extended
DataFig. 6d):

-0.2
P(LITF)= Y P(L|TF(®)

=-1

which can also be written as: P(L|TF) = P, + AP(L|TF), where

-0.2
Py=Y P(L|ITF(t) =1Hz)

t=-1

Andcanbe thought asachancelevel of makingalick without a devia-
tion of stimulus TF from the mean baseline TF value.

The empirical effect of two TF pulses on lick probability was calcu-
lated from behavioural datain a similar way. To compare the measured
effect of two TF pulses with their expected effectif they influenced the
lick probability independently, we calculated their cumulative inde-
pendent effect on early lick probability based on empirically measured
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effect of a single TF pulse on early lick probability. The independent
effect of two TF pulses with a delay of At s between them can then be
written as follows:

Pod(LITF, TE,) = Py+ AP(L|IATF) + AP(L|ATFE,) — AP(L|ATF) x AP(L|ATF,)

where:

-0.2-At

Y PLITF®)-P
t=-1-At

AP(LIATE) =

-0.2
AP(LIATR) = Y P(LITF(0)) - Py

t=-1

Adeviation of lick probability after two TF pulses from the probability
predicted by theindependent effect of two TF pulses would indicate an
interactive effect between pulses, which should be expected if mice uti-
lize integration of sensory evidence. To measure the relative difference
between the behavioural result and the expected independent effect
oftwo fast TF pulses (Fig. 3d and Extended Data Fig. 6i), we calculated:

I= P(L|TEfast' TFfast) _Plnd(LlTFfast' TEfast)
Plnd(LlTFfast' TFfast)

When applying this analysis to the outlier detection agent data, we
used data only fromtrials that resulted in early licks, meaning that the
model made adecisiontoinitiate alick during the baseline period and
before the TF change epoch. For outlier detection agent model that
was fitted to a particular mouse data, we sampled the same number of
early lick trials across 4,000 synthetic datasets (see section above) as
there were present across all behavioural sessions of that mouse. The
datawasthen pulled across allmodels corresponding to different mice
and analysis steps were applied to the combined dataset as described
above for the mice data. This procedure was repeated 4,000 times to
estimate non-parametric 95% confidence intervals of results from the
outlier detection agent.

Electrophysiological recordings

Priortoacute electrophysiological recordings, we habituated mice to
the electrophysiological recording setup for 2-7 days (depending on
the performance of the mouse in the electrophysiological recording
setup), to allow mice to perform optimally during electrophysiological
recording sessions.

Surgery. Once mice were habituated to the recording setup, we impla-
nted arecording chamber with one or two 3 mm craniotomies inside,
together with a stainless-steel grounding wire in the contralateral hemi-
sphere, under 1.5% isoflurane together with administration of meloxi-
cam (5 mg kg™) and dexamethasone (2-3 mg kg™). During surgery a
kapton disk (Laser Micromachining Limited) was placed ontop of the
durainside each craniotomy. The disk had 19 holes with 0.5 mm dia-
meter, arranged inahoneycomb shape, for keeping track of probeinser-
tions. The craniotomy and disk were covered with DuraGel (Cambridge
NeuroTech) to protect the brain. A 1-2 mm tall plastic enclosure was
then positioned around craniotomies and sealed around the edges with
bone cement. Finally, we covered the plastic enclosure with aremovable
plastic cover, to create arigid physical barrier over the DuraGel sealed
craniotomy, to provide robust protection of the recording preparation
betweenrecording sessions. The mice were allowed to recover for24 h
before the first recording session took place.

Recordings. Electrophysiological data collection was done using Neu-
ropixels 1.0 probes (IMEC, Belgium) and collected with a PXI based
system (National Instruments), and saved using SpikeGLX (https://
github.com/billkarsh/SpikeGLX). For trained mice, we recorded up

to 13 sessions per mouse (167 probe insertion from 114 sessions total
(15mice)).Foruntrained mice, we recorded up to 9 sessions per mouse
(89 probe insertions from 45 sessions total (6 mice)). Probes were
dipped in CM-Dil (Sigma-Aldrich) prior to insertion. In each session,
weinserted up to 2 probes at atime. The probes were always inserted
atthe same angle within the coronal plane (10° and -15° relative to the
vertical axis) to aid subsequent histological probe tract tracing.

At the beginning of each session, we removed the plastic lid above
the recording chamber exposing the DuraGel covered craniotomy,
andinserted the probe(s) through the DuraGel using microcontrollers
(Sensapex) at 5-10 pm s™. The probe(s) was allowed to settle for 20 min,
to increase stability throughout the recording session. At the end of
the session probes were removed (at 15 um s™) and the plastic cover
over the recording chamber was reattached for protection of record-
ing preparation.

The setup for presenting stimuli and monitoring behaviour were
identical to the setups in which mice had been trained (see ‘Behav-
ioural task’).

Pre-processing and spike sorting of electrophysiological data. Elec-
trophysiological datawasfirst filtered using CatGT (https://billkarsh.
github.io/SpikeGLX/#catgt) with modified form of common average
referencing (-dlbdmx flag).

Spike sorting. We spike-sorted electrophysiological data from
each probe in each session using KiloSort2.0® (https://github.com/
MouseLand/Kilosort). For initial selection of units undergoing fur-
ther curation, we only selected units designated as ‘good’ (based on
cross-correlogram contamination) by KiloSort2.0.

Quality checks. For our electrophysiological recordings of trained
mice, we manually inspected and curated, in Phy2.0 (https://github.
com/kwikteam/phy), every unit which KiloSort2.0 had designated as
‘good’. For our recordings in trained mice this left 44,288 units to be
manually inspected and curated, and 15,406 units were kept for analysis
after manual curation. Based on the manual curation data from trained
mouse recordings (see ‘Manual curation of spike-sorted units from
trained mice’), we established a series of heuristics for creating auto-
matic curation of units (see ‘Automatic curation of spike-sorted units
from untrained mice’) and used these for recordings from untrained
mice.

Manual curation of spike-sorted units from trained mice. We manu-
allyinspected and curated all units which KiloSort2.0 had designated
asgood, based on cross-correlogram contamination. In Phy2.0, we first
inspected and merged units that clearly belonged to the same cluster,
buthad beensplitby KiloSort2.0, or split the noise from signal in units
with clearly separatable noise contamination. We then designated each
unitinto one of five categories:

(1) Perfect, or almost perfect, with no/very minimal noise, drifting,
cutting in/out for the full duration of recording.

(2) Usable and good signal with some noise that cannot be extracted
thatlasts for the full duration of the recording.

(3) Some drift, but possible physiological change in signal. Clear signal
for most of duration of the recording.

(4) Drifting/sudden loss, but otherwise usable/close to perfect. Clear
signal for over 50% of the duration of the recording but requires
only using a subset of the session.

(5) Noise/useless. Spike shape is not physiological.

Our goal was to remove from analyses units that had large contami-
nation with multi-unit activity, were not recorded throughout the full
duration of a session, or were a result of artifacts in recorded signals.
We therefore used units designated as category1-3 above for all further
analysis from trained mice.

Automatic curation of spike-sorted units from untrained mice. We
next used the manual designations of units to establish aset of criteria
forautomatic detection of units we would include with manual curation.
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Based on the manual curation dataabove we established the following
7 criteria for considering a unit good for analysis:
Firing rate criteria:

(1) Mean firing rate must be above 0.5 Hz.

(2) Rolling 20-min average firing rate cannot drop below 30% (that is,
70% drop from mean) of its mean firing rate.

(3) Rolling 10-min average firing rate cannot drop below 20% (that is,
80% drop from mean) of its mean firing rate.

(4) Rolling 5-min average firing rate cannot drop below 10% (that is,
90% drop from mean) of its mean firing rate.

(5) Inter-spike interval (ISI) violations. Absolute refractory period needs
to have <20% estimated contamination rate from other neurons
(this iswhat Kilosort2.0 calls ‘good’).

(6) Ifthere are some spikesintherefractory period, the ISl peakin the
first 5 ms cannot be within the first 2 ms.

(7) ISIhistograms cannot have sudden large spikes in their shape (that
is, peak of ISI cannot be 4 times larger than the second highest peak—
thatis usually its immediate neighbour).

These criteria selected approximately 90% of units we would have
designated with categories 1 (perfect, or almost perfect) or 2 (usable
and good signal with some noise) with manual curation, and excluded
approximately 85% we would have designated as 4 (drifting/sudden
loss) or 5 (noise) with manual curation.

This automatic selection of units was used to select units for analysis
from untrained mice recordings and yielded 6,215 units out 0f 20,292
‘good’ KiloSort2.0 units.

Clock-driftcorrection. Ashared1 Hz square wave signal was recorded
onthe clock of each headstage and National Instruments (NI) acquisi-
tion card using a SYNC option in SpikeGLX. Clock drift between spike
times from different probes and behavioural events extracted from NI
acquisition card recording was corrected post-hoc via TPrime (https://
billkarsh.github.io/SpikeGLX/#tprime) using the shared square wave
signal.

Videography

Acquisition. High-speed videography of front (100 frames s, 640 x 512
pixels) and side view (50 frames s™, 976 x 1,024 pixels) of the mouse
face wasacquired using two Chameleon3 cameras (CM3-U3-13Y3M-CS,
FLIR) with infrared illumination. The videos were acquired in an 8 bit
greyscale format. Cameras were configured to send a TTL signal to
the National Instruments PXle board at the start of exposure of every
acquired frame. These TTL signals were used to align frame times to
the time of behavioural events and spike times.

Pupil size. In order to estimate the pupil size, we trained DeepLab-
Cut®® to track the pupil size and position using videos acquired with
the side camera. The model was trained to track 12 points surround-
ing the mouse pupil. In order to assess the model performance, after
the training the model was tested on videos from sessions not used
for training. Pupil size was estimated as an area of an ellipsoidal best
fit to the tracked 12 points surrounding the pupil.

Motion energy. For calculation of motion energy, we primarily used
videos acquired with the front camerato access a finer temporal resolu-
tion (with the exception of 2 sessions where for technical reasons we
used alowerjaw ROl from side camera video). To estimate motion onset
times, we used ROI centred around the mouse’s face, though nearly
identical results were obtained with lower jaw or whisker pad ROIs
fromthe side camera (data not shown). Motion energy was defined as
asquareroot of the sum of squared frame-to-frame pixel value differ-
ences, divided by the number of pixels within the ROI.

Movement onset time estimation. In order to find the onset times
of orofacial movements, we wanted to estimate the typical noise level

of the motion energy signal and find the time points where the signal
significantly deviated from the noise-band level. As a first step, we
calculated the distribution of motion energy values in a 2-s window
centred around the lick registration times. We next fitted a mixture of
Gaussian distributions with the goal to capture both contribution of
the variance of motion energy values during the lick as well as due to
noise. The mixture of three Gaussian distributions worked well to fit
the dataacrossall sessions and mice. The threshold for the presence of
movement was defined as the mean plus two standard deviations of the
Gaussian with the lowest value of the mean from the Gaussian mixture.

Finally, to find the time of motion onset time, we looked backwards
intime from the time of lick registration by the piezo signal. The time
point preceding the first instance of motion energy going below the
threshold value defined above was considered the onset time of the
orofacial movement.

Histology

For histological identification of the location of the recording probes
and allocation of unit location in the mouse brain, we followed a pro-
tocol similar to ref. 67.

Serial 2-photon tomography for Neuropixels probe tract tracing.
Following a terminal administration of pentobarbital, mice were per-
fused with a phosphate buffer solution (PBS) followed by 4% paraform-
aldehyde (PFA) solution. We post-fixed the brain in the 4% paraformal-
dehyde foraminimum of 24 h atapproximately 5 C. Following fixation,
brains were moved to PBS for a minimum of 12 h prior to imaging.
For imaging, brains were embedded in 5% agarose gel and mounted
onto avibratome cutting stage under the microscope objective. The
brains were imaged using serial section two-photon microscopy®®.
The microscope was controlled with Scanlmage Basic (Vidrio Tech-
nologies), and custom software (BakingTray (https://github.com/
SainsburyWellcomeCentre/BakingTray)).Images were stitchedintoa
full 3D rendering of the brain using custom software (Stitchlt (https://
github.com/SainsburyWellcomeCentre/Stitchlt)). Weimaged the en-
tire brain (fromthe olfactory bulb to the beginning of the spinal cord)
with aresolution of x: approximately 2 um, y: approximately 2 pm, z:
20 pm, with @ 920 nm two-photon laser (100-150 mW power at sam-
ple). We sliced the brain in 40-pum sections, and imaged 2 z-planes
(around 25 pm and around 45 pm from the tissue surface) into the
remaining tissue following each 40-pum section. Two PMTs, one for
capturinggreen (bandpass filter ET525/50 m) and red (bandpass filter
ET570Ip) fluorescence acquired the 2 channels of data subsequently
used for analysis.

Neuropixels probe tract alignment to the Allen Common Coordi-
nate Framework atlas and estimation of unit location. Prior toimage
processing, we downsampled microscopy images to 10-pm voxels and
registered the brain to the standardized Allen Common Coordinate
Framework (Allen CCF*°) using custom software (BrainRegister (https://
github.com/stevenjwest/brainregister)). We then manually traced
each neuropixels probe tract through the brain in 3D using custom
software (Lasagna (https://github.com/SainsburyWellcomeCentre/
lasagna)). Finally, we assessed the overall firing rates and LFP spectra
ofindividual Neuropixels channels and compared it to atlas positions.
Where needed, we manually adjusted the scaling of brain regions along
the probe track to align responses on channels with features associated
with anatomical locations using custom software (Ephys alignment
tool (https://github.com/int-brain-lab/iblapps/tree/master/atlaselec-
trophysiology)”). Unit location was estimated from the location of the
channelthat had the largest absolute peak value of the mean waveform.
For all analyses, we combined units across all subdivisions of a brain
region (layers of cerebral cortex, dorsal and ventral divisions as ACAd
and ACAv and in some cases functionally similar brain regions—see
Supplementary Tables1and 2).
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Neural data analysis

Only brain regions with at least 40 units were analysed. Analyses
specific to TF-responsive units were done only for brain regions with
>10 such units. No further sample size calculations were performed.
Manual curation of units’ quality and stability was done without the
knowledge of brain regions from which recordings were made. The
subsequent analyses pipeline was applied in the same manner to data
from all applicable brain regions, but the custom nature of analyses
prevented investigators to remain blind to theidentity of brain regions
or dataset type (trained versus naive mice).

GLM of neural activity. Model. We binned neural activity in 50-ms bins
(matchingthe duration of each TF pulse) aligned to trial start. We then
fitted a Poisson generalized linear model to predict trial-to-trial neural
activity as a function of a set of temporally unfolded task-related pre-
dictors that were present during a trial. Each predictor was extended
temporally prior and/or post the timing of the predictor in 50-ms dis-
cretized steps (matching neural activity binning), withanindependent
weight estimated for each time step around the predictor. We predicted
neural activity using 19 task-related predictors:

(1) TF fluctuations during baseline period (kernel length: 0-1.5s);
(2) Trial start (0-15s); (3) Time since baseline start (from 1 s from trial
start to change onset); (4-9) Six change onsets (a separate predictor
for each change size (0-2s)); (10) Lick preparation (-1.25-0 s prior to
lick); (11) Lick execution (0-0.5 s post lick); (12) Air-puff (0-0.25s);
(13) Reward (0-0.4); (14) Abort (-1.25-0.25); (15) Phase of grating for
upwards drift (12 phase bins from 0-360°); (16) Phase of grating for
downwards drift (12 phase bins from 0-360°); (17) Video motion energy
(-0.05-0.8 s); (18) Running wheel movement (-0.05-0.8 s); (19) Pupil
diameter (-0.75-0.75s).

We fitthe model with L2 (ridge) regularization, optimized with cycli-
cal coordinate descent asimplemented in GLMnet” (a = 0). We trained
amodel foreachneuronon90% of the data, and cross-validated on10%
ofthe data, anditerated the predictions over atenfold cross-validation.
Within the training dataset we tuned the L2 regularization term using
tenfold cross-validation.

Identification of units encoding TF, lick preparatory activity and/or
lick execution activity. To identify which cells significantly responded
to a predictor of interest (that is TF fluctuations during baseline, lick
preparationepoch, or lick execution epoch), wefirst re-fitted reduced
models similar to the full model on 90% of the data, with 10-fold
cross-validation, except we removed a predictor(s) of interest: (1) For
identification of TF-responsive units, we estimated amodel where we
removed the predictor estimating the responses to TF fluctuations
during baseline. (2) For identification of units with lick preparation
activity, we estimated a model where we removed the predictor esti-
mating the activity leading up to alick. (3) For identification of units
respondingtolick execution, we estimated amodel where we removed
the predictor estimating activity during lick execution, the predictor
estimatingactivity modulation by motion energy captured by videog-
raphy, and the predictor estimating activity modulation by running
wheel movement.

For each 10% test set, for each neuron we then calculated the mean
actual peri-event time histogram (PETH) as well as the mean predicted
PETH of both the full model and the reduced model for the following
types of events: (1) —0.15t0 0.75 s around fast and slow TF pulses (that
is, TF values 0.5 s.d. from the mean TF during baseline); (2) -1.5to O s
prior to early lick onsets; and (3) O to 0.4 s post lick onset.

A unit was considered significantly encoding TF pulses during the
baseline period if two criteria were satisfied: (1) The mean Pearson’s
correlation prediction of the fullmodel (across k-folds) from the com-
bined mean fastand slow TF pulse response (that is, mean fast TF pulse
and mean slow TF pulse responses subtracted from each other) was
>0.2; and (2) if the cross-validated prediction of the TF response after

subtracting the predicted TF response of the reduced model with no
TF fluctuation predictor—thatis, residual prediction—was significant
(P<0.01(t-test), n=10independent cross-validations). A unit was con-
sidered significantly encoding lick preparation if (1) the mean Pear-
son’s correlation prediction of the full model (across k-folds) of the
mean activity leading up to a lick (-1.25 to 0 s) was >0.2; and (2) if the
cross-validated prediction of the mean activity after subtracting the
predicted meanactivity of the reduced model withno lick preparation
kernel—that is, residual prediction—was significant (P < 0.01 (¢-test),
n=10independent cross-validations). Finally, a unit was considered
significantly encoding lick execution if (1) the mean Pearson’s correla-
tion prediction of the full model (across k-folds) of the mean activity
following alick (0 to 0.25 s) was >0.2; and (2) if the cross-validated
prediction of the mean activity after subtracting the predicted mean
activity of thereduced model with no lick preparation kernel—that is,
residual prediction—was significant (P < 0.01 (t-test), n = 10 independ-
ent cross-validations).

Focality index. To assess how distributed TF encoding was across
brain areas, before and after learning, we computed a focality index
(F) (similar to Steinmetz et al.?) of the TF encoding:

) (pf,)2
(Xn)

where p, is the proportion of neurons in an area that is encoding sti-
mulus TF during the baseline period. If all TF encoding neurons were
confined to a single area, this measure would take on the value of 1.
If encoding was perfectly distributed across all areas recorded this
measure would take on the value 1/N,,.,.. Inorder to compare between
untrained and trained mice, we identified the common areas which
had more than 40 units recorded in both trained and untrained
mice. This left N=24 areas from which to estimate the focality index.
We estimated 95% confidence intervals and P values by bootstrap-
ping the neurons included in the estimation 10,000 times with
replacement.

Peak time and width of GLM estimated TF kernels for TF-responsive
neurons. Toinvestigate the peak time and width of the GLM estimated
TF kernel for assessing how sustained responses to TF fluctuations were
based on GLM weights, we firstidentified the absolute peak value of the
TF kernel; because the GLM was based on 50 ms binning of spike counts,
peak times for the GLM TF kernelwasin 50 ms resolution. In cases where
the absolute peak position within1swas anegative weight, we flipped
the kernel in order to calculate the width. We then estimated the full
width at half maximum (FWHM) of each TF kernel around its peak using
findpeaks in MATLAB. For each area, we calculated the median peak
time and median FWHM across all TF-responsive units.

Ramping differences in GLM change kernels. To test how neurons
accumulated evidence when they were presented with a rewarding
sustained change in stimulus speed, we tested how the slope of the
visual evoked ramping activity following a change onset was dependent
on the amount of evidence (change size) being presented. To isolate
the visual component of the activity following change onset, we used
the GLM kernel which fits the activity following change onset until
change offset, while linearly taking into account other variables which
may contribute to activity such as pupil size, preparatory activity and
movement-related activity (see Model).

We estimated the mean change kernel for each change size for
TF-responsive and non-TF-responsive units separately for each area.
In cases where responses to fast TF pulses were negative, we flipped
the change kernel so every unit had responses aligned to positive fast
TF pulses—this allowed the mean to capture the visual evidence activ-
ity ramp irrespective of sign. We then identified the time point for
each change size where the change kernel reached 50% of its maximum
weight (To control for noise fluctuations in kernel weights, we approxi-
mated the 50th percentile crossing by taking the meantime point of the




33.33rd percentile, 50th percentile and 66.66th percentile crossing).
We then calculated the degree to which activity ramping time scaled
with change size, by regressing the 50th percentile crossing against
change size. We estimated the non-parametric 95% confidence inter-
vals and P values of the relationship between change size and 50th
percentile crossing (that is, ramping time/change size) by bootstrap-
ping withreplacement (10,000 times) the neurons went into the mean
change kernels, and then estimating the slope of the regression for
eachbootstrapped mean change kernels.

Propagation and widening of TF pulse evoked activity. /dentification
of TF pulse outlier events. Fast TF pulse was defined as TF fluctuations
larger than1s.d. of baseline TF fluctuations (in log, scale) above the
mean TF value (TF >1.19 Hz). Similarly, slow TF pulse was defined as
TF fluctuations below 0.84 Hz.

For calculation of average response to TF outlier events, we consid-
ered only TF outlier events satisfying the following criteria:
(1) Later than1sfrom the baseline onset.
(2) Earlierthan2 s+ post pulse analysis window from the motion onset

time on early lick or abort trials.

(3) Excluding the change period plus a post pulse analysis window.

The aim of these criteria was to exclude the influence of baseline
onset, movement, or preparatory activity on the response to TF pulses.

Estimation of peak time and width of TF pulse evoked activity. For each
unit defined as TF-responsive by the GLM analysis described above,
we calculated ameanresponse to afast pulse using outlier events that
occurred during the baseline period and satisfied the criteria outlined
above. Additionally, we calculated amean response to TF pulses within
[-0.5,0.5]s.d. of the baseline TF fluctuations. The goal of this procedure
was to capture continuous ramps of activity that some units exhibited
and exclude their influence on the shape of response to a TF pulse.
We applied the subtraction of this baseline response for all TF pulse
response analysis unless explicitly stated.

Next, for the baseline subtracted mean response to a fast TF pulse,
we calculated its peak time, as the time of the largest absolute change
in firing rate within 1s from the pulse onset, and a corresponding
half-peak width.

Integration of multiple TF pulses. Because the noise in TF fluctua-
tions is random, by chance there are occurrences of two fast pulses
separated by a certain delay. To study the integration of TF pulses, we
found such instances of events where two fast pulses occurred at a
given delay between the offset of the first and the onset of the second,
additionally also satisfying the exclusion criteria outlined above. The
mean response aligned to such events was considered aresponse to a
sequence of two fast pulses.

For computing the mean response across all TF-responsive units
withinabrainregion, inorder to avoid averaging across responses with
different signs, we flipped the sign of response for units that showed
decreases in activity after a single fast pulse. For computing a z-score
of response, the mean and s.d. were estimated from 0.5 s preceding
the first pulse onset.

Facilitation by the second fast pulse. First, we measured an average
of z-scored responses across the population of TF-responsive units
within a brain region to a single fast TF pulse. We then computed the
peak value of that response (ry,,), and a corresponding peak time. To
find the size of response to a sequence of two fast pulses (ry,s), We
found atime point at the same delay from the onset of the second fast
pulse as the peak time of response to a single fast pulse and found a
peak value of response within 100 ms centred around that time point.
The relative facilitation to a sequence of fast pulses was defined as
A = [fast” Mifast

To dgftaétrminethe confidenceintervals for theresults of this analysis,
webootstrapped with replacement (2,000 times) across TF-responsive
neurons and repeated the analysis described above for each sample

of neurons. Shaded regions indicate 2.5 and 97.5 percentiles of the
resulting distribution.

Preparatory activity before the lick onset. To study change-aligned
(Fig.3) or hitlick-aligned (Fig. 5) activity, we computed z-score of mean
PETH for each unit. z-Scoring was done using the mean and s.d. esti-
mated from activity during 2 s before the change onset.

For analysis shown on Fig. 5, for each brain region the fraction of
significantly active units within a group (that is, TF-responsive) was
measured by calculating at every time point a fraction of units with
the absolute value of z-score larger than the significance threshold
of 2.576 (corresponding to P < 0.01). Additionally, we subtracted the
‘baseline’ level of activity calculated within [-2, -1.8] s before hit-lick
onset, which for afew brain regions was larger than chance level likely
due to non-normal distribution of firing rates or a small number of
events used for estimation of the mean and s.d. The confidence inter-
vals were estimated by bootstrapping with replacement (5,000 times)
across TF-responsive (or TF non-responsive) neurons and repeating the
estimation of fraction of significantly active neurons for each sample
of neurons.

The latency of activation of TF-responsive or TF non-responsive
populations was defined as the earliest time point following which
withinal00-mswindow for atleast 80 ms: (1) the lower 95% confidence
interval of fraction of active units was above zero; and (2) the mean
fraction of active units was above 0.1.

The latency of significant difference in activation between
TF-responsive and TF non-responsive populations was estimated as
the first time point where within a100-ms window for at least 80 ms
the confidenceintervals of the differenceinactivation were above zero.

The latency of significant difference in activation across all unitsin
each brain region (Extended Data Fig. 9a) was estimated as the first
time point where withina100-mswindow: (1) the lower 95% confidence
interval of fraction of active units was above zero; and (2) the mean
fraction of active units was above 0.05.

Intrinsic timescales. We binned the neural activity into 50-ms bins
(same binning was used in ref. 23). We then calculated the temporal
autocorrelation (20 lags=1s) of spike counts using Pearson’s correla-
tionin the inter-trial intervals between —2.5 s to —0.5 s prior to trial
onset for each neuron (in this period mice were seeing a grey screen,
and trained mice had to remain stationary for at least 3 s for the trial
tobegin).

Todetermine theintrinsic timescale for each area, we fit an exponen-
tial decay function to the meanautocorrelation function of all the units
recorded inthe area. For single-neuron analysis of relationship between
intrinsic timescales and TF width, we estimated the autocorrelation for
each TF-responsive neuron separately. For areas or neurons with auto-
correlation functions with non-monotonic decay, we fit the exponential
decay from the part of the autocorrelation where monotonic decay was
happening (in a subset of areas this would mean offsetting the fit 1-3
time bins). Finally, we calculated the 7 (that is, the intrinsic timescale
value) of the exponential decay (accounting for offset where necessary).

Population analysis

Similarity of TF pulse responses and lick preparation activity in
TF-responsive populations. We assessed the similarity of TF responses
and lick preparationactivity across TF-responsive populationsineach
areaby estimating the Pearson’s correlation of mean firing rates (within
a50-ms window around the mean activity peak time across neurons
within the each area) following fast TF pulses (that is, >1s.d. TF value)
andtheir meanactivity prior toearly lick[-0.3 to O s] (after normalizing
firing rates by subtracting baseline firing rates fromboth TF responses
and lick preparation activity). We estimated the non-parametric 95%
confidenceintervals and Pvalues by bootstrapping with replacement
(10,000 times) the neurons going into the correlation.
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Pre-processing steps. For allunits located withinagivenbrainregion,
but not necessary simultaneously recorded, we first computed the
mean neural responses across a given trial type (for results shown on
Fig. 6b-h: hit trials during weak TF changes (1.25 and 1.35 Hz) aligned
tothelick onset times, [-2,1.5] s time window). Only trials with hit-lick
onset times larger or equal 0.4 s from change onset were used. Neurons
fromsessions with less than10 trials of agiventype were excluded from
this analysis. Firing rates were calculated as spike counts averaged in
10 ms bins and smoothened by convolution with two-sided Gaussian
with 30 mss.d. The mean neural responses were combined into afiring
rate matrix (but also see cross-validation section) with dimensions of
Neurons x Time.

Neural datawas pre-processed in the following way: first, to limit the
dominantinfluence of high-firing units, we applied soft-normalization
toeachneuron’sfiringrate, such thatthe neurons with strongresponses
had close to unity range of responses r/ = m The cons-
tant 7 was chosen as the roughly 20th percentile value of the firing
rate range across all units. Second, the neural responses were mean-
centred by subtracting the mean of each neuron’s activity across time
and the mean activity across all neurons at every time point.

Definitions of movement and movement-null subspaces. We used the
approachfirst utilized inref. 33. There, the authors formalized amethod
to find alinear mapping between low-dimensional representation
of activity in PMd/M1 and the muscles EMG data, which defines a
movement subspace. A null-space relative to that subspace forms
an orthogonal set of dimensions which activity can occupy without
directly affecting the movement execution. To extend this analysis
on our data, we used combined recordings of orofacial motor and
premotor nuclei (V, IRN, SPVI and SPVO) as a proxy for activity of
orofacial muscles involved in execution of a lick. While recordings
from GRN could have also been included into this group, we kept
it separate to allow the population analysis to be applied to that
region because (1) we had a large number of units recorded from
that region alone; and (2) it was the only nucleus in medulla with
above-chance number of TF-responsive units, warranting a separate
analysis.

We considered a possible mapping onto the movement subspace
for each brain region. Our rationale was the following: there exist
several parallel neural pathways that candrive the activity of orofacial
nuclei neurons—from primary motor cortex, basal ganglia, cerebellar
or midbrain output regions***’2, Thus, the modes of activity within
theseregions that map onto the movement subspace may have a causal
role for the execution of licks. In general, however, these signals can
also be caused by movement afference that is broadcasted globally***
(Fig. 1k,1). Itis impossible to differentiate between these two pos-
sibilities from our data alone and thus the existence of mapping of
activity onto the movement subspace does not necessarily imply that
the brainregionis causally involved in execution of the lick. With that
said, we did not find a good mapping onto amovement subspace for
most of the early visual areas, olfactory regions and hippocampal
input regions (Extended Data Fig. 10a), suggesting that existence
of mapping onto the movement subspace is not possible across all
brain regions.

The mapping onto movement subspace was defined as:

M=WN @

where M and N are low-dimensional representations of activity (pro-
jections onto main the principal components, the latter found via svd
Matlab function) of neurons within the orofacial nuclei group and the
target brain region, respectively, and Wis a linear mapping operator
onto the movement subspace.

Before finding a linear mapping, we also zeroed the initial state
across projections on principal components by subtracting fromeach

projection the mean value within [-2,-1.5] s from lick onset. This step
avoided the need for usinginterceptinthe linear fit and simplified the
visualization of projections on principal components and movement/
movement-null dimensions. Linear mapping was found using only
the time-period containing movement-related activity of orofacial
nuclei [-0.1, 1.5] s around lick onset. This way we did not preclude
the presence of preparatory activity on movement dimensions from
the definition of the linear fit itself. A linear mapping to movement
dimensions was found using linear regression with the Matlab func-
tion Isqnonlin.

Correspondingly, W, was a null-space of Wand was found using
the Matlab function null. We used two top principal components of
orofacial nucleiactivity (which captured 61% of the total cross-validated
variance; Extended Data Fig. 10a,b) and 4 top principal components
of activity in a target brain region to find Wand W, operators (see
Extended DataFig.10b-d). This choice resulted inboth movement and
movement-null subspaces being two-dimensional. We additionally
ensured that norms of these operator are equal || W, /| = [|W||in order
to make the comparison between the movement and movement-null
subspaces fair.

Since the definition of specific dimensions in movement-null sub-
space is to a degree arbitrary, we defined the first movement-null
dimension by finding a rotation within the movement-null subspace
that maximized the amount of variance captured by that dimension
prior to lick onset. The second movement-null dimension was then
simply orthogonal to the first dimension in movement-null subspace.
Thiswas used mainly to simplify visualization, with all subspace-related
analyses done using both dimensions in each subspace.

The positive direction of movement dimensions was chosen
such that the mean value of projection of orofacial nuclei activity
within [-2, 0.5] s around lick onset was positive. The positive direc-
tion for movement-null dimensions was chosen such that the mean
value of projection of activity within [-2, 0] s around lick onset was
positive.

Subspace occupancy. Relative subspace occupancy at amoment of
time t was defined as

OR(t) _ Enull(t) _ Em(t)
Enull(t) +Em(t)

where E;(¢) and E,,(¢) are Euclidean distances within movement-null
and movement subspaces, measured between the neural state at the
currentmoment of time t and the initial time point (the mean across 2
and 1.5 sbefore thelick onset). Values close to zero signify equal occu-
pancy between subspaces and positive values indicate a preferential
occupancy of the movement-null subspace. The peak-normalized
occupancy (Extended Data Fig. 11a,b) was defined as O(¢) = %?E)
Decomposition of projections onto contributions from TF-responsive
and TF non-responsive units. We decomposed the projections on main
principal components into asum of contributions from TF-responsive
and the TF non-responsive units. For that, we used the knowledge
of identity of each unit as TF-responsive or TF non-responsive and
wrote down the principal components U (from the singular value
decomposition (SVD) of the firing rate matrix N = USV") as a sum of two
parts as:

vevn| UiSTFunit ) _( 0,icTFunit @
7T 0,ienon TFunits) ™" |U,i<non TF units

where U, is aloading of the ith unit.
With that, projections on principal components can be written as:

N=UN=UYN+ Uy TF N=Nrp+ Ny, TF (3)



Substituting equation (3) into equation (1) gives projections onto
movement dimensions as:

v Fymov

N™ =WN=N7t" +N,q, TF™

and, correspondingly, projections on movement-null dimensions are
written as:

~null _ ~null

N = nulllv:NTF +}Vnon TF™!

The relative contribution of TF-responsive units within movement
and movement-null subspaces at the moment of time t was then defined
as following;:

wmov(t)zNTF () xN i ® N:mov(t)
N @)l IVl
~null ~null ~null
wnu]l(t) = NTF f_?unN 2 (t) x ﬁnu"(t)
NI IN"(0)]

where the second multiplicative term ensures that the sign of con-
tributionis relative to the defined positive direction (see above) of
dimensions within each subspace.

In order to test whether the contribution of TF-responsive units is
larger than what is expected from a uniform contribution of the full
population, we repeatedly randomly selected (2,000 times) the same
number of units asthere were TF-responsive ones from the whole popu-
lation and computed their contribution to projections on movement
and movement-null dimensions as described above.

In addition to the analysis described above, we have also checked
whether the above-chance contribution of TF-responsive units is a
consequence of their level of activity, despite the normalization method
thatweused, or doesitreflectabetter correspondence of their activity
to the population modes of activity within the movement-null sub-
space. For that we looked at the distribution of loadings along the first
movement-null dimension-that captured the majority of prepara-
tory activity there. We found that the majority of brain regions where
TF-responsive units had above-chance contribution to the preparatory
activity also had larger absolute values of loadings along that dimension
than the rest of the population (Extended Data Fig. 11d,e).

Cross-validation. Since our analyses were focused on characterizing
the mean neural responses, the cross-validation procedure that we used
was designed to test the stability of the mean neural responses and their
corresponding low-dimensional representations across trials. For that,
we split trialsinto two randomly assigned and equally sized groups (fit
andtest trials) and calculated the mean neural response per unit across
eachgroup of'trials. We next combined firing rates of neurons from the
same brain region(s) (but not necessarily simultaneously recorded) into
ajoint matrix. After applying the pre-processing steps outlined above,
we had two firing rate matrices from fit and test trials.

For cross-validated PCA (Extended Data Fig.10a), we applied SVD on
thefirst (fit) matrix and measured how well the remaining (test) matrix
is predicted by the reconstruction from SVD components found from
the first matrix. Similarly, the projections of activity on main principal
components (Extended Data Fig. 13) were done using the test data,
projected onto principal components found from the fit data.

For further analyses utilizing movement and movement-null sub-
spaces, we applied SVD separately on each matrix and found their
projections on first four main principal components. We then used
low-dimensional representation of fit trials datato find linear mapping
Wand W, onto the movement and moment-null subspaces. Finally,
we applied Wand W, found from the fit data to the low-dimensional
representation of the test data. This procedure was repeated 2,000
times, the 95% confidenceintervals showninFig. 6 illustrate the 2.5and

97.5 percentiles across projections of the test data. Because the sign
of projection is arbitrary defined, we additionally applied a potential
flipping of the sign of eigenvectors from each draw based on which
direction had better alignment with the eigenvectors computed from
the full firing rate matrix without the splitinto fit and test trials.

Responses to TF pulses. For each brain region, we constructed afiring
rate matrix of all units responses to afast TF pulse (or concatenatingin
timeresponses of each unit to different types of TF pulses for analysis
showninFig. 6i,k-m), and used the same pre-processing steps as des-
cribed above. The projections onto the movement and movement-null
dimensions were done using loadings found from the analysis of hit
licks activity described above (using the full firing rate matrix of hit-lick
responses without the splitinto fitand test trials). Cross-validation of
consistency of projections was done by randomly selecting half of TF
outlier events, computing the mean firing rate across those events
for each unit, applying the steps above to find the projections, and
repeating this procedure 2,000 times. For analyses where different
brainregions were combined intoacommongroup, all units from those
brain regions were combined into a joined firing rate matrix and the
steps described above were applied.

Alignment of fast TF pulse response with agiven dimensionin move-
ment or movement-null subspace was calculated asacosine of anangle
between the projection onto a target dimension and a 4-dimensional
vector of TF pulse response (2 movement and 2 movement-null dimen-
sions) at a time of the maximum Euclidean distance from the initial
state across 4 dimensions within a 0.75-s window from the pulse onset.
Similarly, for calculating the scaling of responses to different TF pulses
along the first movement-null dimension, we found the sizes of pro-
jections at times of maximal Euclidean distance from the initial state
within a 0.75-s window from the first TF pulse onset.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.
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Extended DataFig.1|Summary of recordingsin trained mice.a, Number of cellsrecorded from trained mice in each Allen Brain Atlas designated region.
b-f, Locations of all well-isolated and stable units, shown withina3D rendering of Allen Common Coordinate Framework from five perspectives.
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g,GLM predictions on example neuronrecorded in SCs. Top: GLM kernels
which the predictions are made from. Bottom:Real vs full GLM predicted vs
reduced GLM (withoutkey predictorinmodel) PSTHs. h, Mean TF kernels
acrossallareas with10 or more TF-responsive units recorded (for averaging
kernels are flipped when needed to always have a positive response). i, Mean
lick preparation and lick execution kernels across all areas with 10 or more lick
preparation neurons responsive units recorded (for averaging kernels are
flipped when needed to always have a positive response).

Extended DataFig. 2| GLM Performance. a, Schematic of Poisson GLM.

b, Cross-validated model prediction performance of single trial spike counts with
full GLM model (r). ¢, Cross-validated model prediction performance of mean
PSTH following fastand slow pulses (r). d, Cross-validated model prediction
performance of mean PSTH leading up to anearly lick (Lick preparation) (r).

e, Cross-validated model prediction performance of mean PSTH after early lick
(Lick execution) (r).f, GLM predictions on example neuronrecorded in MOs.
Top: GLM kernels which the predictions are made from. Bottom:Real vs full
GLM predicted vs reduced GLM (withoutkey predictorin model) PSTHs.
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Extended DataFig. 3| Encoding of temporal frequency fluctuations, lick
preparation and lick execution across brainareas. a-c, Percentage of units
encodingtemporal frequency fluctuations during baseline, lick preparation,
or lickexecution in major area groupings with 95% binomial confidence

intervals. a, Percentage lick execution units: Allareas: p < 0.001 (Binomial test).

b, Percentage lick preparation units: Early visual, Higher visual, Basal ganglia,
Frontal cortex, Olfactory nuclei (OLF), Thalamus, Midbrain, Hippocampus,

Cerebellum, Lateral hypothalamus (LHA), GRN (Medulla*), Medulla: p < 0.001
(Binomial test), Medulla: p < 0.01 (Binomial test). ¢, Percentage TF Responsive

units: Early visual, Higher visual, Basal ganglia, Frontal cortex, Thalamus,
Midbrain, Hippocampus, Cerebellum, GRN (Medulla*): p < 0.001 (Binomial
test), Olfactory nuclei (OLF), Lateral hypothalamus (LHA), and Medulla:
p>0.05 (Binomial test). Error barsin panels a-c are 95% binomial confidence
intervals. Red areas designate chancelevel. See Supplementary Table 1for n of
eachbrainareagrouping.d, Percentage overlap ofencoding (estimated from
GLM) of TF, lick preparation, and lick execution, in all areas with more than 40
unitsrecorded. y-axisis the source population (i.e., all TF responsive neurons,
alllick preparation neurons, or all lick execution neurons).
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Extended DataFig.4 |Responses of TF responsive neurons across thebrain
tofastorslow TF pulses and early licks. Activity (z-scored) of individual
neurons around fast TF pulses (left), slow TF pulses (middle) and early licks

(right) for all TF responsive units from all areas with 10 or more TF responsive
unitsrecorded. Major subdivisions of the brain grouped by colour. Each line
represents one neuron.
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Extended DataFig. 5| Properties of responses to asingle fast TF pulse
from PSTHs and GLM + Relative facilitation by the second fast TF pulse
asafunction of delay fromthe first one. a-d, Comparison of peak time and

response width of PSTHs following a fast TF pulse vs GLM TF kernels. a, Median
peak time of responsetoafast TF pulse estimated from PSTH (red) and median

peak time of GLM TF kernel (blue), shown for each brainregion. b, Correlation
across brainregions between median peak time estimated from PSTH and
median peak time of GLM TF kernel. c-d, Same as a-b, but for fast TF pulse

response half-peak width. e, Relative facilitation by the second fast TF pulse,
normalized by the response to asingle fast TF pulse, shown as a function of
delay between two fast TF pulses for each brainregion with atleast 10 TF

responsive units (mean and 95% confidence intervals, bootstrap test
(see Methods)). Values close to zero imply no facilitation (same size of response

tothesecond fast TF pulse as to the first one), while values close to100% imply
doubling of theresponse size.
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Extended DataFig. 6 | Effect of magnitude and timing of TF pulses on
probability of early licks. a, Mean performance (psychometric curves) for
mice data (dashed blackline, n =15mice) and outlier detection agent (purple).
b, Meanreaction times per change magnitude for outlier detection agent
(purple) and mice data (dashed black line, n =15 mice). Error barsindicate

95% confidence intervals across 4000 synthetic datasets of the model

(see Methods). ¢, Conditional probability of early lick at a specific time aftera
TF pulse of given magnitude. Here and later early lick probability is shown
relative to the probability at the mean baseline TF (1Hz). d, Probability of early
lick after a TF pulse of given magnitude (here and later cumulatively within
[0.2,1]swindow). Mice datais showninblack, outlier detection agent - in
purple (mean and non-parametric 95% confidence intervals, see Methods).

e, Upper panel: probability of early lick after two sequential TF pulses of given
magnitudes; middle panel: expected effectif both pulsesinfluence early lick
probability independently; lower panel: difference from the independent
effect of TF pulses. f-g, The same formatasin e, but for two TF pulses with

100 msor 500 ms delay between them. h, The same formatasin ¢, but shown
for datagenerated by the outlier detection agent (for two sequential TF pulses).
i, Differencein probability of early lick relative to the independent effect
afterasequence of two fast TF pulses (top right cornerinlower panels e-g),
normalized by the expected probability from the effect ofindependent pulses
and shown as afunction of delay between fast TF pulses. The results of the same
analysisapplied tothe outlier detectionagent dataare shownin purple (mean
and non-parametric 95% confidenceintervals, see Methods).



Article

a b 0.05 Parameter search 16 [ 01 d o5
0.08 : @ o
= MM 0.14 s = Model detected licks 5 .
=Y B Model undetected licks S04
, I Zo2s s SO - .
g Maky integration > 0.37 s £03
) o c 0.0 = -
23 bk °% 5 Fosl
T 8 .
@ > Threshold g g § 0.2 .
g el 2 0 g :
=8 8 & £ 01
52 — Predicted 20 ) I R, .
i% ° Time lick time 002 006 01 0 0.0‘_,2 75 I 05 0 2 o No integration
Threshold Time from lick (s)
€ 0.8 Mouse 12 500 f 0.5, Mouse 12 - 500 g . No Integration
° : 2 ck
400 = x©
506 00 £ *2%3
& 04 300 300 12 gz
o 0 @ With integration § 5
g | 200 200 B 4 0125
€02 . . g 2 e5
- . 100 100 5,15 ‘S 5
" 1.25Hz, r=0.34§§ Trial 1.35 Hz, r = 0.37 { Tyial Hg 0"
00 0.5 1 1.5 2 number 00 0.5 1 15 2 number 0.5 1 15 2
Real RT(s) Real RT(s) Cutoff (s)
h ke i j@ m w/o integration |w/ integration
03 , 05 5 035 2
= ) =
s H 204 5
$3 S B 03
2202 . c 03 2
g7y 4, 8% 2
s g H 202 r 0.25 20
So01 ¢+ 3 8 < 5 4Hz
TS0l s ] & 2
° 5 c 01 @ 02 124 2 Hz
83 i g , E ° 1.5 Hz
L = g o5 T 15[ 1.35Hz
-0.1 2 1.25Hz
s = Y5 E 2 3 4 2
= = Change Size (Hz) z
2 2 k- 1 - £ 10 L
z z b © 20| w/integration s
) <= 125 22 2
Z £ 0 o 15 @
s ] 5
8 g1
o o
z z
s 2 .
-
® 4 o5 0 o5 2 4 o5 0 05
Time from change (s) Time from change (s)
n Individual areas
i
2

o8B

°

w8500

oo

o8B0

oo

Change Size (Octaves)

ouBBBo  nuBBo

8%

=

15 05
Time from change (sec)

Ao Large area groupings
®

4 @

3 03 2 - - S o3 . 8
8 32 3 > 98 -
3] 85% 2> 05 S
(A s ] <
o o 05 1 15t [ 05 1 1 5u9.
7] 2]

g4l - > gl 2 o
205 o} uiss‘ o
s 3 5 2

(s} 0 05 1 1 5~:I—: 05 1 15

Extended DataFig.7|See next page for caption.

Time from change (sec)



Extended DataFig.7|Asimple two parameter leaky integrator model
supportsbehavioural evidenceintegration + GLM changekernels across
individual areasand large area groupings. a, Schematic of the leaky-
integrator model. b, Parameter search grid identifying which values the
integration time and threshold best predicts early licks (i.e., correct predictions
of earlylick times (on single trials). ¢, Lick triggered stimulus average of early
licks detected by the leaky integrator model, and early licks not detected by
themodel.d, Best-fitintegration decay time of leaky-integrator model, shown
per mouse (black dots) and mean across animals (n=15mice, error baris 95%
confidenceintervals).***p < 0.001, two sided t-test. e, Relationship between
realreactiontime and predicted reaction time from leaky integrator model
(tau: 0.25s) for change size 1.25 Hz of example mouse 12. Correlationis calculated
acrossallreaction times. f, Same as fbut for change size 1.35 Hz. g, Correlation
betweenobserved and predicted reaction times during the change period

for outlier detection agent (no integration, top) and leaky-integrator model
(bottom). Threshold parameters corresponding to best-fit were used for
eachmodel. The colour along each row corresponds to the correlation value

between predicted hitlick reaction times and actual hitlick reaction times on
trials with that change magnitude, conditioned by the maximum RTincluded
for this analysis (cutofftime). h, Summary of panel g with results shown per
mouse and RT combined across all change magnitudes (RT cutoffequal to
1second from change onset).n=15mice, ***p <0.001, two sided t-test. i, Mean
decision value (integrated TF) after filtering stimulus though aleaky integrator
modelwithatauof0.25s.j, Meanreaction time curve for leaky integrator model.
k, Example trials around change onset when model has no integration. Note the
similarity to change kernels of TF responsive unitsin the SCsin Fig 31.1, Example
trials around change onset when model has leaky integration (0.25 s tau). Note
the similarity to change kernels of to TF responsive units in the MOs in Fig 31.

m, Leaky evidence integration smooths and denoises the noisy sensory input
so that the signal-to-noise ratio (5/0) is considerably larger 0.5 s after change
onset, compared to nointegration-- making detection of noisy changes easier.
n, Changessize specific GLM change kernels for all areas recorded with 10 or
more TF responsive units. 0, Change size specific change kernels for major area
groupings. Dotted lineindicates the 50% response crossing for each change size.
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Extended DataFig. 8 |Intrinsic vs learned TF pulse response properties.
a, Percentage of units encoding temporal frequency fluctuation during
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and trained mice. Stars designate significance of difference (binomial test) in
fractions between naive and trained mice: n.s.:Not significant, ** p < 0.01,
***p < 0.001, binomial tests. Error bars are 95% binomial confidence intervals.
OLF: Olfactory nuclei, Ctx: Cortex.See Supplementary Table1for nof each
brainareagrouping.b, Intrinsic timescales (tau) estimated foreach TF
responsive unitacross the brain vs the TF response width for those units.
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level (p > 0.05, Pearson correlation, p-value isbased on t-statistic). c, Same as in
abutwithunits divided into major areagroups. No area group has significant
correlationbetweenintrinsic times scales and TF response width at asingle cell
level (p > 0.05, Pearson correlation, p-value is based on t-statistic).d, Same as
Fig.4g, but here areal intrinsic time scaleis extracted from TF responsive units
only.Inagreement with Fig.4g, thereis no correlation (Pearson correlation,
p-valueisbased on t-statistic) between areal intrinsic timescalesand median TF
response width. e, intrinsic timescales of TF responsive units are similar to the
intrinsic timescales as areas as awhole (Pearson correlation, p-valueisbased

on t-statistic).
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Extended DataFig. 9| Differencesin timing of preparatory activity
between TF responsive and TF non-responsive populations. a, Fraction of
active units (combined across TF responsive and TF non-responsive units) asa
function of time from the hitlick onset, shown across brain regions. Shades of
redindicate ahigherlevel of activity. Time points with lower 95% confidence
interval (bootstrap test, see Methods) smaller than zero are shown as white.
Brainregions aresorted accordingto the time of the first significant activation
(blueline, see Methods). Black line shows the time of first significant activation
using the same criterion as for Fig. 5f,g. b, Difference in onsets of preparatory
activity across TF responsive and TF non-responsive subpopulations. Positive
valuesindicate that TF responsive subpopulation hasanearlier preparatory
activity. Significant differences from zero are indicated by number of stars

and areashadedingreyindicates 95% confidenceintervals (bootstrap test,
seeMethods).*p <0.05,**p<0.01,***p <0.001.c, Differenceinlevels of
activity between TF responsive and TF non-responsive subpopulations within
eachbrainregion.Shades of red indicate a higher level of activity across TF
responsive subpopulation. Time points with non-significant differences
(p=0.05,bootstrap test) inactivity are shown as white. Brain regions are sorted
accordingto thelatency of the first significant difference inactivation between
TF responsive and non-responsive subpopulations (blackline).d, Pearson
correlation (p-valueis based on t-statistic) across brain regions between the
latency of the first significant difference inactivation between TF responsive
and TF non-responsive subpopulations and the median half-peak width of
responsetoafastpulse.
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Extended DataFig.10 | Definition of movement and movement-null
subspaces. a, Cross-validated cumulative R-squared coefficient of activity
aligned to the hitlick onset shown across first six principal components for
eachbrainregion. Brainregions are sorted by the maximum cumulative
R-squared value. b, Projections onto first four principal components of
orofacial nucleiactivity aligned to the hitlick onset. Projections on the first
two principal components define the temporal profiles of activity within the
two-dimensional movement subspace. The amount of cross-validated variance
(average across draws) captured by each principal componentisindicated on

each panel. ¢, Projections of MOs activity (orange) aligned to the hitlick onset
onto two movement (top) and two movement-null (bottom) dimensions.
Projections of orofacial nuclei activity onto movement dimensions are shown
inbrown.d, Average cross-validated R-squared coefficient of mapping onto
themovement subspace, with brain regions ordered from the best to worst
mappingaccuracy. The minimal value of R-squared coefficient for abrain
region tobe considered to have agood mapping ontoamovement subspace
isshownasadashedredline (0.8).Inall panels shaded regions indicate
non-parametric 95% confidenceintervals (see Methods).
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Extended DataFig.11|Occupancy of movement and movement-null

TF non-responsive units  §

-log,, of p value

Time from lick onset (s)

absolute values of loadings along the first movement-null dimension that

subspaces and contribution of TF-responsive subpopulation within them.
a, Peak-normalized occupancy of movement subspace as a function of time for
eachbrainregion, relative to the hitlick onset time. Here and on panelsb,c the
order of brainregionsis the same as on Fig. 6f. b, Peak-normalized occupancy of
movement-null subspace as afunction of time for each brainregion. ¢, Average
time of the peak occupancy within the movement-null subspace (greenline),
shown foreachbrainregion. Shadingindicates 95% confidenceintervals.

d, Distribution of loadings values along the first movement-null dimension

that correspond to TF responsive (blue) and TF non-responsive (black) units
inMOs. e, Minus log of p-value (blue line) for a paired 2-sided t-test between

correspondto TF responsive and TF non-responsive units. Dashed grey line
indicates p=0.05level.c,Related to Fig. 6h. Comparison (Wilcoxon signed-rank
test) of half-peak width of response to fast TF pulse betweenbrainregions
thathad adisproportionate contribution of TF responsive subpopulation to
preparatory activity inmovement-null subspace (left bar,n =16 brain regions)
and therest of brainregions (right bar, n =12 brainregions). Barsindicate the
mean acrossbrainregions, error bars - 95% confidence intervals of the mean
(bootstrap test,2000 times). f, Relative contribution of TF responsive
subpopulationwithin the movement subspace as afunction of time for each
brainregion. Brainregions areshownin the same order as on Fig. 6h.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|Z| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Data collection: SpikeGLX (v20221212-phase30) was used for extracellular recordings as well as for recordings of behavioral
signals and timing of behavioral events. Video acquisition was done via-custom made Matlab (2021a) scripts available at https://github.com/
BasellLaserMouse/Khilkevich_Lohse 2024
link

Data analysis Spike-sorting was done with Kilosort 2.0 and units classified as “good” were further either manually curated using Phy2.0 (for trained mice
dataset) or with custom filtering steps that were designed to approximate the results of manual curation (on naive mice dataset). Pupil size
was estimated using DeeplabCut. Registration of 3d stack of histological images to the standardized Allen Common Coordinate Framework
(Allen CCF) was done with BrainRegister (https://github.com/stevenjwest/brainregister). Neuropixels probe tracts were manually traced using
custom software (Lasagna, https://github.com/SainsburyWellcomeCentre/lasagna). Where needed, we manually adjusted the scaling of brain
regions along the probe track to align responses on channels with features associated with anatomical locations using custom software (Ephys
alignment tool, https://github.com/int-brain-lab/iblapps/tree/master/atlaselectrophysiology

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Datasets used: Allen Common Coordinate Framework Atlas. Due to large size and complexity of the data, it will be available upon request from
corresponding authors.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or  N/A
other socially relevant

groupings

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Only brain regions with at least 40 units were analyzed. Analyses specific to TF-responsive units were done only for brain
regions with > 10 of such units. No further sample size calculations were performed.

Data exclusions  Data excluded if mice did not perform well after a recording chamber implant (1 mouse excluded)
Data Table 1). Experiments were independently performed by A.K. and M.L.

Replication For vast majority of brain regions, recordings were pulled across multiple recordings sessions from multiple mice (see Extended
Data Table 1). Experiments were independently performed by A.K. and M.L.

Randomization  Trials with different change sizes were randomly interleaved. Change times were were drawn from two distributions in blocks of
30 correct trials: 3-8 seconds, and 10.5-15.5 seconds.

Blinding Curation of units quality and stability was done without the knowledge from which brain regions the recordings were done.

Though the subsequent analyses pipeline was applied in the same manner to data from all applicable brain regions, the custom
nature of analyses prevented investigators to remain blind to the identity of brain regions or dataset type (trained vs. naive mice).

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
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Research sample

Sampling strategy

Data collection

Timing

Data exclusions

Non-participation

Randomization

information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

Reproducibility

Randomization

Blinding

Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Describe the data collection procedure, including who recorded the data and how.
Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your studly.

Did the study involve field work? |:| Yes |:| No

Field work, collection and transport

Field conditions

Location

Access & import/export

Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
the date of issue, and any identifying information).
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Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study

Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry

Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Animals and other organisms
Clinical data
Dual use research of concern

Plants

XXXOXNXX s
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Antibodies

Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines | Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.




Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Mice of C57BL6 background, see manuscript methods for further information
Wild animals No wild animals were used in the study
Reporting on sex Male mice were used in the study

Field-collected samples  No field-collected samples were used in the study

Ethics oversight All experiments were performed under the UK Animals (Scientific Procedures) Act of 1986 (PPL: PD867676F) following
local ethical approval by the Sainsbury Wellcome Centre Animal Welfare Ethical Review Body
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Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

No | Yes
|:| Public health

L]
|:| |:| National security

|:| |:| Crops and/or livestock
[

|:| Ecosystems
|:| Any other significant area

[

Experiments of concern

Does the work involve any of these experiments of concern:
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Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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Any other potentially harmful combination of experiments and agents




Plants

Seed stocks

Novel plant genotypes

Authentication

ChlP-seq

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied: ) )
DPescribe-any-atithentication-proceduresforeach-seed-stock-tised-ornovel-genotype-generated—Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links

For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,

May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session
(e.g. UCSC)

Methodology

Replicates

Sequencing depth
Antibodies
Peak calling parameters

Data quality

Software

Flow Cytometry

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
enable peer review. Write "no longer applicable" for "Final submission" documents.

Describe the experimental replicates, specifying number, type and replicate agreement.

Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.

Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and
lot number.

Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
used.

Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community
repository, provide accession details.

Plots
Confirm that:

|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation
Instrument

Software

Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Identify the instrument used for data collection, specifying make and model number.

Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.
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Cell population abundance

Gating strategy

Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design
Design type

Design specifications

Indicate task or resting state; event-related or block design.

Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used

Acquisition
Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI [ ] used

Preprocessing

Preprocessing software
Normalization
Normalization template
Noise and artifact removal

Volume censoring

to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).

Specify: functional, structural, diffusion, perfusion.
Specify in Tesla

Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

D Not used

Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings

Effect(s) tested

Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether

ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based [ ] Both

Statistic type for inference

(See Eklund et al. 2016)

Correction

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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