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Extracting the underlying temporal structure of experience is afundamental aspect
oflearning and memory that allows us to predict what is likely to happen next. Current
knowledge about the neural underpinnings of this cognitive process in humans stems
from functional neuroimaging research’>. As these methods lack direct access to the
neuronal level, it remains unknown how this process is computed by neuronsin the

human brain. Here we record from single neurons in individuals who have been
implanted with intracranial electrodes for clinical reasons, and show that human
hippocampal and entorhinal neurons gradually modify their activity to encode the
temporal structure of acompleximage presentation sequence. This representation
was formed rapidly, without providing specific instructions to the participants, and
persisted when the prescribed experience was no longer present. Furthermore, the
structure recovered from the population activity of hippocampal-entorhinal neurons
closely resembled the structural graph defining the sequence, but at the same time,
also reflected the probability of upcoming stimuli. Finally, learning of the sequence
graph was related to spontaneous, time-compressed replay of individual neurons’
activity corresponding to previously experienced graph trajectories. These findings
demonstrate that neuronsin the hippocampus and entorhinal cortex integrate the
‘what’ and ‘when’ information to extract durable and predictive representations of the
temporal structure of human experience.

Extracting temporal patterns of recurring events is fundamentally
important for organizinginformationin memory, predicting the future
and guiding flexible behaviours®’. How this process is carried out by
neurons in the human brain remains unknown. Studies on spatial
navigation provide some important clues, as moving through space
essentially corresponds to a sequence of visiting locations charac-
terized by specific neuronal signatures. A ‘cognitive map’ of the spa-
tial environment is encoded by a range of interacting neuron types,
including hippocampal ‘place cells’ that fire when the animal is ata
specific location®’ and entorhinal ‘grid cells’ that provide a metric of
spatial distance'®". Remarkably, the brain uses similar neural prin-
ciples to represent non-spatial features, such as sound frequency®,
object characteristics®, abstract space! and time!>°. This cogni-
tive map is predictive, in that it informs about future states that the
agent is likely to experience”?°, The fact that hippocampal-entorhi-
nal neurons represent relations between features of information
and encode time makes this brain circuit an ideal candidate system
to extract the temporal structure of experience. Functional neuro-
imaging research in humans generally supports this view' >, but how
such extraction is achieved by hippocampal-entorhinal neurons
remains unknown.

Here we recorded extracellular spiking activity from 17 patients
with epilepsy who were implanted with intracranial depth electrodes

for clinical reasons? (Fig. 1a and Supplementary Table 1; 21 record-
ing sessions). Our experimental paradigm capitalized on the fact
that the human medial temporal lobe (MTL) contains neurons that
respond selectively to particular people?*?. For each participant, we
selected six images that were associated with preferential neuronal
responses in the preceding screening experiment. Each image was
then arbitrarily assigned to a different location on a pyramid graph
(Fig. 1b). There were three main study phases: pre-exposure (PRE),
exposure, and post-exposure (POST) (Fig. 1c). During PRE (baseline),
images were displayed in pseudo randomorder (60 directand 60 indi-
rect graph-transitions). During the subsequent six exposure phases
(E1-E6), the order ofimage presentations was determined by the pyra-
mid graph, so that only images directly linked on the graph were dis-
playedimmediately one after another (Fig.1c). Finally, POST (read-out)
was identical to PRE; during this phase, there was no pyramid rule in
the sequence of image presentations. During every phase, the partici-
pants performed behavioural tasks that were unrelated to the temporal
pyramid rule (Fig. 1c). We hypothesized that hippocampal-entorhi-
nal neurons gradually represent the temporal pyramid structure by
respondinginanincreasingly similar manner to stimuli directly linked
on the graph. Note that the configuration of directly and indirectly
connected nodes is different, depending on whether the seed is an
inner or an outer node (Fig. 1d,f).
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Fig.1|Experimental procedures and selective neurons. a, Top, extracellular
spiking activity was recorded from eight microwires extending from the tip
of each depth macro-electrode. There were 7-12 macro-electrodes per patient.
Raw local field potential signal was high-pass filtered and thresholded to detect
spiking activity. Bottom, spike waveforms from one whole recording session,
grouped into two clusters (two putative neurons) based on the waveforms’
amplitude and shape. b, The sequence of stimuli presentation (bottom)
corresponded toa‘randomwalk’ona pyramid graph (top) so that only images
directlylinked onthe graph were displayed immediately after another.c, The
participant’s task was either to determine whether each displayed image shows
amaleorafemale (gender task; PREand POST) or whether theimage isthe same
or mirrored when compared to PRE (E1-E6). d, A schematic representation of
the hypothesis. Circles represent ‘place fields’ of selective neuronsin abstract
space. Before exposure, each neuron responds preferentially to a different
image, and thearrangement of place fieldsislargely random. After exposure
tothepyramidstructure, the green neuronshould respond more strongly to

296 neurons

Individual neurons

Altogether, we identified 1,456 single- and multi-units (hereafter called
‘neurons’) across multiple brain regions (Fig. 1e and Supplementary
Table 2). The unit yield was generally high and comparable across the
participants (minimum =27, maximum =118, average = 69; Supple-
mentary Table 2). We first identified selective neurons that responded
significantly more strongly to one stimulus than to all other stimuli
during PRE (Methods). Note that selectivity was defined in a narrow
sense, only relative to otherimages used in the current study. We found
asignificant proportion of selective neurons in the hippocampus,
entorhinal cortex and parahippocampal gyrus (Fig. 1f, Extended Data
Fig.2 and Supplementary Tables 3and 4; n=152,n =111, and n =33,
respectively; 45%, 53%, and 56% of all identified neurons from those
regions, respectively; P< 0.001above chancelevel for all three regions).
Depending on the position of the preferred stimulus on the pyramid
graph, we classified the remaining stimuli as ‘direct’ or ‘indirect’ for a
given neuron and used these labels consistently to analyse the subse-
quentstudy phases. On average, eachnode on the graph was associated
with preferential responses of 49 selective neurons (minimum =33,
maximum = 64; across all recording sessions). Behavioural datashowed
thatthe participants generally followed the instructions and completed
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images directly linked on the pyramid toits preferred stimulus (magenta) than
toimages linked indirectly (blue). The samelogic applies to allnodes, regardless
of whether the ‘seed’isataninner oranouter node (seef). e, Neuronal activity
wasrecorded frommultiple brainregions, including the hippocampal-entorhinal
systemand amygdalae (shaded area). Dots represent localizations of microwires
where putative neurons were detected. Theselocalizations are overlaid on the
152-MNI-T13D template brainrendered by MRIcroGL software. f, Asignificant
proportion of selective neurons was found in the hippocampus (H), entorhinal
cortex (EC) and parahippocampal gyrus (PH). Each row of the heat maps shows
the mean spiking activity of one neuron during PRE (z-scored and baseline-
corrected; —0.5to0 0's). The plotontheright shows meanresponses +s.e.m.from
all selective neurons. Note that owing to copyrightissues, all originalimages
usedinthestudy werereplaced in this and all subsequent figures by comparable
free stock photos. The original images are available from the corresponding
authors.

the experimental tasks successfully (Extended Data Fig. 1a). Further-
more, stimuli transitions during POST that violated the sequencerules
from exposure phases were related to increased response latencies,
whichsuggeststhat the patients extracted the pyramid graph and used
ittoguide their behaviour, despite the lack of specific instructions to
do so and the task-irrelevant nature of the pyramid (Extended Data
Fig.1b). At the same time, when asked, “Have you noticed any pattern
in the stimulus sequence?” none of the patients reported noticing a
graph-like organization of the states. A separate behavioural study
conducted ontwenty-five healthy controls further supported the lack of
detailed explicit knowledge of the pyramid structure by the participants
after completing the same version of the task as the patients (Extended
DataFig.1d). Together, the above results validate our methodological
approach and show that learning the pyramid was largely implicit.
Moving on to the main analysis, we identified temporal ‘relational
neurons’ that increased their responses to direct stimuli throughout
the study (Methods). We found a significant proportion of such neu-
rons specifically inthe entorhinal cortex and hippocampus (Extended
DataFig.2and Supplementary Tables3and 5; n =42 and n =55, respec-
tively; 20% and 16% of all identified neurons in those regions, respec-
tively; P=0.024 and P=0.012 above the chance level, respectively).
Figure 2a shows two representative relational neurons from the right
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Fig.2|Relational neurons in the hippocampal-entorhinal formation.

a, Tworepresentative hippocampal neurons that responded preferentially to
theimage of the policeman (left) during PRE. With exposure to the pyramidrule,
they begantorespond morestrongly toimages directly linked to their preferred
stimulus on the graph (direct) than toimages linked indirectly (indirect).

b, These two neurons continued to show the same pattern of responses during
POST, when the pyramid rule had stopped and the behavioural task had changed.
c, Average responses (+s.e.m.) of all relational neurons in the hippocampal-

hippocampus (see also Extended DataFig. 3a). Of note, these two cells
continued torespond more strongly to direct stimuli even during POST,
whenthe order of image presentations no longer followed the pyramid
rule and when the behavioural task had changed (Fig. 2b). Responses
of all hippocampal-entorhinal relational neurons to direct stimuli
were significantly stronger during late experiment phases (E5 and
E6) than during PRE, and significantly stronger during POST than dur-
ing PRE (Fig. 2c and Extended Data Fig.4; P=3.56 x 10 and P=0.018,
respectively; two-sided Wilcoxon signed-rank test, false discovery rate
(FDR)-corrected; note that data from PRE and POST were not used in
the statistical selection of these neurons—thus, the above results are
not biased by the selection criterion; Methods). Notably, relational
neurons also gradually decreased their responses to preferred stimuli
(Fig.2c,d and Extended DataFig. 4; comparisons versus PRE; E1and E2:
P=198x10"%E3andE4:P=2.26 x107;ESand E6: P=9.69 x10°; POST:
P=1.07 x107%; two-sided Wilcoxon signed-rank tests, FDR-corrected;
for general results on neurons that gradually decreased their selec-
tivity, see Extended Data Figs. 2 and 3b and Supplementary Tables 3
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entorhinalregion (n=97). Apart from showing increasingly stronger responses
todirectimages, these neurons showed gradually diminishing selectivity for
their preferred stimulus. Each neuron’sresponses were z-scored and baseline-
corrected (-0.5t0 0s).d, Two representative neurons showing diminishing
selectivity (the bottom panel shows the same neuron as a, right). Raster plotsin
a,b,dshowindividual spikes during each stimulus presentation. Line plots in
a,bshow the mean number of spikes + s.e.m. Neurons’ identifiers are provided
inround brackets.

and 6). The above results support our hypothesis by demonstrating
that hippocampal-entorhinal neurons that initially responded pref-
erentially to one image gradually embedded the pyramid graph, by
showing diminished selectivity to thatimage and increased responses
to adjacent stimuli.

Population code

Next, we tested whether the pyramid representation was robust enough
toshift the activity patternof the entire hippocampal-entorhinal neu-
ronal population. To this end, we used the Bayesian naive classifier to
decode stimulusidentity during each image presentation (Methods).
Instead of simply checking whether decoding was correct, we analysed
posterior probabilities that the decoder assigned to theimage actually
presented (actual),images directly linked to that stimulus on the graph
(direct) and images linked indirectly (indirect) (Fig. 3aand Methods).
This analysis was performed for each recording session separately
because of the different stimuli used, but the resulting probability
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Fig.3|Hippocampal-entorhinal population activity remaps tostructured
experience. a, Thelogic behind the population decoding analysis. b, Neuronal
responses contained enough information to successfully decode the stimulus
identity during PRE (chance level = 17%; data from all identified neurons;
n=1,456).The plot shows meandecodingaccuracy (+s.e.m.) from 100-ms bins
averaged acrossall recording sessions (n=21; time zero is the stimulus onset).
Theshaded grey areamarks the time window used for further analyses. ¢, Results
from the hippocampal-entorhinal neurons (n = 546). Pvalues obtained from
the Kolmogorov-Smirnov tests between cumulative distribution functions
(CDFs) of posterior probabilities assigned by the decoder during PRE versus
subsequent study phases (one-sided). d, The difference between CDFs for
directandindirect stimuli remained significant during POST (Kolmogorov-
Smirnov test; one-sided). e, Top row, combined data from trials where the
actually presented stimulus was at an outer node of the pyramid. Pvalues
represented by dotted or solid lines of different widths were obtained from

distributions were combined across all sessions. The classifier was
trained on data from PRE and tested on all subsequent study phases
(for testing in PRE, we used the ‘leave-one-out’ cross-validation). The
analysis was performed on all identified hippocampal and entorhinal
neurons, regardless of their selectivity (n = 546). We found that the data
from PRE contained enough information to decode stimulus identity
significantly above the chance level; thisimportant prerequisite makes
the analysis of subsequent phases meaningful (Fig. 3b and Extended
Data Fig. 5). Over the course of the study, the classifier assigned pro-
gressively lower probabilities to theimages actually presented (Fig. 3c;
comparisons versus PRE; Eland E2: P=0.035;E3and E4: P=1.14 x1075;
ESand E6: P=1.49 x107"; POST: P=2.02 x 107%). By contrast, the clas-
sifier assigned increasingly higher probabilities to stimuli that were
directly linked to the actual stimuli on the pyramid graph (Fig. 3c;
comparisons versus PRE; E1and E2: P=0.313; E3 and E4: P=0.022; E5
and E6: P=0.002; POST: P=1.74 x107*). Probability distributions for
indirectly linked stimuli did not change significantly over the course
of the study (Fig. 3c; comparisons versus PRE; E1 and E2: P=0.722; E3
andE4:P=0.518;E5and E6: P=0.442; POST: P= 0.114). The difference

Kolmogorov-Smirnov tests between each pair of nodes (one-sided; FDR-
corrected). Colour intensities correspond to distances (Kolmogorov-Smirnov
z-statistic) between therespective CDFs. The seed nodeis markedin orange.
Bottom row, analogous results for trials where the stimulus actually presented
wasataninnernode. NS, notsignificant. f, Distance matrixes and graphs
corresponding to the geodesic, Euclidean and successor templates. Each graph
shows the most faithful 2D representation of the respective distance matrix
using the multidimensional scaling analysis. Note that the matrix and graph
obtained from the neuronal data (right) closely resemble the successor
template (546 hippocampal-entorhinal neurons; E4-E6 data combined for
illustration purposes). g, The degree of similarity between dataand each
template throughout the study. Spearman’s correlation coefficients (Fisher-
transformed) between each template and neural datafromrespective phases
(changes from PRE).

between distributions for direct and indirect stimuli was significant
even during POST, when the order of image presentations did not
follow the pyramid structure and the behavioural task had changed
(Fig. 3d; POST-direct versus POST-indirect: P=8.61 x 107°). For all the
above comparisons, we used Kolmogorov-Smirnov tests (one-sided).
Itis noteworthy that an analogous control analysis performed on all
neurons outside of the hippocampal-entorhinal system did not reveal
any consistent evidence of the pyramid representation (Extended Data
Fig.6a; n=910). The above findings validate and go beyond the results
fromindividual neurons, by showing that the pyramid graph represen-
tation affected the activity of the entire neuronal population in the
hippocampal-entorhinal complex.

Next, we tested whether the neuronal representation of the pyramid
graphfollowed geodesic geometry—thatis, whether distances between
neuronal responsesto different nodes were equivalent to the minimum
number of edges connecting these nodes (that is, the ‘shortest path’
distance). If that were the case, there should be: (1) no prominent dif-
ferences when all direct nodes are compared to each other; and (2) no
prominent differences whenallindirect nodes are contrasted with each
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other. Because the pyramid graphis symmetrical, we grouped together
alltrials where the actually displayed image (seed) was located at one of
the three outer nodes of the pyramid and calculated pairwise distances
between posterior probability distributions (see previous paragraph)
assigned to the seed versus the remaining nodes. This analysis was per-
formed on all hippocampal-entorhinal neurons (n = 546), first for each
recording session separately and then combined across all sessions.
As expected, during PRE, the seed node differed significantly from all
other nodes and the other nodes did not differ significantly between
eachother or differed only marginally (Fig. 3e). During POST, the seed
still differed significantly from the remaining nodes, but now, both
direct nodes also significantly differed from the indirect-outer nodes
(Fig. 3e). Notably, there was no significant difference between either
of the direct nodes and the indirect-inner node. Thus, not all indirect
nodes changed their representations to a similar degree, suggesting
that the neural encoding of the pyramid was not strictly geodesic
(seeearlier). Ananalogous analysis for all inner seed nodes combined
revealed generally similar results (Fig. 3e; bottom). In line with this, a
single-neuron analysis showed that there was a small but significant
proportion of hippocampal relational neurons that during the late
study phases responded significantly more strongly to indirect-inner
than to indirect-outer nodes (n =12; 4% of all hippocampal neurons;
P=0.024). A population decoding analysis analogous to Fig. 3¢ fur-
ther supported that the decoding probability of indirect-inner nodes
changed throughout the study in a similar manner as the decoding
probability of direct nodes (Extended Data Fig. 6¢). Together, these
findings indicate that the population of hippocampal-entorhinal neu-
rons accurately encoded the general layout of the pyramid graph, but
this mapping was not strictly geodesic.

Recovering the entire graph

Next, we tested whether it was possible to reconstruct the entire pyra-
midstructure from the population activity of hippocampal and entorhi-
nal neurons and if so, what geometry that representation followed. To
thisend, we calculated Euclidean distances between neurons’ responses
to eachimage versus all otherimages (this was done for all subsequent
study phases), and then, compared the resulting distance matrixes to
three templates (Fig. 3f). In the ‘geodesic template’, distances between
each pair of nodes corresponded to the shortest path (see ‘Population
code’). Inthe ‘Euclidean template’, distances between relevant nodes
(1-5, 2-6 and 4-3) were calculated from the Pythagorean theorem.
The ‘successor template’ assumed that the pyramid representation is
predictive. Thisidea hasbeen previously formalized as the ‘successor
representation’, which informs how often an agent will experience a
particular destination state after starting in the initial state” %, In the
present study, temporal predictions can be based on the structure of
the pyramid itself. Specifically, the length of all possible paths between
thedifferentinner nodes is generally shorter than the length of all paths
connecting the outer nodes. Thus, during arandom walk, the inner
nodes are likely to occur closer in time. If the neural representation
is predictive, the above regularities should significantly distort the
graph’s representation by shortening distances between the inner
nodes (Fig. 3fand Methods).

We found that over the course of the study, all templates improved
their fit to the neural data (Fig. 3g; geodesic: E1and E2: P= 0.0231; E3
andE4:P=0.009;E5and E6: P=0.009; POST: P=0.2335; Euclidean: E1
andE2:P=0.0035;E3and E4: P=0.0008; E5and E6: P= 0.0008; POST:
P=0.1397; successor: E1and E2: P= 0.0001; E3 and E4: P < 0.0001; E5
and E6: P<0.0001; POST: P=0.0434; differences from PRE; 10,000
permutations; FDR-corrected; Methods). However, the successor
template significantly outperformed the other templates (Fig. 3g;
geodesic: E1 and E2: P<0.0001; E3 and E4: P< 0.0001; E5 and E6:
P=0.0001; POST: P=0.0295; Euclidean: E1and E2: P= 0.0094; E3 and
E4:P=0.0094; ESand E6: P=0.034; POST: P=0.0825; differences from
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PRE; 10,000 permutations; FDR-corrected; Methods). Remarkably, the
patients who developed arobust hippocampal-entorhinal successor
representation showed longer reaction times during trials in POST
that violated the pyramid rules from exposure phases (see ‘Individual
neurons’), which suggests that this representation was used to guide
behaviour (Extended Data Fig. 1c). A control analysis performed on
neurons outside of the hippocampal-entorhinal complex did not
show any significant evidence that the pyramid representation was
present during POST, either when compared to the geodesic, Euclid-
ean or successor templates (Extended Data Fig. 6b). Together, these
findings demonstrate that the coordinated activity of multiple hip-
pocampal-entorhinal neurons progressively represented a detailed
structure of the entire temporal structure and that this representation
was predictive in nature.

Apart from affecting the pyramid encoding at the population level
(seeabove), the successor representation should modulate the activity
ofindividual neurons. For example, during spatial navigation, the suc-
cessor model accounts for the warping of place cells’ receptive fields
around environmental barriers”. If the pyramid representation involved
similar mechanisms, the receptive fields of neurons representing the
pyramid’s outer nodes should elongate throughout the study because,
fromthesenodes, the ‘agent’ canonly proceed in one general direction
(thatis, back). Conversely, receptive fields of neurons representing the
inner nodes of the pyramid should be more symmetric, as from these
nodes, the agent canmovein three directions. To complement our neu-
ronal population results that support the above hypotheses (Fig. 3e),
we measured the distance between individual neurons’ responses to
different stimuli. By analogy with place cells, we analysed selective
hippocampal-entorhinal neurons grouped by their preferred node
(inner: n=144; outer: n =119). We found that neurons selective to an
outer noderesponded ssignificantly differently to indirect-inner versus
indirect-outer nodes, which is consistent with the elongation of their
receptive fields (Fig. 4a; E1 and E2: P= 0.0151; E3 and E4: P= 0.0151; E5
andE6:P=0.0298; POST: P=0.1869; two-sided Wilcoxon rank-sum test;
FDR-corrected). By contrast, neurons preferring aninner node did not
respond ssignificantly differently to various outer nodes, which suggests
that theirreceptive fields remained symmetric (Fig. 4a; P=0.9825inall
phases; two-sided Wilcoxon rank-sum test, FDR-corrected). Addition-
ally, we found that the ‘inner-to-inner distances’ became shorter than
the ‘outer-to-inner distances’, which is also in line with the successor
representation (Extended DataFig.7a;Eland E2: P=0.005; E3 and E4:
P=0.0116; E5and E6: P=0.0116; POST: P= 0.299; two-sided Wilcoxon
rank-sum test; FDR-corrected). The above results closely resemble
functional properties of place cells during spatial navigation and reveal
single-neuron mechanisms of predictive representations of temporal
structures.

Hippocampal versus entorhinal codes

Next, we tested whether the neuronal pyramid representation dif-
fered between the hippocampus and the entorhinal cortex. We found
that during exposure phases (E1-E6), hippocampal neurons repre-
sented the pyramid more accurately than entorhinal neurons (succes-
sor: P=0.0429; Euclidean: P = 0.0055; geodesic: P=0.0042; H minus
EC difference between Spearman correlation coefficients for each
template; Pvalues based on 10,000 permutations of the brain region
labels). The above result is not simply due to a different number of
hippocampal and entorhinal neurons that we detected in this study,
asthe above analysis balanced this aspect (10,000 random selections
of subsets of hippocampal neurons to match the number of entorhinal
neurons). Interestingly, during POST, the successor representation was
more preserved inthe entorhinal cortex thaninthe hippocampus, sug-
gesting that the former utilizes a more stable neuronal code than the
latter (successor: P=0.037; Euclidean: P= 0.5963; geodesic: P= 0.5484;
EC minus H difference between Spearman correlation coefficients
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Fig.4|Modulation of receptive fields, regional differences and neuronal
replay. a, Top, selective hippocampal-entorhinal neurons that preferred a
stimulus at an outer node (n =119) responded significantly differently to
stimulifromindirect-inner versus indirect-outer nodes, suggesting that these
neurons’ receptive fields progressively elongated. Bottom, there was no such
effectfor neuronsthat preferred astimulus ataninner node (n =144), which
suggests that theirreceptive fields were rather symmetrical. Plots show the
mean Euclidean distance (+s.e.m.) between responses to respective stimuli
(datacentred on PREand z-scored per neuron). Pvalues from Wilcoxon rank-sum
tests (two-sided, FDR-corrected). Orange circles indicate the locations of
preferred stimuli. Orange areasillustrate the hypothesized shapes of receptive
fields.b, The successor representationin the hippocampus was more impaired
by growing proportions of artificially removed neurons thanin the entorhinal
cortex. Similarity to the successor template is plotted as afunction of the
percentage of removed neurons (relative to 1% of neurons removed; for each
1% step, we randomly selected agiven proportion of neurons10,000 times).
Theactual difference between the third quartiles was compared with the same
differencein1,000 permutations of the region labels. ¢, The replay analysis

for each template; P values based on 10,000 permutations of region
labels; the number of neurons was balanced; see above). We also tested
the robustness of hippocampal versus entorhinal representations
against removing growing proportions of neurons from each region.
The presumably more structural (‘pure-position’) neural code in the
entorhinal cortex should be less affected by such removals than the
relational (object-based) code in the hippocampus®’. Indeed, as we
removed more neurons from the analysis, similarity to the successor
template diminished more rapidly in the hippocampus thanin the
entorhinal cortex (Fig.4b; P= 0.007; difference between third quartiles;
Pvalue from1,000 permutations of region labels; number of neurons
balanced; combined data from E1-E6). Analogous differences were
not significant for the Euclidean and geodesic templates (P=0.622
and P=0.296, respectively). The above findings suggest that the hip-
pocampus contains amore dynamic object-related representation of
temporal sequences, whereas the entorhinal cortex uses amore stable
structural code.

Neuronal replay

Neuronal representation of the pyramid was likely to rely on mecha-
nisms of synaptic plasticity, where the ordering of spikes from the

focused onthree-element graph trajectories consisting of one seed node,
adirectnodeandanindirect node. We analysed triplets of selective hippocampal-
entorhinal neurons (recorded in the same session) whose preferred stimuli
mapped onto those trajectories. Only spiking activity during breaks between
phases was analysed (B1-B7).d, Examples of pyramid-congruent replays
detected for triplets of selective hippocampal-entorhinal neurons. Coloured
circlesindicate the graphlocation of each neuron’s preferred stimulus during
PRE. Raster plots show the spiking activity of ‘direct’and ‘indirect’ neurons
duringeachspontaneousrepetition of agivenreplay. The bottom plot shows
combined spiking activity across all repetitions and the mean spikes’ latencies
(+s.e.m.).Plots are time-locked to the seed neuron’s relevant spikes. The
probability of pyramid-congruent replaysincreased throughout the study and
inB2-B7 wassignificantly higher than that ofincongruentreplays (1,000 random
permutations of ‘direct’and ‘indirect’ spike labels). Pvalues in b,d were calculated
asthe number of permutations with a higher difference than the one actually
detected, divided by the total number of permutations. Ifin none of the
permutations the difference was above the actual one, the P< 0.001rangeis
reported. No adjustment for multiple comparisons was appliedind.

pre-and post-synaptic cells determines whether long-term potentia-
tion or depression occurs?. But how can relations between stimuli that
occurred seconds apart rely on synaptic phenomena that have atime
window of approximately 30ms? One possible explanationis neuronal
replay, which refersto atime-compressed reactivation of experienced
place cell sequences happening during rest or sleep%. Whether an
analogous single-neuron mechanism exists in humans during the
encoding of non-spatial relations remains largely unknown. We looked
for triplets of selective hippocampal-entorhinal neurons whose pre-
ferred stimulimapped onto three-node trajectories experienced during
exposure phases (Fig. 4c). Each triplet consisted of aneuron selective
to animage (‘seed neuron’), a second neuron selective to a directly
linked image (‘direct neuron’), and a third neuron that was selective
toanindirectly linked image (‘indirect neuron’). Putative replays were
defined as consistent firing of the direct and indirect neurons within
30 msafter the seed neuron’s spike. In pyramid-congruent replays, the
direct neuron should fire before the indirect one. By contrast, during
incongruent replays, which we used as a control condition, theindirect
neuron would fire first (Fig. 4c). Importantly, this analysis used only
datarecorded during breaks (B1, abreak after PRE; B2-B7, breaks after
each exposure phase). We found that the proportion of congruent
replays significantly increased during the course of learning, whereas
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the proportion of incongruent replays did not change significantly
(Fig.4d; congruent: P< 0.001; incongruent: P=0.195;1,000 permuta-
tions of the ‘direct’ and ‘indirect’ spike labels). The above findings bridge
the gap between behavioural and synaptic timescales and demonstrate
that the neural representations of spatial and temporal structures rely
onsimilar neurophysiological mechanisms.

Discussion

The human experience is the integration of events characterized by
objects with spatial and temporal coordinates—the ‘what’, ‘where’
and ‘when’ of information processing performed by the brain. In
the present study, we examined the neural integration of the ‘what’
and ‘when’ of human experience to encode the underlying temporal
structure of events. We find that suchintegrationis a process explicitly
expressed in the activity of neurons in the hippocampal-entorhinal
system, albeit largely implicitly by participant’s awareness. Responses
of these neurons scaled with distances between respective nodes of
the spatiotemporal graph, thusreflecting the relational contingencies
between events characterizing the experience and enabling the predic-
tiverepresentation of expected future states. This neuronal ensemble
developed relatively rapidly during the study and remained even when
the temporal structure was no longer present. The pyramid graph was
extracted directly from experience, without explicitly instructing the
participants, and it was abstracted away from the specifics of the task,
such as image orientation or behavioural responses.

Our findings provideimportantinsights into the fundamental ques-
tion of how the human brain forms temporal associations, a critical
componentinthe encoding of episodic memories. Only recently, stud-
ieshave begunto reveal how this processisimplemented by individual
neurons in the human MTL. It was demonstrated that cells initially
responding only to the picture of a given person started firing to the
picture of a given place as a result of the experimental simultaneous
pairing of the ‘what’ and ‘where™. It was also shown that the degree of
subjectively reported association between two objects could be suc-
cessfully predicted from the neurons’ responses?. The above evidence,
combined with results from animal studies®, suggests that the MTL has
acritical role in the encoding of relational knowledge®. The present
study extends this view by demonstrating that hippocampal-entorhi-
nal neurons dynamically embed acomplex matrix of ‘what’ and ‘when’
contingencies, by precisely scaling their firing rates to the temporal
distance between events during sequential experience.

Thepresentstudyisalsoinline with theidea that the hippocampal-
entorhinal systemis critically involved in the abstraction of knowledge.
Suchabstraction hasbeen described as a cognitive map in the context
of spatial navigation®” and ‘schemas’ or ‘learning sets’ in the context
of humanbehaviourand memory research®>, Recent computational
research suggests that the brainimplements similar neural mechanisms
toextract the underlying structure of spatial as well as non-spatial prob-
lems and that the integration of ‘what’, ‘where’ and ‘when’ is essential
for this process™***, The temporal relational neurons that we identify
here in human participants during a non-spatial task, have important
implications for the hippocampal-entorhinal system as a neural sub-
strate of the cognitive map.

Arguably the main purpose of extracting the underlying structure
of temporal sequences is to predict what is likely to happen next in
order to choose appropriate actions and maximize reward” 2°. A recent
computational study showed that neuronal firing patterns that are
classically attributed to the encoding of space, such as place cells and
grid cells, can be modelled using a predictive successor representa-
tion of likely future states, which accounted for a range of empirical
findings that cannot be explained by purely Euclidean or geodesic
representations”. Furthermore, the successor representation can be
simulated with neural phenomena that are known to exist in the hip-
pocampal-entorhinal formation, such as the theta phase precession
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and spike-timing dependent plasticity?. Our finding that the neuronal
representation of the pyramid graph resembled the successor repre-
sentation provides the human ssingle-neuron evidence supporting the
predictive nature of the hippocampal-entorhinal system function.

The human single-neuron methodology implemented in this
study provided a unique window into the possible mechanisms by
which the neuronal reorganization occurred during a temporally
structured experience. One such mechanism that we demonstrate
here is the experience-dependent replay of neuronal firing of spe-
cifichippocampal-entorhinal cells taking place between experiment
phases. These findings extend previous evidence from rodent stud-
ies by showing that encoding of temporal relations between abstract
objects in humans engages mechanisms similar to the encoding of
spatial trajectories® "%, These results also expand existing evidence
fromhuman studiesinwhichreplay hasbeentested moreindirectly, by
comparing general patterns of neural activity during and after agiven
experience” * or by detecting ‘sharp-waveripples’ thatinrodents often
co-occur with replay of individual neurons*2.

Inthis study, the neural pyramid topology developed spontaneously
from the mere observation of atemporal sequence, without the partici-
pants’ detailed explicit knowledge of existent regularity. This finding is
consistent witha growingbody of evidence that the MTL has akey role
inthe implicit learning of statistical patterns which does not require
deliberate intention or cognitive effort****. For example, a recent
study® using human intracranial electroencephalography found that
early cortical processing tracked individual syllables, whereas the hip-
pocampus encoded the ordinal position and identity of pseudowords.
The present study demonstrates how individual neuronsin the human
hippocampal-entorhinal system may encode such implicit structure
of temporal associations between serial elements of information.

The probabilities of inner-inner and outer-inner node transitions did
not differ significantly, so thereis noreasonto assume that the transi-
tionrates determined the strength of respective associations (Extended
DataFig.8a). However, the inner nodes were presented more frequently
during exposure phases than the outer nodes (Extended Data Fig. 8b).
Thisis anatural consequence of the pyramid structure combined with
arandom walk policy, which happens to mimic many real-life situations
(for example, central hubs of a metro system are visited more often
than peripheral ones) and experimental setups (for example, a T-maze).
However, one could argue that some neurons gradually increased or
decreased their firing rate simply owing to stimulus familiarity, which
would affect the neural distances between respective nodes. We found
thatneither relational, selective nor all detected hippocampal-entorhi-
nal neuronsresponded significantly differently to theinner versus outer
nodes (Bayes factors supported the null hypotheses; Extended Data
Fig. 8c). In fact, the proportion of hippocampal-entorhinal neurons
that significantly increased or decreased their responses to the inner
or outer nodes did not significantly differ from chance level (that is,
we analysed responses of each hippocampal-entorhinal neuron to
allinner or all outer nodes in E5 and E6 versus E1 and E2; n=10 and
n=6,respectively; 2% and 1% of all hippocampal-entorhinal neurons,
respectively; P>0.99 and P=0.967, respectively; analysis analogous
to the Extended Data Fig. 2). Furthermore, we replicated all principal
findings of this study when the analysis included only inner or only
outer nodes (Extended Data Fig. 8d-g). Thus, stimulus familiarity did
not drive our main results. Future studies focusing on how different
transition strategies affect the geometry of neuronal representations
could manipulate this aspect by using a random walk versus Hamilto-
nian cycles or other policies.

One might ask whether the current design allows us to disambigu-
ate between distance-dependent scaling and the formation of simple
pairwise associations, since every pair of nodes that was not a direct
link on the pyramid automatically was two links apart. However, if mul-
tiple respective links were not scaled according to a common metric
(distance), it would not be possible to recover the entire pyramid graph



from the neuronal population activity, especially not the successor
representation where various direct and indirect links have different
lengths (Extended Data Fig. 9). Such a reconstruction was possible
in the present study (Fig. 3f). To further address this point, we col-
lected data from five additional patients (7 sessions; 221 neurons)
with a diamond-shaped graph where links to indirect stimuli varied
between two and three edges (D2 and D3, respectively). We found
that, during late-exposure phases, hippocampal relational neurons
responded more strongly to images located two edges away from
their preferred stimulus than to images located three edges away. We
alsoreplicated population decoding results from the main study and
showed that the representational overlap was greater for D2 stimuli
than for D3 (Extended Data Fig. 10). The above evidence supports
distance-dependent scaling in the encoding of the temporal struc-
ture of the sequence.

Together, the findings of this study reveal multiple similarities
between the neurophysiological properties of individual cells rep-
resenting locations in physical space and neurons encoding abstract
objects in a temporal sequence structure; these parallels include
reorganization and functional overlap of representations of adjacent
states, experience-dependent and predictive modulation of receptive
fields, as well as offline replay of individual neurons’ activity congru-
ent with past experience. Thus, the human brain appears to be using
analogous mechanisms to represent seemingly very different types of
information: relationsin space and time. The remarkable entorhinal-
hippocampal neuronal machinery likely evolved to form scalable and
partly non-Euclidean (‘warped’) representations of space-time trajec-
toriestoenablelearning and prediction, necessary for the organism’s
survival. Here, keeping space constant, we demonstrate at the neuronal
level how such representations of object trajectories in time are incor-
porated by the human entorhinal-hippocampal system.
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Methods

Participants

The participants were 17 patients with intractable epilepsy who were
implanted with depth electrodes to delineate a potentially surgi-
cally treatable epileptogenetic zone. Demographics information and
neuropsychological scores are presented in Supplementary Table 1.
Electrode placements were determined solely on the basis of clinical
treatment criteria. The follow-up studies (Extended DataFigs.1and 10)
included 33 healthy controls (26 female participants; meanage:31+7
yearsold) and 5additional patients with epilepsy (2 female participants;
mean age: 38 + 12 yearsold). All participants volunteered for the study
by providing informed consent according to a protocol approved by
the UCLA Medical Institutional Review Board (IRB).

Neural recordings

Patients were stereotactically implanted with 7-12 Behnke-Fried
electrodes with 40-um diameter microwire extensions (eight high-
impedance recording wires and one low-impedance reference wire per
depth electrode) that capture local field potentials and extracellular
spike waveforms*¢. Microwire electrophysiology data were amplified
andrecorded at 30 kHz on a Blackrock Microsystems recording system
orat32 kHz on a Neuralynx recording system (Cheetah 5.0).

Microelectrode localizations

Priorto datacollection, eachmicroelectrode location was confirmed by
anexpertneurosurgeon (I.F.) based on the patient’s postoperative com-
puted tomography (CT) scan with visible electrode artifacts overlaid
onaco-registered preoperative T1structural MRI (BrainLab software).
For descriptive purposes (Fig. 1d), we additionally used the follow-
ing procedure to transform locations from each participant’s ‘native
brain space’ to the standard Montreal Neurological Institute (MNI)
space. First, each participant’s MRl and CT images were co-registered
using the FSL flirt’ function. Second, the MRlimage was: (1) segmented
into the grey matter, white matter, and cerebrospinal fluid probability
maps; (2) resampled (1 x 1 x 1 mmvoxelsize); and (3) normalized to the
152 T1-weighted MNI template using the nonlinear transformation
algorithm implemented in the Statistical Parametric Mapping tool-
box (SPM12, Wellcome Department of Cognitive Neurology, London,
UK). Third, the same transformation parameters were applied to the
participant’s CT image. MNI coordinates for each microelectrode were
extracted manually from the normalized CT overlaid on the normalized
MRIfrom agiven participant using the FSLeyes software.

General procedure

Before the main experiment (typically 1-2 days prior), a screening
experiment was conducted to find 6 stimuli (images of people) asso-
ciated with robust and preferential responses of single neurons in the
MTL. These six images were then used during the main experimental
task (Fig. 1b), which was introduced to the patients as a follow-up of
the screening study without mentioning that the stimuliwould be pre-
sentedinaspecificorder. At the end of the main experiment, we asked
the participants to answer the following questions: “Have you noticed
any pattern in the sequence of images shown in any of the phases?
If yes, what was it?”; “Have you had any special strategy during this
study?”. None of the participants reported noticing any pattern that
was relevant to the experimental manipulation (Fig. 1b). We used the
Psychophysics Toolbox to control the timings of stimuli presentation
and register behavioural responses®.

Screening session

During screening, approximately 120 images were repeatedly shown
to the patients on a laptop computer (taking around 40 min). These
images showed people, animals, objects and landmarks that were
partly selected based on the participant’s preferences (for example,

favourite actors, musicians, places, etc.). The experiment consisted
of eight blocks, each with a different instruction (for example, block
1: “Determine whether each image shows a person or not”; block 2:
“Determine whether eachimage showsaplantornot”;etc.). Eachimage
was presented exactly once during each block, for the duration of 1s,
against a black background. The order of stimuli presentation was
random. Participants indicated their responses using two assigned
keys on ahand-held game pad.

Experimental task

The main study consisted of three parts: pre-exposure (PRE), expo-
sure (E1-E6), and post-exposure (POST; Fig.1c). During PRE (121 stimuli
presented), allimages were displayed in a pseudo random sequence
(60 direct and 60 indirect graph-transitions; on average, each direct
transition was presented 7 times and each indirect transition 9 times).
Thetask was to determine whether each image showed amale or female
(gender task). The participants used the right and left arrow keyson a
laptop keyboardtoindicate their responses. During the six subsequent
exposure phases (121trialsin each phase), the order of stimuli was still
randomized butrestricted by the topological structure of the pyramid
graph (Fig. 1c) so that only images directly linked on the graph were
shown immediately after another. The starting location was selected
randomly in each experiment phase. The behavioural task during all
exposure phases was to determine whether a givenimage was mirrored
ornotwhen compared to PRE (Fig. 1c; the participants used the right and
leftarrow keys onalaptop keyboard toindicate their responses). During
eachphase, 61images were ‘normal’ and 60 were ‘mirrored’. The order of
mirrored and normalimages wasrandom. The POST phase was the same
as PRE (all stimuli presented in apseudo random sequence, without the
‘pyramid rule’; onaverage, each direct transition was presented 7 times
andeachindirecttransition 8 times). Behaviouralinstructions displayed
inthe beginning of each phase emphasized that the participants should
try to respond as quickly and accurately as possible. The first trial in
each phase (thatis, the beginning of asequence) was discarded from the
analyses, so effectively each phase consisted of 120 trials. The experi-
mentinall phases wasself-paced, that is: (1) agiven image was displayed
foraslongasittook the participant to respond; and (2) the participants
could have had breaks between phases for as long as they needed. All
stimuliwere displayed against agrey background. Duringarandomized
inter-trial interval (1-3 s), a black ‘fixation’ circle was displayed in the
middle of the screen. After each stimulus presentation, the participants
received feedback (“correct!” or “incorrect” inrelation to the currently
performed task) displayed for 500 ms. All trials (correct and incorrect)
wereincludedin the analysis of electrophysiological data, as the behav-
ioural tasks were unrelated to the main research question. Behavioural
accuracy of responses during PRE and POST was near-perfectindicating
that the gender task was easy for all the participants (Extended Data
Fig.1a). Accuracy in the ‘mirror task’ was lower but improved over the
course of the study (Extended Data Fig. 1a; this task was supposed to be
more challenging to maintain the participants’ attention).

Spike sorting

Automated spike detection and sorting were performed using the
WaveClus3 software package in MATLAB*S, We then manually reviewed
eachunitforinclusion by evaluating the waveform’s shape, amplitude,
inter-spike intervals, and firing consistency across study phases. We
rejected units that were likely contaminated by artifacts, inkeeping with
field-standard spike evaluation criteria*. For electrodes with multiple
putative units that passed this inclusion check, we merged units whose
waveform features could not be well-separated in principal components
space, retaining for analysis a combination of single- and multi-units.

Single-neuron analyses
For each neuron and each stimulus presentation, we selected a
time window around the stimulus onset (from -1to +2 s). Then we



calculated the number of spikes in 0.1 s time bins, smoothed (moving
sum: +0.25s) and baseline-corrected the data (subtracted the mean
activity inthe —0.5to O s time window). The ‘response window’ was
defined from 0.1to 1.2 s after the stimulus onset. For a given neuron,
the ‘preferred stimulus’ was the image associated with the strongest
mean response in the response window during PRE. Depending on
the position of the preferred stimulus on the pyramid, the remaining
images were labelled as ‘direct’ or ‘indirect’ (Fig. 1b). This assignment
was used across all study phases. ‘Selective neurons’ were defined
as cells that during PRE: (1) responded significantly stronger to the
preferred stimulus in the response window versus baseline; and (2)
responded significantly stronger to the preferred stimulus than to
the remaining stimuli combined. ‘Relational neurons’ were defined
ascellsthat: (1) were selective (see above); (2) responded significantly
stronger to the direct than indirect stimuli during E5and E6; and (3)
responded significantly stronger to direct stimuli during E5S and E6
than during E1 and E2. The ‘diminishing selectivity neurons’ were
defined as cells that: (1) were selective; and (2) responded signifi-
cantly weaker to the preferred stimulus in E5 and E6 than in E1 and
E2. All the above criteria were tested with the Wilcoxon signed-rank
tests (one-sided) with a P value threshold of 0.05. The above proce-
dure was repeated 1,000 times, with random permutations of the
stimulus or phase labels, depending on which criterion was tested.
These permutationsinformed how many neurons of agiventypeare
expectedinagivenbrainregion by chance. The empirical Pvalue was
calculated as the number of permutations with more neurons of a
giventype thanthe number of neurons actually detected, divided by
the total number of permutations. If this value was less than 0.05, we
concluded that a given brain region contained a significant propor-
tionof agiven neuron type (Extended Data Fig. 2 and Supplementary
Table 3). To analyse combined responses of all relational neurons
(Extended DataFig.4), we calculated the difference between each neu-
ron’s mean responses to direct minus indirect stimuli and preferred
minus non-preferred stimuli. This was done for each study phase
separately. Then, we peak-normalized and baseline-corrected (-0.5
to O s) those differences and extracted the mean fromthe 0.1to1s
time window. For line plots showing the mean responses of individual
neurons (Fig.2a,b and Extended Data Figs. 3aand 9b), we used 0.01 s
binsand the £0.25 s moving sum. For plots showing multiple neurons
(Figs.1f and 2c), we z-scored and baseline-corrected (0.5 to O s) the
datafromeachneuron (forillustration purposes, weusedthe+0.2 s
moving sum and heat maps were additionally smoothed with+ 0.1s
moving average).

Neural population analyses

To decode stimulus identity during each image presentation, we
used the Poisson naive Bayes classifier, asimplemented in the Neural
Decoding Toolbox*’. The spiking activity of each neuron was extracted
from the -1to +2 s time window relative to the stimulus onset. Data
was binned (0.1s) and smoothed (moving sum: +0.25s). The decoder
was run on the summed spiking activity in the 0.1to 1 s time window
(Extended Data Fig. 5). The main analysis focused on posterior prob-
abilities assigned by the decoder to the image actually presented
(actual), images directly linked to that stimulus on the graph (direct),
andimages linked indirectly (indirect). The analysis was performed for
eachrecording session separately (different stimuli), but the result-
ing probability distributions were combined across all sessions and
image presentations. The classifier was trained on the data from PRE
and tested on all subsequent phases. For testing in PRE, we used the
‘leave-one-trial-out’ cross-validation. Kolmogorov-Smirnov tests were
used to compare cumulative distribution functions (CDFs) of posterior
probabilities (one-sided). To reconstruct the entire pyramid graph
(Fig. 3f,g and Extended Data Figs. 6b and 7b), we calculated Euclid-
ean distances between mean responses of each neuron to each pair
of images across all relevant neurons (neurons that stopped firing

during the late study phases were excluded; distances were z-scored;
bin-size: 0.1s; baseline-correction: -0.5to 0 s; moving sum: + 0.15s;
time window: 0.1to 1s). Then, we compared the resulting neural dis-
tance matrixes to three templates (Fig. 3f). In the geodesic template,
distances between each pair of nodes corresponded to the number
of edges of the shortest path connecting the nodes. In the Euclidean
template, distances between nodes 1-5, 4-3 and 6-2 were calculated
fromthe Pythagorean theorem (right triangles:1-5-6,4-3-1, 6-2-1).
Theremaining distances correspondedto the shortest path (see above).
Inline with the previous literature®®, the successor template (ST) was
calculated as the negative of the matrix exponential of the adjacency
matrix A:

An

The above metric provided a slightly better fit to the datathan a
related index that defines the relationships between states (Extended
DataFig. 7b):

Y YA =(-pAy?
n=0

Here, entries a; for each A" correspond to the number of possible
paths of length nbetween objectsiandjand adiscount factorisO <y <1
(refs.2,19). Toillustrate most faithful 2D representations of the respec-
tive distance matrixes, we used the multidimensional scaling analysis
(MDS; ‘mdscale’ function in MATLAB; criterion: ‘sammon’). Because
MDS can only be performed on matrices with positive entries, we
normalized the matrixes by adding the absolute value of the matrix’s
minimum plus a constant of 0.1. The similarity between neural dis-
tance matrixes and each template was calculated as the Spearman
correlation (Fisher-transformed). Because the aim was to test how
this similarity changes over the course of the study (unconfounded by
any potential pre-existing similarity), for each phase, we subtracted
the degree of similarity in PRE (Fig. 3g and Extended Data Figs. 6b
and 7b). To obtain null distributions of correlation coefficients, the
above procedure was repeated 10,000 times with random permuta-
tions of the nodes’ positions. Pvalues were calculated as the number
of permutations with higher correlation coefficients than the one
actually detected, divided by the total number of permutations. If in
none of the permutations the correlation was above the actual value,
the P<0.0001range is reported.

Replay analysis

We analysed sessions that contained at least three selective hippocam-
pal-entorhinal neurons from the same hemisphere, whose preferred
stimuli from PRE mapped onto three-element pyramid trajectories
(Fig. 4c, one seed neuron, one direct neuron and one indirect neu-
ron forming a connected path). For each spike of the seed neuron, we
checked whether the direct and indirect neurons fired at least once in
the 0 to 30 ms time window. The above situation had to occur at least
five times to be included in the analysis (that is, n <5 was considered
insufficient for robust statistical inference). There were 536 such puta-
tive replays in B1 (break after PRE) and 1,012 in B2-B7 (breaks after
exposure phases). If the direct neuron fired significantly earlier than
the indirect neuron, the replay was labelled ‘congruent’ (Fig. 4c; we
analysed latencies of the first ‘direct spikes’ versus latencies of the
first‘indirect spikes’ across all repetitions of a given replay®’; Wilcoxon
signed-rank test, one-sided, with a Pvalue threshold of 0.05). If the
opposite wastrue, areplay waslabelled ‘incongruent’. To obtain Pvalues
for the comparisons between proportions of congruent and incongru-
ent replays throughout the study, we randomly shuffled spikes from
the direct and indirect neurons (1,000 permutations) and used the
resulting null distribution as reference.
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Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.
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Extended DataFig.1|Behavioural performance. (a) The participants
responded more slowly and committed more errorsinthe ‘mirror task’ thanin
the ‘gender task’ (combined data from E1-E6 versus combined data from PRE
andPOST; P=5.96 x10°and P=5.95 x 107, respectively; n = 21 sessions; Wilcoxon
signed-rank tests; two-sided). (b) During exposure, the outer nodes could never
immediately follow one another. If the participants extracted this rule, outer-
after-outer trials (Oa0O) during POST should be unexpected and thus related to
longer reaction times (RTs) than outer-after-inner trials (Oal). Indeed, we found
that the difference between RTsin OaO minus Oal trialsincreased in POST
compared to PRE (P=0.0445;10,000 permutations of PREand POST labels).
The plot shows means +s.e.m. Circles correspond to datapoints fromindividual
sessions (n=21). The P-value was calculated asanumber of permutations witha
higher difference than the one actually detected, divided by the total number
of permutations. (c) The above-mentioned behavioural conflict was especially
pronounced among the patients who developed arobust hippocampal-
entorhinal representation of the pyramid, calculated per participant as
similarity between neuronal population responses and the successor template
inPOST (seeFig.3g; p;,=0.53; P=0.0077; Spearman correlation with10,000
permutations of the sessionorder). Another index of behavioural conflict—RTs
intrials after ‘indirect’ transitions—was also positively correlated with the
strength of the hippocampal-entorhinal successor representation (indirect
trials: POST minus PRE; p,, = 0.39; P=0.04; Spearman correlation with10,000
permutations of the session order). In contrast, RTsin trials without conflict
(i.e., ‘direct’ and Oal transitions; POST minus PRE) did not significantly correlate
with the strength of the hippocampal-entorhinal successor representation
(p1v=0.32; P=0.0814 and p,, = 0.21; P=0.173, respectively). AllRT analyses were
performed on correct trials only. Very short (<200 ms) and very long (> 5000 ms)
RTswere discarded. The above Pvalues were calculated as anumber of
permutations with ahigher correlation coefficient thanthe oneactually detected,
divided by the total number of permutations. (d) Twenty-five healthy controls
(see Methods) completed the same behavioural procedure as the patients.
They were then asked an open question: ‘Have you noticed any patternin the
sequence ofimages?’ None of the participants reported noticing agraph-like
organization of the sequence. Then, we informed them about the underlying

[RTs OaO: POST - PRE; ranks]

positions

structure and asked them to assign eachimage to aspecific node (the ‘positions’
task). The pyramid hassix variants (three rotations and two flips). The ‘positions
accuracy’ was calculated as the maximum number of hits. For example, if
someone’s highest score was three out of six for one variant and less than three
hits for other variants, this person’saccuracy score was 50%. To calculate the
‘links accuracy,” we checked whether each pair ofimages was linked directly or
indirectly onthe graph provided by each participantand compareditto the
actual pyramid. Similarly, we calculated Spearman correlation coefficients
(Fisher-transformed) between pairwise distances provided by each participant
and the actual pairwise distances (‘distance similarity’ index). Finally, we
checked how often the participants assigned the correctimages to the inner
versus outer nodes (‘inner-outer accuracy’). Foreachindex, the chance level
was estimated as the mean performance of 10,000 randomly generated
‘participants’ (red dashedline). To establish the ‘explicit benchmark’ (blue
dashedline), we tested another eight control participants (see Methods). From
thebeginning, weinformed them that the sequence of images during exposure
phases will follow the pyramid graph, but we did not explain whichimageis
located where onthe graph. All other aspects of the procedure and analysis
were the same as explained above. The mean performance of this additional
groupserved as the explicit benchmark. We found that ‘positions accuracy’

did notsignificantly differ from chance level and was significantly below the
explicitbenchmark (P=0.1584 and P=8.54 x10"¢, respectively). Other indexes,
arguably referring to less detailed knowledge of the graph, were significantly
above chancelevel, butstill below the explicit benchmark (‘links accuracy’ and
‘distance similarity’ versus chance: P=0.007; ‘links accuracy’ and ‘distance
similarity’ versus explicit: P=7.04 x 107%; ‘inner-outer accuracy’ versus chance:
P=0.0186; ‘inner-outer accuracy’ versus explicit: P= 0.0004). All the above
Pvalues are from the Wilcoxon signed-rank tests (two-sided). Together, these
results suggest that the healthy control participants (and patients) did not have
detailed explicit knowledge of the pyramid. The central marks of the box plots
(panelsaandd)indicate the medians. The bottom and top edges of the boxes
indicate the 25th (Q1) and 75th (Q3) percentiles, respectively. The whiskers
extend to the most extreme data points not considered outliers (1.5 x interquartile
range above Q3 or below Q1).
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Extended DataFig.2|Proportionofselective, relational, and diminishing
selectivity neuronsacross thebrainregions. The number of ‘selective neurons’
was significantly above chancelevelin the hippocampus (H), entorhinal cortex
(E), and parahippocampal gyrus (PH). The number of ‘relational neurons’ was
significantly above chance onlyin the hippocampus (H) and entorhinal cortex (E).
The number of ‘diminishing selectivity neurons’ was significantly above chance
levelin the hippocampus (H), entorhinal cortex (E), insula (I), and orbitofrontal
cortex (OF). Histograms show the number of units of agiven type obtained
from 1,000 random permutations of stimuli or phase labels (see Methods).
Pvalues were calculated as the number of permutations with more neurons of a

giventype thanthe number of neurons actually detected, divided by the total
number of permutations. Ifin none of the permutations the number of neurons
was abovetheactual count,the P<0.001rangeisreported. No adjustment for
multiple comparisons was applied. Dashed lines represent the actual number
of neurons detected. Abbreviations: A - amygdala; E - entorhinal cortex;

H - hippocampus; 1 -insulaand operculum; IT - inferior temporal cortex;

LT - lateral temporal cortex; OF - orbitofrontal cortex and anterior cingulate
cortex; O - occipital cortex; P&C - parietal cortex & middle/posterior cingulate
cortex; PH - parahippocampal gyrus; SMA - Supplementary Motor Area.
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Extended DataFig. 3| Other examples of relational and diminishing neurons decreased responsesto their preferred stimulus. Raster plots show
selectivity neurons. (a) Throughout the study, these hippocampal relational individual spikesin eachtrial. Line plots show the mean number of spikes +s.e.m.

neurons showed increasingly more robust responsestostimulithatweredirectly  Top and middle panels show hippocampal neurons. The bottom panelshows a
linked to their preferred image on the pyramid graph (magenta) than toimages neuron fromthe entorhinal cortex.
linked indirectly (blue). (b) During the study, these diminishing selectivity
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Extended DataFig. 4 |Averageresponses of all hippocampal-entorhinal
relational neurons. These neurons showed significantly stronger responses
todirectthanindirectimagesinthelate-exposure phases (E5&6) and in POST
(left panel; Wilcoxon signed-rank tests against PRE; two-sided; FDR-corrected).
These neurons also gradually diminished their selectivity to the preferred
image (right panel; Wilcoxon signed-rank tests against PRE; two-sided;
FDR-corrected). Itis highly unlikely that this diminished selectivity was due to
‘regression toward the mean,” asresponses to preferred stimuli continued to
decreaseinthe subsequent phases (E3&4, E5&6, POST versus E1&2; P=0.0346,
P=0.0315,and P=0.0271, respectively; Wilcoxon signed-rank tests; one-sided;
FDR-corrected). Each circle corresponds to one neuron. For the definition of
box plots, please see the legend of the Extended Data Fig.1.Solid lines represent
means.
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information to decode stimulusidentity above the chancelevel. We used of £ 0.25sand the 0.1-1stime window. These parameters were used in the
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(‘leave-one-out’ cross-validation). This analysis was performed on data fromall
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Extended DataFig. 6 | Additional neuronal populationresults. (a) Population
decodingresults from all neurons outside of the hippocampal-entorhinal
system (n=910; 21sessions). Plots show CDFs of posterior probabilities assigned
totheactual, direct,and indirectimagesinthe subsequent study phases. Pvalues
obtained from the Kolmogorov-Smirnov tests between CDFs of subsequent
study phases versus PRE (one-sided). Exact Pvalues for ‘actual’ E1&2:2.68 x10™;
E3&4:1.16 x 1072%, E5&6:1.28 x 107%; POST: 3.59 x 1078, (b) Reconstruction of the
pyramid structure from the activity of allnon-hippocampal-entorhinal neurons
(n=910; 21 sessions). During exposure, but not during POST, all templates fit
the datasignificantly above the chancelevel (geodesic: E1&2: P=0.0286; E3&4:
P=0.0286;E5&6:P=0.0399; POST: P=0.7053; Euclidean: E1&2: P=0.005;
E3&4:P=0.005;E5&6:P=0.0064;POST: P=0.6505; successor:E1&2:P<0.0001;
E3&4:P=0.0003; E5&6:P=0.0003; POST: P=0.7169; change from PRE; 10,000
permutations; FDR-corrected). The successor template significantly
outperformed the geodesic template during exposure phases but not during
POST (successor versus geodesic: E1&2: P=0.0008; E3&4: P=0.0128; E5&6:
P=0.0022; POST: P=0.5216; change from PRE; 10,000 permutations; FDR-

Posterior Probability Posterior Probability Posterior Probability Posterior Probability

corrected). The difference between successor and Euclidean templates was
non-significant or marginally significant (successor versus Euclidean: E1&2:
P=0.0612; E3&4:P=0.1653; E5&6: P=0.0878; POST: P=0.6476; change from
PRE; 10,000 permutations; FDR-corrected). The plot shows Spearman’s
correlation coefficients (Fisher-transformed) between each template and the
neural datafromrespective phases. Pvalues were calculated as the number of
permutations with ahigher correlation coefficient thanthe oneactually detected,
divided by the total number of permutations. Ifin none of the permutations the
correlation was above the actual coefficient, the P< 0.0001rangeisreported.
(c) Populationdecodingresults for trials in which the actually presented images
were from an outer node of the pyramid (all 546 hippocampal-entorhinal
neurons). Plots show CDFs of posterior probabilities assigned to the actual,
direct,indirect-inner, and indirect-outer nodes during the subsequent study
phases. Pvalues obtained from Kolmogorov-Smirnov tests between CDFsin
the subsequent study phases versus PRE (one-sided). Exact Pvalues for ‘actual’
F1&2:0.2718; E3&4:3.59 x107; E5&6:1.98 x 1074 POST: 4.56 x 10 2. Exact P-value
for‘direct’ POST:1.53 x10°°.
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Extended DataFig.7|Additional supportfor thesuccessormodelanda
comparison of different successor representation metrics. (a) Animportant
prediction of the successor representation, but not the geodesic representation,
isthatdirectlinks between inner nodes (inner-inner) should be shorter than
directlinks between each outer node and the adjacentinner nodes (outer-inner).
We calculated pairwise distances between spiking responses of all selective
hippocampal-entorhinal neurons grouped by their preferred node. Then, we
compared the mean distances of inner-inner links (2-3, 3-5, 5-2) to the mean
distance of outer-inner links (4-2, 4-5, 6-5, 6-3,1-2,1-3). As predicted, the former
weresignificantly shorter than thelatter (Pvalues from Wilcoxon rank-sum
tests; two-sided; FDR-corrected). The plot shows mean distances fromall 263
(outer:n=119;inner: n=144) selective hippocampal-entorhinal neurons + s.e.m.

(b) There were nosignificant differences between the two measures of the
successor representation in terms of similarity to the neuronal data. The plot
shows distance matrixes and graphs corresponding to the two measures

(see Methods). Each graph shows the most faithful 2D representations of the
respective distance matrix obtained from the multidimensional scaling
analysis. Theright panel shows the degree of similarity between data (546
hippocampal-entorhinal neurons) and each template throughout the study
(Spearman’s correlation coefficients; Fisher-transformed; change from PRE).
Pvalues (FDR-corrected) were calculated as the number of permutations with
ahigher difference between the templates than the one actually detected,
divided by the total number of permutations (10,000).
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Extended DataFig. 8 |See next page for caption.



Extended DataFig. 8| Stimulus familiarity. (a) The mean number of outer-
inner orinner-outer (I-O) transitions did not differ significantly from the mean
number of inner-inner (I-I) transitions (Pvalues from the Wilcoxon signed-rank
tests; two-sided; FDR-corrected). (b) Images from theinner nodes were
displayed more frequently during exposure phases thanimages from the outer
nodes (Pvalues from the Wilcoxon signed-rank tests; two-sided; FDR-corrected;
exact Pvalues equal to 5.88 x 10~ for all comparisons). (c) Hippocampal-
entorhinal neurons did not respond significantly differently toimages from the
inner versus outer nodes (Wilcoxonsigned-rank tests; two-sided; FDR-corrected).
Bayes factors supported the null hypotheses (BF,;) and are provided in the
brackets (paired t-tests; two-sided; Cauchy prior; 0.7071). (d) Relational neurons
responded more strongly to directly linked stimuli, regardless of whether their
preferred stimulus was ataninner or anouter node (see Extended DataFig. 4;
Wilcoxonsigned-rank tests against PRE; two-sided; FDR-corrected). (e) These
neurons gradually diminished their selectivity, regardless of whether their
preferred stimulus was ataninner or anouter node (see Extended DataFig. 4;
Wilcoxonsigned-rank tests against PRE; two-sided; FDR-corrected; exact Pvalues
for‘outer’ (fromthe bottom to the top): P=0.004; P=0.016; P=2.74 x107%;
P=1.73 x107% exact Pvalues for ‘inner’(from the bottom to the top): P=0.00014;
P=6.56x107%P=9.43x107%; P=5.65x107°). There were nosignificant differences

between the slopes of diminishing selectivity for relational neurons preferring
theinner versus outer nodes (outer versusinner; PRE: P=0.566; E1&2: P=0.637;
E3&4:P=0.514; E5&6: P=0.831; POST: P= 0.86; Wilcoxon signed-rank tests,
two-sided). (f) Wereplicated our decoding results (see Fig. 3¢c) regardless of
whether the ‘actual’image was ataninner or an outer node. Plots show data
fromall hippocampal-entorhinal neurons (n = 546). Pvalues from Kolmogorov-
Smirnov tests between CDFs of respective posterior probabilities (PRE versus
subsequent study phases; one-sided). Please note that data used for training
(PRE) contained the same number of repetitions of eachimage. Exact Pvalues
for ‘outer-actual’ E3&4: P=1.56 x 10 %, E5&6: P=4.82x10 5, POST: P=4.82x107",
Exact P-value for ‘outer-direct’ POST: P=6.08 x 10"°. Exact Pvalues for ‘inner-
actual’E5&6:P=2.72x107% POST: P=1.58 x 107, (g) We also analysed responses
ofrelational neurons when direct and indirect stimuli were repeated a similar
number of times (i.e., direct-inner versus indirect-inner; direct-outer versus
indirect-outer; all possible combinations). We found the same pattern of
results as before (Pvalues from Wilcoxon signed-rank tests against PRE; one-
sided). The plot shows the mean ‘direct minusindirect’ difference (+s.e.m.)in
the0.1to1stimewindow (peak-normalized and baseline-corrected). For the
definition of box plots, please see the legend of Extended Data Fig. 1.
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Extended DataFig.9|Asimulationstudy supports thatareconstruction of
asuccessor-like pyramid representationrequires distance-dependent
scaling of neural responsesrather thansimple pairwise associations.
Please note the overall similarity between panel e above and the pyramid
reconstruction fromthe neuronal data (Fig. 3f). For each of the following
scenarios (a-f), we generated 6,000 artificial neurons. Each neuron could
respond preferentially to any of the six stimuli (random assignment) and this
response could vary between1to15Hz (random assignment). Then, we calculated
Euclidean distances between responses to each pair of stimuliacross allneurons
and used multidimensional scaling to provide the most faithful reconstruction
oftherespective matrixin2D (see Methods). (a) Neurons respond to the preferred
stimulus and only one directly linked stimulus on the pyramid; additionally,
responses to ‘direct’ are not scaled (i.e., any value betweenland 15 Hz).
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(b) Neuronsrespond to the preferred stimulus and only one directly linked
stimulus; responsesto ‘direct’arescaled (i.e., 50% of the response to the preferred
stimulus). (c) Neurons respond to the preferred stimulus and all directly linked
stimuli; responses to ‘direct’ are not scaled (see earlier). (d) Neurons respond to
the preferred stimulus and all directly linked stimuli; responses to ‘direct’are
scaled (i.e., 50% of the response to preferred stimulus). (e) Neurons respond to
the preferred stimulus and all directly linked stimuli; responses are scaled
differently for outer and inner nodes (percentages relative to responses to the
preferred stimulus; outer-seeds: direct - 40%; indirect-inner - 20%; indirect-
outer - 0%; inner-seeds: direct-inner - 80%; direct-outer - 60%; indirect - 60%).
(f) Neuronsrespond to the preferred stimulus and only one stimulus of each
type (outer-seeds: direct -40%; indirect-inner - 20%; indirect-outer - 0%; inner:
direct-inner - 80%; direct-outer - 60%; indirect - 60%).
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Extended DataFig.10 |Hippocampal neurons encoded another complex
temporal structure withlonger paths. (a) In aseparate study, we tested five
additional patients (sevenrecording sessions; see Methods). The procedure
was the same as before, but we removed two edges from the pyramid graph
during exposure. The resulting ‘diamond’ structure had the ‘shortest path’
distances oflength one (D1; corresponding to the ‘direct’ category in the main
study) or lengths two and three (D2 and D3, respectively, corresponding to the
‘indirect’ category in the main study). Werecorded 221 neurons, of which 55
werelocated in the hippocampus (we did not have any recording sitesin the
entorhinal cortexin this additional study). Six hippocampal neurons responded
preferentially during PRE to stimuli at the most distant nodes of the diamond
(blackcircles) and were relational neurons according to the criteriadescribed
earlier (see Methods). (b) Arelational neuron fromthe left hippocampus showing
progressive tuning to the graph’s distances. Raster plots show individual spikes
duringeachstimulus presentationin E1&2, E3&4,and E5&6. Line plots show the
mean number of spikes + s.e.m. (PREincluded for reference). The left panel
shows the stimuliand their locations on the graph. (c) During late-exposure
phases, these hippocampal relational neurons responded more strongly to
images located two edges away from their preferred stimulus than toimages
located three edges away (Wilcoxon signed-rank tests against E1&2 or zero;
one-sided). Eachcircle corresponds to one neuron (the average D2 minus D3

Posterior Probability Posterior Probability Posterior Probability

differenceinthe 0.1to1.3 stime window, peak-normalized and baseline-
corrected). For the definition of box plots, please see the legend of the Extended
DataFig.1. (d) Wereplicated the main population decoding finding that neuronal
representations of adjacent nodes progressively overlapped (see Fig.3c). That
is, the probability of decoding the actual stimulus as ‘actual’ was gradually
decreasing, the probability of decoding the direct stimuli as ‘actual’ was
increasing, and the probability of decoding indirect stimuli as ‘actual’ did not
change significantly. This analysis was conducted on all hippocampal neurons
from thisadditional study (n = 55) during all stimuli presentations. Please note
thattheindirect category combines D2 and D3. Pvalues obtained from
Kolmogorov-Smirnov tests comparing CDFsin PRE versus the subsequent
study phases (one-sided). Exact Pvalues for ‘actual’ E1&2&3: P=1.06 x107;
F4&5&6:P=1.94 x107". (e) Next, we analysed CDFs for nodes separated by two
versus three links away from the actual stimulus. This analysis was conducted
only for trialswhere the actual stimulus was located at one of the ‘black nodes’
ofthe diamond (see panel a). We found that the probability of decoding D2
stimulias ‘actual’ gradually increased during the study, while the probability

of decoding D3 stimuli as ‘actual’ gradually decreased. Pvalues obtained from
Kolmogorov-Smirnov tests (two-sided). Exact P-value for ‘distance 3’ E4&5&6:
P=3.69x107°.
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Population characteristics The participants were 17 patients with intractable epilepsy who were implanted with depth electrodes to delineate a
potentially surgically-treatable epileptogenetic zone (age: 21-69 y. o.; 10 females; Extended Data Table 1). Follow-up studies
included 33 healthy controls (26 females; mean age: 31+7 years old) and 5 additional participants with epilepsy (2 females;
mean age: 38+12 years old).

Recruitment All patients undergoing the clinical monitoring procedure during the data collection period were invited to participate in the
study. Due to the invasive nature of the intracranial recordings, only participants with intractable epilepsy were recruited.
This could present some bias in the data.

Ethics oversight UCLA Medical Institutional Review Board (IRB)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size No statistical methods were used to predetermine sample size, as there are no previous studies that report similar effects. However, human
single-neuron studies focusing on other mental processes have generally used similar sample sizes (e.g., Cerf et al. 2010, Nature; Kaminski et
al., 2018, Current Biology; Bausch et al., 2021; Nature Communications, etc.).

Data exclusions  Data from all subjects and all recording sessions were included in the analyses.

Replication The same experimental procedure was applied to all 17 participants in the main study (21 recording sessions). Group-level analyses suggest
that the results are consistent across the subjects and replicable. The additional study conducted on additional 5 participants (7 recording
sessions) used a slightly different procedure than the main study (i.e., different temporal structure) but the results were highly consistent,

which provides an internal replication and generalization of our findings.

Randomization  There is only one experimental group in the study.

Blinding n/a

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
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Experimental design

Design type Structural MRl and CT were used to localize the location of electrodes.
Design specifications 1 MRl and 1 CT image per subject.

Behavioral performance measures ~ We report reaction times and accuracy rates in the Extended Data Fig. 1. Median accuracy rates were high (above 80%),
which shows that the subjects performed the tasks as expected.

Acquisition
Imaging type(s) MRI (T1, T2) and CT
Field strength 3 Tesla
Sequence & imaging parameters standard T1 and T2 weighted sequences
Area of acquisition whole-brain
Diffusion MRI [ ] used X Not used

Preprocessing

Preprocessing software Each participant’s MRI and CT images were co-registered using the FSL “flirt” function. The MRI image was then segmented
into the grey matter, white matter, and cerebrospinal fluid probability maps, and resampled (1-1-1 mm voxel size).

Normalization We used the 152 T1-weighted MNI template using the nonlinear transformation algorithm implemented in the Statistical
Parametric Mapping toolbox (SPM12, Wellcome Department of Cognitive Neurology, London, UK).

Normalization template see above
Noise and artifact removal This was not necessary as the structural MRI was used only to localize the location of the electrodes.
Volume censoring see above

Statistical modeling & inference

Model type and settings No statistical modeling and inference was implemented, as the structural MRI was used only to localize the electrode
locations.
Effect(s) tested see above

Specify type of analysis:  [X| whole brain || ROI-based || Both
Statistic type for inference see above

(See Eklund et al. 2016)

Correction see above




Models & analysis

n/a | Involved in the study
|:| Functional and/or effective connectivity

IZ |:| Graph analysis

|:| Multivariate modeling or predictive analysis
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