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Multimodal cell maps as a foundation for 
structural and functional genomics

Leah V. Schaffer1,17, Mengzhou Hu1,17, Gege Qian1,2, Kyung-Mee Moon3, Abantika Pal4, 
Neelesh Soni4, Andrew P. Latham4, Laura Pontano Vaites5, Dorothy Tsai1, Nicole M. Mattson1, 
Katherine Licon1, Robin Bachelder1, Anthony Cesnik6, Ishan Gaur6, Trang Le6, 
William Leineweber6, Aji Palar4, Ernst Pulido6, Yue Qin1,7, Xiaoyu Zhao1, Christopher Churas1, 
Joanna Lenkiewicz1, Jing Chen1, Keiichiro Ono1, Dexter Pratt1, Peter Zage8, Ignacia Echeverria9,10, 
Andrej Sali4,10,11, J. Wade Harper5, Steven P. Gygi5, Leonard J. Foster3, Edward L. Huttlin5 ✉, 
Emma Lundberg6,12,13,14 ✉ & Trey Ideker1,15,16 ✉

Human cells consist of a complex hierarchy of components, many of which remain 
unexplored1,2. Here we construct a global map of human subcellular architecture 
through joint measurement of biophysical interactions and immunofluorescence 
images for over 5,100 proteins in U2OS osteosarcoma cells. Self-supervised 
multimodal data integration resolves 275 molecular assemblies spanning the range  
of 10−8 to 10−5 m, which we validate systematically using whole-cell size-exclusion 
chromatography and annotate using large language models3. We explore key 
applications in structural biology, yielding structures for 111 heterodimeric complexes 
and an expanded Rag–Ragulator assembly. The map assigns unexpected functions to 
975 proteins, including roles for C18orf21 in RNA processing and DPP9 in interferon 
signalling, and identifies assemblies with multiple localizations or cell type specificity. 
It decodes paediatric cancer genomes4, identifying 21 recurrently mutated assemblies 
and implicating 102 validated new cancer proteins. The associated Cell Visualization 
Portal and Mapping Toolkit provide a reference platform for structural and functional 
cell biology.

Human cells are organized across a spatial hierarchy of components, 
ranging from small protein complexes at the scale of nanometres to 
large condensates, compartments and organelles at the scale of micro-
metres5,6. One of the ultimate goals of the biological sciences is to under-
stand this multiscale subcellular organization and its relationship to 
biological function and human disease. As much of cell structure still 
remains uncharted, there has been long-standing interest in strategies 
to map this architecture systematically7–9.

A variety of complementary technologies have been implemented 
for systematically determining subcellular organization across scales. 
In particular, methods such as whole-cell electron microscopy have led 
to maps of subcellular organelles and their placement within cells10,11. 
Protein immunofluorescence (IF) staining12 and endogenous fluores-
cent tagging13, coupled to confocal microscopy imaging, have begun 
to reveal the subcellular locations of proteins. Biochemical proteomics 
approaches, such as affinity purification–mass spectrometry (AP–MS)14,  
cross-linking MS15, size-exclusion chromatography–MS (SEC–MS)16,17, 
proximity labelling18 and isotope tagging19,20 have revealed patterns of 

protein–protein interaction and subcellular localization that inform the 
makeup of protein complexes and organelles. Although these cell map-
ping technologies have typically been applied separately, integration 
of multiple complementary data modalities provides the opportunity 
to incorporate biological structure robustly across physical scales. 
Towards this aim, we recently demonstrated proof-of-concept for how 
two modalities—protein IF and AP–MS profiles—can be computation-
ally fused to systematically map subcellular assemblies, with the initial 
version covering 661 human proteins21.

Here we substantially scale the cell mapping datasets and pipeline, 
yielding protein biophysical interactions and protein IF images for a 
matched set of more than 5,100 proteins in U2OS cells (Fig. 1). Inte-
grating these data produces a global cell biology reference map with 
extensive coverage of human subcellular components, including 275 
distinct protein assemblies. We systematically annotate this map, 
assisted by recent advances in large language models (LLMs), then 
systematically validate its assemblies by generating a third distinct 
data modality—proteome-wide SEC–MS—in the same U2OS cellular 

https://doi.org/10.1038/s41586-025-08878-3

Received: 3 June 2024

Accepted: 10 March 2025

Published online: 9 April 2025

Open access

 Check for updates

1Department of Medicine, University of California San Diego, La Jolla, CA, USA. 2Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA. 3Department 
of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada. 4Department of Bioengineering and Therapeutic Sciences, 
University of California San Francisco, San Francisco, CA, USA. 5Department of Cell Biology, Harvard Medical School, Boston, MA, USA. 6Department of Bioengineering, Stanford University, 
Palo Alto, CA, USA. 7Broad Institute of MIT and Harvard, Boston, MA, USA. 8Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA. 
9Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA. 10Quantitative Biosciences Institute, University of California San Francisco, 
San Francisco, CA, USA. 11Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA. 12Department of Pathology, Stanford University, Palo Alto, 
CA, USA. 13Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden. 14Chan Zuckerberg Biohub, 
San Francisco, CA, USA. 15Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA. 16Department of Bioengineering, University of California  
San Diego, La Jolla, CA, USA. 17These authors contributed equally: Leah V. Schaffer, Mengzhou Hu. ✉e-mail: edward_huttlin@hms.harvard.edu; emmalu@stanford.edu; tideker@ucsd.edu

https://doi.org/10.1038/s41586-025-08878-3
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-025-08878-3&domain=pdf
mailto:edward_huttlin@hms.harvard.edu
mailto:emmalu@stanford.edu
mailto:tideker@ucsd.edu


Nature  |  Vol 642  |  5 June 2025  |  223

context. Finally, we examine how such proteome-wide cell maps can be 
used to guide diverse biological studies including structural biology, 
protein functional annotation, analyses of cell-type specificity and 
multi-localization, and interpretation of the cancer genome.

Multimodal proteomics data acquisition
We systematically tagged proteins in U2OS osteosarcoma cells 
through lentiviral expression of C-terminal Flag–HA-tagged baits avail-
able in the human ORFeome library14. A total of 2,174 proteins were 
successfully tagged and isolated from U2OS whole-proteome extracts 
using affinity purification, and interacting partners were identified by 
tandem MS (AP–MS) to yield a total of 36,842 interactions among 7,543 
proteins (Methods and Extended Data Fig. 1a,b). Data were required to 
pass a panel of quality-control measures implemented as previously 
described14,22; these measures included sequence validation of lentiviral 
clones, detection of tagged bait proteins in each AP–MS run, and moni-
toring for sufficient numbers of protein and peptide identifications 
(Methods). Additional quality-control metrics included recovery of 
known complexes (Extended Data Fig. 1c,d), for which the new inter-
actions showed coverage comparable to previous AP–MS datasets.

To match these protein interactions with parallel information on 
protein subcellular locations, we amassed a large collection of confocal 
images of U2OS cells stained with IF antibodies against each of 10,348 
proteins (20,660 images total; Methods). Each sample was simultane-
ously co-stained with reference markers for nucleus, endoplasmic 
reticulum and microtubules, providing a reference set of subcellular 
landmarks common to all images. Of these data, 17,368 images were 
collected in a previous publication12, and the remaining 3,292 images 
were more recently generated and validated according to the Human 
Protein Atlas (HPA) standard procedures for image and antibody qual-
ity control.

Combining across the interaction and imaging data, a total of 5,147 
proteins was well represented in both modalities. These proteins 
captured approximately half of the detectable U2OS proteome12 and 
provided representative coverage over the full catalogue of human 
protein functions, other than under-representation of transmembrane 
and immunoglobulin proteins (Extended Data Fig. 1e). We found that 
the protein pairs measured as most similar by one modality were 
enriched for pairs similar in the other, showing that the biophysi-
cal interaction and imaging data share information (Extended Data  
Fig. 1f,g).

U2OS cells

Protein of interest

Primary antibody

Secondary antibody
with �uorophore

Bait

Interacting proteins
(preys)

Antibody 
with beads

20,660 immuno�uorescence images36,842 biophysical interactions

Hierarchy of subcellular assemblies

Revealing protein function

3D structural modelling

Protein multi-localization

NucleusCytosol

Cell

U2OS HEK293

Studying cell type speci�city

Cell map portal

Cell

Validation through whole-cell SEC–MS

Interpreting tumour mutations

Fig. 1 | Study overview. Proteins are purified from whole-cell biochemical 
extracts and their biophysical interactions are determined using AP–MS.  
In parallel, proteins are illuminated by IF and their subcellular distributions  
are determined using high-resolution confocal imaging. These IF imaging and 
biophysical interaction data are integrated into a multimodal cell map, which is 

explored across five biological use cases and in an interactive visualization 
portal. MS and confocal microscopy illustrations are from the NIAID NIH 
BIOART Source (https://bioart.niaid.nih.gov/bioart/286; https://bioart.niaid.
nih.gov/bioart/86).
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Construction of a global cell map
We devised a self-supervised machine learning approach for fusing 
protein confocal imaging and biophysical interaction data to create a 
global map of protein subcellular organization (Methods). First, the 
two data streams were processed separately to generate protein fea-
tures for each modality; this information was subsequently fused to 
create a unified multimodal embedding for each protein. Achieving a 
quality embedding—a low-dimensional representation extracted from 
complex high-dimensional data—has been a major focus of machine 
learning research in recent years23,24. Here we adopted a self-supervised 
embedding approach (Extended Data Fig. 2a), in which proteins were 
positioned such that the original imaging and AP–MS features could 
each be reconstructed with minimal loss of information (reconstruc-
tion loss) while capturing the relative similarities and differences of 
each protein to others in both data modalities (contrastive loss). This 
multimodal embedding exhibited good performance in recovering 
known subcellular organization (Fig. 2a and Extended Data Fig. 2b–d), 
performing as well as, or better than, alternative supervised and unsu-
pervised approaches (Methods and Extended Data Fig. 2e).

Once the multimodal embedding had been learned, all pairwise 
protein–protein distances were computed and analysed using the 
multiscale community detection technique (Methods). Using this 
procedure, protein assemblies were resolved as modular communi-
ties of proteins in close proximity to one another, with such detection 
performed at multiple resolutions to identify protein assemblies at 
increasing diameters.

Application of this analytical pipeline to the data generated in U2OS 
osteosarcoma cells identified a hierarchy of 275 discrete protein assem-
blies (Fig. 2b and Supplementary Table 1). By calibrating the map using 
13 well-known subcellular components with characterized physical 
sizes (for example, nucleus, mitochondria and proteasome; Supple-
mentary Table 2), we found that we could translate the size of an assem-
bly (number of proteins) to an estimate of its physical diameter (in 
nanometres, R2 = 0.90) along with a prediction interval on this estimate 
(Methods). Estimated assembly diameters spanned the relevant scales 
of cell biology from 101 nm to 104 nm (Fig. 2c), with assemblies robustly 
identified at each of these scales (Methods and Extended Data Fig. 3a). 
By contrast, we found that maps constructed from only the imaging 
data tended to recover large assemblies but miss small ones, while maps 
constructed from only the AP–MS data recovered small assemblies 
but tended to miss large ones (Extended Data Fig. 3b,c). Overall, the 
integrated map identified the largest number of assemblies, including 
104 that were not resolved by either individual modality (Extended 
Data Fig. 3d and Supplementary Table 1).

Annotation of the U2OS cell map
To study and annotate the U2OS cell map, we held a series of in-person 
Annotation Jamborees, during which approximately a dozen individuals 
worked in pairs to assign names and putative functional roles to assem-
blies on the basis of expert knowledge and literature curation. First 
we examined the correspondence of assemblies to known subcellular 
components documented in the Comprehensive Resource of Mam-
malian protein complexes (CORUM)25, Gene Ontology (GO)26 or HPA12 
(Methods; Jaccard index ≥ 10%). We found that 41 assemblies closely 
reconstructed a known component ( Jaccard index ≥ 50%) while 90 had 
moderate agreement, with some unexpected differences (20% ≤ Jac-
card index < 50%).

The remaining 144 assemblies were designated as not previously 
documented assemblies. In these cases, team members worked col-
laboratively to consider the current biological literature relevant to the 
assembly’s protein subunits and their potential functions. This process 
was greatly informed by suggestions from OpenAI’s pre-trained trans-
former (GPT-4)27, a generative LLM that we recently showed is capable 

of providing insightful names and functional interpretations for gene 
sets identified in omics data3. As in this previous study, we used an engi-
neered prompt and pipeline (Methods and Extended Data Fig. 4a,b) to 
guide the LLM to generate descriptive names for gene sets indicative 
of their biological roles, along with a fully referenced analysis essay 
providing its rationale (Extended Data Fig. 4c) and a self-assessment of 
confidence in the suggested name. When applied to the U2OS cell map, 
we found that the LLM assigned names to known assemblies with very 
high confidence (median of 0.92 for both high overlap and substantial 
variation; Fig. 2d) and to the previously undocumented assemblies 
with moderately high confidence (median, 0.85), contrasting starkly 
with its confidence for sets of proteins drawn randomly without any 
correspondence to biological structure (median, 0.0). For 104 out of 
the 144 not previously documented assemblies, the literature about 
the various proteins was sufficiently coherent for GPT-4 to propose 
a confident assembly name (confidence ≥ 0.85), each of which was 
subsequently passed to the human curation team for final naming 
determination (Supplementary Table 1).

We noted that the highest level of organization in the cell map covers 
previously documented organelles and large subcellular compart-
ments of >100 proteins, including the nucleus with 102 nuclear subas-
semblies, the mitochondrion with 16 mitochondrial subassemblies, 127 
assemblies inside the cytosol and 3 assemblies related to microtubules 
(Fig. 2b). Organized within the nucleus are subcomponents such as 
nucleoli and the nucleoplasm, which itself hierarchically resolves 67 
components including the Mediator and RNA polymerase complexes 
and an array of other transcriptional machines. Notably, components 
of the plasma membrane and cytosolic periphery, such as G-protein 
and clathrin-coated-pit complexes, are tightly associated with numer-
ous other cytosolic proteins under a single large compartment, which 
we simply labelled ‘cytosol’ (Fig. 2b). Major expected components of 
the cytosolic compartment, such as the endoplasmic reticulum and 
Golgi apparatus, are also resolved. We found 48 assemblies that are 
potential biomolecular condensates28 on the basis of their enrichment 
for proteins with intrinsically disordered regions, proteins predicted 
to phase separate or proteins recorded in the CD-Code condensate 
database (Methods and Supplementary Table 3). Of these, 39 had a 
significant overlap with a recent complementary effort to predict 
protein condensates through integration of diverse biochemical 
protein features29 (hypergeometric test FDR < 5%), while the remain-
ing nine putative condensates had not been previously identified 
(Supplementary Table 3).

Systematic validation by SEC–MS
We next sought to systematically validate the cell map components 
using whole-cell SEC–MS as an orthogonal approach. Using this tech-
nique, cellular extracts from a cell population of interest are separated 
by SEC, followed by identification of proteins in each size fraction by 
tandem MS (Fig. 3a). Here we subjected triplicate cultures of U2OS 
cells to SEC–MS of 40 separate chromatography fractions, yielding 
quantitative fractionation profiles for 5,509 proteins in at least two 
replicates, of which 3,020 were present in the cell map. Quality assess-
ment of the SEC–MS dataset showed that elution profiles were largely 
reproducible across replicate biological measurements (Extended Data 
Fig. 5a,b), with protein peaks present across the full range of fractions 
(Extended Data Fig. 5c).

Integration of these measurements with the multiscale cell map 
revealed significant agreement, with proteins in the same assembly  
(as identified earlier by AP–MS and imaging) having a strong tendency 
to co-elute in the same chromatography size fractions (Fig. 3b,c). 
Overall, SEC data validated 89 assemblies (5% false-discovery rate 
(FDR)), corresponding to 43% of assemblies (76 out of 175) with 
more than 5 proteins and 61% of assemblies (59 out of 96) with more 
than 15 proteins (Fig. 3d, Methods and Supplementary Table 4).  
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Fig. 2 | Multiscale integrated map of a U2OS cell. a, Multimodal embedding  
of proteins based on integration of AP–MS and imaging data, reduced to two 
dimensions using the UMAP method56 (left). The points are proteins that are 
coloured and annotated on the basis of the top-level protein communities  
that can be resolved. Right, enlargement of the embedding, centred on the 
endomembrane community and its substructure. b, A multiscale hierarchical 
view of subcellular assemblies resolved in the U2OS cell map. The nodes represent 
assemblies, and the edges represent containment of a smaller assembly (lower) 
by a larger one (upper). The node size is proportional to the estimated size in 
nanometres. The node colour is based on three categories of overlap with 

known subcellular components (defined in pie chart). The dashed boxes denote 
assemblies described in the text and figures. c, Calibrating the sizes of assemblies 
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****P < 0.0001.
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Among small-to-medium size assemblies of <50 proteins, we found 
39 for which the SEC data had specifically corroborated the inclusion 
of unexpected members (Methods and Supplementary Table 4), with 
functions related to heat shock, stress response and vesicle trafficking.

At this stage of the study, we had interrogated U2OS cells with mul-
timodal proteomics data; integrated these data to resolve subcellular 
components at multiple scales; annotated these components; and 
lent support to many using an independent whole-cell profiling tech-
nique. We next turned our attention from map construction to use, 
exploring key impacts in structural and functional biology (use cases 
1–5: three-dimensional (3D) structural modelling; revealing protein 
function; studying cell type specificity; protein multi-localization; and 
interpreting tumour mutations).

3D structural modelling
We first explored the cell map as a platform to guide 3D structural 
modelling projects, interfacing with the recent advances in struc-
ture prediction enabled by artificial intelligence (AI)30. We used 
AlphaFold-Multimer31 to predict structural models for every pair of 

proteins arising in the same focal protein assembly (142 assemblies of 
<10 proteins, 1,666 protein pairs in total; Supplementary Table 5). We 
noted that the estimated accuracies of these structures (AlphaFold pTM 
and ipTM scores; Methods) were significantly higher than expected at 
random, supporting that these protein pairs have direct biophysical 
interaction interfaces (one-sided Mann–Whitney U-test, P = 2.7 × 10−12). 
Particularly high structural accuracy was indicated for 161 pairs, which 
also received highly confident per-residue scores at the protein–protein 
interaction interface (Fig. 4a and Methods).

Of these high-confidence structures, 111 had not been previously 
documented in the Protein Data Bank (PDB). An example was a biophysi-
cal assembly identified among DPYSL2, DPYSL3 and DPYSL4, a family 
of phosphoproteins important for nervous system development32. 
Their initial association was validated by SEC–MS co-elution profiling 
(Fig. 4b), after which AlphaFold-Multimer yielded high-confidence 
structures for all pairwise interactions of these proteins (Fig. 4c). 
Additional complexes that were validated first by SEC–MS, then 
resolved structurally by AlphaFold-Multimer, included an interac-
tion between TARS3, a threonyl-tRNA synthetase, and EPRS1, a mem-
ber of the aminoacyl-tRNA synthetase multienzyme subsystem33 
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(Fig. 4d,e); another example was a structure involving ERH and CCDC9B  
(Fig. 4f,g).

We also examined how AI predictions can be integrated with experi-
mental structural data to create a 3D model of a large protein assembly. 

We selected the Rag–Ragulator complex, which is located on the lyso-
somal membrane where it regulates growth signalling through the acti-
vation of the mammalian target of rapamycin complex 1 (mTORC1)34. 
The assembly that we had resolved in the cell map (Fig. 4h,i) included 
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members of the recombination-activating genes (RAG) and Ragula-
tor protein families (LAMTOR1–5, RRAGA, RRAGC, SLC38A9) as well 
as two unexpected proteins, BORCS6 and ITPA. We built an integra-
tive structural model35 of this Rag–Ragulator assembly (Methods), 
incorporating and expanding on the base cryo-EM structure36 (PDB: 
6WJ2), AlphaFold single structure predictions of BORCS6 and ITPA, as 
well as pairwise AlphaFold-Multimer predictions of BORCS6 or ITPA 
interactions with each of the other members of the Rag–Ragulator 
complex. The integrated structure (Fig. 4j) indicated that BORCS6 
interacts with LAMTOR2 and is proximal to LAMTOR1, LAMTOR3 and 
LAMTOR5. Similarly, the model supported the interaction of ITPA with 
LAMTOR1, LAMTOR3 and LAMTOR4. These examples illustrate how 
a data-driven compendium of subcellular components can identify 
new target protein components for downstream 3D structural studies.

Revealing protein function
Notably, 138 proteins of previously unknown function37 were present 
in the cell map, of which 24 fell in small-to-medium size assemblies of 
fewer than 25 proteins. Most of these assemblies had been assigned 
robust biological names during map curation (see above), enabling 
us to propose functions for their uncharacterized proteins through 
guilt by association (Supplementary Table 6). One such functional 
assignment was for C18orf21, which our cell mapping data placed 
robustly in the RNase mitochondrial RNA processing (MRP) complex 
(Fig. 4k,l). Corroborating this assignment, we observed that knockdown 
of C18orf21 induces a distinct transcriptional cell state very similar to 
knockdowns of other MRP genes (Fig. 4m).

Expanding to proteins with some previous functional annotation, 
we found 951 cases in which a protein was assigned to an unexpected 
assembly of fewer than 25 proteins, suggesting new functional roles 
(Supplementary Table 6). For example, the interferon-stimulated gene 
factor 3 (ISGF3) complex38, previously defined as consisting of STAT1, 
STAT2 and IRF9, also included dipeptidyl peptidase 9 (DPP9), a ser-
ine protease previously associated with inflammation39. Our AP–MS 
data implicated DPP9 as a potential member of this complex based on 
the STAT2 pull-down (Extended Data Fig. 6a) and this association was 
reinforced by the confocal images, which indicated similar cytosolic 
patterns of localization with ISGF3 proteins (Extended Data Fig. 6b). We 
observed that inhibition of DPP9 by 1G244 (a selective DPP9 inhibitor40) 
upregulated the canonical ISG targets of STAT transcription factors, 
including IFNβ1, IFNγ1 and IFNγ2, while a non-ISG control was unaf-
fected (Methods and Extended Data Fig. 6c), suggesting that DPP9 acts 
to suppress the IFN response (Extended Data Fig. 6d). These examples 
illustrate how a data-derived reference cell map provides a substantial 
aid in completing the functional annotation of the human proteome.

Studying cell type specificity
Defining a global map of a given cell type confers the potential to distin-
guish subcellular components that are specific to that type from those 
that are more widely conserved. As an initial proof of concept towards 
this aim, we examined each protein assembly in the U2OS cell map for 
evidence of shared versus distinct biophysical interaction patterns 
in comparison to HEK293 human embryonic kidney cells (previously 
characterized by AP–MS in the BioPlex 3.0 resource22; Methods and 
Extended Data Fig. 7a). Of the 258 assemblies with AP–MS data cover-
age in both cell types, we identified 103 that were conserved across 
cell types (Extended Data Fig. 7b and Supplementary Table 7). These 
included large assemblies, including the nucleus and cytosol, as well 
as small assemblies such as the spliceosome, the 9–1–1 RAD–RFC com-
plex (Extended Data Fig. 7c,d) and components of the SNARE com-
plex. The remaining 155 assemblies showed biophysical interaction 
patterns that were significantly different between HEK293 and U2OS 
cell types. For example, a cytosolic component named the energy 

metabolism regulation complex was robustly identified in the U2OS 
AP–MS data, but none of the corresponding interactions were detected 
in HEK293 cells (Extended Data Fig. 7e). These examples illustrate how a 
data-driven cell map can elucidate protein assemblies that are specific 
or shared between cell types, providing a basis to explain different cell 
phenotypes and identify cell-type-specific drug targets.

Protein multi-localization
A substantial fraction of proteins have been postulated to multi-localize, 
that is, to have a role in multiple subcellular assemblies or compart-
ments12,41. To this point, we noted that approximately 30% of proteins 
in the cell map (1,520 out of 5,147) are present in more than one distinct 
assembly (Extended Data Fig. 8a and Supplementary Table 8). For exam-
ple, XAB2, a known factor of the spliceosome and transcription-coupled 
repair42, localized not only to nuclear assemblies as expected, but also 
to the endomembrane (Extended Data Fig. 8b). Evidence for such locali-
zations was present in the fluorescence images as well as in the AP–MS 
interaction network, in which XAB2 showed strong interactions with 
both nuclear spliceosomal and membrane-associated stress factors 
(Extended Data Fig. 8c).

Moving beyond single proteins, we also investigated whether there 
was evidence of multiple localizations for entire protein assemblies, 
noting 23 that were indeed documented to multi-localize according to 
the U2OS cell map (Extended Data Fig. 8d,e). For example, the amyloid 
precursor protein (APP) complex (APP, APBA2, APBA3, APLP2, TJAP1) 
was clearly resolved in both the cytosol and endomembrane compart-
ments (Extended Data Fig. 8d) on the basis of evidence from both the 
protein imaging and biophysical interaction modalities (Extended Data 
Fig. 8f,g). This finding aligns with previous studies showing that APP 
and its homologue, APLP2, have a role in subcellular trafficking from 
the endoplasmic reticulum to the cell surface43 (with vesicular and 
endoplasmic reticulum localizations captured in our U2OS imaging 
data; Extended Data Fig. 8g). APBA2 and APBA3 are members of the 
X11 adaptor protein family, which is known to regulate the transloca-
tion of APP44. These examples illustrate how a multimodal cell map 
can reveal both single proteins and whole assemblies that localize to 
multiple subcellular compartments, suggesting pleiotropic functions.

Interpreting tumour mutations
Determining how diverse genetic alterations disrupt common molecu-
lar machines is critical to understanding the complexity of diseases 
such as cancer. Towards this aim, we obtained genome-wide somatic 
mutation profiles for a compendium of 772 paediatric primary tumours 
encompassing 18 tumour types4 (Supplementary Table 9). We then 
analysed these mutational profiles using the U2OS cell map, looking 
for mutational selection on the set of genes of an assembly as a whole 
(Methods). Each assembly was tested for mutation within each tumour 
type separately and across the entire pan-cancer cohort. While indi-
vidual gene mutations are rare in paediatric cancer, with only 6 genes 
altered in >2% of tumours (Fig. 5a), we identified a total of 11 recurrently 
mutated assemblies at this same 2% threshold (Fig. 5b). For example, 
the SMARCA4 SWI–SNF transcriptional activator is a well-known can-
cer driver that is genetically altered in 2.5% of paediatric tumours45 
(Fig. 5a), but this frequency increases to 6.0% when including coding 
alterations across all 13 proteins in SWI–SNF complexes (Fig. 5b). Some 
recurrently mutated assemblies were highly specific to certain cancer 
types, as was the case for an unexpected finding of frequent mutations 
of cell junctions in B cell lymphoblastic lymphoma (Fig. 5c). Other 
assemblies appeared to be under mutational selection more generally 
across tumours, as in the case of the nuclear pore (Fig. 5c). Cumulative 
across subtypes, this analysis identified a total of 21 assemblies that 
were recurrently mutated, suggesting positive selective pressure dur-
ing tumour evolution (Fig. 5d,e and Supplementary Table 10). Mutated 

https://doi.org/10.2210/pdb6WJ2/pdb
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assemblies were identified at all size scales but had a clear preference 
for small complexes of fewer than 50 proteins (Fig. 5e).

Within these assemblies, we focused on 250 putative cancer proteins, 
defined as proteins that are not only present in recurrently mutated 
assemblies but are also themselves mutated in multiple tumour samples 
(Methods). To further investigate a role for these proteins in cancer, 
we performed a large meta-analysis of transposon-based mutagen-
esis screens in mouse tumour models46 (Methods and Extended Data 
Fig. 9a). The putative cancer proteins showed a very high degree of 
enrichment for genes in which transposon mutagenesis leads to tumour 
development (Extended Data Fig. 9b), with specific validation support 

for 102 proteins (FDR < 0.3). The majority of these proteins had not 
been implicated in previous gene-level mutational analysis of either 
adult or paediatric cancer (Extended Data Fig. 9c,d and Supplementary 
Table 10). For example, the significantly mutated NCOR-associated 
transcriptional regulation assembly (Extended Data Fig. 9e) contained 
a total of 28 proteins, of which 16 were impacted by paediatric cancer 
mutations (Supplementary Table 10). Two proteins in this complex, 
NCOR1 and TBL1XR1, had been previously reported as cancer driver 
genes and shown to regulate key signalling pathways in modulating 
tumour growth47,48. Of others in this complex, we found that three 
validate as cancer drivers through mouse transposon mutagenesis 
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Fig. 5 | Protein assemblies as convergence points for paediatric cancer 
mutations. a, The mutation frequencies of the top 550 proteins (x axis), 
quantified in the pan-paediatric cancer cohort ( y axis, n = 772 tumours). Non-
silent point mutations or insertion/deletions are included. Proteins with magenta 
bars were previously reported as being under significant mutational pressure4. 
b, The mutation frequencies of 98 cancer protein assemblies (x axis), quantified 
in the same pan-paediatric cancer cohort ( y axis). The magenta bars highlight 
assemblies under significant mutational pressure (FDR ≤ 0.4, Methods). Inset 
(top right): expansion of one of these assemblies (SWI–SNF complex) by the 
protein-level mutation frequencies of its members (grey bars). QC, quality 
control; reg., regulation. c, The mutation frequencies (colour gradient) of 
assemblies (rows) within paediatric tumour types (columns). Pink gradient is 

used for recurrently mutated assemblies detected in the pan-cancer analysis. 
Navy gradient is used for recurrently mutated assemblies detected in individual 
tumour cohorts. MBL, medulloblastoma; HGG, high-grade glioma; ATRT, 
atypical teratoid/rhabdoid tumour; NHL, non-Hodgkin lymphoma; AML,  
acute myeloid leukaemias; WT, Wilms’ tumours; RBL, retinoblastoma; OS, 
osteosarcoma; ES, Ewing’s sarcoma; BLL, B cell lymphoblastic leukaemia/
lymphoma; RMS, rhabdomyosarcoma; NBL, neuroblastoma; PAST, pilocytic 
astrocytoma; EPM, ependymoma. d, Cell map indicating assemblies that are 
under mutational pressure across the pan-paediatric patient cohort (magenta, 
n = 14) or in individual tumour cohorts (navy, n = 7). The assembly indicated by a 
dashed rectangle is further discussed in Extended Data Fig. 9. e, The distribution 
of sizes for the recurrently mutated assemblies.
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(GTFIRD1, NRIP1, NCOR2). We also noted that proteins in this complex 
show a high proclivity to phase separate (22 out of 28; Methods and 
Supplementary Table 3) with distinct punctae in the IF images, sugges-
tive of nuclear condensate formation (Extended Data Fig. 9f). These 
findings demonstrate how knowledge of cancer protein assemblies 
can focus a genome analysis to increase the sensitivity of detecting 
cancer mutational events.

Cell map toolkit and portal
To enable interactive exploration of the human cell map, we devel-
oped the companion Multiscale Integrated Cell visualization portal 
(available at http://musicmaps.ai/u2os-cellmap/), which combines a 
high-performance graphical web interface with the general analysis 
functionality of the widely used Cytoscape application49. The map 
is browsable as a tree view (that is, the hierarchy in Fig. 2b) or a cell 
view, in which hierarchical assembly relationships are represented as 
nested circles (Extended Data Fig. 10). Tables provide key information 
such as the proteins comprising each assembly, estimated assembly 
sizes in nanometres and links to confocal images. Each assembly can 
be selected to display its supporting subnetwork of evidence, includ-
ing biophysical interactions (denoting proteins with high subcellular 
proximity as revealed by AP–MS pull-downs) and imaging interactions 
(denoting proteins with high subcellular proximity as revealed by the 
confocal images). Built-in search functionality is used to select and 
highlight assemblies that contain proteins of interest, and the platform 
also integrates LLM functional interpretation (Extended Data Fig. 4) 
to allow assemblies to be explored for insightful names and functional 
interpretations3. To facilitate continued map improvement, incorpo-
ration of new datasets, and construction of new cell maps across sub-
types and disease states, we also developed the Cell Mapping Toolkit 
(https://github.com/idekerlab/cellmaps_pipeline), which implements 
the end-to-end pipeline described here as a series of Python packages 
complete with full user documentation. This toolkit provides a flex-
ible and generalizable framework for cell map construction, enabling 
researchers to integrate and construct cell maps via multiple input 
modalities.

Discussion
Although the basic sequence of the human genome has been known for 
over two decades50, knowledge of how its proteins are organized within 
cells is still very much evolving. To advance this cause, we have devel-
oped a reference human cell map with extensive coverage of subcellular 
assemblies spanning four orders of magnitude (around 10−8 to 10−5 m). 
Achieving coverage across proteins and scales relied on at least two 
advances: interrogating the cell with matched proteome-wide datasets 
tuned to complementary types of information, and integrating these 
views systematically through a multimodal deep learning workflow. 
These advances provide a blueprint for mapping subcellular architec-
ture that can be readily applied across human cell types and disease 
states. They also pave the way to expanded cell maps incorporating new 
modalities, such as proximity labelling, subcellular fractionation or 
cryo-electron tomography, as well as time-dependent measurements, 
such as monitoring of subcellular dynamics over a progression of cell 
cycle phases.

With such generality in mind, we surveyed a series of use cases rep-
resenting common areas of investigation in which a global data-driven 
cell map can powerfully drive biological discovery. First, we examined 
how protein assemblies provide the starting material for 3D structural 
modelling, leading to the generation of high-confidence heterodimeric 
structures using AlphaFold (Fig. 4a and Supplementary Table 5) and a 
large integrative model of the Rag–Ragulator complex combining com-
putational predictions with experimental 3D coordinates (Fig. 4h–j). 
A second key impact was in the study of individual proteins, in which 

the cell map suggests unexpected roles for numerous proteins (Sup-
plementary Table 6). As a proof of concept, we further investigated a 
role for C18orf21 in the RNase MRP complex (Fig. 4k–m) and for DPP9 
in the ISGF3 complex (Extended Data Fig. 6). Other key applications 
were in the study of cell type specificity (Supplementary Table 7 and 
Extended Data Fig. 7), molecular condensates (Supplementary Table 3) 
and multi-localizing proteins and protein assemblies (Supplementary 
Table 8 and Extended Data Fig. 8). A final, critical demonstration was in 
decoding human genetics. By identifying patterns of genetic mutations 
that converge on protein assemblies (Supplementary Table 10), numer-
ous proteins were implicated that had not been previously reported as 
paediatric cancer drivers (Extended Data Fig. 9c,d).

Through multimodal analysis, the human cell map presented here 
unifies and extends multiple ongoing efforts that have thus far pro-
gressed independently. In this respect, we found that the integration 
of multiple modes of data substantially broadens the sensitivity and 
robustness with which subcellular components can be resolved across 
scales (Extended Data Fig. 3). These benefits translate to real impacts in 
biological discovery as exhibited in the use cases. Approximately half 
of AlphaFold structures (47 out of 111; Supplementary Table 5) and 40% 
of new protein functional annotations (Supplementary Table 6) were 
driven by assemblies that were robustly identified only by integrating 
both AP–MS and imaging datasets.

A separate distinct benefit of a multimodal analysis is that, by design, 
it provides multiple lines of evidence for new biological findings. In a 
typical omics study, a single modality of data is presented and analysed 
with many putative findings, only a few of which can be validated or 
pursued at any depth. By contrast, each new finding of the U2OS cell 
map is derived from two complementary experimental platforms by 
default (AP–MS biochemical pull-downs and spatial proteomics imag-
ing), and the systematic lines of evidence deepen further in the use cases 
through support from SEC–MS, AlphaFold predictions, perturb-seq 
and/or transposon mutagenesis. For example, the assembly of mul-
tifunctional protein ERH with RNA-binding protein CCDC9B was 
supported by an AP–MS interaction, image subcellular annotations, 
SEC–MS elution profiles (Fig. 4f) and a high-confidence AlphaFold 
3D model (Fig. 4g). Such confluence of data, also seen in other recent 
multi-omic studies51,52, increases the confidence in each result and 
provides substantial additional structural, functional and/or spatial 
information. This aspect pushes towards a new mode of end-to-end 
cell biology whereby multiple datasets are generated, integrated and 
simultaneously corroborated, informing a unified and foundational 
representation of the cell9,53–55.
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Methods

AP–MS data collection
U2OS cell cultures were processed for protein–protein physical interac-
tion mapping by AP–MS, according to a previously described protocol 
developed as part of the BioPlex project14. U2OS cells were obtained 
from American Type Culture Collection (ATCC) and tested for Myco-
plasma contamination. C-terminal HA-Flag-tagged DNA constructs 
targeting each of 2,174 bait proteins were constructed using clones 
from the human ORFeome library57 and introduced into U2OS cells 
by lentiviral transfection. Baits were selected based on success in pre-
vious pull-down experiments and to ensure broad sampling of the 
interactome as observed previously22. Immobilized and pre-washed 
mouse monoclonal anti-HA agarose resin was incubated with cell 
lysates to extract protein baits and their associated protein complexes. 
Subsequently, these were eluted with HA peptide then reduced and 
digested with trypsin. Approximately 1 µg of peptide was loaded for 
reversed-phase liquid chromatography with a C18 microcapillary col-
umn followed by tandem MS (Thermo Fisher Q-Exactive HFX) using 
data-dependent acquisition selecting the top 20 precursors for MS2 
analysis. Proteins were identified from the MS2 spectra using Sequest58, 
filtered to 1% protein-level FDR with additional entropy-based filter-
ing14. The CompPASS algorithm59,60 was used to select high-confidence 
(top 2%) protein–protein interactions on the basis of the abundance 
of proteins in each immunoprecipitation compared with their average 
levels across all other immunoprecipitations. Interactions were further 
filtered with CompPASS-Plus at a 1% FDR14,61. Steps for quality control 
were as follows. Clones were sequence-validated as described previ-
ously57. AP–MS analyses required the bait protein to be detected in the 
Sequest results; moreover, bait proteins were required to have a higher 
abundance (based on spectral counting) in their own pull-down com-
pared with the other pull-downs on the same 96-well plate. To remove 
under-loaded samples, we required LC–MS runs to contain a minimum 
of around 5,000 PSMs and about 700 proteins. Enrichment of interac-
tions within CORUM complexes (Extended Data Fig. 1c,d; CORUM v.4.1) 
was computed using a one-sided binomial test, assuming background 
probability of interaction equal to the network’s interaction density, 
with Benjamini–Hochberg (BH) FDR correction. CORUM complexes 
for each case were limited to those with at least three proteins and 
at least one AP–MS bait in the network. Randomized networks were 
constructed preserving the overall number of interactions per bait 
(node degrees).

Matched protein IF imaging data
U2OS cell cultures were analysed using IF confocal imaging as part of 
the Human Protein Atlas project (HPA) using a previously described 
protocol12. U2OS cells were obtained from ATCC and were authenti-
cated according to the manufacturer using morphology, karyotyp-
ing and PCR-based approaches to confirm the identity and to exclude 
intraspecies and interspecies contaminations. U2OS cells were seeded 
in 96-well glass-bottom plates and grown to a confluence of 60 to 70% 
at 37 °C in McCoy 5A medium, supplemented with 10% fetal bovine 
serum (FBS) and 5% CO2 for propagation. Cells were then fixed in 4% 
paraformaldehyde followed by permeabilization with Triton X-100 
detergent and incubated with the HPA primary antibody for the target 
protein, overnight at 4 °C. HPA antibodies were diluted to 2–4 μg ml−1 in 
blocking buffer with 1 μg ml−1 mouse anti-tubulin and 1 μg ml−1 chicken 
anti-calreticulin. The next day, cells were incubated at 90 min at room 
temperature with secondary antibodies (goat anti-rabbit AlexaFluor 
488; goat anti-mouse and goat anti-chicken AlexaFluor 647; or goat 
anti-rat AlexaFluor 647) diluted to 1 μg ml−1 and counterstained with 
4′,6-diamidino-2-phenylindole (DAPI). IF images were acquired using 
a Leica SP5 confocal microscope equipped with a ×63 HCX PL APO 
1.40 oil CS objective. Each IF image contains four colour channels, one 
for the protein of interest and the other three channels for reference 

markers corresponding to nucleus (DAPI), microtubule (anti-tubulin 
antibody) and endoplasmic reticulum (anti-calreticulin antibody). 
Antibody quality was scored according to a standard HPA protocol 
(https://www.proteinatlas.org/about/antibody+validation); the high-
est scoring antibody per protein was selected with up to two technical 
replicate images.

SEC–MS data collection
We collected a proteomic SEC–MS dataset in the U2OS cell line accord-
ing to a previously described procedure62. U2OS cells were tested for 
Mycoplasma contamination. Three 15 cm dishes of confluent U2OS 
cells for each replicate (n = 3) were washed and collected in ice-cold 
SEC buffer (50 mM KCl, 50 mM NaCH3COO, 50 mM Tris, pH 7.2, con-
taining 1× EDTA-free HALT protease and Thermo Fisher Scientific 
phosphatase inhibitor cocktail). These samples were subjected to a 
fractionation protocol described previously63, with modifications. In 
brief, cells were lysed using a Dounce homogenizer with a tight pestle 
for 3.5 min on ice. Lysates were ultracentrifuged at 100,000 rcf for 
15 min at 4 °C, and the supernatants were concentrated over 100 kDa 
molecular mass cut-off spin columns (Sartorius). A standard Brad-
ford assay was performed to inject 600 µg of protein for each repli-
cate into a single 300 × 7.8 mm BioSep-4000 column (Phenomenex) 
using SEC buffer without protease inhibitors. The samples were then 
separated into 40 fractions at 15 s per fraction using the 1290 Series 
semi-preparative HPLC (Agilent Technologies) system at a flow rate 
of 0.6 ml min−1 at 6 °C. The collection end point was predetermined 
by measuring the end of the BSA standard peak, discarding anything 
smaller than a single BSA protein size. The resulting fraction volumes 
of protein were denatured by adding to a final concentration 20% 
(v/v) 2,2,2-trifluoroethanol (Sigma-Aldrich), reduced and alkylated64. 
Subsequently, we added an equal volume of 50 mM ammonium bicar-
bonate for overnight digestion with trypsin (New England Biolabs) 
at 37 °C. The resulting peptides were cleaned with C-18 STop And Go 
Extraction (STAGE) tips65 using 40% (v/v) acetonitrile and 0.1% (v/v) 
formic acid in water as the elution buffer. Peptide concentrations 
were measured on a NanoDrop One instrument (Thermo Fisher Scien-
tific, 205 nm, Scopes method), after which we loaded approximately 
50 ng of peptides onto the TimsTOF Pro2 (Bruker Daltonics) system 
with CaptiveSpray source coupled to a nanoElute UHPLC (Bruker 
Daltonics) device using an Aurora Series Gen2 analytical column 
(25 cm × 75 μm, 1.6 μm FSC C18; Ion Opticks). The instrument was 
set to acquire in DIA-PASEF mode as previously outlined66. The sample 
batch was randomized before injection. Acquired SEC–MS data were 
searched on DIA-NN (v.1.8.1.0)67 against the UniProt human sequences 
(UP000005640, downloaded 2 June 2023) and common contaminant 
sequences (229 sequences). Library-free search was enabled, using 
trypsin/P protease specificity and 1 missed cleavages. Other search 
parameters included 1 maximum number of variable modifications, 
N-terminal M excision, carbamidomethylation of C and oxidation of 
M. Peptide length ranged from 7 to 30, precursor charge ranged from 
1–4, precursor m/z ranged from 300 to 1,800, and fragment ion m/z 
ranged from 200 to 1,800. Precursor FDR was set to 1%, with 0 for set-
tings ‘mass accuracy’, ‘MS1 accuracy’ and ‘scan window’. The settings 
‘heuristic protein inference’, ‘use isotopologues’, ‘match between run 
(MBR)’ and ‘no shared spectra’ were all enabled. ‘Protein name from 
FASTA’ was chosen for the protein inference parameter along with 
‘double-pass mode’ for neural network classifier. Robust LC (high pre-
cision) was used for the quantification strategy, RT-dependent mode 
for cross-run normalization, and smart profiling mode for library 
generation. Analyses of SEC–MS data used the protein elution profiles, 
defined as the protein-level quantification values reported by DIA-NN 
across all fractions. The similarity was calculated between the elution 
profiles for every pair of proteins, taking the mean Pearson correlation 
across the three replicates. For assessment of reproducibility across 
biological measurements (Extended Data Fig. 5b), we first selected 

https://www.proteinatlas.org/about/antibody+validation
https://www.uniprot.org/proteomes/UP000005640


the set of proteins present in all three replicates (n = 5,018). For each 
replicate, we determined each protein’s elution pattern, defined as 
the set of Pearson correlations between that protein and every other 
of the 5,018 proteins. We then calculated the Pearson correlation of 
protein elution patterns across replicates for the same protein or, 
alternatively, between random pairs of proteins.

AP–MS and IF data preprocessing
Proteins were first pre-processed within the AP–MS and IF modalities 
separately. For the AP–MS data, the node2vec68 Python3 implemen-
tation (https://github.com/eliorc/node2vec) was used to represent 
each protein i as a 1,024-dimension feature vector (xi) based on its 
protein–protein interaction neighbourhood (p = 2, q = 1, walk length =  
80, number of walks = 10). For the IF data, we applied DenseNet-121, 
a convolutional neural network pre-trained for object recognition in 
protein IF confocal images69. DenseNet-121 was used to represent each 
protein as a 1,024-dimension feature vector (yi) from the four channels 
of the colour image.

Multimodal embedding overview
We developed a self-supervised multimodal machine learning model to 
integrate (co-embed) the AP–MS and IF protein representations into a 
single low-dimensional (128-dimension) embedding space (Extended 
Data Fig. 2a). Our model is based on the autoencoder architecture 
known as multimodal structured embedding70 with modifications. 
Parameters of the autoencoder are trained using a two-component loss 
function that combines reconstruction loss and triplet (contrastive) 
loss. Details are provided in the ‘Encoder/decoder architecture’, ‘Loss 
functions’ and ‘Model training’ sections below.

Encoder/decoder architecture
The separate AP–MS and IF vector inputs (xi and yi for each protein i, 
see above) are compressed by modality-specific encoders (fx and fy) 
yielding 128-dimension vectors a and b:
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where Dropout indicates dropout layers71; Linear indicates linear 
transformation layers; BatchNorm indicates batch normalization72; 
Tanh indicates a hyperbolic tangent function; and ELU indicates an 
exponential linear unit function. The a and b vectors are then input to 
a joint encoder fz that learns the L2-normalized 128-dimension latent 
representation zi:
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Values of zi constitute the self-supervised multimodal embed-
ding used for subsequent cell map evaluation (see the ‘Evaluation 
of embedding approaches’ section below) and construction (see 
the ‘Pan-resolution community detection’ section below). For the 
decoder step, z is reverse-transformed to extract 128-dimension 
modality-specific features through weight matrices wx and wy:

w=i x ic z

d zw=i y i

Finally, these features are passed to modality-specific decoders (gx 
and gy), yielding the 1,024-dimension reconstructed inputs (x̂i, ŷi):

x c ĉ g= ( ) = Linear(Tanh(Linear(ELU(Linear( )))))i x i i

y d d̂ g= ( ) = Linear(Tanh(Linear(ELU(Linear( )))))i y i i

Loss functions
To compute the reconstruction loss R, the (x̂i, ŷi) outputs of the auto
encoder are compared to the original input values (xi, yi) for each 
modality:
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where n is the total number of proteins. The overall reconstruction loss 
is the sum of modality-specific reconstruction losses and a regulariza-
tion term, where λregularization is the regularization weight and ||w||F is the 
F-norm of the matrix:
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To compute triplet loss T, clustering using the Louvain algorithm73 is 
performed on the (a, b) vectors of each modality (during early training 
clusters are defined using input (x, y) values instead; see the ‘Model 
training’ section below). This clustering defines selection functions 
Sx and Sy for each modality, with S(i, j) = 1 for proteins i, j in the same 
cluster, else 0. This information is used to compute T for each modality:
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where N is the set of all proteins, D denotes the cosine distance  
(1 – cosine similarity), and m is the total number of terms inside the 
summation that are greater than 0. The full loss function L is a weighted 
sum of the reconstruction and triplet losses:

L R λ T T= + ( + )x ytriplet

Model training
Model parameters were trained with standard neural network learning 
procedures provided by Pytorch74 v.2.0.1, based on backpropagation 
using the Adam stochastic gradient descent method75. Training occurred 
in three phases: (1) Over the first 200 epochs, only the reconstruction 
loss R was used for backpropagation. (2) Over an additional 200 epochs, 
the full loss function L was used for backpropagation, with Sx and Sy 
defined using input x,y vectors. (3) Over a final 500 epochs of train-
ing, the full loss function L was used for backpropagation, with Sx and 
Sy defined using a,b vectors (updated every 200 epochs). Values of 
hyperparameters were set based on previous work70 without fine-tuning: 
batch size = 64, λregularization = 5, λtriplet = 5, Adam optimization learning 
rate = 0.0001. Triplet loss margin and dropout percentages (ε = 0.10, 
dropout = 0.25) were set based on commonly recommended values76,77.
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Evaluation of embedding approaches
The above self-supervised embedding model was evaluated in com-
parison to two alternative multimodal embedding approaches: (1) 
simple unsupervised concatenation of the separate AP–MS and IF 
inputs (x,y); and (2) a random forest regression model supervised to 
use (x,y) to predict protein–protein semantic similarities from the 
Gene Ontology ( June 2023 release), trained as previously described21 
(Python Scikit-learn package, fivefold cross-validation, n_estima-
tors=1000, max_depth=30). These embedding models were each 
scored for their recovery of interacting protein pairs documented in 
three complementary reference databases: (1) high-confidence pro-
tein–protein interactions in STRING78,79 (v.12, NDEx uuid 0b04e9eb-
8e60-11ee-8a13-005056ae23aa; Extended Data Fig.  2b,e); (2) 
protein pairs assigned to the same CORUM25 complex (v.4.1, NDEx uuid 
764f7471-9b79-11ed-9a1f-005056ae23aa; Extended Data Fig. 2c,e); 
or (3) protein pairs with high functional similarity in a genome-wide 
CRISPR-perturbation/mRNA sequencing screen (perturb-seq80; 
Extended Data Fig. 2d,e). Here, high functional similarity was defined 
as the top 1% of protein pairs by Pearson correlation between the 
profiles of mRNA transcriptional changes induced by CRISPR disrup-
tions of the two proteins (see the ‘Analysis of perturb-seq data’ section  
below).

Pan-resolution community detection
The cosine similaritiy between the multimodal embeddings for each 
pair of proteins was used to generate a series of protein–protein prox-
imity networks in which edges were defined from the most similar 0.2, 
0.3, 0.4, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 or 10.0% pairs, respectively, yield-
ing 10 networks in total. Pan-resolution community detection was 
performed in each of these networks using the Hierarchical commu-
nity Decoding Framework (HiDeF; https://github.com/fanzheng10/
HiDeF)81, with a persistence threshold (k) of 10 and a maximum reso-
lution (maxres) of 80, with other parameters kept at the default set-
tings. HiDeF identifies protein communities at different resolutions 
and represents their hierarchical relationships as a directed acyclic 
graph (DAG). In this DAG, the nodes represent communities and the 
directed edges (a → b) represent that community a contains commu-
nity b. The DAG was refined by assigning parent–child containment 
relationships between assemblies with containment index ≥ 75% 
and removing redundant systems with Jaccard index ≥ 90% with 
parent systems. This final DAG defines the cell map referenced in  
Fig. 2b.

Estimation of assembly diameter
A subset of 13 protein assemblies was selected from the cell map cor-
responding to assemblies with a known physical diameter documented 
in the literature (Supplementary Table 2). Linear regression was used to 
fit the log10-transformed diameter (nm, y) against the log10-transformed 
size of the assembly (number of proteins, x): y = 1.27x − 0.31. This linear 
equation was then used to estimate a diameter ŷ for each assembly in 
the map. A 95% prediction interval (PI) was estimated on the basis of 
the standard error as follows:

y t ylog PI = ± ( × s.e.( ))α n10 (1− /2, −2)̂ ̂

with t determined by the Student’s t-distribution (t = 2.2 with d.f. = n − 2, 
n = 13 components). The s.e. is the standard error between predicted 
and measured sizes, calculated as follows:
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. Relevant to Fig. 2c.

Evaluation of assembly robustness
The robustness of protein assemblies was evaluated using a statisti-
cal jackknifing approach, as described previously21. A random set of 
10% of proteins was removed before multimodal embedding (see the 
‘Multimodal embedding overview’ section above); integration and 
community detection were then performed using the same param-
eters described in the ‘Model training’ and ‘Pan-resolution community 
detection’ sections. This randomization procedure was repeated 300 
times to create a set of jackknifed hierarchies. The robustness of each 
assembly from the original hierarchy was then calculated as the frac-
tion of all jackknifed hierarchies that contained at least one matching 
assembly, defined as substantial and significant overlap between the 
protein sets representing the target and the match ( Jaccard index ≥ 40% 
and hypergeometric statistic FDR < 0.001). To assess the dependence 
of each assembly on the protein imaging data, we created a dataset 
with AP–MS features randomized (1,024-dimension random vectors 
sampled from a normal distribution) before the statistical jackknifing 
procedure, and the robustness of each assembly was computed as 
described above. For assessing the dependence of each assembly in the 
map on the AP–MS data, a reciprocal procedure was performed in which 
image embeddings were randomized. Relevant to Extended Data Fig. 3.

Annotation of cell map assemblies
The cell map was annotated by first aligning assemblies with the GO cel-
lular component branch ( June 2023 release), CORUM (4.1 human com-
plexes) or HPA (v.23) resources. Each of these cell biology resources 
defines a list of protein sets (GO terms, CORUM complex, HPA subcel-
lular localizations), referred to here as components. Hypergeometric 
tests were performed for each assembly versus each component in 
the resource, and the FDR was determined using BH correction. The 
results were tabulated for all assembly–component pairs with Jaccard 
index ≥ 10% and hypergeometric statistic FDR < 0.01 (Supplemen-
tary Table 1). Assemblies in the map were labelled as high overlap 
with known assembly ( Jaccard index ≥ 50% for at least one of the 
three resources); substantial variation on known assembly ( Jaccard 
index < 50% for all three resources and 20% ≤ Jaccard index < 50% for 
at least one of the resources); or not previously documented assembly 
( Jaccard index < 20% for all three resources) based on this enrichment 
analysis. We also used our recently developed Gene Set AI (GSAI) 
pipeline3 to guide the GPT-4 model27 (v.gpt-4-1106-preview) to anno-
tate assemblies with <1,000 proteins (Extended Data Fig. 4a). This 
approach uses a well-engineered prompt that follows the chain-of- 
thought82 and one-shot83 strategies to query GPT-4 for a descrip-
tive name, a confidence score and a detailed reasoning assay of 
the protein members from each assembly. One example is shown 
in Extended Data Fig. 4c, and the full result for each assembly is 
available in Supplementary Table 1. Literature references are pro-
vided by a separate GPT-4 based citation module developed in the 
previous study3 (Extended Data Fig. 4b) to aid in interpretability. 
The citation model extracts gene symbols and functional keywords 
from each paragraph of the LLM-generated analysis text; these are 
used to construct and execute PubMed queries that search titles 
and abstracts. The returned publications are prioritized based on 
relevance and the number of matching genes in their abstracts. 
Finally, a separate GPT-4 instance is asked to evaluate whether the 
top three publication titles and abstracts provide supporting evi-
dence for factual statements in the original analysis paragraph, 
selecting those that satisfy this requirement as references. To evalu-
ate the reproducibility of GPT-4 naming (Extended Data Fig. 4d),  
we performed the GSAI pipeline for five additional replicate runs 
of GPT-4 and calculated the semantic similarity between the assem-
bly names generated in each of these runs versus the original run. 
Similarity was computed using the SapBERT model84 from hugging-
face (cambridgeltl/SapBERT-from-PubMedBERT-fulltext) using the 
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transformers package85 (v.4.29.2). Assemblies that were not named 
by the original run were eliminated from the reproducibility test.

Biological condensate analysis
To analyse the cell map for biological condensates, we used three 
resources: IUPred3.086, a sequence-based predictor of protein disor-
der; FuzDrop87, a sequence-based predictor for the ability of a protein 
to drive condensate formation; and CD-Code88, a database containing 
proteins known to participate in biological condensates. IUPred3.0 
predicts the probability of each amino acid in a sequence as being disor-
dered. Proteins containing a contiguous sequence of amino acids >30 
residues, where each amino acid has a >50% chance of being disordered, 
were annotated as likely disordered. FuzDrop assigns a probability of 
a sequence driving phase separation, which we thresholded at >60% 
to annotate a protein as ‘likely phase-separated’. Finally, we searched 
for each gene’s UniProtID in CD-Code (accessed 31 May 2023) under 
‘Homo sapiens’, enabling us to annotate a protein as ‘associated with 
known condensates’. We used a hypergeometric test to assign statistical 
significance (P < 0.01) to each protein assembly that was enriched in 
proteins that were likely disordered, likely phase-separated, or associ-
ated with known condensates. Assemblies that were significant in one of 
these three analyses were considered possible biological condensates 
(Supplementary Table 3).

Validation of protein assemblies and subunits by SEC–MS data
For the set of proteins in each assembly, we determined the Pearson 
correlation in SEC–MS elution profiles for all pairs of these proteins 
(see the ‘SEC–MS data collection’ section). This similarity distribution 
was then compared to a null distribution (all pairs of proteins not in 
any common U2OS assembly, that is, assigned to root node only) using 
a one-sided Wilcoxon rank-sum test with BH correction (Fig. 3d and 
Supplementary Table 4). Assemblies with FDR < 5% were considered 
validated. A similar analysis was performed using PrinCE89 (https://
github.com/fosterlab/PrInCE) scores to rank protein pairs rather than 
Pearson correlations, with PrinCE run using the default parameters. We 
found that 90 assemblies were validated at 5% FDR in the complemen-
tary analysis using PrInCE, including 70 assemblies validated by both 
Pearson correlation and PrinCE similarity measures (Supplementary  
Table 4). For validation of unexpected protein subunits within assem-
blies, for each assembly <50 proteins, ‘unexpected proteins’ were de-
fined as those not included in the best matching cellular component 
from any of three cell biology resources (GO, CORUM, HPA; see the ‘An-
notation of cell map assemblies’ section above). For each unexpected 
member, its SEC–MS elution profile was compared against all other 
proteins in the assembly using Pearson correlation; this similarity dis-
tribution was compared to the null distribution as described above to 
compute an FDR. Unexpected proteins with FDR < 5% were considered 
validated (Supplementary Table 4).

AlphaFold-Multimer analysis
All pairs of proteins in small assemblies (<10 proteins) were selected for 
AlphaFold-Multimer analysis. AlphaFold-Multimer was run on each pair 
using localcolabfold (https://github.com/YoshitakaMo/localcolabfold) 
with the default settings90. Sequences were acquired from the complete 
human protein UniProt FASTA file (UP000005640, reviewed sequences, 
downloaded 11 September 2023). For each predicted heterodimeric 
structure, we calculated a weighted average between the predicted 
template modelling score (PTM, an estimate of the similarity between 
the predicted and ground truth structures) and the ipTM score (the 
pTM score modified to score the interfaces across different proteins)31:

model score = 0.8 × ipTM + 0.2 × pTM

We calculated the median score out of five independent models 
generated per protein pair. A null score distribution was generated by 

repeating this score computation for pairs of proteins drawn randomly 
from those pairs that were not part of the same small assembly (<10 
proteins as above). This null distribution was used to calculate an FDR 
for actual protein pair scores, selecting a cut-off of 30% correspond-
ing to a weighted PTM score of 0.39. Pairs were further evaluated for 
the presence of a confident interface residue (within 10 Å of the other 
protein and plDDT score > 80). Relevant to Fig. 4a.

Integrative structure modelling of the Rag–Ragulator complex
A structural model of the Rag–Ragulator community was computed by 
using an integrative modelling approach35,91–93, proceeding through the 
standard four stages35,91,94 as follows. (1) Gathering input information: 
the Rag–Ragulator model in the cell map included LAMTOR1 through 
LAMTOR5, RRAGA, RRAGC, SLC38A9, BORCS6, NUDT3 and ITPA. An 
integrative model was computed based on the SLC38A9–RagA–RagC–
Ragulator comparative model (PDB: 6WJ2 template)36, AlphaFold30 
predictions for BORCS6 and ITPA, and pairwise AlphaFold-Multimer 
predictions31 for BORCS6 or ITPA versus all other members of the 
Rag–Ragulator complex. One-hundred AlphaFold-Multimer models 
were generated for each pair and evaluated using FoldDock95. The 
model excluded NUDT3 because AlphaFold-Multimer did not produce 
high-confidence models of NUDT3 and other Rag–Ragulator compo-
nents according to FoldDock. (2) Representing subunits and translat-
ing data into spatial restraints: the components of the Rag–Ragulator 
community were represented as rigid bodies. Alternative models were 
ranked through a scoring function corresponding to a sum of terms, 
each one of which restrains some aspect of the model based on a subset 
of input information. The spatial restraints included a binary binding 
mode restraint on the position and orientation of pairs of proteins as 
derived from ensembles of AlphaFold-Multimer predictions, connec-
tivity restraints between consecutive pairs of beads in a subunit and 
excluded volume restraints between non-bonded pairs of beads. (3) Con-
figurational sampling to produce an ensemble of structures that satisfies 
the restraints: the initial positions and orientations of rigid bodies and 
flexible beads were randomized. The generation of structural models 
was performed using replica exchange Gibbs sampling, based on the 
Metropolis Monte Carlo algorithm96. Each Monte Carlo step consisted 
of a series of random translations of flexible beads and random trans-
lations and rotations of rigid bodies. (4) Analysing and validating the 
data and ensemble structures: model validation93,97 included selection 
of the models for validation; estimation of sampling precision; estima-
tion of model precision; and quantification of the degree to which a 
model satisfies the information used to compute it. The above four-step 
modelling protocol was scripted using the Python Modelling Interface 
(PMI) package, a library for modelling macromolecular complexes 
based on the open-source Integrative Modelling Platform (IMP) package 
v.2.18 (https://integrativemodeling.org)91. The configuration of the rigid 
Rag–Ragulator complex, ITPA protein and the two BORCS6 domains was 
computed by minimizing the violations of the spatial restraints implied 
by the input information, using IMP91. Relevant to Fig. 4j.

Analysis of perturb-seq data
The K562 day-8 perturb-seq dataset80 was acquired at https://gwps.
wi.mit.edu (BioProject: PRJNA831566). This dataset provides single-
cell transcriptional profiles for 9,867 distinct gene knockouts, which 
underwent filtering based on the following criteria: (1) gene knock-
out corresponds to a protein in our U2OS cell map; (2) gene knockout 
has efficient on-target mRNA reduction of >30%; (3) gene knockout 
induces a strong transcriptional phenotype defined by ≥20 differ-
entially expressed genes at a significance of P < 0.05 on the basis of 
the Anderson–Darling test followed by BH correction. This filtering 
process resulted in a list of 1,289 gene knockouts. The functional cell 
states due to each of these perturbations were represented using the 
mean-normalized differential expression profile. Relevant to Fig. 4m 
and Extended Data Fig. 2d,e.

https://github.com/fosterlab/PrInCE
https://github.com/fosterlab/PrInCE
https://github.com/YoshitakaMo/localcolabfold
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https://integrativemodeling.org/
https://gwps.wi.mit.edu
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https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA831566
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Analysis of DPP9 inhibition
U2OS cells were seeded in triplicate at 300,000 cells per well in a six-well 
plate (two biological replicates). The next day, cells were treated with 
1G244, a DPP9 inhibitor (HY-116304, MedChem Express) at the indi-
cated concentrations for a total of 6 h. After treatment, The medium 
was aspirated and washed once with ice-cold PBS. Cells were collected 
in 500 µl of cold TRIzol reagent (15596026, Invitrogen) using a cell 
scraper. 100 µl of chloroform was added to the TRIzol lysate and vor-
texed for 20 s followed by a 3 min incubation at room temperature. The 
homogenate was centrifuged at 10,000g for 18 min at 4 °C. A total of 
200 µl of aqueous phase was removed with a pipette and transferred 
to a new Eppendorf tube. An equal volume of 100% ethanol was slowly 
added to the aqueous phase and mixed by gentle pipetting. The entire 
sample was transferred to an RNeasy Mini spin column placed in a 2 ml 
collection tube (74104, Qiagen). The rest of the extraction was carried 
out according to the Qiagen RNeasy protocol. 2 µg of RNA per sample 
was reverse-transcribed according to the iScript cDNA Synthesis Kit 
protocol (1708890, Bio-Rad, interferon beta 1: Hs01077958_s1; inter-
feron gamma 1, Hs00194264_m1; interferon gamma 2, Hs00988304_m1; 
non-ISG—18S, 4333760T; and GAPDH, Hs0275889q_g1). qPCR was car-
ried out in triplicates in a 96-well plate according to the TaqMan Fast 
Advanced Master Mix protocol (4444557, Thermo Fisher Scientific) 
on a CFX96 Touch Real-Time PCR Detection System from Bio-Rad. 
The expression levels were compared against a housekeeping gene 
(GAPDH), and the relative expression levels were compared against 
the DMSO control. Relevant to Extended Data Fig. 6.

Analysis of conservation of U2OS assemblies in a second cell type
We downloaded the AP–MS BioPlex v3 network from NDEx (uuid 
6b995fc9-2379-11ea-bb65-0ac135e8bacf), which provides high cov-
erage of human protein interactions in a second cell type, HEK293 cells 
(14,033 proteins, 127,732 protein–protein interactions). Node2vec was 
used to represent the interaction pattern of each protein in this HEK293 
network (see the ‘AP–MS and IF data preprocessing’ section). The cosine 
similarity in interaction patterns was then computed for all protein pairs 
(separately for HEK293 and U2OS). For the set of proteins included in 
each U2OS assembly, the distribution of pairwise protein similarities 
in HEK293 were compared to those in U2OS cells using the two-sided 
Mann–Whitney U-test. This test was translated to an effect size using 
Cliff’s delta98; assemblies with Cliff’s delta ≥ 0.5 were considered to be 
increasingly U2OS-specific whereas those with Cliff’s delta < 0.5 were 
considered to be increasingly conserved. Relevant to Extended Data 
Fig. 7; in Extended Data Fig. 7b, Cliff’s delta scores of <0 are set to 0.

Multi-localization analysis
For each protein, we identified its terminal locations in the cell map 
hierarchy, defined as assemblies (hierarchy nodes) where the protein 
appeared but was absent in all subassemblies (child nodes). We then 
counted the number of unique paths from these terminal locations to 
the root of the hierarchy (root node). Proteins with multiple distinct 
paths to the root were classified as multi-localized, indicating their 
presence in different branches of the cell map. Multi-localized assem-
blies were identified as assemblies with more than one parent node in 
the hierarchy. Relevant to Extended Data Fig. 8.

Pre-processing of paediatric cancer mutational profiles
Data were obtained from a pan-paediatric cancer study4 of 914 indi-
vidual patients with cancer aged under 25 years (study ID: pediatric_
dkfz_2017, downloaded from cBioPortal99,100). We selected the following 
types of non-silent somatic mutation events: ‘Frame_Shift_Del’, ‘Frame_
Shift_Ins’, ‘In_Frame_Del’, ‘In_Frame_Ins’, ‘Missense_Mutation’, ‘Non-
sense_Mutation’, ‘Nonstop_Mutation’, ‘RNA’, ‘Splice_Region’, ‘Splice_Site’ 
and ‘Translation_Start_Site’. A total of 772 primary tumour samples, 
spanning 18 cancer types, were in the resulting list (Supplementary 

Table 9). We recorded the number of tumours in the pan-paediatric 
cohort, as well as each individual tumour cohort, in which each gene 
was observed to have at least one somatic mutation event (N(g,obs)). 
Moreover, we calculated the expected number of mutations for each 
gene in the pan-paediatric cohort (N(g,exp)) using the default setting 
of MutSigCV v.1.4, as described in a previous study101. For expected 
mutation counts for individual cancer cohorts, we down-scaled the 
pan-paediatric cancer N(g,exp) based on the proportion of patients (for 
example, 44 patients with Wilms’ tumours (WT) account for 5.7% of 
the pan-paediatric cohort, so Ng,exp,WT = 0.057 × Ng,exp,pan-paediatric). Finally, 
the corrected log mutation count of each gene (Mg) for each cohort 
was calculated as:

M N N= log (max( , 0) + 1)g g g2 ( ,obs) − ( ,exp)

Statistical identification of recurrently mutated assemblies
We applied a previously described statistical model, HiSig101 (https://
github.com/fanzheng10/HiSig), to calculate the mutation selection 
pressure on assemblies with the default parameter settings. HiSig 
implements linear regression (with L1 lasso regularization) of the 
mutation count against the organization of proteins in assemblies. 
We calculated an empirical P value by comparing the mutational 
selection on assemblies against 10,000 randomly permuted assign-
ments of proteins to assemblies. The FDR was calculated by BH cor-
rection. Recurrently mutated assemblies were selected on the basis 
of FDR ≤ 0.4. Assembly-level mutation frequencies were calculated 
from the number of distinct patients who carried at least one mutated 
protein in the assembly. Tumour types with fewer than 15 patients 
were excluded from analysis, as were mutated assemblies with >50 
mutated proteins.

Validation of cancer driver genes
Genes mutated in more than one patient with cancer and located in the 
significantly recurrent mutated assemblies (see above) were defined 
as putative cancer proteins. We obtained a large collection of 
transposon-based mutagenesis screens in mice from the Candidate 
Cancer Gene Database (CCGD)46 (http://ccgd-starrlab.oit.umn.edu/
index.html, downloaded on 26 March 2024). This database consists of 
a total of 72 studies with mouse transposon insertion mutagenesis 
screens across 13 tumour categories (Extended Data Fig. 9a). We deter-
mined the number of studies in which a gene was disrupted by trans-
poson insertion in mice tumours. Mutated genes in cancer assemblies 
were designated positives (genes expected to have high study counts 
because they are mutated), and all other genes were designated nega-
tives (genes not expected to have high study counts). We calculated 
the kernel density estimation (KDE) for the mutated genes in cancer 
assemblies and other genes in the cell map using the stat.gaussian_kde 
function from the Python package scipy (v1.7.3). The area under the 
KDE curves was integrated using the trapz function from Python pack-
age numpy (v.1.21.6). The FDR was then computed as the ratio of the 
area under the curve for false positives (AreaFP) to the total area under 
the KDE curve representing both false positives and true positives 
(AreaTP), mathematically shown as: FDR =

Area
Area + Area

FP

FP TP
. We specified 

the minimum number of screens reporting a gene at 4 (x ≥ 4), corre-
sponding to FDR = 0.28, as the threshold cut-off for validated cancer 
drivers (Extended Data Fig. 9b). Adult cancer driver genes were collected 
from the TCGA Pan-Cancer Atlas102; significantly mutated genes in the 
pan-paediatric cancer cohort were collected from refs. 4,103. These 
genes were defined as known cancer genes in Extended Data Fig. 9c,d.

Running the cell mapping toolkit
The Cell Mapping Toolkit (https://github.com/idekerlab/cellmaps_
pipeline) implements a series of Python packages to execute the 
end-to-end pipeline described herein. Specific packages include steps 
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for processing the protein imaging and biophysical interaction datasets 
(cellmaps_imagedownloader, cellmaps_ppidownloader), embedding 
the input modalities (cellmaps_image_embedding, cellmaps_ppi_
embedding), integrating the modalities (cellmaps_coembedding), 
constructing the hierarchical cell map (cellmaps_generate_hierar-
chy) and annotating the cell map with known resources such as GO 
(cellmaps_hierarchyeval). Each package is pip-installable and is linked 
to complete user documentation hosted at ReadTheDocs (https://
cellmaps-pipeline.readthedocs.io/). A step-by-step guide is provided 
at the GitHub repository.

Statistics and reproducibility
Statistical tests were performed using SciPy104 with BH multiple-testing 
correction where appropriate. Statistics involving comparison between 
two data distributions were calculated using Mann–Whitney U-tests or 
Wilcoxon rank-sum tests (Figs. 2d, 3c,d and Extended Data Figs. 2b–d, 
7b, 9b). Statistics for assessing the enrichment of proteins or protein 
pairs were calculated using hypergeometric tests (Fig. 2b and Extended 
Data Fig. 3) unless stated otherwise. The SEC–MS data were repro-
duced in three biological replicates. The IF stainings were reproduced 
in at least two different cell lines in HPA (Fig. 4h,l and Extended Data 
Figs. 6b, 7d, 8c,g, 9f). The qPCR experiment for DPP9 was repeated for 
two biological replicates and three technical replicates each (Extended 
Data Fig. 6c).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The Multiscale Integrated Cell web portal (musicmaps.ai/u2os-cellmap) 
provides links to all major data and derived resources associated with 
this study, including AP–MS protein interactions, protein IF images, 
SEC data and the online interactive U2OS cell map. The U2OS cell map 
is available at https://ndexbio.org under uuid f693137a-d2d7-11ef-8e41-
005056ae3c32. Protein assemblies in the cell map are also available at 
the European Bioinformatics Institute (EBI) Protein Complex Portal 
(https://www.ebi.ac.uk/complexportal) with the query CLO:0009454. 
The AP–MS protein interaction data are available at https://ndexbio.
org under uuid 95bc75d5-d1d1-11ee-8a40-005056ae23aa. In addi-
tion to its release here, the U2OS protein interaction network will be 
included as part of the upcoming BioPlex105 v.4.0 database release 
(E.L.H. et al., manuscript in preparation). AP–MS raw MS files are avail-
able at MassIVE under the identifier MSV000097168. The entire image 
dataset is included in the Human Protein Atlas v23 release. SEC–MS 
raw MS files and search results are available at the Proteome Xchange 
under the identifier PXD052362. All structural models are available 
at the ModelArchive Database (https://modelarchive.org) with the 
identifiers ma-idk-u2osmap and ma-m5og4. Other public databases 
and resources used in this study include Gene Ontology ( June 2023 
release; https://geneontology.org), CORUM (v.4.1 release, https://
mips.helmholtz-muenchen.de/corum/), UniProt Homo sapiens pro-
teome (accessed 2 June and 11 September 2023; https://uniprot.org), 
STRING interactome (v.12; NDEx uuid: 0b04e9eb-8e60-11ee-8a13-
005056ae23aa), OpenCell interactions (https://opencell.czbiohub.
org/download), CD-CODE condensate database (accessed 31 May 2023; 
https://cd-code.org), FuzDrop (dataset S7 in ref. 87), Protein Conden-
sate Atlas (supplementary dataset 8 in ref. 29), K562 day-8 perturb-seq 
dataset (https://gwps.wi.mit.edu), HEK-293 BioPlex v.3.0 (NDEx uuid: 
6b995fc9-2379-11ea-bb65-0ac135e8bacf), paediatric cancer muta-
tion data (https://www.cbioportal.org/study/summary?id=pediatric_
dkfz_2017) and transposon-based mutagenesis screens from the 
Candidate Cancer Gene Database (http://ccgd-starrlab.oit.umn.edu/
index.html; downloaded 26 March 2024).

Code availability
Open-source software for cell map construction (Cell Mapping Toolkit) 
has been released as a series of Python PyPI packages at GitHub (https://
github.com/idekerlab/cellmaps_pipeline) and is also linked through 
the Multiscale Integrated Cell web portal (https://musicmaps.ai/
u2os-cellmap).
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Extended Data Fig. 1 | See next page for caption.



Article
Extended Data Fig. 1 | Data quality assessment. a) Complete network of 
U2OS protein-protein interactions as measured by AP-MS. b) Histogram of 
number of interactions per protein. c) Fraction of CORUM complexes significantly 
enriched (1% FDR, Methods) for AP-MS interactions measured in USOS (left) 
alongside interactions ascertained in two previously published AP-MS networks 
for other cell lines22,51 (middle and right). Error bars denote 95% confidence 
intervals. d) Interaction networks for select CORUM complexes, with FDR 

q-values as per panel (c). Blue nodes denote bait proteins and grey nodes 
denote prey proteins. e) PANTHER106 classifications of protein function (top 30 
largest classes by number of proteins), shown for proteins covered by U2OS cell 
map in comparison to the entire human proteome (UniProt, downloaded 
September 11, 2023). f) Protein pairs ranked by cosine similarity in AP-MS features 
enrich for the most similar protein pairs (top 1% in the immunofluorescent 
protein image features and g) vice versa.



Extended Data Fig. 2 | Self-supervised embedding of multiple data modalities. 
a) Architecture of self-supervised multimodal embedding model. Columns of 
squares represent feature vectors, with the dimensionality written just below 
each column. Regions enclosed by dotted lines represent neural networks with 
layers described. Protein coordinates in the joint multimodal embedding (z) 
are used for computing pairwise protein-protein similarities in subsequent 
panels (cosine similarity function). b) Distribution of similarities shown for 
protein pairs with a ‘high-confidence interaction’ denoted in the STRING 
database (green) in comparison to all other protein pairs (grey). c) Similar to (b) 
but for protein pairs in the same CORUM complex. d) Similar to (b) but for 
protein pairs that yield highly similar transcriptional profiles (top 1% pairs) 
when genetically disrupted by CRISPR, drawn from a recent perturb-seq 

functional genomics study80. **** denotes significant difference, p < 0.0001 by 
one-sided Wilcoxon rank-sum test. e) Different protein embedding approaches 
(coloured points, Methods) are evaluated by their degree of enrichment (x-axis) 
across orthogonal functional and physical interaction resources (y-axis, 
resources from panels b-d above). Supervised Random Forest trained using the 
Gene Ontology (Methods). Enrichment computed using Cliff’s Delta (1,000 
samplings of 1,000 protein pairs with replacement, Methods) yielding values 
in range [–1,1], with positive values indicating enrichment above random 
expectation. Error bars denote standard deviations across 1000 bootstrap 
resamplings with the center at the mean. * denotes significant difference in 
comparison with self-supervised multimodal embedding results (two-tailed 
p < 0.05 across bootstrap resamplings).
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Extended Data Fig. 3 | Robustness of cell map assemblies. (a-c) Cell maps are 
coloured by assembly robustness, measured as the fraction of 300 jackknife 
resamplings where an assembly was recovered (Methods). Three panels  
show maps built using a) both imaging and AP-MS data, b) AP-MS data only,  

or c) imaging data only. d) Number of robust assemblies (recovered in >50% 
jackknife resamplings) versus size of assembly in number of proteins. Grey bars 
denote total number of assemblies in each size category.



Extended Data Fig. 4 | Annotation of protein assemblies with GPT-4. a) Left: 
Annotation workflow extended from Hu et al.3, in which the cell map is used  
to query GPT-4 for a descriptive name, a confidence score and a supporting 
rationale. Right: Composition of prompt used for GPT-4 query. b) Schematic of 
GPT-4 assisted citation module. GPT-4 is asked to provide gene symbol keywords 
and functional keywords separately. Multiple gene keywords and functions are 
combined and used to search PubMed for relevant paper titles and abstracts in 
the scientific literature. c) Example assembly with GPT-4 name and supporting 

analysis paragraphs with citations generated from citation module (see panel b).  
d) Semantic similarity of the original GPT-4 name given an assembly vs. the 
name assigned in each of five replicate GPT-4 runs. Results for two example 
assemblies are shown (yellow and green points), one of which is named identically 
across replicates (yellow) and one of which shows variation (green). The average 
performance over all U2OS assemblies (n = 271, excluding assemblies with more 
than 1000 proteins) is shown in dark blue.
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Extended Data Fig. 5 | Quality assessment of SEC-MS dataset. a) Overlap of 
protein identifications across three biological replicates. b) Violin plots showing 
the distribution of the Pearson correlation between replicate measurements of 
each protein’s elution pattern (purple, n = 5018) vs. random pairings of different 
proteins across replicates (white, n = 5018), with thick black lines representing 

the median. c) Histogram of number of proteins with maximum intensity in 
each elution fraction for replicate 1 (top), replicate 2 (middle), and replicate 3 
(bottom). Select CORUM complexes are highlighted at the median maximum 
intensity of proteins in the complex.



Extended Data Fig. 6 | DPP9 association with STAT interferon signalling.  
a) Interaction data for the ISGF3 complex. b) Immunofluorescence images for 
the ISGF3 complex. Members immunostained (green) with cytoskeleton 
counterstain (red). Scale bar, 3 µm. c) Relative mRNA expression level of IFNβ1, 
IFNγ1, IFNγ2, and negative control (Non-ISG 18S) upon DPP9 inhibition, 

separate samples. Expression levels normalized to DMSO control. Points  
(n = 6, 2 biological replicates and 3 technical replicates each) denote replicate 
measurements. Light grey whiskers represent mean ± SE. Significance (p-values) 
are determined by a two-sided student’s t-test. d) Canonical function of ISGF3 
complex with putative upstream activity of DPP9.
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Extended Data Fig. 7 | Comparison of protein assemblies across U2OS and 
HEK293 cell lines. a) Schematic of the approach for determining conserved vs. 
U2OS-specific protein assemblies in the cell map. For each assembly, the cosine 
similarities are determined between protein AP-MS features for U2OS and 
HEK293, separately. The U2OS similarities are then compared to the HEK293 
similarities with a two-sided Mann-Whitney U-test. b) U2OS cell map (see Fig. 2b), 
where assembly colour indicates effect size (Cliff’s Delta). 18 assemblies that 
did not have sufficient data in both cell lines were removed. Dashed boxes 

denote examples of strongly conserved and strongly U2OS-specific assemblies. 
c) Biophysical interaction data for 9-1-1 RAD-RFC complex; edge colour 
signifies presence in HEK293 (orange) or U2OS (blue) interaction networks.  
d) Immunofluorescence images for RFC1 (orange) in HEK293 cells (top) or 
U2OS cells (bottom), with cytoskeleton counterstain (red). Scale bar, 5 µm.  
e) Biophysical interaction data for the Energy metabolism regulation complex; 
edge colour signifies presence in HEK293 (orange) or U2OS (blue) interaction 
networks.



Extended Data Fig. 8 | Analysis of multi-localized proteins and assemblies. 
a) Number of distinct assemblies per protein, defined as the number of distinct 
paths to the root of the U2OS cell map hierarchy (shown in Fig. 2b). b) Tripartite 
localization of XAB2 in the cell map visualized in circle-packing mode. XAB2 is 
highlighted by red circle and the cell map assemblies in which it participates are 
highlighted with orange borders. Cytosol and nucleus are filled as blue and 
pink respectively. c) Top: Immunofluorescence images of XAB2 (middle)  
and representative interacting partners in cytosol (WDR83, left) or nucleus  
(DHX8, right). These proteins are immunostained (green) with cytoskeleton 

counterstain (red). Scale bar, 2.5 µm. Bottom: Biophysical interaction partners 
of XAB2 with cell map localizations in cytosol and membrane (turquoise box) 
or nucleus (pink box). d) Cell map coloured to indicate multi-localized assemblies 
(red nodes). The multiple containing assemblies are indicated in each case (red 
edges). Dashed box denotes the assembly detailed in text and in panel f–g.  
e) Number of assemblies with single (left) versus multiple (right) localizations. 
f) Biophysical interaction data for Amyloid Precursor Protein (APP) complex. 
g) Immunofluorescence images for proteins in APP complex, immunostained 
(green) with cytoskeleton counterstain (red). Scale bar, 2.5 µm.
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Extended Data Fig. 9 | Association of protein assemblies with tumour 
growth via transposon mutagenesis. a) LEFT: Schematic overview of 
transposon-based genetic screens in mouse tumour models46. RIGHT: Number 
of screens by cancer type. b) Distribution of the number of transposon screens 
identifying each human gene as a cancer driver. Separate curves show cancer 
proteins in recurrently mutated assemblies (magenta curve) versus all other 
proteins in the cell map (grey curve). P value between the two distributions are 
determined by one-sided Mann Whitney U test. Black dashed line represents 
the threshold number of screens used to call cancer drivers (threshold = 4, 

FDR < 0.3). c) Number of proteins validated as cancer drivers in recurrently 
mutated assemblies (magenta), versus cancer drivers previously identified in 
pediatric (gold) or adult cancer studies (lavender). d) Number of transposon 
screening studies identifying a protein as a cancer driver (total n = 72), shown 
for select cancer assemblies (rows). Light grey whiskers represent mean ± SE.  
e) As for panel d, focusing on proteins in NATR assembly. f) Immunofluorescence 
images for six representative proteins in the NATR assembly found to be 
mutated in certain pediatric tumours. Members immunostained (green) with 
cytoskeleton counterstain (red). Scale bar, 2.5 µm.



Extended Data Fig. 10 | Navigating the multiscale cell map. Portal for 
visualization of the U2OS cell map and associated data, available at http://
musicmaps.ai/u2os-cellmap/. In the main display, subcellular components 
(protein assemblies) are displayed either as a hierarchy (as in Fig. 2b) or as a 
circle-packing diagram (shown here, left). In circle-packing mode, nesting of 
one circle inside another indicates containment of an assembly inside another; 
proteins are represented by the innermost circles which do not contain others; 

the outermost circle represents the whole cell. An endonuclease assembly has 
been selected in the main display (circle with yellow border), with its supporting 
multimodal data shown in detail in a supplemental window display (upper 
right). Edge colours represent evidence types: dark blue: AP-MS edges; pink: 
similar images; purple: similar multimodal embeddings. Further selection of 
nodes in the subnetwork displays protein-level information with direct links to 
raw data, including immunofluorescence images (lower right).

http://musicmaps.ai/u2os-cellmap/
http://musicmaps.ai/u2os-cellmap/
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Software and code
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Data collection Immunofluorescence confocal images were collected using 63x oil immersion with Numerical Aperture 1.4. AP-MS data were acquired on 
first-generation Q-Exactive mass spectrometers (Thermo Fisher Scientific) equipped with Famos autosamplers (LC Packings) and Accela600 
liquid chromatography (LC) pumps (Thermo Fisher Scientific). SEC-MS data was acquired on a TimsTOF Pro2 (Bruker Daltonics) with 
CaptiveSpray source coupled to nanoElute UHPLC (Bruker Daltonics). 

Data analysis All data analyses have been described in detail in the relevant Methods section with links to publicly available GitHub repositories. The cell 
map construction pipeline is available at https://github.com/idekerlab/cellmaps_pipeline. The required Python packages, along with specific 
versions, were documented in GitHub. 
 
The following versions were used to construct the cell map: 
Python== 3.8.16  
cellmaps_imagedownloader==0.1.0a7 
cellmaps_ppidownloader==0.1.0a6  
cellmaps_image_embedding==0.1.0a7  
cellmaps_ppi_embedding==0.2.0a6  
cellmaps_coembedding==0.1.0a6  
cellmaps_generate_hierarchy==0.1.0a13  
cellmaps_hierarchyeval==0.1.0a5 
 
The following versions were used to analyze the cell map (Use Cases): 
Python==3.7.9 
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scipy==1.7.3 
 
The following versions were used for the Random Forest analysis: 
Python==3.9.18 
scikit-learn==1.3.0 
 
Other softwares used in this study are documented in the Methods section and listed below:  
CompPASS    https://github.com/dnusinow/cRomppass 
CompPASS-Plus    https://github.com/HMSBioPlex/ CompPASS-Plus-CLI 
Cytoscape v3.10.1 
DIA-NN  1.8.1.0 https://github.com/vdemichev/DiaNN 
HiSig https://github.com/fanzheng10/HiSig 
IUPred3.0  https://iupred3.elte.hu/download_new 
PrinCE https://github.com/fosterlab/PrInCE 
localcolabfold https://github.com/YoshitakaMo/localcolabfold 
Integrative Modeling Platform (IMP) package v2.18 https://integrativemodeling.org 
MutSigCV v1.4 (available in https://github.com/fanzheng10/HiSig/)  
 
 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

  The Multiscale Integrated Cell web portal (musicmaps.ai/u2os-cellmap) provides links to all major data and derived resources associated with this study, including 
AP-MS protein interactions, protein immunofluorescence images, size-exclusion chromatography data, and the online interactive U2OS cell map. The U2OS cell map 
is available on ndexbio.org with the uuid f693137a-d2d7-11ef-8e41-005056ae3c32. Protein assemblies in the cell map are also available at the European 
Bioinformatics Institute (EBI) Protein Complex Portal (https://www.ebi.ac.uk/complexportal) with the query CLO:0009454. The AP-MS protein interactions are 
available on ndexbio.org with the uuid 95bc75d5-d1d1-11ee-8a40-005056ae23aa. In addition to its release here, the U2OS protein interaction network will be 
included as part of the upcoming BioPlex v4.0 database release (Huttlin et al. in preparation). AP-MS raw mass spectrometry files are available on MassIVE with the 
identifier MSV000097168. The entire image dataset is included in the Human Protein Atlas v23 release. SEC-MS raw mass spectrometry files and search results are 
available via Proteome Xchange with the identifier PXD052362. All structural models are available in the ModelArchive Database (modelarchive.org) with the 
identifiers ma-idk-u2osmap and ma-m5og4. Other public databases and resources used in this study include the Gene Ontology (June 2023 release, https://
geneontology.org), CORUM (version 4.1 release, https://mips.helmholtz-muenchen.de/corum/),  UniProt Homo sapiens proteome (accessed June 2 and September 
11, 2023, https://uniprot.org), STRING interactome (v12, NDEx uuid 0b04e9eb-8e60-11ee-8a13-005056ae23aa), OpenCell interactions (https://
opencell.czbiohub.org/download), CD-CODE condensate database (accessed May 31, 2023, https://cd-code.org), FuzDrop (Dataset S7 in Hardenberg et al.), Protein 
Condensate Atlas (Supplementary Dataset 8 in Saar et al.) K562 day-8 perturb-seq dataset (gwps.wi.mit.edu), HEK-293 BioPlex v3.0 (NDEx uuid 
6b995fc9-2379-11ea-bb65-0ac135e8bacf), pediatric cancer mutation data (https://www.cbioportal.org/study/summary?id=pediatric_dkfz_2017), and transposon-
based mutagenesis screens from the Candidate Cancer Gene Database (http://ccgd-starrlab.oit.umn.edu/index.html, downloaded March 26, 2024).  
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Ethics oversight Not applicable

Note that full information on the approval of the study protocol must also be provided in the manuscript.



3

nature portfolio  |  reporting sum
m

ary
April 2023

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The number of proteins analyzed in this study (n=5147) was determined based on amount of matched data available when overlapping 
immunofluorescence image and AP-MS interactions in the U-2 OS cell line. For follow-up experiments in this study, no statistical methods 
were used to pre-determine sample sizes, which were chosen to reliably observe experimental phenotypes.

Data exclusions No data were excluded from analyses

Replication All the data collected in this study consisted of technical or biological replicates. The number of replicates, as well as the type of replicates (i.e. 
technical or biological), are labeled in the relevant figures or method sections. 

Randomization AP-MS baits were arrayed on 96-well plates in random order, and plates were run in random order during LC-MS analysis. For other 
experiments in this study, randomization was used whenever possible to determine experimental order.

Blinding All IF, AP-MS, and SEC-MS data were generated and processed with investigators blinded to the hypothesis.        
For DPP9 RT-qPCR measurement (Extended Data Fig. 6c), blinding was not applied during analysis, which we followed established procedure 
from previous studies.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used The antibodies used in this study are listed as below. The dilutions used for each are specified in the "Matched protein 

immunofluorescence (IF) imaging data” section in the methods.  
- Anti-tubulin Abcam, ab7291, RRID:AB_2241126 
-Chicken anti-calreticulin, Abcam, ab14234, RRID:AB_2228460 
- Rabbit polyclonal HPA antibodies, generated within the Human Atlas Project. The list of HPA antibody IDs used in this study are 
found at  http://musicmaps.ai/u2os-cellmap.  
-goat anti-rabbit Alexa488 A11034 , RRID:AB_2576217, RRID:AB_2535845, ThermoFisher, polyclonal 
-goat anti-mouse Alexa555 A21424,RRID:AB_2535845, ThermoFisher, polyclonal 
-goat anti-chicken Alexa647 A-21449, RRID:AB_2535866, ThermoFisher, polyclonal 
-goat anti-rat Alexa647 A21247, ThermoFisher RRID:AB_1056356, polyclonal 

Validation All HPA antibodies were validated as described at https://www.proteinatlas.org/about/antibody+validation. The HPA antibodies are 
quality controlled for sensitivity and lack of cross-reactivity to other proteins using western blot and protein arrays. Antibodies that 
pass initial quality assessment are labeled as 'approved'. Antibodies that yield a staining pattern supported by independent data in 
UniProt are labeled as 'supported'.  For 'enhanced' antibody validation, we use the strategies outlined by the International Working 
Group for Antibody Validation (IWGAV), including genetic validation, recombinant expression validation, independent antibody 
validation targeting a different epitope, and capture validation by mass spectrometry. 
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Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) U-2 OS cells were obtained from the American Type Culture Collection (ATCC).  HEK-293 data was published previously 
(Huttlin et al. Cell 2021)

Authentication The U-2 OS cells used for IF stainings were authenticated according to the manufacturer ATCC using morphology, karyotyping 
and PCR based approaches to confirm the identity and to exclude intra and interspecies contaminations. These include an 
assay to detect species specific variants of the cytochrome C oxidase I gene (COI analysis) to rule out interspecies 
contamination and short tandem repeat (STR) profiling to distinguish between individual human cell lines and rule out 
intraspecies contamination. These cells were also used or the SEC-MS experiments and DPP9 experiments. The U-2 OS cells 
used for AP-MS were purchased directly from ATCC and no further authentication was performed.  

Mycoplasma contamination All cells used in this study were tested negative for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in this study. 

Novel plant genotypes No novel plant genotypes were produced in this study. 

Seed stocks No seed stocks were used in this study. 

Authentication Not applicable

Plants
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