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Human cells consist of a complex hierarchy of components, many of which remain
unexplored™. Here we construct a global map of human subcellular architecture
through joint measurement of biophysical interactions and immunofluorescence
images for over 5,100 proteins in U20S osteosarcoma cells. Self-supervised
multimodal data integration resolves 275 molecular assemblies spanning the range

of 10 to107° m, which we validate systematically using whole-cell size-exclusion
chromatography and annotate using large language models®. We explore key
applications in structural biology, yielding structures for 111 heterodimeric complexes
and an expanded Rag-Ragulator assembly. The map assigns unexpected functions to
975 proteins, including roles for C18orf21in RNA processing and DPP9 in interferon
signalling, and identifies assemblies with multiple localizations or cell type specificity.
It decodes paediatric cancer genomes*, identifying 21 recurrently mutated assemblies
and implicating 102 validated new cancer proteins. The associated Cell Visualization
Portal and Mapping Toolkit provide a reference platform for structural and functional

cell biology.

Human cells are organized across a spatial hierarchy of components,
ranging from small protein complexes at the scale of nanometres to
large condensates, compartments and organelles at the scale of micro-
metres®®. One of the ultimate goals of the biological sciences is to under-
stand this multiscale subcellular organization and its relationship to
biological function and human disease. As much of cell structure still
remains uncharted, there has been long-standing interestin strategies
to map this architecture systematically”°.

Avariety of complementary technologies have been implemented
for systematically determining subcellular organization across scales.
Inparticular, methods such as whole-cell electron microscopy have led
to maps of subcellular organelles and their placement within cells'**.
Protein immunofluorescence (IF) staining' and endogenous fluores-
cent tagging®, coupled to confocal microscopy imaging, have begun
toreveal the subcellularlocations of proteins. Biochemical proteomics
approaches, suchasaffinity purification-mass spectrometry (AP-MS)*,
cross-linking MS", size-exclusion chromatography-MS (SEC-MS)'¢7,
proximity labelling™® and isotope tagging'®* have revealed patterns of

protein-proteininteractionand subcellular localization thatinform the
makeup of protein complexes and organelles. Although these cellmap-
pingtechnologies have typically been applied separately, integration
of multiple complementary datamodalities provides the opportunity
to incorporate biological structure robustly across physical scales.
Towards this aim, we recently demonstrated proof-of-concept for how
two modalities—protein IF and AP-MS profiles—can be computation-
ally fused to systematically map subcellular assemblies, with the initial
version covering 661 human proteins?.

Here we substantially scale the cell mapping datasets and pipeline,
yielding protein biophysical interactions and protein IF images for a
matched set of more than 5,100 proteins in U20S cells (Fig. 1). Inte-
grating these data produces a global cell biology reference map with
extensive coverage of human subcellular components, including 275
distinct protein assemblies. We systematically annotate this map,
assisted by recent advances in large language models (LLMs), then
systematically validate its assemblies by generating a third distinct
data modality—proteome-wide SEC-MS—in the same U20S cellular
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Fig.1|Study overview. Proteins are purified from whole-cell biochemical
extracts and their biophysical interactions are determined using AP-MS.

In parallel, proteins areilluminated by IF and their subcellular distributions

are determined using high-resolution confocalimaging. These IF imaging and
biophysicalinteractiondataareintegrated into amultimodal cell map, whichis

context. Finally, we examine how such proteome-wide cell maps canbe
used to guide diverse biological studies including structural biology,
protein functional annotation, analyses of cell-type specificity and
multi-localization, and interpretation of the cancer genome.

Multimodal proteomics data acquisition

We systematically tagged proteins in U20S osteosarcoma cells
throughlentiviral expression of C-terminal Flag-HA-tagged baits avail-
able in the human ORFeome library™. A total of 2,174 proteins were
successfully tagged and isolated from U20S whole-proteome extracts
using affinity purification, and interacting partners were identified by
tandem MS (AP-MS) toyield atotal of 36,842 interactions among 7,543
proteins (Methods and Extended Data Fig.1a,b). Datawere required to
pass a panel of quality-control measures implemented as previously
described?%; these measuresincluded sequence validation of lentiviral
clones, detection of tagged bait proteins in each AP-MS run, and moni-
toring for sufficient numbers of protein and peptide identifications
(Methods). Additional quality-control metrics included recovery of
known complexes (Extended Data Fig. 1c,d), for which the new inter-
actions showed coverage comparable to previous AP-MS datasets.

Cell map portal

Interpreting tumour mutations

\
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Cytosol Nucleus

Cell

exploredacross five biological use cases and inaninteractive visualization
portal. MS and confocal microscopy illustrations are from the NIAID NIH
BIOART Source (https://bioart.niaid.nih.gov/bioart/286; https://bioart.niaid.
nih.gov/bioart/86).

To match these protein interactions with parallel information on
proteinsubcellularlocations, we amassed alarge collection of confocal
images of U20S cells stained with IF antibodies against each 0f10,348
proteins (20,660 images total; Methods). Each sample was simultane-
ously co-stained with reference markers for nucleus, endoplasmic
reticulum and microtubules, providing a reference set of subcellular
landmarks common to all images. Of these data, 17,368 images were
collected in a previous publication’?, and the remaining 3,292 images
were more recently generated and validated according to the Human
Protein Atlas (HPA) standard procedures forimage and antibody qual-
ity control.

Combining across the interaction and imaging data, a total of 5,147
proteins was well represented in both modalities. These proteins
captured approximately half of the detectable U20S proteome' and
provided representative coverage over the full catalogue of human
proteinfunctions, other than under-representation of transmembrane
and immunoglobulin proteins (Extended Data Fig. 1e). We found that
the protein pairs measured as most similar by one modality were
enriched for pairs similar in the other, showing that the biophysi-
calinteraction and imaging data share information (Extended Data
Fig.1f,g).
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Construction of aglobal cellmap

We devised a self-supervised machine learning approach for fusing
protein confocalimaging and biophysical interaction datato createa
global map of protein subcellular organization (Methods). First, the
two data streams were processed separately to generate protein fea-
tures for each modality; this information was subsequently fused to
create a unified multimodal embedding for each protein. Achieving a
quality embedding—alow-dimensional representation extracted from
complex high-dimensional data—has been a major focus of machine
learning research inrecent years>**, Here we adopted aself-supervised
embedding approach (Extended Data Fig. 2a), in which proteins were
positioned such that the original imaging and AP-MS features could
each be reconstructed with minimal loss of information (reconstruc-
tion loss) while capturing the relative similarities and differences of
each protein to othersinboth data modalities (contrastive loss). This
multimodal embedding exhibited good performance in recovering
known subcellular organization (Fig. 2a and Extended Data Fig. 2b-d),
performing as well as, or better than, alternative supervised and unsu-
pervised approaches (Methods and Extended Data Fig. 2e).

Once the multimodal embedding had been learned, all pairwise
protein-protein distances were computed and analysed using the
multiscale community detection technique (Methods). Using this
procedure, protein assemblies were resolved as modular communi-
ties of proteins in close proximity to one another, with such detection
performed at multiple resolutions to identify protein assemblies at
increasing diameters.

Application of this analytical pipeline to the datagenerated in U20S
osteosarcoma cellsidentified a hierarchy of 275 discrete protein assem-
blies (Fig.2b and Supplementary Table 1). By calibrating the map using
13 well-known subcellular components with characterized physical
sizes (for example, nucleus, mitochondria and proteasome; Supple-
mentary Table 2), we found that we could translate the size of an assem-
bly (number of proteins) to an estimate of its physical diameter (in
nanometres, R*= 0.90) along with a prediction interval on this estimate
(Methods). Estimated assembly diameters spanned the relevant scales
of cell biology from10' nm to 10* nm (Fig. 2c), with assemblies robustly
identified at each of these scales (Methods and Extended Data Fig. 3a).
By contrast, we found that maps constructed from only the imaging
datatendedtorecover large assemblies but miss small ones, while maps
constructed from only the AP-MS data recovered small assemblies
but tended to miss large ones (Extended Data Fig. 3b,c). Overall, the
integrated map identified the largest number of assemblies, including
104 that were not resolved by either individual modality (Extended
Data Fig. 3d and Supplementary Table 1).

Annotation of the U20S cell map

Tostudy and annotate the U20S cell map, we held aseries of in-person
AnnotationJamborees, during which approximately adozenindividuals
worked in pairs to assign names and putative functional roles to assem-
blies on the basis of expert knowledge and literature curation. First
we examined the correspondence of assemblies to known subcellular
components documented in the Comprehensive Resource of Mam-
malian protein complexes (CORUM)%, Gene Ontology (GO)* or HPA®
(Methods; Jaccard index > 10%). We found that 41 assemblies closely
reconstructed aknown component (Jaccard index > 50%) while 90 had
moderate agreement, with some unexpected differences (20% < Jac-
card index < 50%).

The remaining 144 assemblies were designated as not previously
documented assemblies. In these cases, team members worked col-
laboratively to consider the current biological literaturerelevant to the
assembly’s protein subunits and their potential functions. This process
was greatly informed by suggestions from OpenAl’s pre-trained trans-
former (GPT-4)¥, agenerative LLM that we recently showed is capable
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of providing insightful names and functional interpretations for gene
setsidentified in omics data®. As in this previous study, we used an engi-
neered prompt and pipeline (Methods and Extended Data Fig. 4a,b) to
guide the LLM to generate descriptive names for gene sets indicative
of their biological roles, along with a fully referenced analysis essay
providing its rationale (Extended Data Fig. 4c) and a self-assessment of
confidenceinthe suggested name. When applied to the U20S cell map,
we found that the LLM assigned names to known assemblies with very
high confidence (median of 0.92 for both high overlap and substantial
variation; Fig. 2d) and to the previously undocumented assemblies
with moderately high confidence (median, 0.85), contrasting starkly
with its confidence for sets of proteins drawn randomly without any
correspondence to biological structure (median, 0.0). For 104 out of
the 144 not previously documented assemblies, the literature about
the various proteins was sufficiently coherent for GPT-4 to propose
a confident assembly name (confidence > 0.85), each of which was
subsequently passed to the human curation team for final naming
determination (Supplementary Table1).

Wenoted that the highest level of organizationin the cell map covers
previously documented organelles and large subcellular compart-
ments of >100 proteins, including the nucleus with 102 nuclear subas-
semblies, the mitochondrion with 16 mitochondrial subassemblies, 127
assembliesinside the cytosol and 3 assemblies related to microtubules
(Fig. 2b). Organized within the nucleus are subcomponents such as
nucleoli and the nucleoplasm, which itself hierarchically resolves 67
componentsincluding the Mediator and RNA polymerase complexes
and anarray of other transcriptional machines. Notably, components
of the plasma membrane and cytosolic periphery, such as G-protein
and clathrin-coated-pit complexes, are tightly associated with numer-
ous other cytosolic proteins under asingle large compartment, which
we simply labelled ‘cytosol’ (Fig. 2b). Major expected components of
the cytosolic compartment, such as the endoplasmic reticulum and
Golgiapparatus, are also resolved. We found 48 assemblies that are
potential biomolecular condensates® on the basis of their enrichment
for proteins with intrinsically disordered regions, proteins predicted
to phase separate or proteins recorded in the CD-Code condensate
database (Methods and Supplementary Table 3). Of these, 39 had a
significant overlap with a recent complementary effort to predict
protein condensates through integration of diverse biochemical
protein features® (hypergeometric test FDR < 5%), while the remain-
ing nine putative condensates had not been previously identified
(Supplementary Table 3).

Systematic validation by SEC-MS

We next sought to systematically validate the cell map components
using whole-cell SEC-MS as an orthogonal approach. Using this tech-
nique, cellular extracts fromacell population of interest are separated
by SEC, followed by identification of proteins in each size fraction by
tandem MS (Fig. 3a). Here we subjected triplicate cultures of U20S
cells to SEC-MS of 40 separate chromatography fractions, yielding
quantitative fractionation profiles for 5,509 proteins in at least two
replicates, of which 3,020 were presentin the cell map. Quality assess-
ment of the SEC-MS dataset showed that elution profiles were largely
reproducible across replicate biological measurements (Extended Data
Fig.5a,b), with protein peaks present across the full range of fractions
(Extended DataFig. 5c).

Integration of these measurements with the multiscale cell map
revealed significant agreement, with proteins in the same assembly
(asidentified earlier by AP-MS and imaging) having astrong tendency
to co-elute in the same chromatography size fractions (Fig. 3b,c).
Overall, SEC data validated 89 assemblies (5% false-discovery rate
(FDR)), corresponding to 43% of assemblies (76 out of 175) with
more than 5 proteins and 61% of assemblies (59 out of 96) with more
than 15 proteins (Fig. 3d, Methods and Supplementary Table 4).
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Fig.2|Multiscale integrated map of aU20S cell. a, Multimodalembedding
of proteins based onintegration of AP-MS and imaging data, reduced to two
dimensions using the UMAP method*® (left). The points are proteins thatare
coloured and annotated on the basis of the top-level protein communities
thatcanberesolved. Right, enlargement of the embedding, centred on the
endomembrane community and its substructure. b, Amultiscale hierarchical
view of subcellular assemblies resolved in the U20S cell map. The nodes represent
assemblies, and the edges represent containment of asmaller assembly (lower)
by alarger one (upper). The node sizeis proportional to the estimated size in
nanometres. The node colouris based onthree categories of overlap with

***P<0.0001.

known subcellular components (defined in pie chart). The dashed boxes denote
assemblies describedinthe textand figures. ¢, Calibrating the sizes of assemblies
inthe cellmap (number of proteins) to the physical diameters of known
structures (nanometres).d, GPT-4 self-confidencein generatinginformative
names for assembliesin the cellmap, shown for the categories of assemblies
denotedinband random assemblies (grey). The distributions of confidence
scores are shown as violin plots, with the thick black lines representing the
median confidencein each category. Thesignificance of differences between
distributions was calculated using one-sided Mann-Whitney U-tests;
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Among small-to-medium size assemblies of <50 proteins, we found
39 for which the SEC data had specifically corroborated the inclusion
of unexpected members (Methods and Supplementary Table 4), with
functionsrelated to heat shock, stress response and vesicle trafficking.

At this stage of the study, we had interrogated U20S cells with mul-
timodal proteomics data; integrated these datatoresolve subcellular
components at multiple scales; annotated these components; and
lent support to many using an independent whole-cell profiling tech-
nique. We next turned our attention from map construction to use,
exploring key impactsin structural and functional biology (use cases
1-5: three-dimensional (3D) structural modelling; revealing protein
function; studying cell type specificity; protein multi-localization; and
interpreting tumour mutations).

3D structural modelling

We first explored the cell map as a platform to guide 3D structural
modelling projects, interfacing with the recent advances in struc-
ture prediction enabled by artificial intelligence (Al)*°. We used
AlphaFold-Multimer® to predict structural models for every pair of
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proteins arisingin the same focal protein assembly (142 assemblies of
<10 proteins, 1,666 protein pairs in total; Supplementary Table 5). We
noted that the estimated accuracies of these structures (AlphaFold pTM
andipTMscores; Methods) were significantly higher than expected at
random, supporting that these protein pairs have direct biophysical
interactioninterfaces (one-sided Mann-Whitney U-test, P=2.7 x 10™),
Particularly high structuralaccuracy wasindicated for 161 pairs, which
alsoreceived highly confident per-residue scores at the protein-protein
interaction interface (Fig. 4a and Methods).

Of these high-confidence structures, 111 had not been previously
documented inthe Protein Data Bank (PDB). An example was a biophysi-
calassembly identified among DPYSL2, DPYSL3 and DPYSL4, a family
of phosphoproteins important for nervous system development®.
Theirinitial association was validated by SEC-MS co-elution profiling
(Fig. 4b), after which AlphaFold-Multimer yielded high-confidence
structures for all pairwise interactions of these proteins (Fig. 4c).
Additional complexes that were validated first by SEC-MS, then
resolved structurally by AlphaFold-Multimer, included an interac-
tion between TARS3, a threonyl-tRNA synthetase, and EPRS1, amem-
ber of the aminoacyl-tRNA synthetase multienzyme subsystem*
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immunostained (green) with cytoskeleton counterstain (red). Scale bar, 2 pum.
i, Biophysicalinteraction data for the Rag-Ragulator complex.j, Integrative
structure model of the Rag-Ragulator complex. The structural ensembles of

(Fig.4d,e); another example was a structure involving ERH and CCDC9B
(Fig. 4f,g).

We also examined how Al predictions can be integrated with experi-
mental structural datato create a3D model of alarge proteinassembly.
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ITPAand BORCS6 are presented as 3D localization probability densities, with
surfaces transparent for visual clarity. k, Biophysical interaction data for
representative RNase MRP complex members. I, IFimages for four RNase MRP
proteins, immunostained (green) and with cytoskeleton counterstain (red).
Scale bar, 5 um. m, Differential expression (zscore, colour bar) after CRISPR
knockdown of genes encoding the RNase MRP complex (top rows, green) versus
arandom sampling of other proteins. The rows represent CRISPR knockdowns,
andthe columnsrepresentgenes with the 20 most variable differential expression
patternsacross the full dataset.

We sselected the Rag-Ragulator complex, whichislocated onthelyso-
somal membrane whereit regulates growth signalling through the acti-
vation of the mammalian target of rapamycin complex1(mTORCI)*.
The assembly that we had resolved in the cell map (Fig. 4h,i) included
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members of the recombination-activating genes (RAG) and Ragula-
tor protein families (LAMTOR1-5, RRAGA, RRAGC, SLC38A9) as well
as two unexpected proteins, BORCS6 and ITPA. We built an integra-
tive structural model® of this Rag-Ragulator assembly (Methods),
incorporating and expanding on the base cryo-EM structure®® (PDB:
6W]J2), AlphaFold single structure predictions of BORCS6 and ITPA, as
well as pairwise AlphaFold-Multimer predictions of BORCS6 or ITPA
interactions with each of the other members of the Rag-Ragulator
complex. The integrated structure (Fig. 4j) indicated that BORCS6
interacts with LAMTOR2 and is proximal to LAMTOR1, LAMTOR3 and
LAMTORS. Similarly, the model supported the interaction of ITPA with
LAMTORI, LAMTOR3 and LAMTOR4. These examples illustrate how
a data-driven compendium of subcellular components can identify
new target protein components for downstream 3D structural studies.

Revealing protein function

Notably, 138 proteins of previously unknown function® were present
inthe cell map, of which 24 fell in small-to-medium size assemblies of
fewer than 25 proteins. Most of these assemblies had been assigned
robust biological names during map curation (see above), enabling
us to propose functions for their uncharacterized proteins through
guilt by association (Supplementary Table 6). One such functional
assignment was for C18orf21, which our cell mapping data placed
robustly in the RNase mitochondrial RNA processing (MRP) complex
(Fig.4k,]). Corroborating this assignment, we observed thatknockdown
of C18orf21 induces a distinct transcriptional cell state very similar to
knockdowns of other MRP genes (Fig. 4m).

Expanding to proteins with some previous functional annotation,
we found 951 cases in which a protein was assigned to an unexpected
assembly of fewer than 25 proteins, suggesting new functional roles
(Supplementary Table 6). For example, the interferon-stimulated gene
factor 3 (ISGF3) complex?®, previously defined as consisting of STATI,
STAT2 and IRF9, also included dipeptidyl peptidase 9 (DPP9), a ser-
ine protease previously associated with inflammation®. Our AP-MS
dataimplicated DPP9 as a potential member of this complex based on
the STAT2 pull-down (Extended Data Fig. 6a) and this association was
reinforced by the confocal images, which indicated similar cytosolic
patterns of localization with ISGF3 proteins (Extended Data Fig. 6b). We
observed thatinhibition of DPP9 by 1G244 (a selective DPP9 inhibitor*)
upregulated the canonical ISG targets of STAT transcription factors,
including IFNB1, IFNy1 and IFNy2, while a non-ISG control was unaf-
fected (Methods and Extended DataFig. 6¢), suggesting that DPP9 acts
tosuppressthelFNresponse (Extended Data Fig. 6d). These examples
illustrate how a data-derived reference cell map provides a substantial
aid in completing the functional annotation of the human proteome.

Studying cell type specificity

Defining aglobal map of agiven cell type confers the potential to distin-
guish subcellular components that are specific to that type from those
thatare more widely conserved. As aninitial proof of concept towards
thisaim, we examined each protein assembly in the U20S cell map for
evidence of shared versus distinct biophysical interaction patterns
in comparison to HEK293 human embryonic kidney cells (previously
characterized by AP-MS in the BioPlex 3.0 resource*’; Methods and
Extended Data Fig. 7a). Of the 258 assemblies with AP-MS data cover-
ageinboth cell types, we identified 103 that were conserved across
cell types (Extended Data Fig. 7b and Supplementary Table 7). These
included large assemblies, including the nucleus and cytosol, as well
assmallassemblies suchasthespliceosome, the 9-1-1RAD-RFC com-
plex (Extended Data Fig. 7c,d) and components of the SNARE com-
plex. The remaining 155 assemblies showed biophysical interaction
patterns that were significantly different between HEK293 and U20S
cell types. For example, a cytosolic component named the energy
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metabolism regulation complex was robustly identified in the U20S
AP-MS data, but none of the corresponding interactions were detected
inHEK293 cells (Extended DataFig. 7e). These examplesillustrate howa
data-driven cellmap canelucidate protein assemblies that are specific
orshared between cell types, providing a basis to explain different cell
phenotypes and identify cell-type-specific drug targets.

Protein multi-localization

Asubstantial fraction of proteins have been postulated to multi-localize,
that s, to have a role in multiple subcellular assemblies or compart-
ments'>*, To this point, we noted that approximately 30% of proteins
inthecellmap (1,520 out of 5,147) are present in more than one distinct
assembly (Extended Data Fig. 8aand Supplementary Table 8). For exam-
ple, XAB2,aknown factor of the spliceosome and transcription-coupled
repair®?, localized not only to nuclear assemblies as expected, but also
totheendomembrane (Extended Data Fig. 8b). Evidence for suchlocali-
zations was presentinthe fluorescence images as well asin the AP-MS
interaction network, in which XAB2 showed strong interactions with
both nuclear spliceosomal and membrane-associated stress factors
(Extended Data Fig. 8c).

Moving beyond single proteins, we also investigated whether there
was evidence of multiple localizations for entire protein assemblies,
noting 23 that were indeed documented to multi-localize according to
the U20S cell map (Extended DataFig. 8d,e). For example, the amyloid
precursor protein (APP) complex (APP, APBA2, APBA3, APLP2, TJAP1)
was clearly resolved inboth the cytosol and endomembrane compart-
ments (Extended Data Fig. 8d) on the basis of evidence from both the
proteinimaging and biophysical interaction modalities (Extended Data
Fig. 8f,g). This finding aligns with previous studies showing that APP
and its homologue, APLP2, have arole in subcellular trafficking from
the endoplasmic reticulum to the cell surface* (with vesicular and
endoplasmic reticulum localizations captured in our U20S imaging
data; Extended Data Fig. 8g). APBA2 and APBA3 are members of the
X11 adaptor protein family, which is known to regulate the transloca-
tion of APP*. These examples illustrate how a multimodal cell map
can reveal both single proteins and whole assemblies that localize to
multiple subcellular compartments, suggesting pleiotropic functions.

Interpreting tumour mutations

Determining how diverse genetic alterations disrupt common molecu-
lar machines is critical to understanding the complexity of diseases
such as cancer. Towards this aim, we obtained genome-wide somatic
mutation profiles for acompendium of 772 paediatric primary tumours
encompassing 18 tumour types* (Supplementary Table 9). We then
analysed these mutational profiles using the U20S cell map, looking
for mutational selection on the set of genes of an assembly as a whole
(Methods). Each assembly was tested for mutation within each tumour
type separately and across the entire pan-cancer cohort. While indi-
vidual gene mutations are rare in paediatric cancer, with only 6 genes
altered in >2% of tumours (Fig. 5a), we identified a total of 11 recurrently
mutated assemblies at this same 2% threshold (Fig. 5b). For example,
the SMARCA4 SWI-SNF transcriptional activator is a well-known can-
cer driver that is genetically altered in 2.5% of paediatric tumours*
(Fig. 5a), but this frequency increases to 6.0% when including coding
alterations across all 13 proteinsin SWI-SNF complexes (Fig. 5b). Some
recurrently mutated assemblies were highly specific to certain cancer
types, aswas the case for an unexpected finding of frequent mutations
of cell junctions in B cell lymphoblastic lymphoma (Fig. 5¢). Other
assemblies appeared to be under mutational selection more generally
across tumours, asinthe case of the nuclear pore (Fig. 5c). Cumulative
across subtypes, this analysis identified a total of 21 assemblies that
were recurrently mutated, suggesting positive selective pressure dur-
ingtumour evolution (Fig. 5d,e and Supplementary Table 10). Mutated
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assemblies were identified at all size scales but had a clear preference
for small complexes of fewer than 50 proteins (Fig. 5e).

Withinthese assemblies, we focused on 250 putative cancer proteins,
defined as proteins that are not only present in recurrently mutated
assembliesbut are also themselves mutated in multiple tumour samples
(Methods). To further investigate a role for these proteins in cancer,
we performed a large meta-analysis of transposon-based mutagen-
esis screens in mouse tumour models*® (Methods and Extended Data
Fig. 9a). The putative cancer proteins showed a very high degree of
enrichment for genesinwhich transposon mutagenesis leads to tumour
development (Extended Data Fig. 9b), with specific validation support
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for 102 proteins (FDR < 0.3). The majority of these proteins had not
beenimplicated in previous gene-level mutational analysis of either
adultor paediatric cancer (Extended DataFig.9c,d and Supplementary
Table 10). For example, the significantly mutated NCOR-associated
transcriptional regulation assembly (Extended Data Fig. 9e) contained
atotal of 28 proteins, of which 16 were impacted by paediatric cancer
mutations (Supplementary Table 10). Two proteins in this complex,
NCORI1 and TBL1XR1, had been previously reported as cancer driver
genes and shown to regulate key signalling pathways in modulating
tumour growth**8, Of others in this complex, we found that three
validate as cancer drivers through mouse transposon mutagenesis
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(GTFIRDI1, NRIP1,NCOR2). We also noted that proteins in this complex
show a high proclivity to phase separate (22 out of 28; Methods and
Supplementary Table 3) with distinct punctaein the IF images, sugges-
tive of nuclear condensate formation (Extended Data Fig. 9f). These
findings demonstrate how knowledge of cancer protein assemblies
can focus a genome analysis to increase the sensitivity of detecting
cancer mutational events.

Cell map toolkit and portal

To enable interactive exploration of the human cell map, we devel-
oped the companion Multiscale Integrated Cell visualization portal
(available at http://musicmaps.ai/u2os-cellmap/), which combines a
high-performance graphical web interface with the general analysis
functionality of the widely used Cytoscape application*. The map
isbrowsable as a tree view (that is, the hierarchy in Fig. 2b) or a cell
view, in which hierarchical assembly relationships are represented as
nested circles (Extended Data Fig.10). Tables provide key information
such as the proteins comprising each assembly, estimated assembly
sizes in nanometres and links to confocal images. Each assembly can
beselected to display its supporting subnetwork of evidence, includ-
ing biophysicalinteractions (denoting proteins with high subcellular
proximity as revealed by AP-MS pull-downs) and imaging interactions
(denoting proteins with high subcellular proximity as revealed by the
confocal images). Built-in search functionality is used to select and
highlight assemblies that contain proteins of interest, and the platform
also integrates LLM functional interpretation (Extended Data Fig. 4)
to allow assemblies to be explored for insightful names and functional
interpretations®. To facilitate continued map improvement, incorpo-
ration of new datasets, and construction of new cell maps across sub-
types and disease states, we also developed the Cell Mapping Toolkit
(https://github.com/idekerlab/cellmaps_pipeline), whichimplements
theend-to-end pipeline described here as a series of Python packages
complete with full user documentation. This toolkit provides a flex-
ibleand generalizable framework for cell map construction, enabling
researchers to integrate and construct cell maps via multiple input
modalities.

Discussion

Although the basic sequence of the human genome has been known for
over two decades®®, knowledge of how its proteins are organized within
cellsis still very much evolving. To advance this cause, we have devel-
oped areference human cell map with extensive coverage of subcellular
assemblies spanning four orders of magnitude (around 10 ¥t0 10> m).
Achieving coverage across proteins and scales relied on at least two
advances:interrogating the cell with matched proteome-wide datasets
tuned to complementary types of information, and integrating these
views systematically through a multimodal deep learning workflow.
These advances provide ablueprint for mapping subcellular architec-
ture that can be readily applied across human cell types and disease
states. They also pave the way to expanded cell mapsincorporating new
modalities, such as proximity labelling, subcellular fractionation or
cryo-electrontomography, as well as time-dependent measurements,
such as monitoring of subcellular dynamics over a progression of cell
cycle phases.

With such generality in mind, we surveyed a series of use cases rep-
resenting common areas of investigationin which aglobal data-driven
cellmap can powerfully drive biological discovery. First, we examined
how proteinassemblies provide the starting material for 3D structural
modelling, leading to the generation of high-confidence heterodimeric
structures using AlphaFold (Fig. 4a and Supplementary Table 5) and a
large integrative model of the Rag-Ragulator complex combining com-
putational predictions with experimental 3D coordinates (Fig. 4h-j).
A second key impact was in the study of individual proteins, in which
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the cell map suggests unexpected roles for numerous proteins (Sup-
plementary Table 6). As a proof of concept, we further investigated a
role for C18orf21in the RNase MRP complex (Fig. 4k-m) and for DPP9
in the ISGF3 complex (Extended Data Fig. 6). Other key applications
were in the study of cell type specificity (Supplementary Table 7 and
Extended Data Fig. 7), molecular condensates (Supplementary Table 3)
and multi-localizing proteins and protein assemblies (Supplementary
Table 8 and Extended DataFig. 8). A final, critical demonstration wasin
decoding human genetics. By identifying patterns of genetic mutations
that converge on protein assemblies (Supplementary Table 10), numer-
ous proteins were implicated that had not been previously reported as
paediatric cancer drivers (Extended Data Fig. 9¢,d).

Through multimodal analysis, the human cell map presented here
unifies and extends multiple ongoing efforts that have thus far pro-
gressed independently. In this respect, we found that the integration
of multiple modes of data substantially broadens the sensitivity and
robustness with which subcellular components canbe resolved across
scales (Extended DataFig. 3). These benefits translate torealimpactsin
biological discovery as exhibited in the use cases. Approximately half
of AlphaFold structures (47 out of 111; Supplementary Table 5) and 40%
of new protein functional annotations (Supplementary Table 6) were
driven by assemblies that were robustly identified only by integrating
both AP-MS and imaging datasets.

Aseparate distinct benefit of a multimodal analysis is that, by design,
it provides multiple lines of evidence for new biological findings. Ina
typical omics study, asingle modality of datais presented and analysed
with many putative findings, only a few of which can be validated or
pursued at any depth. By contrast, each new finding of the U20S cell
map is derived from two complementary experimental platforms by
default (AP-MS biochemical pull-downs and spatial proteomics imag-
ing), and the systematiclines of evidence deepen further in the use cases
through support from SEC-MS, AlphaFold predictions, perturb-seq
and/or transposon mutagenesis. For example, the assembly of mul-
tifunctional protein ERH with RNA-binding protein CCDC9B was
supported by an AP-MS interaction, image subcellular annotations,
SEC-MS elution profiles (Fig. 4f) and a high-confidence AlphaFold
3D model (Fig. 4g). Such confluence of data, also seen in other recent
multi-omic studies™, increases the confidence in each result and
provides substantial additional structural, functional and/or spatial
information. This aspect pushes towards a new mode of end-to-end
cell biology whereby multiple datasets are generated, integrated and
simultaneously corroborated, informing a unified and foundational
representation of the cell®**™,
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Methods

AP-MS data collection

U20S cell cultures were processed for protein-protein physical interac-
tionmapping by AP-MS, according toa previously described protocol
developed as part of the BioPlex project™. U20S cells were obtained
from American Type Culture Collection (ATCC) and tested for Myco-
plasma contamination. C-terminal HA-Flag-tagged DNA constructs
targeting each of 2,174 bait proteins were constructed using clones
from the human ORFeome library” and introduced into U20S cells
by lentiviral transfection. Baits were selected based on success in pre-
vious pull-down experiments and to ensure broad sampling of the
interactome as observed previously?. Immobilized and pre-washed
mouse monoclonal anti-HA agarose resin was incubated with cell
lysates to extract proteinbaits and their associated protein complexes.
Subsequently, these were eluted with HA peptide then reduced and
digested with trypsin. Approximately 1 ug of peptide was loaded for
reversed-phase liquid chromatography with a C18 microcapillary col-
umn followed by tandem MS (Thermo Fisher Q-Exactive HFX) using
data-dependent acquisition selecting the top 20 precursors for MS2
analysis. Proteins were identified from the MS2 spectra using Sequest*®,
filtered to 1% protein-level FDR with additional entropy-based filter-
ing™. The CompPASS algorithm**¢° was used to select high-confidence
(top 2%) protein—protein interactions on the basis of the abundance
of proteinsin eachimmunoprecipitation compared with their average
levels across all otherimmunoprecipitations. Interactions were further
filtered with CompPASS-Plus at a 1% FDR™*, Steps for quality control
were as follows. Clones were sequence-validated as described previ-
ously”. AP-MS analyses required the bait protein tobe detected in the
Sequest results; moreover, bait proteins were required to have a higher
abundance (based on spectral counting) in their own pull-down com-
pared withthe other pull-downs on the same 96-well plate. To remove
under-loaded samples, we required LC-MS runs to contain aminimum
ofaround 5,000 PSMs and about 700 proteins. Enrichment of interac-
tions within CORUM complexes (Extended Data Fig. 1c,d; CORUM v.4.1)
was computed using a one-sided binomial test, assuming background
probability of interaction equal to the network’s interaction density,
with Benjamini-Hochberg (BH) FDR correction. CORUM complexes
for each case were limited to those with at least three proteins and
at least one AP-MS bait in the network. Randomized networks were
constructed preserving the overall number of interactions per bait
(node degrees).

Matched protein IF imaging data

U20S cell cultures were analysed using IF confocal imaging as part of
the Human Protein Atlas project (HPA) using a previously described
protocol®. U20S cells were obtained from ATCC and were authenti-
cated according to the manufacturer using morphology, karyotyp-
ingand PCR-based approaches to confirm the identity and to exclude
intraspecies and interspecies contaminations. U20S cells were seeded
in96-well glass-bottom plates and grown to a confluence of 60 to 70%
at 37 °Cin McCoy 5A medium, supplemented with 10% fetal bovine
serum (FBS) and 5% CO, for propagation. Cells were then fixed in 4%
paraformaldehyde followed by permeabilization with Triton X-100
detergent and incubated with the HPA primary antibody for the target
protein, overnightat 4 °C. HPA antibodies were diluted to 2-4 pg ml™in
blocking buffer with1pg ml™ mouse anti-tubulin and 1 ug ml™ chicken
anti-calreticulin. The next day, cellswereincubated at 90 minatroom
temperature with secondary antibodies (goat anti-rabbit AlexaFluor
488; goat anti-mouse and goat anti-chicken AlexaFluor 647; or goat
anti-rat AlexaFluor 647) diluted to 1 ug ml™ and counterstained with
4’,6-diamidino-2-phenylindole (DAPI). IF images were acquired using
aLeica SP5 confocal microscope equipped with a x63 HCX PL APO
1.40 oil CS objective. Each IF image contains four colour channels, one
for the protein of interest and the other three channels for reference

markers corresponding to nucleus (DAPI), microtubule (anti-tubulin
antibody) and endoplasmic reticulum (anti-calreticulin antibody).
Antibody quality was scored according to a standard HPA protocol
(https://www.proteinatlas.org/about/antibody+validation); the high-
estscoring antibody per protein was selected with up to two technical
replicate images.

SEC-MS data collection

We collected aproteomic SEC-MS dataset in the U20S cell line accord-
ing to a previously described procedure®’. U20S cells were tested for
Mycoplasma contamination. Three 15 cm dishes of confluent U20S
cells for each replicate (n = 3) were washed and collected inice-cold
SEC buffer (50 mM KCI, 50 mM NaCH,COO, 50 mM Tris, pH 7.2, con-
taining 1x EDTA-free HALT protease and Thermo Fisher Scientific
phosphatase inhibitor cocktail). These samples were subjected to a
fractionation protocol described previously®’, with modifications. In
brief, cells were lysed using a Dounce homogenizer with a tight pestle
for 3.5 min on ice. Lysates were ultracentrifuged at 100,000 rcf for
15 minat4 °C,and the supernatants were concentrated over 100 kDa
molecular mass cut-off spin columns (Sartorius). A standard Brad-
ford assay was performed to inject 600 pg of protein for each repli-
cateinto asingle 300 x 7.8 mm BioSep-4000 column (Phenomenex)
using SEC buffer without protease inhibitors. The samples were then
separated into 40 fractions at 15 s per fraction using the 1290 Series
semi-preparative HPLC (Agilent Technologies) system at a flow rate
of 0.6 mImin™at 6 °C. The collection end point was predetermined
by measuring the end of the BSA standard peak, discarding anything
smaller than a single BSA protein size. The resulting fraction volumes
of protein were denatured by adding to a final concentration 20%
(v/v) 2,2,2-trifluoroethanol (Sigma-Aldrich), reduced and alkylated®*.
Subsequently, we added an equal volume of 50 mM ammoniumbicar-
bonate for overnight digestion with trypsin (New England Biolabs)
at 37 °C. The resulting peptides were cleaned with C-18 STop And Go
Extraction (STAGE) tips® using 40% (v/v) acetonitrile and 0.1% (v/v)
formic acid in water as the elution buffer. Peptide concentrations
were measured onaNanoDrop Oneinstrument (Thermo Fisher Scien-
tific,205 nm, Scopes method), after which we loaded approximately
50 ng of peptides onto the TimsTOF Pro2 (Bruker Daltonics) system
with CaptiveSpray source coupled to a nanoElute UHPLC (Bruker
Daltonics) device using an Aurora Series Gen2 analytical column
(25cm x 75 pum, 1.6 um FSC C18; lon Opticks). The instrument was
settoacquirein DIA-PASEF mode as previously outlined®. The sample
batch wasrandomized before injection. Acquired SEC-MS datawere
searched on DIA-NN (v.1.8.1.0)¢” against the UniProt human sequences
(UP000005640, downloaded 2June 2023) and common contaminant
sequences (229 sequences). Library-free search was enabled, using
trypsin/P protease specificity and 1 missed cleavages. Other search
parameters included 1 maximum number of variable modifications,
N-terminal M excision, carbamidomethylation of C and oxidation of
M. Peptide length ranged from 7to 30, precursor charge ranged from
1-4, precursor m/zranged from 300 t0 1,800, and fragment ion m/z
ranged from200t01,800.Precursor FDR was set to1%, with O for set-
tings ‘mass accuracy’,‘MSlaccuracy’ and ‘scan window’. The settings
‘heuristic proteininference’, ‘use isotopologues’, ‘match between run
(MBR)’ and ‘no shared spectra’ were all enabled. ‘Protein name from
FASTA’ was chosen for the protein inference parameter along with
‘double-pass mode’ for neural network classifier. Robust LC (high pre-
cision) was used for the quantification strategy, RT-dependent mode
for cross-run normalization, and smart profiling mode for library
generation. Analyses of SEC-MS data used the protein elution profiles,
defined as the protein-level quantification values reported by DIA-NN
across all fractions. The similarity was calculated between the elution
profiles for every pair of proteins, taking the mean Pearson correlation
across the three replicates. For assessment of reproducibility across
biological measurements (Extended Data Fig. 5b), we first selected
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the set of proteins presentin all three replicates (n = 5,018). For each
replicate, we determined each protein’s elution pattern, defined as
the set of Pearson correlations between that protein and every other
of the 5,018 proteins. We then calculated the Pearson correlation of
protein elution patterns across replicates for the same protein or,
alternatively, between random pairs of proteins.

AP-MS and IF data preprocessing

Proteins were first pre-processed within the AP-MS and IF modalities
separately. For the AP-MS data, the node2vec®® Python3 implemen-
tation (https://github.com/eliorc/node2vec) was used to represent
each protein i as a1,024-dimension feature vector (x;) based onits
protein-proteininteraction neighbourhood (p =2, g=1, walklength =
80, number of walks =10). For the IF data, we applied DenseNet-121,
a convolutional neural network pre-trained for object recognition in
protein IF confocal images®. DenseNet-121 was used to represent each
proteinasal,024-dimension feature vector (y,) fromthe four channels
of'the colourimage.

Multimodal embedding overview

We developed aself-supervised multimodal machine learning model to
integrate (co-embed) the AP-MS and IF proteinrepresentationsintoa
single low-dimensional (128-dimension) embedding space (Extended
Data Fig. 2a). Our model is based on the autoencoder architecture
known as multimodal structured embedding” with modifications.
Parameters of the autoencoder are trained using atwo-component loss
function that combines reconstruction loss and triplet (contrastive)
loss. Details are provided in the ‘Encoder/decoder architecture’, ‘Loss
functions’ and ‘Model training’ sections below.

Encoder/decoder architecture

The separate AP-MS and IF vector inputs (x;and y; for each protein i,
see above) are compressed by modality-specific encoders (f, and f,)
yielding 128-dimension vectors a and b:

a; :f;( (X,-)
=Tanh(BatchNorm(Linear(Dropout(ELU(BatchNorm
(Linear(Dropout(x;))))))))

b; =£,(y)
=Tanh(BatchNorm(Linear(Dropout(ELU(BatchNorm
(Linear(Dropout(y))))))))

where Dropout indicates dropout layers™; Linear indicates linear
transformation layers; BatchNorm indicates batch normalization’;
Tanh indicates a hyperbolic tangent function; and ELU indicates an
exponential linear unit function. Theaand b vectors are then input to
ajoint encoder f, that learns the L2-normalized 128-dimension latent
representation z;:

z;=f [concat(a;, b;)]
=L2Norm(BatchNorm(Linear(Dropout(concat(a;, b)))))

Values of z; constitute the self-supervised multimodal embed-
ding used for subsequent cell map evaluation (see the ‘Evaluation
of embedding approaches’ section below) and construction (see
the ‘Pan-resolution community detection’ section below). For the
decoder step, z is reverse-transformed to extract 128-dimension
modality-specific features through weight matrices w,and w;:

Ci=Wiz;
di = wyZ,-

Finally, these features are passed to modality-specific decoders (g,
and g,), yielding the1,024-dimension reconstructed inputs (X,, §,):

X;=g,(c;) =Linear(Tanh(Linear(ELU(Linear(c;)))))

MA =gy(d,-) =Linear(Tanh(Linear(ELU(Linear(d,)))))

Loss functions

To compute the reconstruction loss R, the (X, ¥;) outputs of the auto-
encoder are compared to the original input values (x;, y;) for each
modality:

1 n
= Z lIx; = %l

-1

1 n
R,= Eglly A

where nisthe totalnumber of proteins. The overall reconstruction loss
isthe sum of modality-specificreconstructionlosses and aregulariza-
tion term, where A, gyjarization IS the regularization weight and [|wl|; is the
F-norm of the matrix:

R= Rx + Ry +/lregularization(”wx||F + ”wy”F)

Tocomputetripletloss T, clustering using the Louvain algorithm”is
performed onthe (a, b) vectors of each modality (during early training
clusters are defined using input (x, y) values instead; see the ‘Model
training’ section below). This clustering defines selection functions
S.and S, for each modality, with S(i,j) =1for proteins i, jin the same
cluster, else 0. Thisinformationis used to compute 7 for each modality:
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SN = S,(i, k)

xmax(D(z;, z 2
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S,(i, k))
xmax(D(z;, z;) - D(z;, Z;) + €, 0)

where N is the set of all proteins, D denotes the cosine distance
(1- cosine similarity), and m is the total number of terms inside the
summationthat aregreater than 0. The full loss function Lis aweighted
sum of the reconstruction and triplet losses:

L=R+ Atriplet(Tx + Ty)

Model training

Model parameters were trained with standard neural network learning
procedures provided by Pytorch™ v.2.0.1, based on backpropagation
usingthe Adam stochastic gradient descent method™. Training occurred
inthree phases: (1) Over the first 200 epochs, only the reconstruction
loss R was used for backpropagation. (2) Over an additional 200 epochs,
the fullloss function L was used for backpropagation, with S, and S,
defined using input x,y vectors. (3) Over a final 500 epochs of train-
ing, the full loss function L was used for backpropagation, with S, and
S, defined using a,b vectors (updated every 200 epochs). Values of
hyperparameters were set based on previous work’™ without fine-tuning:
batch size = 64, A, cgyiarization = 5> Awiplec = 5, Adam optimization learning
rate = 0.0001. Triplet loss margin and dropout percentages (¢=0.10,
dropout =0.25) were set based on commonly recommended values™”.
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Evaluation of embedding approaches

The above self-supervised embedding model was evaluated in com-
parison to two alternative multimodal embedding approaches: (1)
simple unsupervised concatenation of the separate AP-MS and IF
inputs (x,y); and (2) arandom forest regression model supervised to
use (x,y) to predict protein—protein semantic similarities from the
Gene Ontology (June 2023 release), trained as previously described®
(Python Scikit-learn package, fivefold cross-validation, n_estima-
tors=1000, max_depth=30). These embedding models were each
scored for their recovery of interacting protein pairs documented in
three complementary reference databases: (1) high-confidence pro-
tein-protein interactions in STRING’®7? (v.12, NDEx uuid Ob04e9eb-
8e60-11ee-8a13-005056ae23aa; Extended Data Fig. 2b,e); (2)
protein pairs assigned to the same CORUM? complex (v.4.1, NDEx uuid
764f7471-9b79-11ed-9alf-005056ae23aa; Extended Data Fig. 2c,e);
or (3) protein pairs with high functional similarity in a genome-wide
CRISPR-perturbation/mRNA sequencing screen (perturb-seq®’;
Extended DataFig. 2d,e). Here, high functional similarity was defined
as the top 1% of protein pairs by Pearson correlation between the
profiles of mRNA transcriptional changes induced by CRISPR disrup-
tions of the two proteins (see the ‘Analysis of perturb-seq data’ section
below).

Pan-resolution community detection

The cosine similaritiy between the multimodal embeddings for each
pair of proteins was used to generate a series of protein-protein prox-
imity networks in which edges were defined from the most similar 0.2,
0.3,0.4,0.5,1.0,2.0,3.0,4.0,5.0 or 10.0% pairs, respectively, yield-
ing 10 networks in total. Pan-resolution community detection was
performed in each of these networks using the Hierarchical commu-
nity Decoding Framework (HiDeF; https://github.com/fanzheng10/
HiDeF)®, with a persistence threshold (k) of 10 and a maximum reso-
lution (maxres) of 80, with other parameters kept at the default set-
tings. HiDeF identifies protein communities at different resolutions
and represents their hierarchical relationships as a directed acyclic
graph (DAG). In this DAG, the nodes represent communities and the
directed edges (a - b) represent that community a contains commu-
nity b. The DAG was refined by assigning parent-child containment
relationships between assemblies with containment index > 75%
and removing redundant systems with Jaccard index > 90% with
parent systems. This final DAG defines the cell map referenced in
Fig.2b.

Estimation of assembly diameter

A subset of 13 protein assemblies was selected from the cell map cor-
responding to assemblies with a known physical diameter documented
intheliterature (Supplementary Table 2). Linear regression was used to
fit thelog,o-transformed diameter (nm, y) against the log;,-transformed
size of the assembly (number of proteins, x):y=1.27x - 0.31. This linear
equation was then used to estimate a diameter j for each assembly in
the map. A 95% prediction interval (PI) was estimated on the basis of
the standard error as follows:

log,,PI=Y £(t-4/2,n-2 % 5-€.(9))

with tdetermined by the Student’s ¢-distribution (¢ =2.2withd.f.=n-2,
n=13 components). The s.e. is the standard error between predicted
and measured sizes, calculated as follows:

_3)2
s.e.()?)=se/1+l+ (x=x)

n Zfil (xi_f)z

n _5\2 .
where, s, = w .Relevant to Fig. 2c.

Evaluation of assembly robustness

The robustness of protein assemblies was evaluated using a statisti-
cal jackknifing approach, as described previously?. A random set of
10% of proteins was removed before multimodal embedding (see the
‘Multimodal embedding overview’ section above); integration and
community detection were then performed using the same param-
etersdescribed inthe ‘Model training’ and ‘Pan-resolution community
detection’sections. This randomization procedure was repeated 300
times to create a set of jackknifed hierarchies. The robustness of each
assembly from the original hierarchy was then calculated as the frac-
tion of all jackknifed hierarchies that contained at least one matching
assembly, defined as substantial and significant overlap between the
proteinsetsrepresenting the target and the match (Jaccard index > 40%
and hypergeometric statistic FDR < 0.001). To assess the dependence
of each assembly on the protein imaging data, we created a dataset
with AP-MS features randomized (1,024-dimension random vectors
sampled from anormal distribution) before the statistical jackknifing
procedure, and the robustness of each assembly was computed as
described above. For assessing the dependence of each assemblyinthe
map onthe AP-MS data, areciprocal procedure was performedinwhich
image embeddings were randomized. Relevant to Extended DataFig. 3.

Annotation of cell map assemblies

Thecellmapwasannotatedbyfirstaligning assemblieswiththe GO cel-
lular componentbranch (June 2023 release), CORUM (4.1 human com-
plexes) or HPA (v.23) resources. Each of these cell biology resources
definesalist of protein sets (GO terms, CORUM complex, HPA subcel-
lular localizations), referred to here as components. Hypergeometric
tests were performed for each assembly versus each component in
theresource,and the FDR was determined using BH correction. The
results were tabulated for all assembly-component pairs withJaccard
index >10% and hypergeometric statistic FDR < 0.01 (Supplemen-
tary Table 1). Assemblies in the map were labelled as high overlap
with known assembly (Jaccard index = 50% for at least one of the
threeresources); substantial variation on known assembly (Jaccard
index < 50% for all three resources and 20% < Jaccard index < 50% for
atleastoneof the resources); or not previously documented assembly
(Jaccardindex <20% for all three resources) based on this enrichment
analysis. We also used our recently developed Gene Set Al (GSAI)
pipeline’to guide the GPT-4 model” (v.gpt-4-1106-preview) to anno-
tate assemblies with <1,000 proteins (Extended Data Fig. 4a). This
approach uses a well-engineered prompt that follows the chain-of-
thought®? and one-shot® strategies to query GPT-4 for a descrip-
tive name, a confidence score and a detailed reasoning assay of
the protein members from each assembly. One example is shown
in Extended Data Fig. 4c, and the full result for each assembly is
available in Supplementary Table 1. Literature references are pro-
vided by a separate GPT-4 based citation module developed in the
previous study® (Extended Data Fig. 4b) to aid in interpretability.
The citation model extracts gene symbols and functional keywords
from each paragraph of the LLM-generated analysis text; these are
used to construct and execute PubMed queries that search titles
and abstracts. The returned publications are prioritized based on
relevance and the number of matching genes in their abstracts.
Finally, a separate GPT-4 instance is asked to evaluate whether the
top three publication titles and abstracts provide supporting evi-
dence for factual statements in the original analysis paragraph,
selecting those that satisfy this requirement as references. To evalu-
ate the reproducibility of GPT-4 naming (Extended Data Fig. 4d),
we performed the GSAI pipeline for five additional replicate runs
of GPT-4 and calculated the semantic similarity between the assem-
bly names generated in each of these runs versus the original run.
Similarity was computed using the SapBERT model® from hugging-
face (cambridgeltl/SapBERT-from-PubMedBERT-fulltext) using the
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transformers package® (v.4.29.2). Assemblies that were not named
by the original run were eliminated from the reproducibility test.

Biological condensate analysis

To analyse the cell map for biological condensates, we used three
resources: IUPred3.0%¢, a sequence-based predictor of protein disor-
der; FuzDrop¥, asequence-based predictor for the ability of a protein
todrive condensate formation; and CD-Code®®, a database containing
proteins known to participate in biological condensates. IUPred3.0
predicts the probability of each amino acid in asequence asbeing disor-
dered. Proteins containing a contiguous sequence of amino acids >30
residues, where each amino acid hasa>50% chance of being disordered,
were annotated as likely disordered. FuzDrop assigns a probability of
asequence driving phase separation, which we thresholded at >60%
to annotate a protein as ‘likely phase-separated’. Finally, we searched
for each gene’s UniProtID in CD-Code (accessed 31 May 2023) under
‘Homo sapiens’, enabling us to annotate a protein as ‘associated with
known condensates’. We used a hypergeometric test to assign statistical
significance (P < 0.01) to each protein assembly that was enriched in
proteins that were likely disordered, likely phase-separated, or associ-
ated with known condensates. Assemblies that were significantin one of
these three analyses were considered possible biological condensates
(Supplementary Table 3).

Validation of protein assemblies and subunits by SEC-MS data
For the set of proteins in each assembly, we determined the Pearson
correlation in SEC-MS elution profiles for all pairs of these proteins
(seethe ‘'SEC-MSdata collection’ section). This similarity distribution
was then compared to a null distribution (all pairs of proteins not in
any common U20S assembly, that is, assigned to root node only) using
aone-sided Wilcoxon rank-sum test with BH correction (Fig. 3d and
Supplementary Table 4). Assemblies with FDR < 5% were considered
validated. A similar analysis was performed using PrinCE® (https://
github.com/fosterlab/PrInCE) scores to rank protein pairs rather than
Pearson correlations, with PrinCE run using the default parameters. We
found that 90 assemblies were validated at 5% FDR in the complemen-
tary analysis using PrInCE, including 70 assemblies validated by both
Pearson correlation and PrinCE similarity measures (Supplementary
Table4). For validation of unexpected protein subunits within assem-
blies, for each assembly <50 proteins, ‘unexpected proteins’ were de-
fined as those not included in the best matching cellular component
fromany of three cell biology resources (GO, CORUM, HPA; see the ‘An-
notation of cell map assemblies’ section above). For each unexpected
member, its SEC-MS elution profile was compared against all other
proteinsinthe assembly using Pearson correlation; this similarity dis-
tribution was compared to the null distribution as described above to
compute an FDR. Unexpected proteins with FDR < 5% were considered
validated (Supplementary Table 4).

AlphaFold-Multimer analysis

All pairs of proteins insmall assemblies (<10 proteins) were selected for
AlphaFold-Multimer analysis. AlphaFold-Multimer was run on each pair
using localcolabfold (https://github.com/YoshitakaMo/localcolabfold)
with the default settings®®. Sequences were acquired from the complete
human protein UniProt FASTA file (UPO00005640, reviewed sequences,
downloaded 11 September 2023). For each predicted heterodimeric
structure, we calculated a weighted average between the predicted
template modelling score (PTM, an estimate of the similarity between
the predicted and ground truth structures) and the ipTM score (the
pTMscore modified to score the interfaces across different proteins)*":

model score=0.8 xipTM+ 0.2 x pTM

We calculated the median score out of five independent models
generated per protein pair. Anull score distribution was generated by

repeating this score computation for pairs of proteins drawn randomly
from those pairs that were not part of the same small assembly (<10
proteins asabove). This null distribution was used to calculate an FDR
for actual protein pair scores, selecting a cut-off of 30% correspond-
ing to a weighted PTM score of 0.39. Pairs were further evaluated for
the presence of a confident interface residue (within10 A of the other
protein and pIDDT score > 80). Relevant to Fig. 4a.

Integrative structure modelling of the Rag-Ragulator complex
Astructural model of the Rag-Ragulator community was computed by
using anintegrative modelling approach®°"*%, proceeding through the
standard four stages®®"** as follows. (1) Gathering input information:
the Rag-Ragulator model in the cell map included LAMTORI through
LAMTORS, RRAGA, RRAGC, SLC38A9, BORCS6, NUDT3 and ITPA. An
integrative model was computed based on the SLC38A9-RagA-RagC-
Ragulator comparative model (PDB: 6W)2 template)*, AlphaFold*
predictions for BORCS6 and ITPA, and pairwise AlphaFold-Multimer
predictions® for BORCS6 or ITPA versus all other members of the
Rag-Ragulator complex. One-hundred AlphaFold-Multimer models
were generated for each pair and evaluated using FoldDock®. The
modelexcluded NUDT3 because AlphaFold-Multimer did not produce
high-confidence models of NUDT3 and other Rag-Ragulator compo-
nents according to FoldDock. (2) Representing subunits and translat-
ing data into spatial restraints: the components of the Rag-Ragulator
community were represented asrigid bodies. Alternative models were
ranked through a scoring function corresponding to a sum of terms,
each one of whichrestrains some aspect of the model based onasubset
of input information. The spatial restraints included a binary binding
mode restraint on the position and orientation of pairs of proteins as
derived from ensembles of AlphaFold-Multimer predictions, connec-
tivity restraints between consecutive pairs of beads in a subunit and
excluded volumerestraints between non-bonded pairs of beads. (3) Con-
figurational samplingto produce an ensemble of structures that satisfies
therestraints: theinitial positions and orientations of rigid bodies and
flexible beads were randomized. The generation of structural models
was performed using replica exchange Gibbs sampling, based on the
Metropolis Monte Carlo algorithm?®. Each Monte Carlo step consisted
of aseries of random translations of flexible beads and random trans-
lations and rotations of rigid bodies. (4) Analysing and validating the
dataand ensemble structures: model validation®* included selection
ofthe models for validation; estimation of sampling precision; estima-
tion of model precision; and quantification of the degree to which a
modelsatisfies theinformation used to computeit. The above four-step
modelling protocol was scripted using the Python Modelling Interface
(PMI) package, a library for modelling macromolecular complexes
based onthe open-source Integrative Modelling Platform (IMP) package
v.2.18 (https://integrativemodeling.org)®. The configuration of the rigid
Rag-Ragulator complex, ITPA protein and the two BORCS6 domains was
computed by minimizing the violations of the spatial restraintsimplied
by the input information, using IMP®", Relevant to Fig. 4j.

Analysis of perturb-seq data

The K562 day-8 perturb-seq dataset® was acquired at https://gwps.
wi.mit.edu (BioProject: PRINA831566). This dataset provides single-
cell transcriptional profiles for 9,867 distinct gene knockouts, which
underwent filtering based on the following criteria: (1) gene knock-
out correspondsto aproteinin our U20S cell map; (2) gene knockout
has efficient on-target mRNA reduction of >30%; (3) gene knockout
induces a strong transcriptional phenotype defined by >20 differ-
entially expressed genes at a significance of P < 0.05 on the basis of
the Anderson-Darling test followed by BH correction. This filtering
process resulted in alist of 1,289 gene knockouts. The functional cell
states due to each of these perturbations were represented using the
mean-normalized differential expression profile. Relevant to Fig. 4m
and Extended Data Fig. 2d,e.
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Analysis of DPP9 inhibition

U20S cellswereseededin triplicate at 300,000 cells per well in asix-well
plate (two biological replicates). The next day, cells were treated with
1G244, a DPP9 inhibitor (HY-116304, MedChem Express) at the indi-
cated concentrations for a total of 6 h. After treatment, The medium
was aspirated and washed once withice-cold PBS. Cells were collected
in 500 pl of cold TRIzol reagent (15596026, Invitrogen) using a cell
scraper. 100 pl of chloroform was added to the TRIzol lysate and vor-
texed for20 sfollowed by a3 minincubation atroomtemperature. The
homogenate was centrifuged at 10,000g for 18 min at 4 °C. A total of
200 pl of aqueous phase was removed with a pipette and transferred
toanew Eppendorftube. An equal volume of 100% ethanol was slowly
added totheaqueous phase and mixed by gentle pipetting. The entire
sample was transferred to an RNeasy Mini spin column placedina2 ml
collection tube (74104, Qiagen). The rest of the extraction was carried
outaccording tothe Qiagen RNeasy protocol. 2 pg of RNA per sample
was reverse-transcribed according to the iScript cDNA Synthesis Kit
protocol (1708890, Bio-Rad, interferon beta 1: Hs01077958_s1; inter-
ferongammal, Hs00194264_m1;interferongamma2, Hs00988304_m1;
non-1SG—18S,4333760T; and GAPDH, Hs0275889q_g1). qPCR was car-
ried out in triplicates in a 96-well plate according to the TagMan Fast
Advanced Master Mix protocol (4444557, Thermo Fisher Scientific)
on a CFX96 Touch Real-Time PCR Detection System from Bio-Rad.
The expression levels were compared against a housekeeping gene
(GAPDH), and the relative expression levels were compared against
the DMSO control. Relevant to Extended Data Fig. 6.

Analysis of conservation of U20S assemblies in asecond cell type
We downloaded the AP-MS BioPlex v3 network from NDEx (uuid
6b995fc9-2379-11ea-bb65-0acl135e8bacf), which provides high cov-
erage of human proteininteractionsinasecond cell type, HEK293 cells
(14,033 proteins, 127,732 protein-protein interactions). Node2vec was
used torepresent the interaction pattern of each proteinin this HEK293
network (see the ‘AP-MS and IF data preprocessing’ section). The cosine
similarity ininteraction patterns was then computed for all protein pairs
(separately for HEK293 and U20S). For the set of proteinsincluded in
each U20S assembly, the distribution of pairwise protein similarities
in HEK293 were compared to those in U20S cells using the two-sided
Mann-Whitney U-test. This test was translated to an effect size using
Cliff’s delta®®; assemblies with Cliff’s delta > 0.5 were considered to be
increasingly U20S-specific whereas those with Cliff’s delta < 0.5 were
considered to be increasingly conserved. Relevant to Extended Data
Fig.7;in Extended Data Fig. 7b, Cliff’s delta scores of <0 are set to O.

Multi-localization analysis

For each protein, we identified its terminal locations in the cell map
hierarchy, defined as assemblies (hierarchy nodes) where the protein
appeared but was absent in all subassemblies (child nodes). We then
counted the number of unique paths fromthese terminal locations to
the root of the hierarchy (root node). Proteins with multiple distinct
paths to the root were classified as multi-localized, indicating their
presencein different branches of the cell map. Multi-localized assem-
blies wereidentified as assemblies with more than one parent nodein
the hierarchy. Relevant to Extended Data Fig. 8.

Pre-processing of paediatric cancer mutational profiles

Data were obtained from a pan-paediatric cancer study* of 914 indi-
vidual patients with cancer aged under 25 years (study ID: pediatric_
dkfz_2017, downloaded from cBioPortal®®°?). We selected the following
types of non-silent somatic mutation events: ‘Frame_Shift_Del’,‘Frame_
Shift_Ins’, ‘In_Frame_Del’, ‘In_Frame_Ins’, ‘Missense_Mutation’, ‘Non-
sense_Mutation’,‘Nonstop_Mutation’,'RNA’, ‘Splice_Region’, ‘Splice_Site’
and ‘Translation_Start_Site’. A total of 772 primary tumour samples,
spanning 18 cancer types, were in the resulting list (Supplementary

Table 9). We recorded the number of tumours in the pan-paediatric
cohort, as well as each individual tumour cohort, in which each gene
was observed to have at least one somatic mutation event (N ops))-
Moreover, we calculated the expected number of mutations for each
gene in the pan-paediatric cohort (N.,)) using the default setting
of MutSigCV v.1.4, as described in a previous study'. For expected
mutation counts for individual cancer cohorts, we down-scaled the
pan-paediatric cancer N, based on the proportion of patients (for
example, 44 patients with Wilms’ tumours (WT) account for 5.7% of
the pan-paediatric cohort, 0 Ny epwr = 0.057 X Ny ey, pan-pacdiarric)- Finally,
the corrected log mutation count of each gene (M,) for each cohort
was calculated as:

Mg = Ing(maX(N(g'ObS) _ N(g,exp)' 0) + ].)

Statistical identification of recurrently mutated assemblies
Weapplied a previously described statistical model, HiSig'*! (https://
github.com/fanzhengl0/HiSig), to calculate the mutation selection
pressure on assemblies with the default parameter settings. HiSig
implements linear regression (with L1lasso regularization) of the
mutation count against the organization of proteins in assemblies.
We calculated an empirical P value by comparing the mutational
selection on assemblies against 10,000 randomly permuted assign-
ments of proteins to assemblies. The FDR was calculated by BH cor-
rection. Recurrently mutated assemblies were selected on the basis
of FDR < 0.4. Assembly-level mutation frequencies were calculated
from the number of distinct patients who carried at least one mutated
protein in the assembly. Tumour types with fewer than 15 patients
were excluded from analysis, as were mutated assemblies with >50
mutated proteins.

Validation of cancer driver genes

Genes mutated inmore than one patient with cancer and locatedin the
significantly recurrent mutated assemblies (see above) were defined
as putative cancer proteins. We obtained a large collection of
transposon-based mutagenesis screens in mice from the Candidate
Cancer Gene Database (CCGD)* (http://ccgd-starrlab.oit.umn.edu/
index.html, downloaded on26 March2024). This database consists of
a total of 72 studies with mouse transposon insertion mutagenesis
screens across13 tumour categories (Extended Data Fig. 9a). We deter-
mined the number of studies in which a gene was disrupted by trans-
posoninsertionin mice tumours. Mutated genesin cancer assemblies
were designated positives (genes expected to have high study counts
because they are mutated), and all other genes were designated nega-
tives (genes not expected to have high study counts). We calculated
the kernel density estimation (KDE) for the mutated genes in cancer
assemblies and other genesin the cell map using the stat.gaussian_kde
function from the Python package scipy (v1.7.3). The area under the
KDE curves was integrated using the trapz function from Python pack-
age numpy (v.1.21.6). The FDR was then computed as the ratio of the
areaunder the curve for false positives (Areagp) to the total area under
the KDE curve representing both false positives and true positives
(Area;p), mathematically shown as: FDR = %. We specified
the minimum number of screens reporting a gene at 4 (x> 4), corre-
sponding to FDR = 0.28, as the threshold cut-off for validated cancer
drivers (Extended DataFig. 9b). Adult cancer driver genes were collected
from the TCGA Pan-Cancer Atlas'®’; significantly mutated genesin the
pan-paediatric cancer cohort were collected from refs. 4,103. These
genes were defined as known cancer genes in Extended Data Fig. 9¢,d.

Running the cell mapping toolkit

The Cell Mapping Toolkit (https://github.com/idekerlab/cellmaps_
pipeline) implements a series of Python packages to execute the
end-to-end pipeline described herein. Specific packages include steps
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for processing the proteinimaging and biophysical interaction datasets
(cellmaps_imagedownloader, cellmaps_ppidownloader), embedding
the input modalities (cellmaps_image_embedding, cellmaps_ppi_
embedding), integrating the modalities (cellmaps_coembedding),
constructing the hierarchical cell map (cellmaps_generate_hierar-
chy) and annotating the cell map with known resources such as GO
(cellmaps_hierarchyeval). Each package is pip-installable and is linked
to complete user documentation hosted at ReadTheDocs (https://
cellmaps-pipeline.readthedocs.io/). A step-by-step guide is provided
atthe GitHub repository.

Statistics and reproducibility

Statistical tests were performed using SciPy'** with BH multiple-testing
correction where appropriate. Statistics involving comparison between
two data distributions were calculated using Mann-Whitney U-tests or
Wilcoxonrank-sum tests (Figs. 2d, 3c,d and Extended Data Figs. 2b-d,
7b, 9b). Statistics for assessing the enrichment of proteins or protein
pairs were calculated using hypergeometric tests (Fig. 2b and Extended
Data Fig. 3) unless stated otherwise. The SEC-MS data were repro-
ducedinthreebiological replicates. The IF stainings were reproduced
in at least two different cell lines in HPA (Fig. 4h,l and Extended Data
Figs. 6b, 7d, 8c,g, 9f). The qPCR experiment for DPP9 was repeated for
two biological replicates and three technical replicates each (Extended
DataFig. 6¢).
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Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The Multiscale Integrated Cell web portal (musicmaps.ai/u2os-cellmap)
provides links to all major dataand derived resources associated with
this study, including AP-MS protein interactions, protein IF images,
SEC data and the online interactive U20S cell map. The U20S cell map
isavailable at https://ndexbio.org under uuid f693137a-d2d7-11ef-8e41-
005056ae3c32. Protein assemblies in the cellmap are also available at
the European Bioinformatics Institute (EBI) Protein Complex Portal
(https://www.ebi.ac.uk/complexportal) with the query CLO:0009454.
The AP-MS protein interaction data are available at https://ndexbio.
org under uuid 95bc75d5-d1d1-11ee-8a40-005056ae23aa. In addi-
tion to its release here, the U20S protein interaction network will be
included as part of the upcoming BioPlex'® v.4.0 database release
(E.L.H.etal., manuscriptin preparation). AP-MS raw MSfiles are avail-
able at MassIVE under theidentifier MSV000097168. The entire image
dataset is included in the Human Protein Atlas v23 release. SEC-MS
raw MS files and search results are available at the Proteome Xchange
under the identifier PXD052362. All structural models are available
at the ModelArchive Database (https://modelarchive.org) with the
identifiers ma-idk-u2osmap and ma-m5og4. Other public databases
and resources used in this study include Gene Ontology (June 2023
release; https://geneontology.org), CORUM (v.4.1release, https://
mips.helmholtz-muenchen.de/corum/), UniProt Homo sapiens pro-
teome (accessed 2 June and 11 September 2023; https://uniprot.org),
STRING interactome (v.12; NDEx uuid: 0bO4e9eb-8e60-11ee-8al3-
005056ae23aa), OpenCell interactions (https://opencell.czbiohub.
org/download), CD-CODE condensate database (accessed 31 May 2023;
https://cd-code.org), FuzDrop (dataset S7 inref. 87), Protein Conden-
sate Atlas (supplementary dataset 8 inref.29), K562 day-8 perturb-seq
dataset (https://gwps.wi.mit.edu), HEK-293 BioPlex v.3.0 (NDEx uuid:
6b995fc9-2379-11ea-bb65-0acl135e8bacf), paediatric cancer muta-
tiondata (https://www.cbioportal.org/study/summary?id=pediatric_
dkfz_2017) and transposon-based mutagenesis screens from the
Candidate Cancer Gene Database (http://ccgd-starrlab.oit.umn.edu/
index.html; downloaded 26 March 2024).

Code availability

Open-source software for cellmap construction (Cell Mapping Toolkit)
hasbeenreleased asaseries of Python PyPl packages at GitHub (https://
github.com/idekerlab/cellmaps_pipeline) and is also linked through
the Multiscale Integrated Cell web portal (https://musicmaps.ai/
u2os-cellmap).
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Extended DataFig.1|Data quality assessment. a) Complete network of
U20S protein-proteininteractions as measured by AP-MS. b) Histogram of
number of interactions per protein. c) Fraction of CORUM complexes significantly
enriched (1% FDR, Methods) for AP-MS interactions measured in USOS (left)
alongsideinteractions ascertained in two previously published AP-MS networks
for other cell lines?>*' (middle and right). Error bars denote 95% confidence
intervals. d) Interaction networks for select CORUM complexes, with FDR

g-valuesas per panel (c). Blue nodes denote bait proteins and grey nodes
denote prey proteins. e) PANTHER® classifications of protein function (top 30
largest classes by number of proteins), shown for proteins covered by U20S cell
map in comparison to the entire human proteome (UniProt, downloaded
September11,2023).f) Protein pairs ranked by cosine similarity in AP-MS features
enrich for the most similar protein pairs (top 1% in theimmunofluorescent
proteinimage featuresand g) vice versa.
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Extended DataFig.2|Self-supervised embedding of multiple datamodalities.
a) Architecture of self-supervised multimodal embedding model. Columns of
squares represent feature vectors, with the dimensionality written just below
each column. Regions enclosed by dotted lines represent neural networks with
layers described. Protein coordinates in the joint multimodal embedding (z)
areused for computing pairwise protein-protein similarities in subsequent
panels (cosine similarity function). b) Distribution of similarities shown for
protein pairs with a ‘high-confidenceinteraction’ denoted in the STRING
database (green) in comparison to all other protein pairs (grey). ¢) Similar to (b)
but for protein pairsin the same CORUM complex. d) Similar to (b) but for
protein pairs thatyield highly similar transcriptional profiles (top 1% pairs)
when genetically disrupted by CRISPR, drawn from arecent perturb-seq

functional genomics study®®. **** denotes significant difference, p < 0.0001 by
one-sided Wilcoxon rank-sum test. e) Different protein embedding approaches
(coloured points, Methods) are evaluated by their degree of enrichment (x-axis)
across orthogonal functional and physical interaction resources (y-axis,
resources from panels b-d above). Supervised Random Forest trained using the
Gene Ontology (Methods). Enrichment computed using Cliff’s Delta (1,000
samplings of1,000 protein pairs with replacement, Methods) yielding values
inrange[-1,1], with positive values indicating enrichment above random
expectation. Error bars denote standard deviations across 1000 bootstrap
resamplings with the center at the mean. * denotes significant differencein
comparisonwith self-supervised multimodal embedding results (two-tailed
p<0.05across bootstrap resamplings).
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jackknife resamplings) versus size of assembly in number of proteins. Grey bars
denote total number of assemblies in each size category.
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To summarize, the majority of the proteins in this system are involved in the ubiquitin-proteasome pathway,
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processes by targeting proteins for degradation, thus regulating protein levels and activity. The presence of
multiple F-box proteins indicates a broad range of target proteins and functions, from cell cycle regulation to
transcriptional control. The system's coherence is centered around the ubiquitination and subsequent
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Extended DataFig.4|Annotation of protein assemblies with GPT-4. a) Left:
Annotation workflow extended from Hu et al.3, in which the cell map isused

to query GPT-4 for adescriptive name, aconfidence score and asupporting
rationale. Right: Composition of prompt used for GPT-4 query. b) Schematic of
GPT-4 assisted citation module. GPT-4 is asked to provide gene symbol keywords
and functional keywords separately. Multiple gene keywords and functions are
combined and used to search PubMed for relevant paper titles and abstractsin
the scientificliterature. c) Example assembly with GPT-4 name and supporting

Original Rep. Rep. Rep. Rep. Rep.
name 1 2 3 4 5

Name replicates

analysis paragraphs with citations generated from citation module (see panel b).
d) Semanticsimilarity of the original GPT-4 name given anassembly vs. the
name assignedineach of five replicate GPT-4 runs. Results for two example
assemblies are shown (yellow and green points), one of whichisnamed identically
acrossreplicates (yellow) and one of which shows variation (green). The average
performance over allU20S assemblies (n =271, excluding assemblies with more
than1000 proteins)isshownindarkblue.



Article

a b Same protein [_] Different proteins
1.0
Replicate 1 138 Replicate 2 T iy v
S 05
240 2
157 g
501§ 3 0.0
proteins s
236 17 z
\“// 8-05
o
Replicate 3 -1.0
Replicate 1 Replicate 1 Replicate 2
vs. Replicate 2 vs. Replicate 3 vs. Replicate 3
c
60S 28S mitoc a AP1 adaptor Apoptosome
ribosome SO complex complex
400
3 300
% 200 I Replicate 1
9]
fo i il il
-
0 . CE— | II Il
0 5 10 15 20 25 30 35 40
Fractions
400
>
g 300
2 200 Replicate 2
9]
£ 100
0
0 5 10 15 20 25 30 35 40
Fractions
600 W
8 500
o 400
Z 300 Replicate 3
L:l_’ 200
100
0 | P [ ST ..I.IIIlI-II..
0 5 10 15 20 25 30 35
Fractions
Extended DataFig. 5| Quality assessment of SEC-MS dataset. a) Overlap of the median. ¢) Histogram of number of proteins with maximum intensity in

proteinidentifications across three biological replicates. b) Violin plotsshowing  each elution fraction for replicate1(top), replicate 2 (middle), and replicate 3
thedistribution of the Pearson correlationbetweenreplicate measurementsof  (bottom).Select CORUM complexes are highlighted at the median maximum
each protein’s elution pattern (purple, n = 5018) vs. random pairings of different  intensity of proteinsinthe complex.

proteinsacross replicates (white, n = 5018), with thick black lines representing



STAT1 IRF9

DPP9

STAT2

AP-MS bait
AP-MS interaction

¢ 8{ P=4.0x10? i
1T —— Treatment
2] ® * DMSO
¢ 1uM DPP9i
5 6 © 5uM DPP9i
2 ®
[0}
5 5
3 . P=g.4x10% ISGF3
2 °* P=35.10°  P=2.2x10? copmlex
5, -
¢ - 8
& % ; ¢ ° .E L 4 +
® $ ©
' ¢ 0 ‘ 4 ‘ % ISGs (e.g. IFNB)
ol ®
IFNB1 IFNy1 IFNy2 Non-ISG
Downstream transcription targets
Extended DataFig. 6| DPP9 association with STAT interferonsignalling. separatesamples. Expression levels normalized to DMSO control. Points
a) Interaction data for the ISGF3 complex. b) Inmunofluorescence images for (n=6,2biological replicates and 3 technical replicates each) denotereplicate
the ISGF3 complex. Membersimmunostained (green) with cytoskeleton measurements. Light grey whiskers represent mean + SE. Significance (p-values)
counterstain (red). Scalebar, 3 um. c¢) Relative mRNA expression level of IFNf1, aredetermined by atwo-sided student’s t-test. d) Canonical function of ISGF3

IFNy1, IFNy2, and negative control (Non-ISG 18S) upon DPP9 inhibition, complex with putative upstream activity of DPP9.



Article

a AP-MS features IJI;SZSSB
U208 HEK293 U20S specific Conserved
Protein A [ .
| - = =
- — S 3
= = 4 S
Protein B [_| N e __ =
| Similarity between Similarity between
] ] protein AP-MS features protein AP-MS features
b Cell
Mitochondrion NEER s Cytosol
. ;
o 2%ee % . Microtdbules
&) [ ] ° (1)
©@ecoc00 o
. L]
Nucleoplasm e ® L ° -
a L Nu‘li ° O 'y J ® ° @ Endomgmbrane Plasma
o Nuclear e (XL E.;e,': % Q] o ® m membrane
Spedkies N\ of O gleoT R .
Nuclear sk;l)licing Y O € oo . ° e °
speckle ® = A X e® o0
" = NELF complex '@, s00e . ° . o °
9,0%. 0 e _0, P-body el O o e °° il
PN *ee.’ o °% con P ool
eTee o d ° ° . ° SNARE
o ° 0 PP e L complex
g *re Differential biophysical
eceg o associations
° e Strongly conserved Strongly U20S
in HEK293 ! : . ! specific
00 025 05 075 10
(o : e
HEK293 bait RFC1 in HEK293 HEK293 bait
U20S and HEK293 bait U20S and HEK293 bait
HEK293 interaction HEK293 interaction
U20S interaction U20S interaction
RAD1 RFC3
RECA RFC1in U208 N>
S MFGE8
DScCcC1 AK1
RAD17 ATAD5 ENO3
FABP3
— S TIC4  FBP2
RADYA
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FDR < 0.3).c) Number of proteins validated as cancer driversinrecurrently

mutated assemblies (magenta), versus cancer drivers previously identified in
pediatric (gold) or adult cancer studies (lavender). d) Number of transposon
screening studiesidentifyinga proteinasacancerdriver (totaln=72),shown
forselect cancer assemblies (rows). Light grey whiskers represent mean + SE.
e) Asfor paneld, focusing on proteinsin NATR assembly. f) Immunofluorescence
images for six representative proteins inthe NATR assembly found to be
mutatedin certain pediatrictumours. Membersimmunostained (green) with
cytoskeleton counterstain (red). Scalebar, 2.5 pm.

growth viatransposon mutagenesis. a) LEFT: Schematic overview of
transposon-based genetic screensinmouse tumour models*®. RIGHT: Number
of screens by cancer type.b) Distribution of the number of transposon screens
identifying each human gene as a cancer driver. Separate curves show cancer
proteinsinrecurrently mutated assemblies (magenta curve) versus all other
proteinsinthe cellmap (grey curve). Pvalue between the two distributions are
determined by one-sided Mann Whitney U test. Black dashed line represents
the threshold number of screens used to call cancer drivers (threshold =4,
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Data collection  Immunofluorescence confocal images were collected using 63x oil immersion with Numerical Aperture 1.4. AP-MS data were acquired on
first-generation Q-Exactive mass spectrometers (Thermo Fisher Scientific) equipped with Famos autosamplers (LC Packings) and Accela600
liquid chromatography (LC) pumps (Thermo Fisher Scientific). SEC-MS data was acquired on a TimsTOF Pro2 (Bruker Daltonics) with
CaptiveSpray source coupled to nanoElute UHPLC (Bruker Daltonics).

Data analysis All data analyses have been described in detail in the relevant Methods section with links to publicly available GitHub repositories. The cell
map construction pipeline is available at https://github.com/idekerlab/cellmaps_pipeline. The required Python packages, along with specific
versions, were documented in GitHub.

The following versions were used to construct the cell map:
Python==3.8.16

cellmaps_imagedownloader==0.1.0a7
cellmaps_ppidownloader==0.1.0a6
cellmaps_image_embedding==0.1.0a7
cellmaps_ppi_embedding==0.2.0a6
cellmaps_coembedding==0.1.0a6
cellmaps_generate_hierarchy==0.1.0a13
cellmaps_hierarchyeval==0.1.0a5

The following versions were used to analyze the cell map (Use Cases):
Python==3.7.9
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scipy==1.7.3

The following versions were used for the Random Forest analysis:
Python==3.9.18
scikit-learn==1.3.0

Other softwares used in this study are documented in the Methods section and listed below:
CompPASS  https://github.com/dnusinow/cRomppass

CompPASS-Plus  https://github.com/HMSBioPlex/ CompPASS-Plus-CLI

Cytoscape v3.10.1

DIA-NN 1.8.1.0 https://github.com/vdemichev/DiaNN

HiSig https://github.com/fanzheng10/HiSig

|IUPred3.0 https://iupred3.elte.hu/download_new

PrinCE https://github.com/fosterlab/PrinCE

localcolabfold https://github.com/YoshitakaMo/localcolabfold

Integrative Modeling Platform (IMP) package v2.18 https://integrativemodeling.org
MutSigCV v1.4 (available in https://github.com/fanzheng10/HiSig/)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The Multiscale Integrated Cell web portal (musicmaps.ai/u2os-cellmap) provides links to all major data and derived resources associated with this study, including
AP-MS protein interactions, protein immunofluorescence images, size-exclusion chromatography data, and the online interactive U20S cell map. The U20S cell map
is available on ndexbio.org with the uuid f693137a-d2d7-11ef-8e41-005056ae3c32. Protein assemblies in the cell map are also available at the European
Bioinformatics Institute (EBI) Protein Complex Portal (https://www.ebi.ac.uk/complexportal) with the query CLO:0009454. The AP-MS protein interactions are
available on ndexbio.org with the uuid 95bc75d5-d1d1-11ee-8a40-005056ae23aa. In addition to its release here, the U20S protein interaction network will be
included as part of the upcoming BioPlex v4.0 database release (Huttlin et al. in preparation). AP-MS raw mass spectrometry files are available on MassIVE with the
identifier MSV000097168. The entire image dataset is included in the Human Protein Atlas v23 release. SEC-MS raw mass spectrometry files and search results are
available via Proteome Xchange with the identifier PXD052362. All structural models are available in the ModelArchive Database (modelarchive.org) with the
identifiers ma-idk-u2osmap and ma-m5og4. Other public databases and resources used in this study include the Gene Ontology (June 2023 release, https://
geneontology.org), CORUM (version 4.1 release, https://mips.helmholtz-muenchen.de/corum/), UniProt Homo sapiens proteome (accessed June 2 and September
11, 2023, https://uniprot.org), STRING interactome (v12, NDEx uuid 0b0O4e9eb-8e60-11ee-8a13-005056ae23aa), OpenCell interactions (https://
opencell.czbiohub.org/download), CD-CODE condensate database (accessed May 31, 2023, https://cd-code.org), FuzDrop (Dataset S7 in Hardenberg et al.), Protein
Condensate Atlas (Supplementary Dataset 8 in Saar et al.) K562 day-8 perturb-seq dataset (gwps.wi.mit.edu), HEK-293 BioPlex v3.0 (NDEx uuid
6b995fc9-2379-11ea-bb65-0ac135e8bacf), pediatric cancer mutation data (https://www.cbioportal.org/study/summary?id=pediatric_dkfz_2017), and transposon-
based mutagenesis screens from the Candidate Cancer Gene Database (http://ccgd-starrlab.oit.umn.edu/index.html, downloaded March 26, 2024).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Not applicable

Reporting on race, ethnicity, or Not applicable
other socially relevant

groupings

Population characteristics Not applicable
Recruitment Not applicable
Ethics oversight Not applicable

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

& Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The number of proteins analyzed in this study (n=5147) was determined based on amount of matched data available when overlapping
immunofluorescence image and AP-MS interactions in the U-2 OS cell line. For follow-up experiments in this study, no statistical methods
were used to pre-determine sample sizes, which were chosen to reliably observe experimental phenotypes.
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Data exclusions  No data were excluded from analyses

Replication All the data collected in this study consisted of technical or biological replicates. The number of replicates, as well as the type of replicates (i.e.
technical or biological), are labeled in the relevant figures or method sections.

Randomization  AP-MS baits were arrayed on 96-well plates in random order, and plates were run in random order during LC-MS analysis. For other
experiments in this study, randomization was used whenever possible to determine experimental order.

Blinding All'IF, AP-MS, and SEC-MS data were generated and processed with investigators blinded to the hypothesis.

For DPP9 RT-gPCR measurement (Extended Data Fig. 6¢), blinding was not applied during analysis, which we followed established procedure
from previous studies.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology and archaeology |Z| |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

XNXXNXXOOS
DO0000OXKX

Plants

Antibodies

Antibodies used The antibodies used in this study are listed as below. The dilutions used for each are specified in the "Matched protein
immunofluorescence (IF) imaging data” section in the methods.
- Anti-tubulin Abcam, ab7291, RRID:AB_2241126
-Chicken anti-calreticulin, Abcam, ab14234, RRID:AB_2228460
- Rabbit polyclonal HPA antibodies, generated within the Human Atlas Project. The list of HPA antibody IDs used in this study are
found at http://musicmaps.ai/u2os-cellmap.
-goat anti-rabbit Alexa488 A11034 , RRID:AB_2576217, RRID:AB_2535845, ThermoFisher, polyclonal
-goat anti-mouse Alexa555 A21424,RRID:AB_2535845, ThermoFisher, polyclonal
-goat anti-chicken Alexa647 A-21449, RRID:AB_2535866, ThermoFisher, polyclonal
-goat anti-rat Alexab47 A21247, ThermoFisher RRID:AB_1056356, polyclonal

Validation All HPA antibodies were validated as described at https://www.proteinatlas.org/about/antibody+validation. The HPA antibodies are
quality controlled for sensitivity and lack of cross-reactivity to other proteins using western blot and protein arrays. Antibodies that
pass initial quality assessment are labeled as 'approved'. Antibodies that yield a staining pattern supported by independent data in
UniProt are labeled as 'supported'. For 'enhanced' antibody validation, we use the strategies outlined by the International Working
Group for Antibody Validation (IWGAV), including genetic validation, recombinant expression validation, independent antibody
validation targeting a different epitope, and capture validation by mass spectrometry.
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Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) U-2 OS cells were obtained from the American Type Culture Collection (ATCC). HEK-293 data was published previously
(Huttlin et al. Cell 2021)

Authentication The U-2 OS cells used for IF stainings were authenticated according to the manufacturer ATCC using morphology, karyotyping
and PCR based approaches to confirm the identity and to exclude intra and interspecies contaminations. These include an
assay to detect species specific variants of the cytochrome C oxidase | gene (COl analysis) to rule out interspecies
contamination and short tandem repeat (STR) profiling to distinguish between individual human cell lines and rule out
intraspecies contamination. These cells were also used or the SEC-MS experiments and DPP9 experiments. The U-2 OS cells
used for AP-MS were purchased directly from ATCC and no further authentication was performed.

Mycoplasma contamination All cells used in this study were tested negative for mycoplasma contamination.

Commonly misidentified lines No commonly misidentified cell lines were used in this study.
(See ICLAC register)
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Plants

Seed stocks No seed stocks were used in this study.

Novel plant genotypes  No novel plant genotypes were produced in this study.

Authentication Not applicable
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