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Animals learn to carry out motor actions in specific sensory contexts to achieve goals.
Thesstriatum has been implicated in producing sensory-motor associations’, yet its
contributions to memory formation and recall are not clear. Here, to investigate the
contribution of the striatum to these processes, mice were taught to associate a cue,
consisting of optogenetic activation of striatum-projecting neurons in visual cortex,

with the availability of afood pellet that could be retrieved by forelimb reaching.
As necessary to direct learning, striatal neural activity encoded both the sensory
context and the outcome of reaching. With training, the rate of cued reaching
increased, but brief optogenetic inhibition of striatal activity arrested learning
and prevented trial-to-trialimprovements in performance. However, the same
manipulation did not affect performance improvements already consolidated into
short-term (less than1h) or long-term (days) memories. Hence, striatal activity is
necessary for trial-to-trialimprovements in performance, leading to plasticity in
other brain areas that mediate memory recall.

Behavioural responses are reinforcedif they lead to good outcomes and
suppressed if they lead to bad outcomes. Such behavioural adaptation
requires multiple cognitive processesincludinglearning and memory
recall. The striatum, the major input nucleus of the basal ganglia, is
required for adaptive behaviour in humans and other animals'”7, but
whether thestriatum contributes toformingamemory (thatis, learning)
or memory recall (short and long term) is not understood.

The part of the striatum that receives direct input from the visual
cortex modulates behavioural responses to visual cues*®°. Lesioning
this area, here referred to as the posterior dorsomedial striatum tail
(pDMSt), in monkeys'® ™ and rodents™ ™ disrupts behaviours requir-
ing a visual cue-to-action association. However, lesions' have irre-
versible, long-lasting consequences and therefore cannot be used to
probe moment-by-moment contributions to behaviour, nor canlesions
separately target learning and short-term memory recall.

Contributions of the pDMSt to learning and memory recall are
unknown but can be addressed with a temporally precise, reversible
loss-of-function optogenetic approach® 2, We developed such an
approach and tested the hypothesis that the pathway from the visual
cortex to the striatum stores the memory of a cue-action association
acquired through practice and reinforcement.

Invisually cued behaviours, the reinforced stimulus activates many
parallel visual pathways, including subcortical pathways that bypass
the visual cortex and its projection to the pDMSt. Therefore, to study
the contribution of visual cortex-to-pDMSt in learning or memory
recall, we designed a strategy in which the cue is optogenetic activation
of pDMSt-projecting neuronsin the visual cortex, ensuring that behav-
iour relies on these corticostriatal projection neurons. We combined
this optogenetic cue with temporally precise optogenetic inhibition
of striatal projection neurons (SPNs) to assess the contribution of

the pDMSt to behaviours requiring an association with visual cortex
activation.

We found that, in mice that learned an association between this
optogenetic cueand aforelimbreachto obtainfood, the pathway from
the visual cortex through the striatum did not uniquely store the asso-
ciative memory: loss of function of the pDMSt did not affect recall of
the memory, indicating that non-striatum-projecting axon collaterals
of the corticostriatal neurons probably triggered the cued action via
another brain pathway. Indeed, inhibiting activity in the superior col-
liculus disrupted the initiation of cued actions, suggesting that this
alternative pathway includes the superior colliculus.

Although inhibition of the pDMSt did not affect memory recall,
it disrupted learning, including outcome-dependent, trial-to-trial
incremental changesin reachingrates. Similarly, in an externally cued
visual discrimination task, inhibiting the pDMSt disrupted learning but
not memory recall, indicating that the optogenetic cue is learned by
mechanisms analogous to those used in natural learning.

To reveal how the pDMSt supports learning, we studied dopamine
signalling and the neural activity of putative SPNs*** in the pDMSt
during the behaviour. Dopamine release into the pDMSt represented
the outcome of the reach. SPNs in the pDMSt encoded the combination
ofreach, outcome and the context of the reach (that is, whether it was
cued oruncued). Thiscombination predicted the behavioural change
between trials during learning, consistent with a specific function of
the pDMSt in trial-to-trial learning.

To study how the visual cue-recipient zone of the striatum*° con-
tributes to the trial-and-error acquisition and execution of a visual
cortex-to-actionassociation, we trained mice ina cued forelimb reach-
ingtask. Food-restricted, hungry and head-restrained mice firstlearned
to reach forwards with the right forelimb? to retrieve food pellets
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Fig.1|Micelearned to associate the optogeneticactivation of visual
corticostriatal neurons withreaching to obtainfood. a, Schematicofa
sagittal brainsection showinginjections of Flp-encoding retrograde AAV
(retro-Flp) into the pDMSt (pink) and FIp-dependent ChR2-encoding AAV
(FIpOn-ChR) into the visual cortex (blue; top). Blue light through a thinned
skullactivates ChR2-expressing visual cortex neurons projecting to the
pDMSt, serving as the cue for food pellet availability. The behavioural
apparatuswithadisk delivering food pellets and the LED providing the cue is
alsoshown (bottom). Each trialincludes pellet presentation (tan), cue (blue)
and randomduration inter-trial interval (ITI; black). b, The optogenetic cue is
paired with pellet presentationin 90% of trials. Infrared video frames show a
mouse at cue onset (¢,.; top), reaching (¢, middle) and eating the pellet (¢,
bottom). Theinsets show an alternative cameraview (bottom left) and a task

presented at random intervals between 9.5 s and 26 s (Extended Data
Fig.1). The mice executed these forelimb reachesin adark, light-tight
box with masking stimuli that prevented sensory detection of the food
pellet presentation, forcing the animals to performreaches atrandom
times toretrieve the food. Animal movements were recorded using mul-
tiple video cameras and analysed offline (Extended Data Fig. 1c-g). After
15days of training, 97 out of 111 mice were able toretrieve and consume
20 or more pellets within al-h session.

After mice achieved this criterion, a food-predicting cue was intro-
duced. This paradigm separates a first stage of motor learning (how

schematic (top right). ¢, Example training session showing multiple trials
(rows) aligned to ¢, (blue) withreach timing (¢,,.,, grey dots).d, Reach rates
across trialsat differentlearning stages for an example mouse (left) and across
13 mice thatlearned (right; 9 male and 4 female) aligned to ¢, (blue). The stages
include: beginner (d’<0.25;n=1,587 and 14,822 trials for example and all mice,
respectively), intermediate (0.25<d’ < 0.75;n =504 and 4,110 trials) and expert
(d’>0.75;n="532and 8,268 trials). Dataare mean +s.e.m.e, Trial-averaged
reachrates before versus after the cue over training days (colour code). Day 1is
the first day with 20 or more successful food grabs. f, d’ comparing reachrates
before versus after the cue for an example mouse (left) and all mice (right;
changeind’relative to day1) asafunction of the training day. In d-f, example
dataare from the same example mouse (left), and summary data are from13
mice (right).

to physically retrieve the pellet) from asecond stage that encourages,
butdoesnotrequire, learning about whentoreach. Beforeintroducing
the cue, the baseline reach rate was low (approximately 0.25 Hz; Fig. 1),
making any cue-evoked increase clear.

To limit the neurons that carry information predicting the presence
of the food pellet, we used an internal, optogenetic cue that activates
the visual cortex. We expressed blue-light-activated channelrhodop-
sin2 (ChR2) in corticostriatal neurons with cell bodies in the visual
cortex that send axons to the pDMSt (injection of retrograde AAV-
Flp into the pDMSt and Flp-dependent ChR2 into the visual cortex;
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Extended Data Fig. 2a-c). We activated these neurons by unilaterally
illuminating the visual cortex of the left hemisphere (that is, con-
tralateral to the reaching arm) through a thinned skull (250-ms-long
blue-light step pulse; Extended DataFig. 2d,e). We refer to this optoge-
neticstimulus as the ‘cue’ (Fig.1a). Adistractor blue LED was positioned
afew centimetres above the head and flashed at random times. The
cue, delivered once per trial, predicted the availability of the pellet in
90% of trials (Fig. 1b). Inthese trials, the pellet became available shortly
before cue onset (0.22 sbefore onset) and moved out of reach 8 s after
cue onset. The delay until the next cue was random between O s and
16.5s. In the remaining 10% of trials, unbeknownst to the mouse, the
pellet was omitted.

Micelearned to use this internal, optogenetic cue toguide the timing
of their reaches without altering reach kinematics (Fig. 1c,d and Extended
Data Fig. 3; blue light, no opsin and other controls to ensure that mice
attended to the optogenetic cuein Extended Data Fig.4). The frequency
of reaching immediately after the cue, compared with before the cue,
increasedacrossdailysessionspairingthecuewiththepellet. After20days,
the frequency of reaching was more than four times higher after than
before the cue (Fig. 1d-f). We quantified the learning-related shiftin
reachtimingasanincreasein discriminability index (d’), which compares
the probability of areach occurringinthe 400-ms time window immedi-
ately after the cue (cued window) to the probability of areach occurring
in the same-length window before the cue (uncued window; Fig. 1f).

Several controls indicated that the mice used the optogenetically
driven activity of ChR2-expressing neurons as the cue to trigger fore-
limb reaches (Extended Data Fig. 4 and Supplementary Videos 1-6).
First, in catch trials in which the food pellet was omitted, mice still
reached immediately after the cue (Extended Data Fig. 4a). Conversely,
on trials in which the cue was omitted but the pellet was presented,
mice did not reach above chance levels (Extended Data Fig. 4b). More-
over, micerarely reachedinresponse to the distractor LED (Extended
Data Fig. 4c). Furthermore, mice learned to respond to the optoge-
netic cue equally well when ared-light-sensitive optogenetic actua-
tor, soma-targeted ChrimsonR, was used to activate the cue neurons,
despite poor sensitivity of mouse retinas to red light (Extended Data
Fig. 4d). By contrast, control mice that lacked any expression of an
optogenetic actuator did notincrease their reach rates around the light
pulse (Extended DataFig. 4e). These and other controls (Extended Data
Fig. 4f) indicate that the increase in reaching frequency after the cue
wastriggered by alearned association with the optogenetic activation
of visual corticostriatal neurons. We excluded sessions in which mice
failed these controls (less than 15% of sessions).

The optogenetic cue targets the pellet-predicting information to
visual corticostriatal neurons that innervate the pDMSt. However,
these neurons also innervate other structures® and the cortex via col-
lateral axons. To test whether neural activity in the pDMSt is required
for mice to express the cue-reach association, we inhibited pDMSt
SPNs using an optogenetic silencing approach (Extended DataFig. 5).
SPNsare the only output neurons of the striatum and send projections
to downstream basal ganglia nuclei. Within the striatum, GABAergic
interneurons, which synapse onto and powerfully suppress the acti-
vity of SPNs, selectively express NKX2.1. We exploited mice express-
ing Cre recombinase in NKX2.1" cells to Cre-dependently express the
red-light-sensitive optogenetic activator, ReaChR, in these striatal
GABAergic interneurons (Extended Data Fig. 5a-c) within the region
targeted by the ChR2-expressing cue neurons. To match the inhibited
region of the striatum to the axonal target of cue neurons, we made
ReaChR expression also contingent on the presence of FIp recombinase
andinjected AAV-Flp into the pDMSt. Thus, ReaChR expression (FIp and
Cre dependent) and the retrograde labelling of the cue neurons
(Flp dependent) were both controlled by the same Flp viral spread.

Optogenetically activating the interneurons (5 mW red-light step
pulse) consistently suppressed more than 85% of the spiking activ-
ity of putative SPNs in the pDMSt in vivo, verified by high-density
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multi-electrode array recordings in behaving mice across stages of
learning (Fig. 2a-cand Extended Data Fig. 5d-f). Inhibition effectively
suppressed the cue-evokedincrease in pDMSt activity and was confined
toareaswithin approximately 0.3 mm fromthe injection site (Extended
DataFig. 5f). This optogenetic loss-of-function approach was orthogo-
nal to and combined with the blue-light-mediated optogenetic cuein
the visual cortex (Extended Data Fig. 5g-k). Indeed, inhibition of SPNs
using 5 mW of red light, when presented without the blue-light cue,
did notelicit reaches in naive mice or in mice that had trained with the
optogenetic cue (Extended Data Fig. 5g).

We used temporally precise, optogenetic inhibition of the pDMSt to
determine what phases of task learning and execution require pDMSt
activity. We first performed pDMSt inhibition in well-trained mice that
consistently reached after the cue (d’ > 0.75). Inhibition of pDMSt activ-
ity for 1s beginning 5 ms before cue onsetin arandom subset of trials
did not alter cue-evoked reach rates compared withinterleaved control
trials (Fig. 2d). Moreover, there were no effects of inhibiting the pDMSt
on cue detection, reach initiation, the success rate of grabbing and
consuming the pellet or other measures of motor kinematics (Extended
DataFig. 6a-fand Supplementary Videos 8-11). Hence, the cue-reach
association can be fully expressed even during ongoing inhibition of
the pDMSt, indicating that cue detection, actioninitiation and motor
kinematics occur normally without neural activity in the pDMSt. Either
the small amount of remaining activity in the pDMSt is sufficient to
fully recapitulate the entire cued reaching behaviour, or long-term
memory recall of the sensory-motor associationisindependent of the
pDMSt andrelies on signals sent via axon collaterals of the corticostriatal
cue neurons to other brain regions®.

Totest the possible contribution of other brainregions to task perfor-
mancein expert mice, we injected muscimol (Extended Data Fig. 6g-k)
into the superior colliculus, which is downstream of the cue neurons
viacorticocortical synapses. Muscimolinhibition of neural activity in
the superior colliculus disrupted the initiation of areachinresponse to
the cue after learning (P = 0.00092 comparing cued reaching in control
versus muscimol, linear mixed-effects model; Methods) but did not
affect spontaneous reaching (P= 0.35 comparing uncued reachingin
control versus muscimol, linear mixed-effects model; Methods), sup-
portingtheinterpretation that long-term memory recall after learning
inthis taskis mediated by apDMSt-independent pathway thatincludes
the superior colliculus.

Independence of the learned behaviour from pDMSt activity enables
aclear examination of its function during formation of the cue-action
association. During learning, animals typically form short-term memo-
ries, which arelater consolidated into long-term memories. Short-term
memory, defined here asanimprovementin task performance acquired
during the daily approximately 1-h training session, might depend
on pDMSt activity. To quantify the expression of short-term memory
acquired during asession, we examined the changein d’ that occured
from the beginning to the end of the session. On average, mice achieved
ahigher d’by the end of each training session relative to the beginning
(d’ of second half minus @’ of the first half of the session was 0.034 on
average across 501 sessions from 24 mice; P= 0.007, Wilcoxon sign-rank
test comparing difference to no change). For each mouse, we identi-
fied specific sessions, referred to as ‘new learning days’, in which the
d’ achieved by the end of the day was higher than that achieved on any
previous day (Fig. 2e-g). If pDMSt activity is required to express the
improvementacquired within the day’s session, inhibiting the pDMSt at
the end of the session should reduce @’ to matchits value at the begin-
ning of the session. However, inhibiting the pDMSt at the end did not
alter d’,indicating that short-termmemory recallis alsoindependent of
pDMSt activity. Thus, improvementsin performance acquired duringa
single training session can be recalled independently of pDMSt activity.

To test whether pDMSt activity is necessary for learning, we inhib-
ited the pDMSt at every presentation of the cue, for 1 s beginning
5 ms before cue onset, over 20 consecutive days of training. This
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dramatically impaired learning compared with a control cohort
of mice that received that same light delivery pattern but did not
express ReaChR (Fig. 3 and Extended Data Fig. 7). Theimprovement
ind’ at days 15-20 of training was 0.77 + 0.12 (mean + s.e.m.) for the
control cohort but only 0.12 + 0.12 for the pDMSt inhibition cohort
(P=6.2x107", linear mixed-effects model; Methods). After these
20 days, pDMSt inhibition was stopped, and the previously inhib-
ited cohort progressed in learning (0.54 + 0.31 improvement in d’
by day 40; Fig.3d), suggesting atemporary rather than a permanent
deficit. These results demonstrate that pDMSt neural activity, in the
period around the cued reach, is required for mice to learn that the
cue indicates the presence of afood pellet. However, pDMSt neural
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trials (red lines; top). Reach rates across trials from expert mice (d” > 0.75;

11 mice,105sessions, n=7,577 control trialsinblackand n = 5,114 inhibition
trialsinred) are also shown (bottom). Dataare mean +s.e.m.e, Asind, top, for
the new learning day session (d’=-0.09) with thered laser interleavedinthe
second half (top). Asind, bottom, for 58 new learning day sessions (d” < 0.75;
10 miceincludingthered laserinterleaved throughout session), separating the
first fourth of the session (n=1,558 control trials in black) and the second half
(n=2,157 control trialsingrey,and n=1,004 inhibition trialsin red; bottom).

f, Probability that reach was preceded by cue for datasetsin e (example session
(top), 58 new learning days (middle) and same 58 days binned into first quarter
and second half of the session (bottom)) as mean + s.d. of binomial across
control (black) and inhibition (red) trials (Pvalues from two-proportion
Z-tests). g, Change ind’ within aday’s session (n =10 mice). n =11 males and

9 females (a-g).

activity was not required for cue detection, reach initiation or any
motor kinematics of the reach during and after learning, as described
above (Extended Data Fig. 6a-f).

To examine the contribution of pDMSt activity to natural visual
behaviours, we implemented a visual discrimination task (Extended
Data Fig. 8). One of two visual stimuli was randomly presented: a
reward-paired conditioned stimulus (500-ms ramp of light paired with
the pellet) or anunpaired neutral stimulus (6-Hz flicker). These spatially
identical but temporally distinct stimuli were emitted from the same
LED. Control mice successfully learned to discriminate the stimuli,
increasing reaching in response to the conditioned stimulus but sup-
pressing reachingin response to the neutral stimulus (Extended Data
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Fig.3|Inhibiting the pDMSt disruptslearning.a, One second of red light
wasdeliveredinto the pDMSt at each cue onset. Separate cohorts did

(left; n=9 mice; red) ordid not (right; n=7; black) express ReaChR in striatal
interneurons, serving as inhibition (left) and control (right) groups. Control
micereceived thesamevirusinjections, fibreimplants and red lightinto the
pDMStbutlacked the recombinase-dependent ReaChRallele and, therefore,
did notexperience pDMSt inhibition. Experimenters were blinded to
genotype.n=9 pDMStinhibition mice and n=7 control mice. b, Reaching rate
forinhibition (red) and control (black) mice (the blue bar denotes cue, and the
redbarindicates theredlight). Dataare mean +s.e.m. across trials for training
days1-7 (left), 8-14 (middle) and 15-20 (right). ¢, Change in cued and uncued
reachrates fromday1to days15-20.Eachlinerepresents one control (black) or
inhibition (red) mouse. Points above the grey line indicate more reaching after
versus before the cue.d, Changein d’ of reaching after versus before the cue

Fig. 8a,b and Supplementary Video 12). By contrast, when the pDMSt
wasinhibited during the 1-s window overlapping every presentation of
both stimuli, mice failed to learn to discriminate between the stimuli,
reaching equally in response to both (Extended Data Fig. 8b,c). After
successful discrimination learning, inhibiting the pDMSt did not affect
performance (Extended DataFig. 8d). Therefore, learning and expres-
sion of a visual discriminative task rely on pDMSt activity in the same
manner as the task using the optogenetic cue.

According tothe theory of reinforcement learning, reinforcement of
anassociation between the cue and the action depends on the outcome,
such thatonly actions resulting in beneficial outcomes are reinforced.
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In reinforcement learning, this outcome-dependent reinforcement
leadsto abehavioural update fromone trial to the next. Exploiting the
large dataset of trialsacquired in the optogenetically cued behaviour,
we examined whether successful reaches are reinforced in a manner
consistent withreinforcement learning, as evidenced by atrial-to-trial
changeinbehaviour. Furthermore, we examined whether any suchrein-
forcement depends on neural activity in the pDMSt. We quantified the
behavioural change from one trial to the next by considering sequences
of three consecutive trials: trial n — 1, n and n + 1. We compared the
behaviour on trial n —1to the behaviour on trial n +1, contingent on
the outcome of trial n (Fig. 4 and Extended Data Fig. 9).



Fig.4 |Inhibiting the pDMSt disrupts outcome-dependent trial-to-trial
reinforcement. a, Changesin cued and uncuedreachratesfromtrialn—1to
trial n +1conditioned on context (cued versus uncued) and outcome (success
versus failure) of the reach carried outin trial n. The xaxisindicates the change
inreachrateintheuncued window (3-0.25 sbefore the cue). The y axis denotes
thechangeinreachrateinthe cued window (cue onset to 400 ms after). Data
from 37 mice are sequences with cued success (n=2,645 trials), cued failure
(n=3,280), uncued success (n=1,703) and uncued failure (n = 6,264) on trial n.
Thedotsindicate100 bootstrap runs (Methods) on the smoothed 2D
histogram of change in cued and uncued rates fromn-1ton +1.Thecrosses
denote mean +s.e.acrosstrials.b, Asina, butanyreachtypeontrialn
(n=33,615), showing that shifts depend on context-outcome conditioning.
c,Asina,butwithrandomlyinterspersed pDMStinhibition trials. The pDMSt
was (red) or was not (grey) inhibited on trial n. Datafrom 16 mice include cued

We found that, if trial n contained a cued reach resulting in a suc-
cessful outcome, cued reaching was reinforced (that s, rateincreased)
ontrialn+1relative to trial n — 1(Fig.4a,b). Furthermore, pDMSt inhi-
bition that overlapped the cued reach on trial n prevented this rein-
forcement (Fig. 4c¢,d; note that trial n + 1 does not experience pDMSt
inhibition). To determine whether this effect was specific to the method
used toinhibit the pDMSt, we also used an alternative method of inhibi-
tion by the inhibitory opsin GtACR2 expressed directly in SPNs. This
alternative method also disrupted the reinforcement of the cued reach
(Extended Data Fig. 9d). Therefore, mice demonstrate trial-to-trial
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success (n=464and 507 control and inhibition trials, respectively), cued
failure (n =566 and 580 control and inhibition trials, respectively), uncued
success (n=278 and 266 control and inhibition trials, respectively) and uncued
failure (n =944 and 925 control and inhibition trials, respectively) reaches
ontrialn.d, Asinc, butinhibitionisonlyontrialn+1(red; n=3,060) versus
control (grey; n=3,588). e, Varied timing of pDMSt inhibition (n =15,727 trials,
Smice, 106 sessions). The yaxisis asina-d, followingasuccessful reach, asa
function of timing of cue (¢, blue) and reach (¢,,,,, grey) in control (black
circles) orinhibition (red circles, bar, t;,,). Reach windows ingrey: 1.2 s (left)

or 0.2 s (middle and right; Methods). Each pointis the mean across trials. The
vertical lines denote positive direction s.e. f, Black minusred datafrome
replotted asafunction of relative timing of pDMSt inhibition (¢,,,) and reach
(t,rm)- n=25male and 17 female mice (a-f).

reinforcement of cue-triggered reaching that requires neural activity
inthe pDMSt.

Consistent with reinforcement learning, reinforcement of cue-
evoked reaching was outcome dependent: if the mouse failed to grab
the pellet ontrial n, the rate of cued reaching was notincreased on trial
n+1.Moreover, reinforcement depended on whether the reach was
cuedoruncued, such that cued reachingincreased onlyifthereachin
trial nwas cued, whereas uncued reaching increased only if the reach
in trial n was uncued (Fig. 4a). Finally, the effects of pDMSt inhibition
depended on the timing of the reach relative to the inhibition. If the
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mouse performed asuccessful uncued reach such thatit did not overlap
with pDMSt inhibition, then the reinforcement of uncued reaching
occurred normally asin trials without inhibition (Fig. 4c). To measure
the effect of pDMSt inhibitionas afunction of the timing of the action,
we varied the timing of pDMSt inhibition with respect to the cue and
reach (Fig. 4e,fand Extended Data Fig. 9c). pDMSt inhibition that over-
lappedthe cue but preceded the reach did not disrupt reinforcement.
By contrast, pDMSt inhibition that overlapped orimmediately followed
the reach disrupted reinforcement.

Our results indicate that neural activity in the pDMSt immediately
after thereachisrequired for behavioural updates (Fig. 4) and learning
(Fig. 3), but not expression of the memory (Fig. 2). To determine what
features of pDMSt neural activity carry information about the cue,
reachand action outcome, we measured both dopamine transients and
neural spikingin the pDMStin mice learning the task (Fig.5; 65 sessions
inbeginner, 24 sessionsinintermediate and 7 sessions in expert mice).
We measured dopamine release within the pDMSt during behaviour by
monitoring the fluorescence of the dopamine sensor dLight1.1 using
fibre photometry (Fig.5a). The cue did not evoke time-locked dopamine
transients in the pDMSt (Fig. 5a). However, dopamine was modulated
by action outcome: asuccessful outcome correlated with anincrease
influorescence, whereas afailure correlated withadip in fluorescence,
consistent withencoding of the reward. Hence, dopamine modulation
inthe pDMSt is outcome dependent.

To determine whether SPN activity is also outcome dependent,
we measured the action potential firing of SPNs in the pDMSt using
extracellular electrophysiological recordings with stereotactically
targeted, high-density multi-electrode arrays. We limited our analysis
to the activity of well-isolated single units that were putative SPNs
(Fig. 5b), identified by established criteria®. Individual units responded
tovarious sensory and behavioural events, including the cue, reachand
outcome (Extended DataFig.10a). On average, unit activity increased
around the reach and decreased after it (Fig. 5c).

Ifactivity in the pDMSt drives trial-to-trial reinforcement of specific
actions (for example, cued versus uncued reach), then pDMSt activity
should encode the interaction between the action and its outcome,
as needed to mediate the reinforcement of behaviour. Because the
outcome only manifests after the mouse stretches out its arm and
detects the presence or absence of the food pellet, we examined the
5-s‘post-outcome period’ beginning when the armis outstretched. This
period does notinclude the cue nor theinitiation of the motoraction.
Onthebasis of the neural response, as described by coefficients froma
generalized linear model, we clustered the single-unit responses within
this post-outcome periodinto two groups (Fig. 5d,e and Extended Data
Fig.10). One group was overall more active after asuccess than afailure
(Fig. 5e,f). These same cells were also more active after acued success
than an uncued success (Fig. 5g,h). Therefore, this first group of cells
preferred the cued context and a successful outcome. By contrast,
the second group of cells was overall more active after a failure thana
success (Fig. 5e,f) and tended to be suppressed by the cue (Fig. 5g,h).
Therefore, this second group of cells preferred the uncued context and
afailed outcome. Differencesin behaviour (for example, chewing a pel-
let or not) during success and failure trials could give rise to different
neural activity patterns. By contrast, cued successes and uncued suc-
cesses could not be distinguished by metrics of behaviour (Extended
DataFig.10p), suggesting that different neural activity patternsin these
two trial types were shaped by the preceding cue and not by ongoing
behavioural differences.

We examined whether the activity of these two cell groups in the
post-outcome period (Fig. 5i) encoded the behavioural condition
of trials sorted into four types: cued success, cued failure, uncued
success and uncued failure. We divided the electrophysiology data
equallyinto training and test sets and classified neurons as belonging
to group 1 or group 2 using only trials in the training set. Using data
fromthetest set, we attempted to decode the behavioural condition
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ofthe trial. We found that a simple decoding scheme (that is, average
firingrate of group 1 versus average firing rate of group 2; Fig. 5j) was
sufficient to decode the behavioural condition (Fig. 5j-1; 76% accuracy
for decoding cued success versus uncued success versus failure using
200 units) above chance levels (62 + 2%, mean + s.e.m.). Hence, the
population neural activity in the pDMSt reflects both the context and
the outcome of the reach. Moreover, the neural activity in the pDMSt
after a success contains lingering information about the presence
or absence of the cue up to 5 s after the cue disappears (Fig. 5j). By
contrast, the behaviour of the animals, as opposed to neural activity,
in this time window did not contain information about the past cue
(Extended Data Fig. 10p).

Hence, pDMSt neural activity correlates with the combination of the
reach context and outcome (Fig. 5), and this combination determines
the direction of the trial-to-trial behavioural reinforcement (Fig. 4).
Thus, the pDMSt neural activity is consistent with the specific rein-
forcement learning function of the pDMSt revealed by the optogenetic
loss-of-function experiments.

Conclusions

We found that activity in the pDMSt, the zone of the striatum that
receives visual information, contributes to learning a sensory-motor
association but not to recall of that association at either short (approxi-
mately 1 h) or long (days) timescales. Moreover, our study identifies a
specific function of the pDMSt in the fast reinforcement of behaviour
from one trial to the next during trial-and-error learning. Although
itis not surprising that the striatum supports learning, it is striking
thatselective inhibition of this specific striatal subregioninabrief, 1-s
window around the cue-evoked reach abolished learning over 20 days.
By contrast, similar inhibition had no effect on carrying out the action,
either spontaneously or as evoked by the cue, at any stage of learning.
Thus, pDMSt activity only affected future actionsinaccordance witha
functionin behavioural reinforcement, thatis, the pDMSt modulates
the future likelihood of carrying out an action in a specific context
depending on the outcome of the previous action. Indeed, we found
that activity in putative SPNs of the pDMSt encodes this behavioural
reinforcement.

Striatum function after learning

Adominanttheoryisthatthe sensory cortex-to-striatumsynapses are
the storage site of learned cue-action associations, because corticos-
triatal plasticity correlates with learning®*, but see refs. 35,36. However,
previous studies did not test the necessity of activity in the pathway
through the striatum after learning. We found that associative mem-
ory recall was unperturbed by pDMSt inhibition, probably ruling out
the possibility that corticostriatal synapses in this brain region are a
necessary link between cue and action after an association has been
learned.

Moreover, the absence of effect of pDMSt inhibition on the
cue-evoked response precludes adirect contribution of pDMSt neural
activity to detecting or attending to the cue. Our results contrast with
previous work proposing afunction of the pDMSt in visual attention®.
However, our results are consistent with a recent study in mice showing
thatthe projection from the visual cortex to the striatumis not required
torespond to avisual cue after many weeks of training?, although this
lesion study could not probe the contribution of the pDMSt to the
short-term memory recall of recently acquired associative memories.
Here we found that these short-term memories are also independent
of pDMSt activity.

The pDMSt-projecting cue neuronsin the visual cortex have axonal
branches forming synapses outside the pDMSt, for example, within the
cortex. We hypothesized that synaptic connections outside the pDMSt
might mediate recall of the cue-action associative memory after learn-
ing. For example, the visual cortex projects to the superior colliculus,
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aknown site of sensory-motor transformations, and polysynaptic
activation of this brain structure might contribute to memory recall.
Supportingthis, pharmacological inhibition of the superior colliculus
disrupted the cue-action association after learning.

Striatum function during learning

Despite its lack of effect on task performance after learning, pDMSt
inhibition profoundly disturbed learning. This aligns with astudy show-
ing impaired learning from dorsomedial striatum inhibition in mice
using abrain-computer interface”. Reinforcement learning requires an
animal to (1) use the outcome of an action to update the future behav-
ioural plan, (2) store and recall the updated plan, and (3) execute it at
the right time. pDMSt inhibition impaired neither action execution
nor, after several tens of minutes, memory recall. However, pDMSt
inhibition eliminated outcome-dependent performance improve-
ments from one trial to the next. Hence, we propose that the pDMSt
underlies outcome-dependent updates to the future behavioural plan
enacted according to sensory context. This might explain why striatal
activity isnecessary for evidence accumulation tasks?*?***° inwhich
animals continually update their future behavioural plans. This might
also explain why ectopic striatal activations are sufficient to bias future
behaviour®#,

The dependence of learning but not recall and performance on
pDMSt activity was not limited to the optogenetically cued behav-
iour; inhibiting the pDMSt also impaired visual discrimination learning
withoutimpairing execution of the discrimination task once learned.
However, visual detection was independent of pDMSt activity, because
mice experiencing pDMSt inhibition duringlearning could still respond
non-specifically to visual cues, although the mice failed to discriminate
the conditioned from the neutral stimulus. Given direct projections
from visual areas to the pDMSt**, the pDMSt may be well placed to
learn specific visual pairings.

Striatal encoding of behaviour

In monkeys, neural activity in the visual cortex-recipient striatum
encodes the visual cue, its value and signals related to value-guided
saccades'®”**8 In rodents, pDMSt activity encodes the visual cue®,
but other features of the encoding scheme are unclear. We recorded
approximately 1,000 putative SPNs and observed strong reach-related
activity, as occurs in monkeys*’. Furthermore, SPN activity encoded
the combination of the action outcome and sensory context, and sen-
sory context continued to be represented even after action comple-
tion. Changes in behaviour from one trial to the next depend on the
combination of action outcome and sensory context; thus, the pDMSt
contains the information necessary to drive learning-related behav-
ioural changes. Indeed, striatum neural activity can drive behavioural
changes*. Consistent with existing literature*’, dopamine transients
in the pDMSt reflect the outcome of the action, providing a possible
mechanism by which action outcome interacts with cue and action
information in the striatum.

Here we identified a specific function of the pDMSt in learning as
opposed to memory recall using a spatially and temporally precise
loss-of-function approach. This same approach could be used to study
other striatal subregions. Determining the function of the pDMSt brings
us closer to understanding how the brain coordinates neural activity
across functionally specialized brain systems to learn through trial
anderror.
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Methods

All procedures were carried outin accordance with the President and
Fellows of Harvard College Institutional Animal Care and Use Committee
protocol #1S00000571-6.

Sex of mice

We used male and female mice in an approximately equal ratio (n = 65
males and n = 62 females). We did not observe any differences in the
cued reaching behaviour between the sexes. All figures include both
males and females.

Housing of mice

Animals were housed on a reverse light cycle in groups (females) or
singly housed (males). The room ambient temperature was 75 °F, and
the relative humidity was 45%.

Food restriction and habituation to head restraint

We weighed each head-plated and intracranially virally transduced
mouse (see below) before beginning food restriction. During food
restriction, we limited available chow to reduce the weight of each
animal to approximately 85% of the pre-restriction weight of that
animal. We switched the daily food from regular animal facility
chow to Bio-Serv chocolate-flavoured, nutritionally complete food
pellets (item number: FO5301). We then began to handle the mice,
as follows. On day 1, we habituated the mice to a gloved hand in
the home cage and attempted to feed the mice peanut butter from
the tip of the gloved finger. On days 2 and 3, we continued to feed the
mice peanut butter and habituated mice to handling. On day 4, we
began head restraint and fed the mice peanut butter while the head
was restrained. On day 5, we fed the mice food pellets while the head
was restrained. We presented the food pellets directly to the mouth
by loosely attaching each food pellet to a wooden stick, using sticky
peanut butter. The mouse could useits tongue and mouth toretrieve
the food pellet and consume it. Once the mice comfortably ate
food pellets while the head was restrained, we switched the mice to
reach training (see the next section ‘Training the forelimb reaching
behaviour’).

Training the forelimb reaching behaviour

Forelimbreach training of mice (at least 2 months of age) was accom-
plished through manual interactions with the food-restricted and
head-restrained mice over several days, according to the following
stages. In stage 1, we taught each mouse to reach forwards with the
right forelimb to touch a wooden stick. As a reward, we provided
the mouse with afood pellet that was loosely attached to the stick
with peanut butter, bringing the food pellet directly to the mouth
of the mouse. In stage 2, we placed the food pellet at the end of the
stickand required the mouse to push the food pellet offthe stick and
into its mouth. For stage 3, we gradually lowered the stick with the
pellet until the mice reached forwards to the level of the food pel-
let presenter mechanism, located below and in front of the nose of
the mouse. In stage 4, we removed the stick, requiring the mice to
directly pick up the food pellets from the pellet presenter mecha-
nism. During these manual interaction stages, we trained the mice
on a behavioural rig that closely resembled the automated rig but
with more space for the experimenter to interact with the mouse.
We subsequently transitioned the mice to the automated behav-
ioural rig, which included automated mechanisms for presenting
pellets and was enclosed in a light-tight box (Extended Data Fig. 1a).
On this rig, we trained mice to consistently and successfully pick
up pellets in the dark®. Once the mice became proficient at reach-
ing, we introduced a food-predicting cue (as described in the next
section ‘Training mice to associate a cue with presentation of the
food pellet’).

Training mice to associate a cue with the food pellet

All cue training took place in an enclosed, dark, light-proof,
sound-insulated behavioural box. Automated mechanisms, controlled
by an Arduino, positioned the food pellets directly in front of and
below the snout of the mouse (Extended Data Fig. 1a). After the mice
became proficient at obtaining food pellets in the dark, we introduced
the food-predicting cue. The trial structure was as follows (Extended
DataFig.1b). The pellet moved into positioninfront of the mouse over
1.28 s. Following a 0.22-s delay, the cue turned on. The pellet remained
stationary in front of the mouse for an additional 8 s before moving
outof reach.

The ‘pellet occupancy’is the likelihood that a pellet willbe available
infront of the mouse at any given time, unless the mouse has dislodged
the pellet by reaching for it. The pellet occupancy was determined by
the frequency of pellet loading. During the initial days on the automated
rig, we trained the mice with a high pellet occupancy (80%) to provide
them with ample practiceinreaching for food pellets. Once the motor
kinematics of the reaching movements stabilized, we reduced the pellet
occupancy to 30%.

To prevent the mice from using the sound of the pellet presenter
mechanismasacue, (1) we continuously played an audio recording of
the pellet presenter mechanism in motion, as a masking sound, and
(2) the mechanism moved without presenting the pellet 70% of the
time. This resulted in a30% pellet occupancy. The sound of the pellet
presenter mechanism was therefore notareliable food-predicting cue.

Toestablish theinter-trialinterval (ITI), we randomly selected atime
interval from a uniform distribution between 0 and 3.5 s, as the first
part of the ITI. Then, the automated behavioural rig entered one of
two states. In state 1, occurring 30% of the time, the next trial began
immediately. Instate 2, occurring 70% of the time, the ITI continued for
another 9.5-13 s, while the pellet presenter mechanism moved without
presenting any pellet. Generally, mice did not reach before the cue
(see ‘Behavioural sessionsincluded or excluded’), and mice appeared
unabletotime theITlusing aninternal clock (Extended DataFig.4b,e,f).

Catchtrials

Inarandom 10% of trials when the cue turned on, the pellet was omit-
ted. These catch trials were included to test whether the mouse paid
attention to the cue or paid attention to the presence of the pellet.

Preventing the mice from cheating

To encourage the mice to focus on the optogenetic cue and prevent

them from using sensory systems to detect the presence of the food

pelletthrough other means, we implemented the following strategies:

(1) We played a continuous, loud sound, which was pre-recorded audio
ofthe pellet presenter mechanism, specifically, the stepper motor,
through speakers positioned to the left and right of the mouse. This
was done to mask the sound of the stepper motor.

(2) We placed fresh food pellets out of the reach of the mouse to mask
the smell of the pellet that was directly in front of the mouse.

(3) ACPUfanwas positioned to blow air continuously towards the nose
of the mouse to prevent olfactory detection of the approaching
food pellet.

(4) Ina subset of mice, we trimmed their whiskers to test whether the
mice used their whiskers to detect the food pellet. However, this did
not have any effect on the cued reaching behaviour. Therefore, we
did not trim the whiskers of all mice.

(5) The behavioural box was enclosed and completely dark to prevent
the mouse from seeing the pellet.

We conducted numerous control experiments to determine whether
eachmouseresponded to the optogenetic cue (Extended DataFig.4).In
cases inwhich the mouse failed these controls, we excluded the entire
behavioural session (see ‘Behavioural sessions included or excluded’).



Video recording of the behaviour

We acquired video of the mice behaving using two infrared cam-
eras (Extended Data Fig. 1a). The first infrared camera acquired the
behaviour continuously at 30 frames per second (fps; Supplementary
Videos1-12). This camerasent the video to aDVR thatlogged the video
ontoamicro-SD card. The secondinfrared camera (Flea3 FLIR) acquired
the behaviour at a higher frame rate: 255 fps. This high-speed camera
acquired chunks of video beginning 1 sbefore each cue and continuing
for 7.5 s after each cue with a gap in video acquisition between trials.
This high-speed camera logged the video to acomputer running the
acquisition software FlyCapture2.

Triangulating the paw positionin 3D

Totriangulate the paw positionin 3D, we placed two mirrors around the
mouse: one to the side of the mouse and one below the mouse (Fig. 1b
and Extended Data Fig.1a). These two mirrors gave orthogonal views,
onefromtheside and the other bottom-up, of the paw during thereach
(Fig.1b). The high-speed infrared camera (Flea3 FLIR) was positioned
so as to be able to see the paw from a top-down view and also, in the
same frame, these two mirrors. We used DeepLabCut® to track the 2D
position of the paw in each mirror. We then combined datafromthese
orthogonal views to determine the paw positionin 3D.

Optogeneticcue

We used an optogeneticactivation of corticostriatal neuronsin the visual
cortexasthefood-predicting cue (Extended DataFig.2). Toactivate these
corticostriatal neurons, we positioned the output of afibre-coupled LED
justabove the thinned skull above the visual cortex of the lefthemisphere.
We placed asmall U-shaped loop of clay around the fibre tip to confine the
LED-emitted light tothe areajust above the skull. The fibre diameter was
1mm. The fibre emitted 40 mW ofblue light (473 nm). We controlled the
LED with signals from the Arduino. The duration of the cue was 250 ms
(step pulse). In some of the mice, we used the red light-activated opsin
ChrimsonR%instead of ChR2 (ref. 53). Stimulation conditions were identi-
cal other than the use of 35 mW of 650-nm light for optogenetic activa-
tion. We did not observe any differences in the cued reaching between
mice with ChrimsonR or ChR2 as the optogenetic activatorinthe visual
cortex (compare Extended Data Fig.4awith Extended DataFig.4d),and
hence we combined these two groups of mice, unless otherwise specified.

LED distractor

A distractor LED was positioned a few centimetres above the head of
the mouse (Extended Data Fig. 1a). This LED flashed randomly with
the same duration as the cue. The distractor LED was the same blue
colour as the cue (473 nm). The distractor LED was too far away from
the skull to optogenetically activate any neurons in the visual cortex.
We controlled the distractor LED by signals from the Arduino. The
duration of the distractor was 250 ms (step pulse).

Blocked skull control

Toinvestigate whether thereachis cued by the optogenetic activation
ofthevisual cortex, we performed the following control. In expert mice
thatreliably reached to the optogenetic cue, we blocked the tip of the
opticalfibre conveying bluelight from the LED to the thinned skull over
over visual cortex, centered on primary visual cortex (V1). Weinserted
asmall, thin piece of clay between the tip of the optical fibre and the
skull. Blue light was still able to exit the fibre tip, but this blue light did
not penetrate the skull. The optogenetic cue-triggered reaches were
abolished by this procedure (Extended Data Fig. 4f), indicating that
blue light must penetrate the brain to trigger the cued reach.

Synchronizing the video with Arduino events
Tosynchronize the video of the mouse behaviour with Arduino events,
we taped two small infrared LEDs to the front face of each camera.

These infrared LEDs emitted light that was invisible to the mouse but
detected by the infrared camera. One infrared LED turned on when
the cue turned on. The other infrared LED turned on when the dis-
tractor LED turned on. Other behavioural events, for example, food
pellet presentation, were directly recorded by the camera. Therefore,
all relevant behavioural events were acquired along with the mouse
behaviour and in the same frames as the mouse behaviour. Moreover,
because the distractor LED flashed at randomintervals, the pattern of
this signal provided aunique sequence during each hour-long training
session that enabled the alignment of all systems receiving a copy of
the distractor LED signal.

Processing the 30-fps video

To process the 30-fps video, we used custom code writtenin MATLAB
and Python. In brief, the user first drew zones over six regions of the
video frame: cue infrared LED, distractor infrared LED, perch zone,
reachzone, pellet zone and eat zone (Extended DataFig. 1c). The first
two zones (cue infrared LED and distractor infrared LED) were used
to synchronize Arduino events to the video of mouse behaviour (see
previous section ‘Synchronizing the video of behaviour with Arduino
events’). The perch zone detected movement within the region where
the paw rests before thereach. The reach zone detected movement of
the pawintothe zonebetween the resting position of the paw and the
pellet (Extended Data Fig.1d). The pellet zone detected the presence
of the pellet directly in front of the mouse (Extended Data Fig. le).
The eat zone detected chewing as an approximately 7-Hz oscillation
of the jaw (Extended Data Fig. 1f). Behavioural events were defined
by combining behavioural features detected in these various zones.
For example, a successful reach was defined as a reach to the pellet,
leading to adisplacement of the pellet and followed by a long period
of chewing (more than several seconds). A drop was defined asareach
tothe pellet, leading to adisplacement of the pellet and followed by no
chewing. Areach that missed the pellet was defined as areach without
dislodging the pellet (thiswas ararereach type). A pellet missing reach
was defined as a reach, when the pellet was missing. Failed reaches
included drops, reaches that missed the pellet and pellet missing
reaches. A support vector machine was trained to separate the suc-
cesses from the dropsbased onintensity datain the reach, pelletand
eat zones. This support vector machine was applied to improve the
discrimination of successes and drops. The automated behavioural
classification pipeline was 96% accurate at classifying successes, 91%
accurate at classifying drops and 98% accurate at classifying misses
(Extended Data Fig. 1g).

Measuring the accuracy of the automated pipeline

To measure the accuracy of the automated behavioural classification
pipeline, we compared the output of the automated code pipeline to
manually classified reaches (Extended Data Fig. 1g).

Processing the 255-fps video

The high-speed video was processed using DeepLabCut® to track the
pawtrajectoryin2D. The 2D positions fromtwo perpendicular mirrors
were combined to determine the position of the paw in 3D.

Virusinjection

Wediluted all AAV to atitre of 10 gc ml™ or lower. The following viruses
were used: pAAV-EF1la-mCherry-IRES-Flpo (Addgene #55634; pack-
aged in AAV2/retro); pAAV-Efla-fDIO hChR2(H134R)-eYFP (Addgene
#55639; packaged in AAV2/1); AAV2/8-EFla-fDIO-ChrimsonR-
mRuby2-KV2.1TS (modified from Addgene #124603); pAAV-hSynl-
S10-stGtACR2-FusionRed (Addgene #105677; packaged in AAV2/8);
and pAAV-hSyn-dLightl.1 (Addgene #111066; packaged in AAV2/9).

Age of mice for virus injection
We used adult mice older than 40 days of age.
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Injection of the AAV carrying retro-Flp into the pDMSt

We injected 300 nl of AAV2/retro-EF1a-mCherry-IRES-Flpo into the
pDMSt bilaterally. We targeted the pDMSt at 0.58 mm posterior, 2.5 mm
lateraland 2.375 mm ventral of bregma. Welowered the virus-containing
pipette (pulled glass pipette) to 0.05 mmbelow the target site, before
retracting the pipette to the target site, waiting 2 min, and theninject-
ing virus ataspeed of 30 nl min™.. After the injection, we waited 10 min
before withdrawing the pipette from the brain.

Injection of the AAV carrying Flp-dependent channelrhodopsin
We injected 300 nl of AAV2/1-Efla-fDIO-ChR2-eYFP into V1 of the left
hemisphere. We targeted V1at 3.8 mm posterior of bregma, 2.5 mm lat-
eralof bregmaand 0.65 mm ventral of the pia. After lowering the pipette
to the target site, we waited 2 min before injecting. If we detected any
leak of the virus out of the cortex, we lowered the pipette another
0.05 mm. We waited 10 min after the injection before withdrawing
the pipette from the brain.

Injection of the AAV carrying Flp-dependent ChrimsonR
Weinjected 300 nl of AAV2/8-EF1a-fDIO-ChrimsonR-mRuby2-KV2.1TS,
where TS indicates soma-targeted, into V1 of the left hemisphere. We
targeted V1 as described in a previous section (‘Injection of the AAV
carrying Flp-dependent channelrhodopsin’).

Surgical virusinjection

We prepared all mice for surgery under isoflurane anaesthesia, as previ-
ously described>**. In brief, after stereotactically flattening the skull,
wedrilled the hole in the skull, inserted the virus pipette to the target
site, injected the virus, retracted the virus pipette and then sutured
the skin. Orally administered carprofen or subcutaneous injections of
ketoprofen were used as the analgesic. Mice were allowed to recover
for at least 3 weeks before we implanted the headframe.

Headframe implant and thinning skull over V1

We used isoflurane anaesthesia during the surgery and maintained
the temperature of the animal using a closed-loop, thermoregulat-
ing heating pad. We covered the eyes in lubricant, removed the hair
from the scalp, cleaned the scalp and cut the skin to expose the skull
bilaterally around the midline from behind the lambdoid suture tojust
anterior of bregma. We stereotactically flattened the skull. We used a
bonescraperand scalpelblade to scrape and score the skull. We thinned
al.5 mm by 1.5 mm square of skull centred on V1 using a bone drill by
hand. We puta thin layer of Vetbond onto the skull. We positioned the
headframe, a thin bar, behind the lambdoid suture and perpendicular
to the midline suture, so that the edges of the headframe protruded
laterally just in front of the ears of the mice. We glued the headframe
to the skull using Krazy Glue. The Krazy Glue is transparent, allowing
light to access the thinned skull over V1. After the glue dried, we built
up layers of opaque dental cement over all regions of the skull, except
thel.5 mmby1.5 mmsquare centred on V1. We built up dental cement
around the edges of this 1.5 mm by 1.5 mm square of thinned skull to
create a pocket for the placement of the tip of the LED-coupled opti-
cal fibre. We used oral carprofen or subcutaneous ketoprofen as the
analgesic. We allowed the animals to recover from the surgery for at
least 5 days before beginning behavioural training.

Definition of d’
We defined the discriminability index used to measure behavioural
performance (d’) as

d’=z(hit) - z(FA)

where z(hit) is the Z-score transformation of the hit rate, and z(FA) is
the Z-score transformation of the false alarm rate. The hit rate

represents the likelihood of observing one or more reaches right after
the cue. Graphically, ona curve showing the distribution of the number
of reachesinthistime window, the hitrate corresponds to the fraction
of the area under the curve that lies beyond a certain threshold (one
reachinour case). As the hit rate goes up, more and more of the curve
isabove the threshold and our Z-score increases. We can use the inverse
ofthe cumulative density function to calculate the Z-score associated
withthe hit rate. Note that scaling the curve or moving its mean, assum-
ing the same transformation is applied to the threshold (one reach),
does not change that fraction of theareaunder the curve. Thus, we can
use the inverse of a standard normal cumulative density function to
calculate the Z-score from the hit rate. We defined a false alarm as one
ormore reachesinthe time window before the cue. Asthe hit rate prob-
ability goes up, z(hit) increases, and analogously, as the false alarm
probability goes up, z(FA) increases. As the false alarm probability goes
down and the curves for hits and false alarms become easier to dis-
criminate, z(FA) decreases. Thus, a larger difference in the amount of
reaching after the cue relative to before the cue produces alarger d’.
Thisis why d’is called the discriminability index. It captures how dis-
criminable two curves are, accounting for both mean and variance.
A positive d” indicated more reaches after versus before the cue. To
calculate the hit rate, we measured reach rates in the time window
400 ms immediately after cue onset. In Figs. 1and 3, we used two dif-
ferent time windows before the cue to calculate two false alarmrates.
The first false alarm window was 400 ms in duration beginning 400 ms
before the cue. The second false alarm window was 400 msin duration
beginning 1s before the cue. We calculated a d’ for each false alarm
window, then we used whichever d’ was lower. This ensured that we
did not miss any preemptive reaching, which should decrease d’. In
Fig.2, we used the time window 400 msin duration beginning 400 ms
before the cue to calculate the false alarm rate.

Defining learning stages

We defined beginner as any session with d’ < 0.25. We defined inter-
mediate as any session with 0.25 < d’ < 0.75. We defined expert as any
sessionwithd’>0.75.

Behavioural sessions included or excluded

Because video analysis is computationally intensive, we did not analyse
data from every session. Instead, we analysed data from every other
day for each mouse, except for mice used to plot the learning curves or
when otherwise specified. In these cases, daily analysis was performed.
We haveincluded datafrom all analysed sessions inour figures and sta-
tistics. However, we excluded all the behavioural data collected by one
mouse trainer who set up the behavioural rigimproperly (n = 5 mice).

Toeliminate the early motor learning stage, when the mouse is stillin
the process of learning how to grab food pellets (Extended DataFig. 3),
we defined day 1 for the learning curves as the first day when the fol-
lowing two criteria were met: (1) the mouse successfully grabbed and
consumed 20 or more pellets during a session lasting 45 min or longer.
(2) Pellet occupancy (as described in the previous section ‘Training mice
to associate a cue with the food pellet’) was 60% or less. This second
criterion ensures that the mouse experiences both successful reach
attempts when the pellet is present after the cue and unsuccessful
reach attempts when the pellet is absent before the cue.

If we observed any obvious cheating behaviour, thatis, preemptive
reaching before the cue at alevel above the spontaneous baseline, we
excluded the entire session from analysis. This rarely occurred; how-
ever, in some cases, the mouse appeared able to consistently detect
the approaching pellet without using the cue, despite our extensive
efforts to mask the presentation of the pellet. If mice could detect the
pellet approaching, they always reached before the cue. Mice never
patiently waited over the 0.22-s delay between final pellet presentation
and the cue onset. Thus, we were able to detect with high certainty any
preemptive reaching (that is, cheating) behaviour.



Strategy for suppressing pDMSt neural activity

Direct optogeneticinhibitionislimitedinits efficiency, if the fraction of
cellsthatexpresstheinhibitory opsinand are exposed to sufficient light
powerislessthan100%. Rather thanuse adirect optogeneticinhibition of
SPNs, we developed anapproach tosilence the SPNs. The logic was as fol-
lows (Extended DataFig. 5a). Some inhibitory interneurons have promis-
cuous connectivity and release the neurotransmitter GABA onto SPNs.
Wereasoned that it might be possible to express anactivating opsinina
subset ofinhibitory interneurons with the result of strongly inhibiting a
very large fraction of SPNs. We targeted the striatal interneurons using
the NKX2.1-Cre transgenic mouse line. Approximately 90% of the striatal
interneurons express the transcription factor NKX2.1 during develop-
ment, and SPNs do not express NKX2.1. However, many other neuron
types, outside of the striatum, also express NKX2.1during development.
Therefore, we chose an intersectional approach to target the NKX2.1
cells within the pDMSt specifically. We used Cre recombinase to target
the NKX2.1" cells, and we used Flp recombinase to target the pDMSt.
First, we crossed the NKX2.1-Cre transgenic mouse line (Jackson Labs
stock #008661) with the Cre-On and Flp-On ReaChR transgenic mouse
line (R26 LSL FSF ReaChR-mCitrine, Jackson Labs stock #024846), which
expresses a red-activatable variant of channelrhodopsin (ReaChR***")
only when both recombinases, Cre and Flp, are present. In the double
transgenic offspring, the Cre within NKX2.1" cells makes ReaChR expres-
sion dependent only on the presence of Flp. Second, we injected Flp
recombinase into the pDMSt (see the section ‘Injection of AAV carrying
retro-Flp into the pDMSt’). Diffusion limited the spread of Flp around
theinjection site. Asa consequence, all infected neurons in the pDMSt
expressed Flp, but only the infected NKX2.1* interneurons also expressed
ReaChR (Extended DataFig. 5b). Thisled toahighlevel of ReaChR expres-
sion in the striatal interneurons but not in SPNs. Moreover, retro-Flp
infected the corticostriatal cue neurons. This enabled the expression
of both Flp-dependent ChR2 in corticostriatal projection neurons and
Cre-dependent and-Flp-dependent ReaChR in striatal interneurons.

Fibre implant surgery to optically access the pDMSt

To illuminate the pDMSt for optogenetic manipulations or dLightl.1
(ref. 58) fibre photometry, we chronically implanted optical fibres over
the pDMSt. We prepared the mice for surgery, as described aboveinthe
section ‘Headframe implant and thinning skull over V1. We drilled two
craniotomies above the pDMSt bilaterally (or one craniotomy for unilat-
eraldLight fibre photometry). Each optical fibre was2 mmlong, 0.2 mm
indiameterand had a 0.39 NA. We obtained these fibres from ThorLabs
or DoricLenses. Weimplanted each fibre pointing straight down, so that
its tip would be situated at approximately 0.58 mm posterior, 2.3 mm
lateral and 2.25 mm ventral of bregma. We glued the fibres to the skull
using Loctite gel #454 and catalyst. Then, we built up dental cement
around each optical fibre to provide more stability. The top of each
fibre was coupled to an optical patch cord (0.39 NA), which connected
to alaser for optogenetic stimulation or an LED for fibre photometry.

Illuminating the pDMSt for striatal silencing

For mice expressing ReaChRin the striatal interneurons of the pDMSt
bilaterally, we coupled each implanted optical fibre (one per hemi-
sphere) toaY-fibre patch cord (0.39 NA) connected to a Coherent Obis
laser producing red light (650 nm). We modulated the power of the
laser using transistor-transistor logic (TTL) pulses originating from
the Arduino that controlled the behavioural rig. The power emitted
from each optical fibre tip was 5 mW. The duration of the red-light
step pulsewas1s. The onset of the red-light pulse preceded the onset
ofthe cue by 5 ms.

Reaching to pDMStinhibition alone
In mice trained to respond to the optogenetic cue, inhibiting the
pDMSt without turning on the cue did not elicit reaching (Extended

DataFig. 5g). These mice did not experience pDMSt inhibition during
training. However, when we trained the mice with pDMSt inhibition
overlapping the cue during learning (either consistent pDMSt inhibi-
tion at every presentation of the cue or randomly interleaved pDMSt
inhibition), infrequently (n = 5 mice out of 21 mice), a mouse seemed
tolearntorespond ata delay to pDMSt inhibition alone (for example,
‘example mouse C’in Extended Data Fig. 7). To test whether the mouse
responded to the cue or pDMSt inhibition alone, in a small fraction of
trials, we inhibited the pDMSt without turning on the cue. Only 5 out
of the 21 mice exhibited reaching to pDMSt inhibition alone. We did
not exclude any mice based on this and included all the mice in the
figures. However, we did verify that including or excluding these five
mice did not qualitatively change the results (not shown). The reaching
to pDMStinhibition alone was variable day to day. It is possible that this
small subset of the mice (n =5) reached to a post-inhibitory rebound
after pDMSt inhibition.

Testing optogenetic strategy for pDMSt silencing

To assess whether ReaChR-mediated activation of NKX2.1" striatal
interneurons elicitsinhibitory, GABAergic currents onto SPNs, we con-
ducted acute slice electrophysiology in the pDMSt (Extended Data
Fig. 5¢). We prepared coronal slices containing the pDMSt from adult
NKX2.1-Cre crossed to Cre-ON-FIp-ON-ReaChR double transgenic mice
that had received AAV retro-Flp virus injections into the pDMSt over
2.5 weeks before. For details on the slicing protocol, refer to ‘In vitro
slice electrophysiology’ below. We obtained whole-cell recordings of
putative SPNs, which did not express ReaChR-mCitrine (as described
in ‘Strategy for suppressing pDMSt neural activity’). The cells were
held at 0 mVin voltage-clamp mode toisolate inhibitory currents. We
illuminated the slice with red light (6-7 mW from a red-orange laser
emitted at 590 nm). Upon illuminating the slice, we observed clear,
fast and reliable outwards currents in the SPNs, consistent with light-
induced GABAergic synaptic transmission from striatal interneurons
(Extended Data Fig. 5¢). To confirm the GABAergic nature of these
currents, we applied 10 pM gabazine to the slice, which abolished the
outwards current (Extended Data Fig. 5¢c). Werecorded from a total of
eight cells within the zone of ReaChR-mCitrine expression and two
cells located outside of this zone (Extended Data Fig. 5¢).

Invitroslice electrophysiology

The experiments closely followed the procedures outlined in previous
studies®*°. Mice were anaesthetized using isoflurane inhalation and
subsequently subjected to transcardial perfusion withice-cold artificial
cerebrospinal fluid (ACSF) composed of the following: 125 mM Nacl,
2.5 mMKCl, 25 mM NaHCO,,2 mM CaCl,, 1 mM MgCl,, 1.25 mM NaH,PO,
and 11 mM glucose, resulting in an osmolarity of 300-305 mOsm kg™.
This perfusion was administered at a rate of 12 ml min™ for a duration
of 1-2 min. The brain was removed from the skull, and we prepared
250-pm or 300-pm coronal brain slices in ice-cold ACSF. Slices were
then placed in a holding chamber at 34 °C for 10 min, containing a
choline-based solution with the following composition: 110 mM cho-
line chloride,25 mM NaHCO,, 2.5 mMKCI, 7 mM MgCl,, 0.5 mM CacCl,,
1.25 mM NaH,PO,, 25 mM glucose, 11.6 mM ascorbic acid and 3.1 mM
pyruvic acid. Following this initial incubation, the slices were trans-
ferred to a second chamber with ACSF also maintained at 34 °C for a
minimum of 30 min. Subsequently, the chamber was shifted to room
temperature for the duration of the experiment. During recordings, the
temperature was maintained at 32 °C, and carbogen-bubbled ACSF was
perfused at a rate of 2-3 ml min™. For whole-cell recordings, we used
pipettes (2.5-3.5 MQ) crafted from borosilicate glass (Sutter Instru-
ments). Cs-based internal solutions were used for voltage-clamp meas-
urements and contained the following components: 135 mM CsMeSO;,
10 mM HEPES, 1 mM EGTA, 3.3 mM QX-314 (CI" salt), 4 mM Mg-ATP,
0.3 mM Na-GTP and 8 mM Na,-phosphocreatine, with pH adjusted to
7.3 using CsOH, resulting in an osmolarity of 295 mOsm kg™
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Invivo extracellular electrophysiology acquisition systems

For in vivo electrophysiology, two different electrophysiology sys-
tems were used at two different times in the project. First, we used
a Plexon Omniplex recording system with a Plexon headstage and
Neuronexus probe (A1x32-Edge-10mm-20-177) to record from eight
mice. The Neuronexus probe had 32 linearly arranged recording
sites, spaced at a distance of 20 pm between each pair of sites. We
acquired data at 40 kHz using the Plexon software PlexControl,
passed to a DAC card and PC. Second, we used the WHISPER record-
ing system, custom-built atJanelia Research Campus, to record from
19 mice. We used the same 32-channel Neuronexus probe. Data were
amplified and multiplexed by the WHISPER acquisition system, and
acquired by the National Instruments USB-6366, X series card. We
sampled data at a rate of 25 kHz. We used the program SpikeGLX to
acquire data.

Invivo extracellular electrophysiology recording configuration
While mice were briefly anaesthetized before the electrophysiology
recording, we drilled a craniotomy to allow access to the brain (see
‘Recording from the visual cortex’ or ‘Recording from the pDMSt’). We
covered the craniotomy with Kwik-Cast, allowed the animals to wake up
and returned the mice to the home cage. At the time of the recording
and after the head wasrestrained, we removed the Kwik-Cast covering
the craniotomy. Then we built up atemporary well to contain saline at
the site of the craniotomy. We used Kwik-Cast to build up this well after
thehead had beenrestrained. We placed sterile X PBS (pH 7.4) into this
recording well. Asthe reference ground, we used asilver chloride wire
restingin thiswellandin the saline. Thus, all electrode channels within
the brain were referenced to this point outside of the brain. We inserted
the probeintothe brain. We recorded broadband neural activity while
mice performed the behaviour. After the recording session, we com-
putationally high pass-filtered the neural dataabove 300 Hz to remove
low-frequency signals and to obtain the high pass-filtered extracellular
activity including action potentials. We periodically replaced the 1X
PBS duringtherecording session, as necessary, to prevent the welland
craniotomy from drying out. After the end of the recording session
and after removing the electrophysiology probe from the brain, we
removed the Kwik-Cast well from the skull of the mouse and covered
theholein the skull with asmall amount of fresh Kwik-Cast. We returned
the mouse to the home cage.

Invivo acute recordings over days

Werecorded acutely from the brain of each mouse over several consecu-
tive days, no more than about 5 days. We then euthanized the mouse,
extracted the brain and performed post-mortem histology.

Invivo electrophysiology in visual cortex

To record from the visual cortex in behaving mice, we anaesthetized
already trained and already head-framed mice during an additional,
brief surgery (5-10 min). We closed the eyes of the mouse during this
brief surgery. We drilled a very small hole through the skull over V1. This
hole had a diameter of about 0.05 mm. To do this, we first thinned the
skulluntilitcracked, and then we used the bent tip of aneedle to flake off
bone until the brain was exposed. We covered the exposed brain using
adrop of Kwik-Cast applied to the skull. At the time of the recording, we
restrained the head of an awake mouse, removed the Kwik-Cast from
the skull, built up aKwik-Cast well around V1 (as described previously in
the section ‘Invivo extracellular electrophysiology recording configu-
ration’), added saline to this well, and then placed the electrophysiol-
ogy probe into the brain, advancing the probe straight down into the
brain at arate of 3 um s™ or slower. We targeted V1 at approximately
3.8 mm posterior and 2.5 mm lateral of bregma. We placed the probe
in one of two positions: (1) we advanced the probe to the bottom of
cortex (depth of about 850 pm), such that the deepest channel onthe

electrode array was just ventral of cortex, or (2) we advanced the
probe until only the most superficial channel of the electrode array
was still above the pia. We attempted to avoid any large blood vessels.
We registered the depth of each channel according to the estimated
bottom of the cortex (position 1) or the estimated top of the cortex
(position 2). Although this is not the most accurate way to determine
channel depth in the visual cortex, none of our scientific questions
depended on exactly accurately registering the channel depths. We
recorded extracellular activity while the mice behaved.

Invivo extracellular electrophysiology recording from the pDMSt
Torecord fromthe pDMStin behaving mice, we restrained the head of
an already reach-trained mouse. We briefly anaesthetized the mouse
by positioning a nose cone, which provided a light level of isoflurane
anaesthesia, over the snout of the mouse. We closed the eyes of the
mouse and drilled a small hole through the skull. We covered the cra-
niotomy with a small drop of saline (IX PBS, pH 7.4). We built up a well
around this craniotomy using Kwik-Cast. We placed the electrophysiol-
ogy probe and ground wire into this recording well and added more
saline. We advanced the electrophysiology probe into the brain ata
rate of 5 pum s™ or slower. We targeted the pDMSt at approximately
0.58 mm posterior, 2 mm lateral and 2.63 mm ventral of bregma. To
record frommice with achronicallyimplanted optical fibre positioned
over the pDMSt, we angled the electrode and advanced the electrode
through the brain diagonally, until the recording electrode sat beneath
the chronically implanted fibre. At the time of an earlier surgery, when
we had implanted the headframe onto the skull of the mouse, we had
stereotactically flattened the skull and left bregma visible by covering
bregmaonly with Krazy Glue, whichis transparent (the rest of the skull
was covered with dental cement, except over the visual cortex). Hence,
we could use bregma to calibrate the location of entry of the record-
ing electrode. We used an electrode angle of 59° pointed ventral and
posterior, with respect to horizontal. We used an electrode angle of
32° pointed lateral, with respect to the midline suture. This electrode
track nicely follows the dorsomedial edge of striatum, where the V1
axons terminate. We marked the recording site using dye ontherecord-
ing probe (see ‘Marking the recording track’). While advancing the
probe, we removed the nose cone providing a light level of isoflurane
anaesthesia to the mouse and opened their eyes. The mouse recov-
ered from anaesthesia and performed behaviour, as the recording
electrode entered the pDMSt. We recorded pDMSt activity while the
mouse behaved, forabout1h. Afterwards, we retracted the recording
probe, removed the Kwik-Cast recording well, covered the craniotomy
with Kwik-Cast and returned the mouse to its home cage.

Marking the recording track in vivo

When recording from the pDMSt, we marked the recording track for
viewing by post-mortem histology. On the last day of recording for each
different pDMSt recording site, we coated the recording probe in Dil
beforeinserting the probeinto the brain. We quickly removed the PBS
fromthe recording well to prevent the PBS from washing away the Dil.
Oncethe probe had entered the brain but before advancing the probe
toitsfinal recording site, we added PBS back to the recording well. We
always allowed the Dil-covered recording probe tosit atits final site for
atleast 15 min. Wereconstructed the recording track by viewing Dil in
histological sections (see ‘Post-mortem histology’).

Post-mortem histology

To extract the brain, we deeply anaesthetized the mouse using iso-
flurane. After testing to be sure that the animal did not respond to
atoe pinch, the animal was decapitated. We very quickly extracted
the brain from the skull and put the brain into 4% paraformaldehyde,
whereit remained at 4 °C between 36 h and 48 h. We then transferred
the braininto 1X PBS (for sectioning using a fixed tissue slicer) or 30%
sucrose (for sectioning using a freezing microtome). We made coronal



sections that were 50 pm thick. We performed immunohistochemistry
in two cases: (1) to locate SPNs (see ‘Immunohistochemistry against
DARPP-32’), or (2) to visualize the location of dLight (see ‘Immunohis-
tochemistry to visualize dLight’). Other fluorescent protein signals
were not amplified. We mounted the brain sections on slides using
amounting medium containing DAPI. We sliced the entire forebrain
starting at the posterior tip of V1and moving anterior through all of the
striatum. We imaged all brain sections and verified virus expression.
We used an automated Olympus slide scanner to image the sections
(either the VS120 or VS200).

Immunohistochemistry protocol

First, we washed the brainslices in 1X PBS with 0.1% Tween for 90 min.
Second, we washed the slices in10% Blocking One buffer overnight at
4 °C. Third, we added the primary antibody and let the slices sit over-
night at 4 °C. Fourth, we washed the slices in 1X PBS with 0.3% Tween
(0.3%PBST) three times for 10 min each. Fifth, we incubated the slices
in10% Blocking One with the secondary antibody overnight at 4 °C.
Sixth, we washed the slices in 0.3% PBST three times for 10 min each.
Last, we washed theslicesinIX PBS for atleast 10 min, before mounting
theslices.

Immunohistochemistry against DARPP-32

We performed immunohistochemistry against DARPP-32 (Extended
Data Fig. 5b) using the Novus Biologicals primary antibody (NB110-
56929; concentration 1 ug ml™) and an anti-rabbit secondary conju-
gated to Alexa 594 tolocalize SPNs (A-11012, Invitrogen; concentration
2ugml™).

Selecting new learning days

We defined new learning days as days during learning before the mouse
wasanexpert (d’ < 0.75), when the d’ calculated for that day was higher
than the d’ achieved by that mouse on any previous day. The last 10%
oftrialsin each session were discarded, because mice disengaged from
the task during this period.

Measuring the effects of pDMSt inhibition on reach phases

To test whether pDMSt inhibition had any effect on different phases of
the reaching behaviour (that is, initial fast ballistic movement of the
armtowards the pellet, grasping the pellet, supination of the paw and
raising the paw with the pellet to the mouth; Extended Data Fig. 6a-e),
we used acombination of DeepLabCut™ and manual quantification. To
measure the trajectory of theinitial fast ballistic movement of thearm
towards the pellet, we plotted paw trajectories tracked using DeepLab-
Cut™. To measure the duration of each phase of the reaching behaviour,
we viewed the high-speed video and manually counted the number of
frames belonging to each phase of the reach. The At from the perch
to pellet was the time required for the paw to move fromits resting
position to touching the pellet. The At grasp was the time required
for the fingers of the paw to close completely around the pellet. The
Atgrasp tomouthwas the timerequired for the mouse tolift the pellet
into the mouth.

Spike detection and single-unit sorting

We examined the raw physiology signal for periods when the mouse
was chewing. Chewing sometimes produced large artefactsin the data
that were easily identified. As mice chew at about 7 Hz, the chewing
artefacts were periodic at 7 Hz, although these artefacts also con-
tained high-frequency content. The artefacts were much larger than
any spikes. We removed any chewing artefacts by subtracting the com-
mon mode signal across all physiology channels, because the chew-
ing artefact was identical on all channels. We verified that any spikes
detected during these artefacts were identical in shape and size to the
spikes detected outside of these artefacts, for a number of example
single units when only one large unit was recorded per channel. We

filtered the physiology databetween 300 Hzand 25 kHz. We then used
UltraMegaSort to detect spikes and cluster single units, as described
elsewhere®*,

Identifying putative SPNs

We identified putative SPNs as in ref. 33. First, for each unit, we aver-

aged all of its spikes to get the average waveform. Second, we defined

the spike amplitude as the maximum size of the negative deflection.

Third, we defined the width of the spike waveform at half-maximum

(called ‘width’ in Fig. 5b) as the time delay between the falling and ris-

ing time points at half the spike amplitude. Fourth, we measured the

average firing rate of the unit over the entire experiment. We used these

features to classify the unit as one of the following types (see Fig. Sb

for an example session with different unit types).

* SPN: width of the spike waveform at half-maximum > 0.22 ms and
mean firing rate <4 Hz

« Tonically active neuron: width of the spike waveform at half-
maximum > 0.22 ms and mean firing rate >4 Hz

« Fast spiking: width of the spike waveform at half-maximum < 0.22 ms
and meanfiring rate 21.25Hz

* Low-firing-rate thin: width of the spike waveform at half-maximum
<0.22 msand mean firing rate <1.25 Hz

Defining the probability that areach was preceded by the cue
We previously used d’ to represent the behaviour. @’ is acommonly
used behavioural metric that compares reaching in the time window
immediately after the cue (window A) to reaching in the time win-
dow before the cue (window B). However, reaches are sparse in this
behaviour,and hence many trials are required to calculate ameaning-
ful d’. The hit rate used to calculate d’ was essentially P(reach|cue).
An alternative analysis approach is to define the probability that a
reach was preceded by the cue, within some time window. We called
this the probability P(cue|reach). We plotted P(cue|reach) to under-
stand how the reaching changes within a single day’s training session
(Fig. 2f). P(cue|reach) increased within the day’s training session. For
the summary datasets across mice, we used the time window within
0.4 s of cue onset, for consistency with the d’ definitionin Fig.1. Thus,
P(cuelreach) was the probability that areach was preceded by the cue
within a 0.4-s time window. However, when analysing the example
sessionin (Fig. 2e, top), summarized in (Fig. 2f, top), we expanded the
time window after the cueto1.5 s, allowing us to calculate ameaning-
ful P(cuelreach) for this single session. In contrast to P(cue|reach),
the probability that a reach was followed by the cue (within 0.4 s)
decreased within a single day’s training session (0.048 + 0.003 over
thefirst fourth of the session,and 0.038 + 0.002 over thelast half of the
session, P=0.01from atwo-proportion Z-test, n = 58 new learning days
from 10 mice).

Control mice for illumination of the pDMSt during learning
Totest whether silencing the pDMSt during learning affects behaviour,
we trained two groups of mice at the same time (Fig. 3). The first group
of mice (n=9) experienced real silencing of the pDMSt. The second
group of mice (n=7) were controls that did not experience silencing
of the pDMSt. These control animals were negative littermates from
the NKX2.1-Cre transgenic mouse line cross to the ReaChR transgenic
mouse line. To test whether the learning deficit observed in the pDMSt
silencing group was simply due to brain damage as a result of virus
injections or fibre implants, we performed identical virus injection
and fibre implant surgeries on the control mice. The experimenters
performing surgeries and training the mice were blinded to the gen-
otype of each mouse from before the first surgery and throughout
training. The pDMStssilencing group and control groups were handled
identically. We used red light toilluminate the pDMSt bilaterally in the
control mice, but thisred light did not silence the pDMSt in the absence
of ReaChR expression.
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Illumination of the pDMSt during learning (loss of one mouse)
Onemouse inthe pDMSt silencing cohortin Fig.3 had to be eliminated
for healthreasons, before switching the cohorttothe ‘recovery’ train-
ing stage post-pDMSt inhibition.

Identifying sessions where the mouse learned

We identified training sessions in which the mouse improved at cued
reachingover the course of the session by evaluating if @’ at the end of
the session was more than 0.1 greater than @’ at the beginning of the
session. To allow for cases in which the mouse improved either earlier
or later in the session, we made three calculations:

r_ g7 _ 4
Adl - dlast 75% of session dﬁrstzs% of session

r_ g7 — A’
Adz - dlast 50% of session dﬁrst 50% of session

r_ g7 - 4
AdS - dlast 25% of session dﬁrst 75% of session

Ifeither Ad{, Ad; or Ad; were greater than 0.1, we classified the ses-
sion as one in which the mouse learned.

Injections of muscimol into the superior colliculus

We injected 1.5 pg pl™ muscimol (M1523, Sigma-Aldrich) dissolved in
0.9%NaClin ddH,0 (Extended Data Fig. 6g-k). Injections were stereo-
tactically targeted to the superior colliculus at coordinates 4.6 mm
posterior to bregma, 0.8 mm lateral to the midline and 1.9 mm deep.
To avoid the sinus and a chronically implanted headframe, we used
an angled approach (either 18° or 48° from vertical), advancing the
pipette laterally to medially and dorsally to ventrally. We used two
differentinjection systems: a Drummond NanoJect for four mice and
a WPl injector for the remaining four mice. We briefly anaesthetized
the mice, performed a small craniotomy (on the firstinjection day) and
injected muscimol at 30-40 nl min™. After injection, we waited 2 min
before retracting the pipette and waking the mouse. The total anaes-
thesia duration wasless than15 min. Mice were allowed to recover fully
intheir home cage for 10-20 min, resuming normal behaviour, before
beingtransferred to the behavioural rigfor1-h-long cued reaching ses-
sions. The mice were then returned to the home cage. We interleaved
control days (noinjection) with muscimol or salineinjection days over
several successive days.

Mice were excluded if they were unable to perform spontaneous
reaches after the muscimolinjection, as cue-reach associative memory
could notbe assessed. We titrated muscimol volumes to minimize the
disruption to spontaneous reaching. The muscimolinjection volumes
in Extended Data Fig. 6g-k were 115 nl, 100 nl and 100 nl (mouse 1);
50 nl and 50 nl (mouse 2); 90 nl (mouse 3); and 20 nl (mouse 4). The
saline injection volumes in Extended Data Fig. 6g—k were 100 nl
saline plus dye (mouse 1); 70 nl saline (mouse 2); and 60 nl dye plus
saline (mouse 4). We injected Dil as the dye. Three mice failed to
recover spontaneous reaching on all muscimol injection days and
were excluded. Another mouse was excluded, because it did not per-
form cued reaching on the control days. We were unable to perform
asalineinjection in mouse 3 or a dye injection in mouse 2, because
the headframes came off, after which the mice were immediately
euthanized. We processed all the brains as described in ‘Post-mortem
histology’.

For the four animals that did not recover spontaneous reaching after
the muscimol injection, we observed gross motor defects, including
spinning in the home cage and, on 2 of the muscimol injection days,
seizure-like activity manifest as running-like movements of the fore-
limbs and hindlimbs. (In this latter case, we immediately euthanized
the mice.) The spinning behaviour resolved within a few hours, but
during thistime, the mice did not perform spontaneous reaches when
placedinto the behavioural rigand hence could not be used to collect
data about the cue-reach association.

Statistics on muscimol injectionsinto the superior colliculus

We used a linear mixed-effects model to assess whether muscimol
injections affected a behavioural metric (that is, cued reach rate,
uncued reach rate or d’; Extended Data Fig. 6k). To account for the
non-independence of observations within the same mouse and poten-
tial baseline differences between mice, arandomintercept was incorpo-
rated for each mouse. An overallintercept was alsoincluded to capture
general trends. The model was

metric; = B, + B, x Condition; + u; + €;

where § is the overall intercept, g, is the fixed-effect coefficient,
Condition; indicates muscimol or control (including noinjectionand
saline days) for the i-th mouse at thej-th observation, u; ~ AV(0, 62)
represents the random intercept for the i-th mouse, and ¢; ~ M0, a?)

istheresidual error,implemented in MATLAB using the fitime function.

Statistics on learning curves with or without pDMSt inhibition
We used alinear mixed-effects model to assess whether pDMStinhibi-
tion affected the change in d’ on days 15-20 relative to day 1. To account
for the non-independence of observations within the same mouse and
potential baseline differences between mice, arandom intercept was
incorporated for each mouse. An overall intercept was also included
to capture general trends. The model was

Ad’;=B,+ B, x Condition; +u; + €;

where B is the overall intercept, g, is the fixed-effect coefficient,
Condition; indicates the condition of control or pDMSt inhibition
during learning for the i-th mouse at thej-th observation, u; - A(0, 62)
represents the random intercept for the i-th mouse, and €;;- M0, o?)
istheresidual error,implemented in MATLAB using the fitime function.
When plotting the learning curves, on days excluded from the analysis
because the mouse cheated, we interpolated d’ using neighbouring

days or filled in the d’ from the last day before cheating.

Natural visual discrimination behaviour

We designed a behavioural paradigm in which mice learned to dis-
criminate between two visual stimuli: a cue, paired with food pellet
delivery, and a distractor, unpaired with the pellet (Extended Data
Fig. 8). Both stimuli were spatially unstructured and delivered via the
same 1-mm-diameter optical fibre coupled to a473-nm blue LED (maxi-
mum output of 40 mW) positioned several inches above the head of
the mouse. The LED remained off during baseline periods and was acti-
vated only during stimulus presentation. The cue consisted of agradual
rampinblue-lightintensity, increasing from O mWto40 mW over0.5s,
with pellet delivery coinciding with the ramp onset. The distractor
was a 6-Hz flicker, comprising six rapid light ramps (0-40 mW) over
1s.The cue and distractor were randomly interleaved and presented
with approximately equal probabilities.

Natural visual discrimination data analysis

Our analysis of the natural visual discrimination was analogous to our
analysis of the optogenetic cue (Extended Data Fig. 8). We measured
reach rates within a 400-ms window starting after the onset of either
the cue or the distractor. To assess discrimination performance, we
calculated the ‘rate ratio”: the ratio of the reach rate following the cue
to thereachrate following the distractor. Histograms of the rate ratio
were generated across days and acrossindividual mice. We used alinear
mixed-effects model to compare the rateratio on days10-15as afunc-
tion of the condition, that is, whether the animal experienced pDMSt
inhibition during learning. To account for the non-independence of
observations within the same mouse and potential baseline differences
between mice, arandom intercept was incorporated for each mouse.



An overall intercept was also included to capture general trends. The
model was

Rateratio; = B, + B, x Condition; + u; + ¢;

where B is the overall intercept, B, is the fixed-effect coefficient,
Condition; indicates the condition for the i-th mouse at the j-th
observation, ; - MO, ouz) represents the random intercept for the i-th
mouse, and €;~ MO, 062) istheresidual error,implemented in MATLAB
using the fitlme function. To compare the rate ratio across mice as a
function of the condition, we used the Wilcoxon rank-sum test.

Changesin behaviour from trial to trial
To examine trial-to-trial changes in behaviour that underlie learning,
we selected training sessions in which the mouse learned (see ‘Iden-
tifying sessions where the mouse learned’). We then considered the
individual cue presentations and reach attempts comprising these
sessions. To determine how the outcome of one trial affected the next,
we considered sequences of three neighbouring trials: trial n — 1, trial
nand trial n + 1. This three-trial sequence analysis avoids issues of
regression to the mean. We measured how behavioural changes from
trial n —1to trial n + 1, contingent on the behavioural experience of
trial n. We defined behaviour as a 2D quantity, the rate of reachingin
the cued window versus the rate of reaching in the uncued window.
The cued window was defined as the 400-ms time window immedi-
ately after cue onset. The uncued window was defined as the time
window beginning 3 s before cue onset and ending 0.25 s before cue
onset. To plot how the behaviour changed in this 2D space, we ran
abootstrap by resampling, with replacement, all trial sequences, in
which the behaviour of trial n matched a particular type (thatis, cued
success, cued failure, uncued success or uncued failure; see the next
paragraph). If we began with m trials of this particular type, we resa-
mpled mtrials ateachiteration of the bootstrap. For eachiteration of
thebootstrap, we subtracted the average behaviour ontrial n - 1from
the average behaviour ontrial n + 1. Thisis represented by the follow-
ing: mean(behaviour ontrial),,; (resample i)) - mean(behaviour on
trial,_, (resample i)),where i is the set of resampled trials for itera-
tion i of the bootstrap. Thus, this bootstrap analysis represents the
change in the joint distribution of cued and uncued reach rates. We
plotted 100 runs of the bootstrap as the scatter plots in Fig. 4 (each
dotis the result of one iteration of the bootstrap). In the top row of
Fig. 4, we also plotted a shaded region that represents the 2D his-
togram of the change in this joint distribution, after running 1,000
iterations of the bootstrap and filtering the resulting 2D histogram
with a Gaussian filter with standard deviation equal to 0.0096 along
the x axis (Areach rate uncued) and 0.024 along the y axis (Areach
rate cued).
We classified the behavioural experience of trial n as one of four
types:
(1) Cued success: on trial n, the mouse
(i) Did notreach before the cue
(ii) Made a successful reach within 1s after cue onset
(2) Cued failure: on trial n, the mouse
(i) Did notreachbefore the cue
(ii) Made afailed reach (that is, dropped pellet, reached but failed
to touch the pellet or the pellet was missing at the time of the
reach) within1s after cue onset
(3) Uncued success: on trial n, the mouse
(i) Did notreach before the cue
(ii) Did not reach in the 1.5-s time window after the cue
(iii)Made a successful reach between 3.5 s and 7 s after the cue
(notethat successful reaches are not possible before the cue,
when the pellet is missing)
(4) Uncued failure: on trial n, the mouse
(i) Made afailed reach before the cue

(ii) And was not chewing at the beginning of the trial (we excluded
trials when the mouse was chewing at the beginning of the trial,
because, if the mouse had its forelimb outstretched to chew,
the mouse could potentially detect the approaching pellet
withits already outstretched forelimb)

(iii) Or made a failed reach between 3.5 s and 7 s after the cue

(iv)Did not reach in the 1.5-s time window after the cue

(v) Did not make any successful reaches at any time in this trial
(thatis, allreaches were failures)

To measure the effects of pDMSt optogenetic inhibition, we com-
pared three-trial sequences when the optogenetic inhibition was on
or off in trial n (‘inhibition on’ or ‘inhibition off’). To ensure that the
inhibition off trials were interleaved with the inhibition on trials, we
took inhibition off trials that were followed by aninhibition on trial at
the trial positionn+2,n+3,n+4orn+5. Analogously, to ensure that
the inhibition on trials were interleaved with the inhibition off trials,
we took inhibition ontrials that were followed by aninhibition off trial
atthetrial positionn+2,n+3,n+4o0rn+S5.

Note that the time window of pDMSt optogenetic inhibition over-
laps the cued success (Fig. 4c, first column) but does not overlap the
uncued success (Fig. 4c, third column). This may explain why the pDMSt
optogeneticinhibition disrupted the behavioural update after acued
success but not after an uncued success.

No outcome-independent behavioural change

Totest whether there was any systematic change in the behaviour that
did not depend on the behavioural experience of trial n, we plotted
the change in behaviour from trial n —1to trial n + 1, given any type of
trial nbehavioural experience (Fig. 4b). Any type of trial includes trials
when the mouse reached successfully, failed or did not reach. There
was no systematic change.

Effect of pDMSt inhibition on the current trial

Totest whether pDMSt inhibition affects the current trial, we plotted
the changeinbehaviour fromtrialn-1totrialn +1,given (1) any type
oftrial nbehavioural experience, and (2) pDMSt inhibition during the
cue on trial n +1versus no inhibition on trial n +1 (Fig. 4d). pDMSt
inhibition on trial n + 1 (beginning 5 ms before the cue and continu-
ing for1s) did not produce a shift in behaviour from trial n — 1 to trial
n+1, consistent with data elsewhere in this paper showing no effect
of pDMSt inhibition on the ongoing cued reaching behaviour (for
example, Fig. 2d).

Varied timing of pDMSt inhibition

To determine when pDMSt neural activity was required for trial-to-trial
behavioural updates, we varied the timing of the 0.5-s optogenetic
inhibition relative to the cue and reach. Inhibition was applied at one
ofthree time points: (1) starting 0.5 s before cue onset, (2) simultane-
ously with cue onset, or (3) 0.3 s after cue onset. For each inhibition
timing, we analysed sequences of three consecutive trials (trialn -1,
nand n +1) where the reach on trial n occurred at different times with
respect tothe pDMStinhibition. Figure 4e shows the changeinreaching
behaviour fromtrialn —1totrial n + 1for successful reaches on trial n.
TheyaxisinFig.4eisidentical totheyaxisinFig.4a-d and represents
thechangeinreachrateina400-mswindow following cue onset. The
circles represent the mean across trials, and the vertical lines show
the standard error (mean * s.e.m.). For clarity, the line representing
the mean —s.e.m. was omitted. The black dots are when trial n was a
controltrial; the red dots are when trial n contained pDMSt inhibition.
Successful reaches before cue onsetledtoadecreasein cued reaching
ontrial n +1, whereas successful reaches after cue onsetincreased cued
reaching on trial n + 1. To ensure sufficient reach counts for statistical
power, we used different reach time windows based onreach frequency.
For example, we needed to use along 1.2-s window for low-frequency
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reaches before the cue. Hence, in the left panel of Fig. 4e, we used a
1.2-s-long reach time window. Because cued reaches occurred at a
higher rate after the cue, we could use a shorter reach time window
for the middle panel of Fig. 4e. We used a 0.2-s-long reach time window
for the points atxaxis positions 0.2s,0.3s,0.4 sand 0.5 s, but we had to
use alonger reach time window of 0.5 s for the point at x axis position
0.75 s owing to lower reach counts. For the right panel of Fig. 4e, we
used a 0.2-s-long reach time window for the points at x axis positions
0.25,0.2255,0.255,0.2755,0.35,0.4 sand 0.5 s. We used a1-s-long
reach time window for the points at x axis positions1s,1.1sand 1.5s
owing to lower reach counts. Figure 4f displays the difference between
the red and black points from Fig. 4e, plotted according to the time
difference between the midpoint of pDMSt inhibition (middle of the
0.5-s window) and the midpoint of the reach time bin. We overlaid all
the points from the panelsin Fig. 4e to construct Fig. 4f.

Control for behaviour change (backwards time control)

If the change in behaviour from trial n - 1to trial n + 1 depends on the
behavioural experience of trial n, then the effect on trial n +1should
be manifest forwards in time but not backwards in time. If trial n + 1
showed the same shift in behaviour when ‘time moved backwards’,
this would suggest a correlational structure in the data but not any
causal effect of the behavioural experience of trial n. To test this, instead
of conditioning trial n +1on trial n, we conditioned trial n + 1 on trial
n+2.We measured the shift in behaviour from trial n - 1to trialn +1,
thatis, before the particular behavioural experience of trial n + 2. This
abolishedtheincreasein cued reaching observed after a cued success,
and this abolished the increase in uncued reaching observed after an
uncued success (Extended Data Fig. 9a).

Optogenetically inhibiting the pDMSt using GtACR2

We used a second, orthogonal optogenetic method to confirm that
inhibiting the pDMSt disrupts the behavioural updates fromtrial totrial.
We directly expressed soma-targeted GtACR2, ablue-light-stimulated
inhibitory opsin, in SPNs. We injected an AAV carrying Cre-dependent
GtACR2 (see ‘Virusinjection of GtACR2 into the pDMSt and ChrimsonR
into the visual cortex’) into the pDMSt bilaterally in the double trans-
genic offspring of across between the D1-Cre transgenic mouse line and
the Adora2a-Cre transgenic mouse line. This led to expression of the
inhibitory opsin GtACR2 in both direct and indirect pathway neurons
of the pDMSt. We illuminated the pDMSt bilaterally with blue light
from a473-nm laser. The duration of the step-pulse illumination was
1sandbegan 5 ms before cue onset. The power of the blue light at the
tip of the patch cord was 8 mW. To activate the cue neuronsin the visual
cortex and avoid any antidromic activation of these visual cortex cue
neurons by the blue light in the pDMSt, we expressed soma-targeted
ChrimsonRinthe cue neurons. ChrimsonRis ared-activatable excita-
tory opsin. We illuminated the thinned skull over the visual cortex
with ared LED coupled to an optical fibre (output power of 35 mW
and diameter of the optical fibre of 1 mm). The duration of red light
illumination was 0.25 s. We used a constant step pulse of red light to
activate the cue neurons. We interleaved the GtACR2-mediated inhibi-
tion of the pDMSt onrandom trials while mice learned torespond to the
cue. We aimed to minimize confounds of GtACR2 axonal stimulation
by using soma-targeted GtACR2, by using a low light power (8 mW),
and by excluding entire sessions if the GtACR2 stimulation led to an
increase in cued reaching of more than 20% of the control reach rate
(excluded 43 of 87 sessions). We then performed the same trial-to-trial
analysisasin Fig.4. We observed qualitatively the same effects of inhib-
iting the pDMSt using GtACR2 (Extended Data Fig. 9d) as when we
inhibited the pDMSt using ReaChR (Fig. 4).

Viralinjections of pDMSt GtACR2 and visual cortex ChrimsonR
We targeted the pDMSt and visual cortex for injections, as described
above. We injected 150 nl of the virus AAV2/8-hSyn-SIO-stGtACR2-

FusionRed mixed with 150 nl of the virus AAV2/retro-EFla-mCherry-
IRES-FIpointo the pDMSt bilaterally. We injected 300 nl of this mixture
into the pDMSt of each hemisphere. We injected 300 nl of the virus AAV
2/8-EF1a-fDIO-ChrimsonR-mRuby2-KV2.1TS into V1.

Dopamine fibre photometry in the pDMSt (virus injections)

For the surgery protocol, see the section ‘Virus injections surgical
details’. We unilaterally injected the pDMSt with AAV9-syn-dLight1.1.
Weinjected the AAV2/retro-EF1a-mCherry-IRES-FIpointo the pDMSt
at the same time. We mixed the Flp and dLight viruses in a ratio of
1:1. We then injected 300 nl of this mixture into the pDMSt. We tar-
geted the pDMSt at 0.58 mm posterior, 2.5 mm lateral and 2.375 mm
ventral of bregma. We then injected V1 with AAV2/8-EF1a-fDIO-
ChrimsonR-mRuby2-KV2.1TS, as described in ‘Injection of the AAV
carrying Flp-dependent ChrimsonR’. We chose to trigger the opto-
genetic cue using the red-light-activated ChrimsonR instead of the
blue-light-activated opsin ChR2, inthe case of these mice for dopamine
fibre photometry, because we wanted to avoid any leak of blue light
into the dLightl.1 excitation channel. We injected adult mice older
than 40 days of age.

Dopamine fibre photometry in the pDMSt (optogenetic cue)

We activated the ChrimsonR-expressing neurons in the visual cortex
as the optogenetic cue. See the section ‘Red light optogenetic cue’
for details.

Dopamine fibre photometry in the pDMSt (acquisition setup)
Weimplanted an optical fibre unilaterally over the pDMSt for dopamine
fibre photometry. We implanted this fibre over the pDMSt ipsilateral
to the virally expressing cue neurons in the visual cortex, because V1
provides a predominantly unilateral projection to the pDMSt (see the
section ‘Fibreimplants to optically access the pDMSt’ for details about
the optical fibre implants and targeting of the pDMSt). We coupled
the implanted fibre to a Doric Lenses patch cord (0.37 NA). This was
coupledtoaDoricFluorescence MiniCube (iFMC5_E1(460-490) F1(500-
540)_E2(555-570)_F2(580-680)_S) for fluorescence imaging. The excita-
tion LED wavelength was band-passed between 460 nm and 490 nm,
and the emission light was band-passed between 500 nm 540 nm for
greenimaging. The MiniCube also enabled red imaging. For red imag-
ing, the excitation LED wavelength was between 555 nm and 570 nm,
and the emission light was band-passed between 580 nm and 680 nm.
We used thered channel only as an autofluorescence control. Because
the heads of the mice were restrained, motion artefacts and artefacts
relating to any bending of the patch cord were limited. We modulated
the excitation light emitted by the LED. We modulated this light ata
constant frequency of 167 Hz, and we sampled the emission light at
2,000 Hz.Weused aLabjack T7todrive the LED and sample datafrom
the photodetector on the Doric MiniCube. We used a custom code in
MATLAB to acquire data from and write data to the Labjack T7.

Dopamine fibre photometry and Z-score

Weband-passed the collected greenlight between 120 Hzand 200 Hz
(the excitation light was modulated at 167 Hz). Next, we used the
MATLAB package Chronux to get a spectrogram. Chronux uses the
multi-taper method to calculate the spectrogram. We passed the follow-
ing parameters to Chronux: (A) moving window of 0.1 s, shifted every
0.01sto provide asmoothed output, (B) time-bandwidth product of
3,and (C) 2 tapers. Third, we measured the time-varying power to get
arepresentation of the putative dopamine-dependent fluorescence
of dLightl.1. We calculated the Z-score of this power using a rolling
baseline window with aduration of 30 s. We median-filtered this Z-score.

Immunohistochemistry to visualize dLight
We followed the protocol described above in the section ‘Immuno-
histochemistry protocol’. As the primary antibody, we used anti-GFP



from Abcam (#ab13970; concentration 2.5 pg ml™). As the secondary
antibody, we used an anti-chicken antibody conjugated to Alexa 488
from Thermo Fisher (A-11039; concentration 10 pg ml™).

Definition of the post-outcome period

Amouse found out whether areach was successful at the moment when
the paw encountered or failed to encounter the food pellet. If the mouse
dropped the pellet, the drop typically occured very shortly (less than
0.1s) after the paw first encountered the pellet. We aligned reaches
to the moment when the arm is outstretched. Hence, the outcome
was manifest and known around this time point. Thus, we defined the
post-outcome period (POP) as the 5-s time window beginning at the
outstretched arm.

Trial type definitions for in vivo physiology analysis

We defined a cued reach as any reach occurring within 3 s of the cue
onset. We defined an uncued reach as any reach occurring from 5 s to
16 s after the cue onset, awindow that also captures reaches occurring
before the onset of the next trial’s cue. As mice learned to respond to
the cue, cued reaches became restricted to the brief 400-ms window
immediately after the cue, but while mice were learning, there was
greater variability in the timing of the apparently cued reach. There-
fore, we did not analyse reaches between 3 s and 5 s after cue onset,
because they were ambiguously either cued atalong delay or uncued.
We defined a success as any reach resulting in successful pellet con-
sumption. We defined a failure as any reach not resulting in successful
pellet consumption, including cases when the mouse dropped the pel-
let, reached in a time window when the pellet was missing or reached
without dislodging the pellet.

Training and test sets

We aimed (step 1) to classify neuronal responses into different groups
and (step 2) to use these groups to decode the behavioural trial type
(that s, cued success, cued failure, uncued success or uncued fail-
ure) based on the neural activity (Fig. 5 and Extended Data Fig. 10).
To avoid any circular logic or studying noise, we divided the dataset
into training and test sets. The training set was a randomly selected
50% of trials acquired for each neuron of each behavioural trial type.
For example, if we recorded 50 cued success trials, 40 cued failure tri-
als, 30 uncued success trials and 60 uncued failure trials for neuron1,
thenthetraining set was arandom 25 cued success trials,arandom 20
cued failure trials,arandom15 uncued success trialsand arandom 30
uncued failure trials for neuron 1. We used these same trials for all other
neurons recorded simultaneously with neuron 1. The test set was the
other half of trials. We performed all of step 1 (classification of neurons
into different groups) based on the training set only (Extended Data
Fig.10). We then performed all of step 2 (decoding the behaviour based
ontheneural activity) based on the test set only (Fig. 5j-1). Hence, any
patterns detected by the grouping in step 1are only useful in step 2, if
these patterns are consistent across the training and test sets and do
not represent noise.

Two approaches to analyse the SPN activity patterns

We observed that some neurons were more active after asuccess than
after afailure, whereas other neurons were more active after a failure
than after a success. To investigate this observation more rigorously,
we took two different approaches to organizing the neural activity pat-
ternsof the recorded SPNs. Approach1wasfittinga GLM to the activity
pattern of each neuron, followed by clustering of the GLM coefficients
(Extended DataFig.10a-e). Approach 2 was performing atensor regres-
siontorelateatensor (or matrix) representing the activity patterns of
the neurons to the different behavioural conditions (Extended Data
Fig.10f-1). Both approaches ultimately provided a similar view of the
neural data, thatis, one group of cells was more active after asuccess,
and a second, different group of cells was more active after a failure,

consistent with our observation by eye. We explain each of these two
approachesin greater detail below. We used only trialsin the training set
forthe GLM fitting and tensor regression (see ‘Training and test sets’).

Generalized linear model

We built a GLM to analyse how behavioural events predict the neural

activity of eachrecorded neuron. The behavioural events were:

(1) Cue

(2) Distractor LED

(3) Reach (moment of arm outstretched)

(4) Successful outcome (moment of arm outstretched)

(5) Failed outcome is dropped pellet (moment of arm outstretched)

(6) Failed outcome is pellet missing (moment of arm outstretched)

(7) Cued successful outcome (moment of arm outstretched)

(8) Cued failed outcome is dropped pellet (moment of arm out-
stretched)

(9) Cued failed outcomeis pellet missing (moment of arm outstretched)

Webinned the neural activity into 0.1-s time bins, and we represented
eachbehaviouraleventas1'sor O’sacross the 0.1-s time bins. We shifted
each of the nine behavioural events in time steps of 0.1 s to produce
moretime-shifted behavioural events (from 2 sbeforethe eventto5s
after the event, 9 x 71 = 639 time-shifted behavioural events). We then
used a custom code in Python wrapping scikit-learn to find a weight
or GLM coefficient (Extended Data Fig. 10a) associated with each of
these time-shifted behavioural events. We used a linear link function
between the time-shifted behavioural events and the neural activity. To
fit the GLM, we used fivefold cross-validation and held out 10% of the
datafortesting. Theresulting GLM coefficients attempted torelate the
time-shifted behavioural events to the neural activity. The coefficients
associated witheach type of behavioural event provide a picture of how
that behavioural event predicts neural activity in time. To get the coef-
ficients for afailed outcome, we averaged the coefficients for the two
types of failures, (A) dropped pellet and (B) reach to a missing pellet.

Our goalis to find a GLM that is a good fit to the data. We used regu-
larization to prevent overfitting. Regularization adds a penalty that
is afunction of the magnitude of the GLM coefficients. Hence, with
regularization, more parsimonious solutions are preferred. There are
differentapproaches toregularization. We performed a hyperparam-
eter sweep over various regularization parameters to find the regulari-
zation parameters resulting in a GLM with the highest R? regression
score function (coefficient of determination):

R%*=1- %

SStot

whereSS, . is the sum of squares of residuals after subtracting the model
fit,and SS,, is the total sum of squares (proportional to the variance of
thedata). These tworegularization parameters were used: aand I1_ratio.
At a =0, thisis ordinary least squares, and there is no regularization
ofthemodel. At a # 0 and I1_ratio = O, this isRidge regression. At a # O
andl1_ratio =1, thisis Lassoregression. Otherwise, we used ElasticNet
(see scikit-learn documentation). We tested o = 0 and all combina-
tions of values for the regularization parameters: « = [0.01,0.1,1] and
11_ratio=[0,0.1,0.5,0.9,1]. We performed this hyperparameter sweep
and fit the GLM separately for each neuron. All code is freely available
on GitHub (https://github.com/kimerein/k-glm).

Clustering the GLM coefficients in the POP

To study whether there is neural activity in the striatum that repre-
sents boththereach outcome and its context, we considered the GLM
coefficients assigned to the POP (Extended Data Fig. 10b). The POP is
the time period after the arm is outstretched (see ‘Definition of the
post-outcome period’) and continuing for 5 s. We took the GLM coef-
ficients from O sto 5 s for each of these four behavioural events:
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(1) Successful outcome (success)

(2) Failed outcome (failure)

(3) Cued successful outcome (cue x success)
(4) Cued failed outcome (cue x failure)

We called the POP coefficients for each of these behavioural events
a ‘kernel’. We smoothed the kernels with a 0.08-s time bin, then
max-normalized the kernels. Note that there are now four kernels per
neuron. We concatenated the four kernels to make a data vector foreach
neuron. We considered only neurons with POP coefficients greater than
zero. (The excluded neurons had GLM coefficient assignments related
to other behavioural events, for example, the cue, or GLM coefficient
assignments before the POP period but no GLM coefficient greater than
zero in the POP period for the four behavioural events listed above.)
Finally, we performed k-means clustering of these vectors to parti-
tion them into two clusters (see ¢-distributed stochastic neighbour
embedding (t-SNE) with labels ‘Clust 1" and ‘Clust 2’ in Extended Data
Fig.10d).For visualization purposes only, we plotted these two clusters
inalow-dimensional space using t-SNEin MATLAB (t-SNE parameters:
Euclidean distance, perplexity = 150; Extended Data Fig. 10d).

Setting up the tensor regression

We used only the training set to train the regression and later validated
using the test set. The goal of the tensor regression (Extended Data
Fig.10f-1) was to predict the behavioural condition (that is, cued suc-
cess, cued failure, uncued success or uncued failure) from the neural
activity. Themodel can be considered a multilinear (3D) reduced-rank
multinomial regression. We attempted to predict the current behav-
ioural condition from the neural activity of the 1,000 SPNs. Typically,
thereis notauniquesolutionto this problem, so model comparison was
used to choose arank for the model. Backpropagation via the ADAM
optimizer was used to optimize the coefficient weights.

Furthermore, we aimed to find interpretable patterns in the data.
Hence, we searched for a regression that could be decomposed into
alow-rank sum of rank-1 outer products (that is, a Kruskal tensor).
Thus, we searched for a low-dimensional representation that cap-
tures the major features of the relationship between the behavioural
condition and the neural data. The low dimensionality of this repre-
sentation or decomposition simplifies ourinterpretation of theregres-
sion and improves the interpretability of the solution found by the
optimization algorithm.

We set up the regression as follows. For simplicity, we trial-averaged
theresponses of each neuron within each of the four behavioural condi-
tions (Extended Data Fig. 10f):

(1) Successful outcome (success)

(2) Failed outcome (failure)

(3) Cued successful outcome (cued success)
(4) Cued failed outcome (cued failure)

We then time-shifted the failure responses (2 and 4 above) to align
the timing of the dopamine dip after a failure (approximately 1.6 s
after the arm outstretched) to the timing of the dopamine peak after
asuccess (approximately 0.83 s after the arm outstretched). Although
dopamine was measured in a separate group of mice by dLight fibre
photometry, we observed that the timing of the post-success dopamine
peak and post-failure dopamine dip were quite consistent across mice
(not shown). Therefore, we chose the timing of the peak or dip from
the averaged data across mice and used those time points to shift the
neural data before the tensor regression.

We did not have a trial dimension, because we trial-averaged. For
each behavioural condition, there were N neurons by T time points.
Putting together the four behavioural conditions, we ended up with a
3D matrix with dimensions, Nneurons by Ttime points by Cbehavioural
conditions (Extended Data Fig. 10g). This 3D matrix, or tensor, was the
input to the regression.

We performed a multinomial logistic regression, because we are
trying to predict a categorical variable, not a numeric variable, in
this case. The categorical variable is the behavioural condition (that
is, cued success, cued failure, uncued success or uncued failure). We
used custom code wrapping PyTorch in Python to regress the behav-
ioural condition on the input matrix. The output of the modelisin the
formof aKruskal tensor, thatis, aset of components, where each com-
prised three 1D vectors, or factors: an N-dimensional, T-dimensional
and C-dimensional vector. Taking the outer product of each set of vec-
tors and summing the resulting 3D arrays makes a rank-R beta weight
tensor. Theinner product of the input tensor with this beta weight ten-
sor produces the output logits for the multinomial regression model.
Vectors in the Kruskal tensors can be thought of as the weights, or
loadings. By considering these vectors, we can observe the loadings
onto eachmodality (thatis, neurons (Extended Data Fig. 10j, left), time
points (Extended Data Fig. 10j, middle) and behavioural conditions
(Extended Data Fig. 10j, right)). We enforced a non-negativity constraint
onthe optimized Kruskal tensor weights corresponding to the neuron
vectors (thatis, factors) only. The other two vectors (that s, factors for
time points and behavioural conditions) were allowed to be positive,
negative or zero valued. The final tensor regression model was selected
to be of rank 2 and thus produced 2 components (see ‘Selecting the
rank of the tensor regression’). One component was associated with
aspecific pattern of activity after asuccess versus failure. The second
component was associated with a different pattern of activity after
asuccess versus failure. These two components tended not to share
neurons (Extended Data Fig.10j, left), suggesting that they represented
two different groups of cells. All code is freely available on GitHub
(https://github.com/kimerein/tensor_regression).

Tensor regression optimization

Werandomlyinitialized the Nneurons by Ttime points by Cbehavioural
conditions tensor, which represents the regression (see ‘Setting up
thetensorregression’), by sampling the parameters from the uniform
distribution between 0 and 1, scaled by a constant. This constantis a
hyperparameter called Bcp_init_scale in the code (see https://github.
com/kimerein/tensor_regression). We set Bcp_init_scale to 0.625. We
then optimized the tensor, using a learning rate of 0.007 and mini-
mizing the cross-entropy loss using the ADAM optimizer (see torch.
nn.CrossEntropyLoss and torch.optim.Adam), until convergence.

Tensor regression regularization

We used Ridge (L2) regularization, which adds a penalty proportional
to the squared magnitude of the parameters. This penalty is added
to the loss function, which the optimization attempts to minimize
(see ‘Tensor regression optimization’).

Selecting the rank of the tensor regression

Before running the optimization, we must manually select the rank,
or number of components, of the tensor regression (Extended Data
Fig.10h,i). The rank canbe thought of as roughly analogous to the num-
ber of componentsin principal components analysis or reduced-rank
regression. To choose the rank, we re-ran the tensor regression optimi-
zation many times, obtaining a solution with a different rank each time.
Were-ranthetensor regression optimization tentimes for each of the
followingranks:1,2,3,4 and 5. We present the results in Extended Data
Fig.10h,i. First, we found that the loss (we used the cross-entropy loss;
see torch.nn.CrossEntropyLoss) was not much worse when the solution
was atwo-rank solution versus a three-rank, four-rank or five-rank solu-
tion (Extended DataFig.10i). Therefore, we chose to present atwo-rank
solution (Extended Data Fig.10i, arrows), whichis simpler tointerpret.

Choosing a specific tensor regression solution
Next, we considered the ten different, two-rank solutions produced by
running the tensor regression optimization ten times. We noticed that
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onesolutionloaded the two components onto two different and largely
non-overlapping groups of neurons. We measured the overlap as the
‘jointloading penalty’,/, defined as the pairwise sum of factor loadings
onto the same neuron over the pairwise difference of factor loadings
onto the same neuron (Extended Data Fig. 10j), that is,

Y nen Zijer Wit Wl
D nen Zijer W= Wl

J=

where nisaneuroninthesetofneuronsN;i,jare pairs of factorsinthe
set of factors Fgiveni#j; and w,, ; is the loading (or weight) of factor i
onto neuron n for the N-dimensional ‘neuron’ vector component of
theKruskal tensor. Note that w,, ; is always positive, as described above
(‘Setting up the tensor regression’). Hence, as the response of aneuron
is described more unevenly by the different factors belonging to dif-
ferent components, the penalty / decreases. We chose the solution to
the tensor regression optimizationthat minimized/. This was asolution
that loaded the neuron factors of two components onto two largely
separate and non-overlapping groups of neurons (Extended Data
Fig.10h, arrow). Note that this solution also utilized the two compo-
nents equally overall, as measured by the ‘component weight’, that is,
the sum of the absolute value of all mean-subtracted parameter weights
(Extended DataFig.10i, arrows).

Validation of tensor regression

The tensor regression describes the relationship between the neural
data and the behaviour based on the training set. To validate our ten-
sor regression, we asked whether this solutionis useful to describe the
relationship between the neural data and the behaviour for the test
set. The test set contains a set of trials independent from the training
set. We used the tensor regression to predict behavioural successes
versus failures from the neural activity of the test set. The regression
correctly predicted behavioural successes versus failures for the test set
(Extended Data Fig.10k), suggesting that there is something detected
by theregression thatis consistent across the training and test sets. We
shuffled the neuronID, and this markedly degraded the prediction. We
shuffled the time points, and this dramatically degraded the predic-
tion. Shuffling both neuron ID and time points further degraded the
prediction (Extended Data Fig. 101).

The simpler approach to the neuron groups1and2

Both approaches (approach 1: clustering GLM coefficients, and
approach 2: tensor regression) produced two groups of neurons, which
have different response properties. We analysed these two groups of
neurons, populatingall parts of Fig. 5, based on each approach, and we
foundthateither approach (approach1: clustering GLM coefficients, or
approach 2: tensor regression) produced qualitatively similar results
(notshown). However, we decided to use asimpler approach (Extended
Data Fig.10m,n) to separate the neurons into two groups for our pres-
entation in Fig. 5. All approaches revealed consistent structure in the
datathatwasableto predict the behaviour from the neural activity. We
arrived at this simpler approach as follows. We observed that compo-
nent1from the tensor regressionindicated higher activity that tends
to decrease after a success (Extended Data Fig. 10j). We captured this
pattern using the ‘modulation index’ after a success (Extended Data
Fig.10m). The modulationindex, m, was defined as

_ C2t05s~ Coto2s
|62t055| + |COt025|

wherec,  s;isthe average GLM coefficient from2 sto 5 s after thearm
is outstretched, and cq, 5 is the average GLM coefficient from O s to
2 s after the arm is outstretched. For a success, we calculated mg,c e
for the success GLM coefficients and meq success fOr the cued success
GLM coefficients. We averaged My, ccess AN Myed success O g€t the mod-
ulation index after a success, presented in Extended Data Fig. 10m,n.

We also observed that component 2 from the tensor regression indi-
cated slightly increasing and sustained activity after afailure (Extended
Data Fig. 10j). We captured a pattern of sustained modulation after a
failure using the ‘sustained metric’ (Extended Data Fig.10m). The sus-
tained metric, s, was defined as

s=lc1to0sdl

wherec,, 5;is the average GLM coefficient from1sto5safterthearm
is outstretched. We calculated s, for the failure GLM coefficients
and Seq raiture fOT the cued failure GLM coefficients. We averaged Seiure
and S,eq railure tO g€t the sustained metric after a failure, presented in
Extended Data Fig.10m,n. The k-means clustering of GLM coefficients
produced a division that qualitatively matched these observations
(see purple versus cyan dots representing neurons in Extended Data
Fig.10n, top). For simplicity, we decided to just draw a line that sepa-
rated the purple neurons from the blue neurons in Extended Data
Fig.10n, bottom. We used this line to divide neurons for the analysis
presentedinFig.5. Both of the more complicated approaches (that s,
clustering GLM coefficients and tensor regression) motivated our
decisiontouse thisline (and not some other boundary) to separate the
neuronsin Fig.5into two groups. Only the datain the training set was
used to draw the separation boundary in Extended Data Fig. 10n,
bottom, whereas conclusions about its utility were drawn from its
application to the test set.

Decoding the behaviour from average unit firing rates

We used only the test set to attempt to decode trial identities (Fig. 5k).
To determine whether the neural activity of SPNsinthe POP encodes
the four behavioural conditions, that is, cued success, cued failure,
uncued success or uncued failure, we measured, in each of these
behavioural conditions separately, the trial-averaged firing rate of
each SPN over the time window 1-5 s after the outstretched arm. We
excluded the 1-s window immediately after the outstretched arm to
ensure that the cue offset precedes the analysed time window by
more than 0.75 s (Fig. 5i). We were not interested in the immediate
cue-evoked response but rather whether the cue information con-
tinues to berepresented after the outcome is known. We considered
neurons belonging to either group 1 or group 2, as classified by the
methods described above using only the training set for the classifica-
tion. Weranabootstrap with 100 iterations to plot how group 1versus
group 2 neuronal firing rates represent the four behavioural condi-
tions (Fig. 5k). At each iteration of the bootstrap, from the group 1
neurons, we randomly sub-sampled n neurons with replacement, and
fromthe group 2 neurons, we randomly sub-sampled nneurons with
replacement. We then averaged the firing rates of all group 1 neurons
and plotted this as the value along the y axis in Fig. 5k. We averaged
the firing rates of all group 2 neurons and plotted this as the value
alongthexaxis in Fig. 5Sk. There were four behavioural conditions for
each sub-sampled set of n neurons. Hence, the 400 points in Fig. 5k
represent the average firing rates of group 1 versus group 2 neurons,
for each of the behavioural conditions. We found that this mapping, at
least partially, separated the cued successes from uncued successes,
and both success types from failures. To quantify the quality of this
separation, we used linear discriminant analysis (LDA) to attempt
a three-way separation of behavioural conditions (cued success
versus uncued success versus failure) based on the points in Fig. 5k.
We measured the accuracy of the LDA prediction. Higher prediction
accuraciesindicated better separation. We reported the accuracy of
the LDA prediction for different numbers of neurons sub-sampled,
n (Fig. 5k, bottom-right).

Shuffled average unit firing rates
To determine whether the separation of neurons into groups 1and 2
provides any meaningful information, we took all neurons identified
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asbelongingtogrouplorgroup 2, thenshuffled theidentities of these
neurons before attempting the decoding of the behavioural condition
from the neural activity. Figure 5k, top right, shows what happens as
aresult of this shuffling. Note that successes, and, in particular, the
uncued success, are no longer separable from failures. The shuffle
decreased the separation of the four behavioural conditions and the
quality of the decoding. This indicates that the assignment of neurons
into groups1or 2 provides added information that helps to decode
the current behavioural condition. However, note that some infor-
mation remainsin the activity of all the neurons combined (along the
diagonal y = xin Fig. 5k, top right). We also performed a second type
of shuffle. For this second shuffle, we maintained the unit identities
but shuffled the average firing rates with respect to the behavioural
conditions. For example, if neuron 1 had average firing rates of 0.5, 2,
4 and O spikes per second for the four behavioural conditions of cued
success, cued failure, uncued success and uncued failure, respectively,
then after shuffling, neuron 1 had average firing rates of 4, 0, 0.5 and
2 spikes per second for the four behavioural conditions of cued suc-
cess, cued failure, uncued success and uncued failure, respectively. As
expected, this second shuffle also disrupted the decoding of the current
behavioural condition (Fig. 5k, bottom-right).

Decoding the behaviour from single-trial firing rates

Weused only the test set to attempt to decode trial identities (Fig. 51). As
described above, the average firing rates of the neurons could be used
todecode the behavioural condition (thatis, cued success, cued failure,
uncued success and uncued failure). To test whether single-trial firing
rates provided sufficient information to perform similar decoding, we
measured the firing rate of each neuron oneach trial averaged over the
time window 1-5 s after the outstretched arm. We ran abootstrap with
100iterations. We randomly sub-sampled n neurons with replacement
fromthe group1neurons,and we randomly sub-sampled n neurons with
replacement from the group 2 neurons. Then, we randomly sampled
onesingle trial from each unit, for each behavioural condition. For each
behavioural condition, we averaged the n single trials. We plotted the
average activity fromneurons belonging to group 1ontheyaxis (Fig. 51),
and we plotted the average activity from neurons belonging to group
2 on the x axis (Fig. 51). Therefore, there are 100 points plotted (100
bootstrapiterations) for each behavioural condition. We used LDA to
attemptathree-way separation of these points based on the behavioural
condition (cued success versus uncued success versus failure). We plot-
ted theaccuracy of the LDA prediction of the behavioural condition, as
afunction of the number of trials sub-sampled (Fig. 5I, bottom-right).

Shuffled single-trial firing rates

First, we shuffled the identities of the group 1 and group 2 neurons,
before attempting to decode the behavioural condition from neural
activity (Fig. 51, top right). This disrupted the decoding. Second, we
randomly permuted the time window-averaged firing rates of single
trials with respect to the behavioural conditions of those single trials
(Fig. 51, bottom right). This shuffle also disrupted the decoding.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Summary datasets are available at https://dataverse.harvard.edu/data-
set.xhtml?persistentld=doi:10.7910/DVN/QPQEC9. Example datasets
for running the code at this same location are also available. Because

the total amount of raw data is over 10 TB, and this volume is not well
supported by the Harvard Dataverse, we have not uploaded all raw
datato the Harvard Dataverse, but any raw data will be made freely
available on request to the corresponding authors. Source data are
provided with this paper.

Code availability

All custom codes are freely available on GitHub, as listed below. An
explanation of the top-level scripts, along with example datasets to
run the code are available at https://dataverse.harvard.edu/dataset.
xhtml?persistentld=do0i:10.7910/DVN/QPQEC9. The MATLAB analy-
sis code: https://github.com/kimerein/integrate-phys-and-beh and
https://github.com/kimerein/KR_Analysis_Toolbox; the Python GLM
code: https://github.com/kimerein/k-glm; the automated analy-
sis of reaching in low-speed video: https://github.com/kimerein/
reach-behavior-analysis and https://github.com/kimerein/reach-
Behavior; the multi-unit processing of data from Plexon and WHISPER
systems: https://github.com/kimerein/MU-analysis; the Python tensor
regression: https://github.com/kimerein/tensor_regression; photo-
metry acquisition: https://github.com/kimerein/photometry; the
Arduino code: https://github.com/kimerein/behaviorRig; Python
alignment of the high-speed video to events in behaviour: https://
github.com/kimerein/integrate-phys-and-beh; and UltraMegaSort
spike sorting: https://github.com/kimerein/Mat_Code/tree/master/.
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Extended DataFig.1|Behavior paradigm pairs optogeneticactivation of
corticostriatal neuronsinthevisual cortex with presentation ofafood
pellet obtained by aforelimbreach. a, Automated rig to train mice. Mice are
head-fixed atashortdistance fromthe food pellet. Food pellets are presented
and loaded automatically using stepper motors controlled by an Arduino.
Arduino also controls the timing of the LEDs and lasers for optogenetic
stimulation, triggers the LED distractor, and triggers high-speed video
acquisition. Two cameras: one labeled infra-red (IR) camera for low-speed,
continuousvideo acquisition, and one for high-speed 255 frames per second
(fps) video acquisition triggered at the beginning of each trial. Speaker masks
the sound of the stepper motors. CPU fan obscures the smell of the approaching
food pellet. Other food pellets mask the smell of the approaching food pellet.
Mirrors are positioned below and to the side of the mouse, enabling high-speed
3D tracking of the paw position using DeepLabCut. Entirerigisenclosedin

Cue
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s o ]
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Reach type # Sampled # Correct Fraction correct
Success 107 103 0.96
1/ Drop 94 86 0.91
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f Miss 91 89 0.98

large light-tight box to prevent the mouse from seeing food pellets. Inside of
the boxis pitch-black. b, Trial structure: Pellet movesinto positionin front of
themouse over1.28 s. Following a 0.22-s delay, cue turns on. 8 s later, pellet
movesout of reach. Future food pellets are loaded onto the back of the pellet
presenter disk. Random inter-trial interval (ITI) ranges from 0 to16.5 s (Methods,
“Training mice to associate acue with the food pellet”). ¢, Analysis of low-speed
video to monitor behavior events. Zones are drawn onto the video by user.
Behavior eventsidentified by signal processing of intensity signals within
these zones (Methods, ‘Processing the 30-fps video’). d-f, Example signals
fromzonesinc.Intensityinarbitrary units. d, Intensity increases when
forelimb entersreachzone.e, Intensity increases when pelletenters pellet
zone. f, Chewing produces periodic signal at -7 Hzin chewing zone. g, Accuracy
of automated classification of reach outcomes. “Correct” as compared to
human classifier.
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Extended DataFig.2|Optogeneticactivation of corticostriatal neurons
invisual cortexservesasthecue.a, Virusinjections toretrogradely label
striatum-projecting neuronsin visual cortex, called the cue neurons (Methods,
‘Virusinjection’). b, Histology of example mouse injected with AAV/retro
carrying Flp recombinase (red, FIp) into pDMSt bilaterally and injected with
AAV carrying FlpOn Channelrhodopsin2 (green, ChR) into the visual cortex
unilaterally. Green axons visible in pDMSt. ¢, Cue neuron cell bodies in visual
cortex (top row) and projection pattern of cue neuron axonsin striatum (next3
rows, with close-ups atright). Green arrow shows anterior-most extent of cue
neuronaxonsin only the medial-most part of striatum. d, Recordings in visual
cortexto verify optogenetic activation of ChR-expressing cue neurons. left,
Averagets.e.mfiringrate of all single units (SU) measured by multi-channel
extracellular electrophysiology in visual cortex (n = 640 SU from 5 mice). Blue
barrepresents the duration of LED illumination of visual cortex through a

thinned skull. Insets are data from different individual mice over same X axis
time window (Y axisrange: 0-7 Hz, 0-12 Hz, 0-12 Hz, 2-9 Hz, 1-11 Hz, from
top tobottom). right, Response of same neurons to the LED distractor, which
isan external visual stimulus with the same blue color and duration as the cue.
e, Cue- (left-most panel) or distractor- (middle-left panel) evoked change in
firing rates of allindividual SU across layers of the visual cortex, ordered from
superficialtodeep. Changeinfiringrateisthe averagefiringrate over 0.25s
justafterthe cue minus the average firing rate over 2 s just before the cue in
spikes per s (or aligned to distractor onset). (middle-right panel) Average cue-
(blue) or distractor- (orange) evoked change in SU firing rate across depths,
as min-subtracted, max-normalized and smoothed by 20 pm bin. (right-most
panel) Close-up of visual cortex (V1) histology showing ChR-expressing cue
neuronsinlayers5and2/3 (white arrows point to example cells).
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Extended DataFig. 3| Two distinct phases oflearning, motorlearningin
Phaseland associativelearningin Phase2.InPhasel, we train hungry mice
to performstereotyped forelimb reaches to obtain the food pellet. In this
phase, food pellets are presented at random times. In Phase 2, we train mice to
associate the cue with the presentation of the food pellet. Hence, in this phase,
micelearntoassociate the cue with the forelimbreach. a, Reach outcomes
from an example mouse over Phases1and 2. Each trialis one cue presentation.
Drop means the mouse dislodged the pellet but failed to consumeit. Miss
means the mouse reached but did not touch the pellet. Success means the
mouse successfully grabbed and consumed the pellet. Failures (drops and
misses) decrease during Phase 1 motor learning. No furtherimprovementsin
successratein Phase 2. b, 3D paw tracking at 255 frames per second (fps). left,

Average trajectory of reaches from Phase 2 sessions from an example mouse
(n=412reachesfrom3sessions). Allreaches aligned to the time when the
forepaw is part-way to the pellet during the initial ballistic movement of the
forelimb toward the pellet. right, Example single reaches during Phase 1from
the same example mouse, showing variable trajectories and anon-stereotyped
reach. ¢, Reaches from same example mouse as b during Phase 2 after pairing
the cue withthe food pellet. left, Example single reach trajectories overlaid.
right,Reachrate over time aligned to the cue (blue bar represents the cue). top
tobottom,Eachrowis adifferent example session frombeginner, intermediate,
and expert stages of learning about the cue. Note no further refinement of
reachtrajectories, despite the mouse shifting the timing of thereach to the
time window immediately after the cue.
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Extended DataFig.4|Mice attend to the optogenetic cue. All panels show
reachrateasinFig.1.a, Omitthe food pellet, but present the cue. Black: Pellet
presented. Orange: Pellet omitted on random trials. n = 11805 black trials,
1637 orange trials from18 mice. We excluded trials when the mouse dislodged
the pellet before the cue. b, Omit the cue, but present the food pellet. Black:
Cue turnson. Orange: Cue omitted on random trials. n =3268black trials,

246 orange trials from18 mice.c, Comparereachinginresponsetothe cue
withreachinginresponsetothe distractor LED. Black: Aligned to cue. Orange:
Aligned to distractor LED.n=3268black trials, 3268 orange trials from

18 mice. Video frames at right show that distractor LED isbrighter thanreal
cue.d,Responsetoared light cuein mice expressing the red-activatable opsin
ChrimsonRinvisual cortex. Poor visual detection of red lightinmice, yet the
micestilllearntorespond to the optogenetic cue.n =862 orange trials from

3 mice. e, Responsetothebluelight cue whenthe visual cortex doesnot
express the activating opsin Channelrhodopsin2, ChR. Orange: Aligned to
the cue, frommice thatlack ChRin visual cortex.n=3225orange trials from

4 mice.f, Inmicetrained torespondto thebluelight optogenetic cue, block
the thinned skull to preventblue light from accessing the brain. Video frames
atrightshow that the bluelight turns onbut does not penetrate the blocked
skull. Black: Control day before blocking the skull. Orange: The next day when
we blocked the skull. n=2357 black trials, 1733 orange trials from 18 mice.
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Extended DataFig.5|Method to optogenetically inhibit pDMSt.

a, Schematic sagittal section of mouse brain at medial-lateral position shown
byredlineininsetbox atbottom-left.Injectionsintoadouble transgenic
mouse expressing Crein Nkx2.1+striatal interneurons and red-activatable
Channelrhodopsin (ReaChR), where ReaChR expressionis conditional on
Crerecombinase and Flprecombinase being presentinthecell. Thus, Flp
injectionsinto pDMSt produce ReaChR expression only in the Nkx2.1+ striatal
interneurons of pDMSt. Close-up circle: Striatal interneurons (red) project to
and inhibit the striatal projection neurons (black), which represent the sole
output of pDMSt. Hence, red light-mediated activation of striatal interneurons
isexpected to suppress pDMSt output. b, left, Example coronal section of
pDMSt showing immunohistochemistry for DARPP-32 marker of striatal
projections neurons (pink) ina Cre-dependent Zs-green reporter transgenic
mouseline that expresses Zs-green in the Nkx2.1+ striatal interneurons
(green). right, Expression of ReaChR-mCitrine (green) that results from AAV/
retro Flp-mCherryinjection (red) into pDMSt of double transgenic mouse line
describedina.c,Acuteinvitroslice electrophysiology to test whether ReaChR
activation of Nkx2.1+striatalinterneurons produces inhibitory synaptic
transmission onto striatal projection neurons (SPNs). left, Example whole-cell
voltage-clamp (V-clamp) recording from putative SPN in pDMSt. Black: Average
outward currentaligned tored lightillumination of slice expressing ReaChRin
Nkx2.1+striatal interneurons. Green: Gabazine block suggests that ReaChR-
evoked outward currentis GABAergic. right, Summary of short-latency, likely
monosynaptic outward currents across all putative SPNs (n =10) patched
within (black) or outside of (blue) ReaChR expression zone. Blue square

wasa cell with outward current delayed by 10 ms (not putative monosynaptic).
d, Invivo multi-channel extracellular electrophysiology in pDMSt to test
optogeneticinhibition of pDMSt. top, Schematic showing recordingin pDMSt
from awake mice experiencing blue light-mediated activation of visual cortex
cortico-striatal neurons as the cue and red light-mediated activation of striatal
interneurons toinhibit the striatal output neurons. middle, Spike waveforms
from4 neighboring electrode channels froman examplered light-activated
single unit, indicating no difference in that unit’s spike waveform when the

red laser was on (red) or off (black). Raster plot shows rows of vertical lines
indicating spiking activity. Eachrowis aligned tored light onset. Eachlineis
aspike. Red light trials wererandomly interleaved during the experiment
butareseparated here for visual clarity. Red bar shows duration of red laser
illumination of pDMSt. bottom, Peri-stimulus time histogram (PSTH)
illustrating the average activity of this example neuronin control trials (black)
versustrialswithredlaser (red). e, Meants.e.m.across single unitsin pDMSt

measured by invivo electrophysiology. Cue onsetat1s (blue bar shows cue
duration). Red bar shows duration of red laser illumination of pDMSt. top, Units
enhancedbyredlight (n =17 from 6 mice from sites within 0.7 mm of peak of
ReaChR expression). middle, Units that increased their activity after the cue
(n=17from 6 mice fromsites within 0.7 mm of peak of ReaChR expression).
bottom, All other units (n =99 from 6 mice from sites within 0.7 mm of peak of
ReaChRexpression). f, Spiking activity of single units in pDMSt from 8 beginner
and 2 expert mice comparing control conditions (X axis) to activity during red
laserillumination of pDMSt (Y axis). Units below the dotted line were
suppressed by red light. Colorsindicate the distance of the recording site from
the peak of ReaChR expression, determined post-mortem by comparing the
dye-labeled electrode recording track to the expression of ReaChR-mCitrinein
fixed post-mortemslices. Histology at top-right shows example visual cortex
(V1) axonsin pDMSt, for reference. Note that the spread of pDMSt inhibition
measured empirically matches well with the spread of V1axons in pDMSt. PSTH
insets toright of expert plot show meants.e.m. firing rate of all single units
within 0.5 mmor 0.7 mm of peak of ReaChR expression from 2 expert mice

(X axis unitis seconds).g, Behaviorin cue-trained mice (n = 3) comparing
reachinginresponse to the cue (top) versus reaching in response to the
optogeneticinhibition of pDMSt, in the absence of the cue (bottom).

h, Recordingsin visual cortex duringred lightillumination of pDMSt. Inset
schematic shows recordingin visual cortex while mice behave and experience
redlightillumination of pDMSt. Plot shows the average+s.e.mfiring rate across
allsingle units (SU) recorded in visual cortex, asin Extended Data Fig. 2d

(n =196 from 3 mice). Trials with cue plusillumination of pDMSt (red) are
overlaid on control trials with cue only (black). Cue onset at O s (blue bar shows
cueduration). Red bar shows duration of red laser illumination of pDMSt. Note
nodifferencein theactivity of the visual cortex, with or without the red laser
illumination of pDMSt. i, Changein firing rate of SU (n =196 from 3 mice) in
visualcortex, asin Extended DataFig.2e. Changeinfiringrateis average firing
rateover 0.25 sjust after the cue minus the average firing rate over 2 s just
before the cueinspikes pers. left, Trials with cue only. right, Trials with cue
plusredlaserillumination of pDMSt. j, Average cue-evoked change in SU firing
rateasinExtended DataFig.2e, but hereblackis the responsetothe cue
onlyandredistheresponsetothe cue plusredlaserillumination of pDMSt.

k, Comparing the two panelsiniacrossall SUin visual cortex. Inset scatter:
Firing rate difference for the cue-responsive units only. Inset histogram: For
cue-responsive units only, the change inrate when the red laser illumination

of pDMSt was added. Note only small changes distributed around zero.
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Extended DataFig. 6 | pDMStinhibition does not affect motor kinematics
of reach or subsequentrecall, but muscimol injections into superior
colliculus disruptrecall (i.e., the initiation of cued but not spontaneous
reaches afterlearning) in4 mice. a-f, In panels a-f, red represents trials with
pDMStinhibition over the1-s time window starting 5 ms before the cue, and
black representsinterleaved control trials. We observed no effects of pDMSt
inhibition on motor kinematics of the reach during or after learning; hence,
here we present a dataset combining days during and after learning. a, Reaction
time (t,,,) of first reach after the cue (t .. at t = 0). top, Probability density function
(PDF) of reaction times across all trials (n = 21858 control trialsand 15109
pDMStinhibition trials from15 mice). Inset: Close-up from O to1s. bottom, CDF
of reaction times. Comparison of black to red p-value is from the Kolmogorov-
Smirnov test. b, Outcome of first reach after the cue (n =21858 control trials
and 15109 pDMSt inhibition trials from 15 mice). ¢, Histograms showing the
durations of different epochs of the reach (n =24 randomly selected control
trials from 10 days from 2 mice, n =23 randomly selected pDMSt inhibition
trials from same 10 days from same 2 mice). top, Time from paw resting on the
starting perch to the paw touching the pellet. middle, Time for paw to close
around the pellet. bottom, Time tolift the pellet from the pellet presenter disk
into the mouth.d, 3D trajectories of individual reachesin the 1-s time window
immediately after the cue from 4 example sessions from 4 different mice.
e,Meanand standard deviation of raw reaching trajectoriesin X, Yand Z
dimensions for control trials (black) and during pDMSt inhibition (red).

f, Frequent pDMSt inhibition after learning does not affect memory recall.

Meants.e.mofreachrateacrosstrials, asin Fig.1, contingent on trial history.
Listabove plot shows pDMStinhibition or control on previous 6 trials. Black or
red color of plot shows pDMSt inhibition (red) or control (black) on current
trial. g-k, Mice were excluded if muscimolinjections caused acomplete loss
ofreaching, as cue-reach associative memory could not be assessed without
reaching behavior. g, Schematic showing the muscimolinjectioninto the
superior colliculus (SC) after mice learned the optogenetic cue. h, Example
injectionsite visualized with fluorescent dye (pink) ina post-mortem
histological section stained with DAPI (blue). i, Schematic of muscimol
injectionsitesin 2 of 4 mice (pinkand green). The other 2mice died before
dyeinjectionbut had stereotactically targeted injections (see Methods).
“O”indicates arecovered injection site froman excluded mouse that did not
learn cued reaching; however, spontaneous reaching was unaffected in this
mouse. “X” marksinjectionsitesin2 other excluded mice, which did not
recover spontaneous reaching within several hours after muscimolinjection
(Methods). j, Meants.e.m. of trials showing cued reaching responses across
days: pre-muscimol, muscimolinjection day, post-muscimol day, and saline
injection day. Dataare shown for the 4 mice that recovered spontaneous
reachingimmediately after muscimol injection. k, Summary of cued reachrate
(left), uncued reachrate (middle), and d-prime values (right) across 4 mice
comparing control days (including saline, shown as filled circles) to muscimol
days. Each dot represents one day; different colors and lines represent
individual mice. The p-values are from linear mixed effects models (Methods).
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Extended DataFig.7|Details of the mice experiencing pDMStinhibition at
every cue presentation throughout training. a, Histology and behavior from
mice experiencing pDMSt inhibition over 1-s time window starting 5 ms before
cueonsetatevery presentation of the cue over weeks of training. Schematic
sections with red boxes show brain locations of the histology below. Top row,
Visual cortex histology showing Flp-mCherry (red) and FIp-dependent ChR-
EYFP (green). Rows 2-4, Anterior to posterior sections of striatum showing
Flp-mCherry (red) and ReaChR-mCitrine (green). Bottom row, For each of the
3 example mice, two plots, one showing time window matching Fig. 3b, and
another showing extended time window continuing after the end of the red
laser toinhibit pDMSt. Left 2 columns labeled Example Mouse A, 5 of 9 mice
had bilateral expressionin pDMSt and failed tolearn to respond to cue (see
reachrate, bottom). Histology is from example mouse in this group. Middle 2
columnslabeled Example Mouse B, 3 of 9 mice had unilateral expressionin

pDMSt. All of these mice failed to learn to respond to cue. Right 2 columns
labeled Example Mouse C,10f9 mice had bilateral expressionin pDMStand
failed tolearn to reach within 400 ms time window immediately after the cue
butlearnedtoreachatalongtimedelay. b, Schematic of tip placement of
bilateral fibers for illumination of pDMSt across these 9 mice. Each colorisa
mouse. ¢, Schematic of green expression (ReaChR-mCitrine) in striatum across
these 9 mice.d, Meants.e.m.learning curves for control mice (never experienced
pDMStinhibition during learning, black) vs. mice that experienced interleaved
pDMStinhibition during learning (light pink). Only animals that ultimately
learned wereincluded, defined as those achieving a d-prime consistently
greater than 0.6 within40 days, asthe focus hereis onthe rate of learning.
Learning curves were smoothed using a15-day uniform bin. Note slower
learning when pDMSt inhibition was interleaved.
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Extended DataFig. 8| pDMStinhibitionimpairslearningbut notrecallofa
natural visual discrimination. a, Schematic of the external visual stimuli used
inthe paradigm: a cue paired withafood pelletand adistractor not paired with
the food pellet. Both stimuli were emitted fromthe same LED, with identical
spatial structure but distinct temporal profiles. The plot (right) shows the
temporal differences: the cueis aslow ramp of light over 0.5 s, while the
distractorisa 6 Hz flicker. The maximum LED power was 40 mW, delivered
throughalmm diameter fiber. Cue or distractor stimuli were presented
randomly but with approximately equal probability. Bilateral pDMSt inhibition
was applied during or after learning. b, Meants.e.m. of reach rates across trials
following the cue (blue) or distractor (orange) for training days1to4 and10 to15.
Top, control mice (n=from 5 mice, 3298/3136 cue/distractor trials for days1to 4,
3140/2361trials for days10 to15). Bottom, mice with pDMSt inhibition (1s,5 mW)
applied during every presentation of the cue or distractor (from 6 mice,
n=3092/2817 cue/distractor trials for days 1to 4,1939/1429 trials for days 10
to15).c, top, Changeinreachrateina400 mswindow after the distractor (X axis)
versus the cue (Y axis). Most control mice (black circles, n = 5mice) learned to
increase reachingafter the cue compared to the distractor, while mice with
pDMStinhibition (red squares, n = 6 mice) did not. Black squares show data
from pDMSt-inhibited mice after inhibition was removed, allowing recovery of
natural learning (n = Smice, recovery datanot collected from 1 mouse). Middle,
Histograms of the ratio of reach rates (cue to distractor) across training days 10
to15. Bottom, Histogram of the same ratio, averaged across days 10 to 15, for
eachmouse. P-values fromalinear mixed effects model (top) and Wilcoxon
rank-sum test (bottom). d, Baseline-subtracted reach rates (0.5 sbaseline)
following the cue and distractor during trials with pDMSt inhibition applied
after, notduring, learning (from 5 mice, n =1969/1418 cue/distractor trials).
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Extended DataFig. 9| Controlsfor trial-to-trial reinforcementbased on
the outcome, including backwards time control and alternative pDMSt
silencing approach. a, To test whether the trial-to-trial update observedin
Fig.4 is manifest forward but not backward in time, we measured the effect on
trialn+1ofthetrial outcomeontrial n +2.We compared trialn+1totrialn-1,
asinFig.4, buthere we considered trial sequences conditioned on the outcome
oftrialn+2.The behavioral experience ontrial n + 2 was: Left, Acued success
(n=2587trials from37 mice). Left-middle, A cued failure (n = 3198 trials from
37 mice). Right-middle, An uncued success (n =1660 trials from 37 mice). Right,
Anuncued failure (n = 6110 trials from 37 mice). b, Effect of trial n outcome on
thenexttrial, comparingtrialn +1totrialn-1,asinFig.4.Here wedivide
failures into two different types: the mouse grabbed then dropped the pellet,
or the mouse reached but failed to touch the pellet, called a miss. ¢, Effect of
varying the timing of pDMSt inhibition on trial n. Reachrate plotted asin
Figs.1-3.Note that pDMSt inhibition can sometimes evoke longer-latency

reaches (>250 msreaction time) when the inhibition does not begin simul-
taneously with the cue. This may occur because the mice learnto respond to
therebound from pDMStsilencing. In Fig. 4e,f, we compare the changein
behavior fromtrial n+1totrialn -1, contrasting control and pDMSt inhibition
conditions ontrial n. To ensure consistent reach timing, we only include trials
where thereachoccursinthe same timewindow on trial nfor both control and
pDMStinhibition conditions.d, Layout asin Fig. 4. Here the optogenetic
inhibition of pDMSt was by GtACR2 inhibition (Methods, ‘Optogenetically
inhibiting the pDMSt using GtACR2’). We used ChrimsonR to activate the cue
neuronsin visual cortexinthese mice. Blue dots are from the trials with GtACR2
inhibition. Gray dots are from the control trials.n =104 cued success control
trials, 88 cued success GtACR2 inhibition trials, 192 cued failure control trials,
279 cued failure GtACR2 inhibition trials, 91 uncued success control trials, 113
uncued success GtACR2inhibition trials, 228 uncued failure control trials, 248
uncued failure GtACR2 trials from 4 mice. Qualitatively similar results to Fig. 4.
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Extended DataFig.10|See next page for caption.
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Extended DataFig.10|Two approaches to cluster the pDMSt neuronal
responsesinthe post-outcome period, and nosignificant behavioral
difference after cued versus uncued successinthe post-outcome period.
Panels a-oshow neural activity. Panel p shows behavior. Panels a-e show the
firstapproach, ageneralized linear model (GLM). Panels f-l show the second
approach, tensor regression. This figure analyzes only putative striatal
projection neurons (SPNs) (Methods, ‘Identifying putative SPNs’). This figure
usesonly thetrainingset (half of the dataset) to cluster the pDMSt neuronal
responses. Fig.Suses the other half of the dataset (the test set) to decode
behavior fromneural activity.a, We builta GLM to describe how each neuron’s
activity relates tobehavior events (Methods, ‘Generalized linear model’).
AGLM attemptsto use behavior events to predict neural activity. Theresult
isasetof coefficients, or weights, assigned to each neuron for each behavior
event. These weights capture the pattern of that neuron’sresponseto the
behavior event. Below “Behavior”, we list the behavior events. Below “GLM”

and totheright of eachbehavior event, we show the resulting GLM coefficients.

Theseare the coefficients averaged across allneurons. O sis the time of the
behavior event. For “outcome: success”, “outcome: failure”, “cue x success”
and “cuex failure”, 0 sist,,,, themoment that the armis outstretched during
thereach.b, Note that the first three GLM coefficients (“cue”, “distractor”,
“reach”) arenotaligned to the outcome, soweignored them for subsequent
analysis. We took the GLM coefficients after an outcome (“outcome: success”,
“outcome: failure”, “cue x success” and “cue x failure”) in the post-outcome
period (>0s,gray shaded area). For each neuron, we made a vector that puts
together these 4 sets of coefficients. We call this vector the “outcome profile”
ofthe neuron. Neuronslacking any GLM coefficients greater thanzerointhe
post-outcome period do not have an outcome profile and were excluded.

We clustered the outcome profiles of all remaining neurons using k-means
clustering. ¢, The Davies-Bouldin Index (DBI) for different numbers of k-means
clusters. Lower values are better.d, The result of k-means clustering for 2
clusters. Each dotisone neuron. top, tSNE of the outcome profiles. bottom,
Same tSNE, but here neurons are colored according to which mouse brain
contained thatneuron. e, GLM coefficients after an outcome. Neurons missing
ifthey did not have any GLM coefficients greater than zeroin the post-outcome
period (Methods, ‘Clustering the GLM coefficientsin the POP’).f, Tensor
regression attempts to predict the behavior trial type (cued success, cued
failure, uncued success or uncued failure) from the neural activity of all
neurons together. Like principal components analysis (PCA), the tensor
regression produces multiple components. (See Methods, ‘Setting up the
tensor regression’ for more details.) Here we show the trial-averaged activity
ofall of the neurons sorted by component1>component 2 (top row) or
component2>component1(bottom row). Within each row, we further sorted
theneuronsaccording to the time delay of the peak response neara cued
success. g, Schematic describing tensor regression, i.e., regress behavior trial
type against neural activity, then represent the result as asum of components.
Each componentis the outer productof 3 rank-1tensors (more details in

Methods, ‘Setting up the tensor regression’). We ran an optimization to find
the tensor regression solution (Methods, ‘Tensor regression optimization’).
Thissolutionis not unique, so differentinitial conditions produce different
results. handisummarize the results over multiple optimizationruns.h, The
jointloading penalty penalizes solutions in which one neuronrelies too heavily
onmore than one component. We chose asolution with alow jointloading
penalty, whichis a parsimonious solution that loads different components
ontodifferentsets of neurons. (See Methods, ‘Choosing a specific tensor
regressionsolution’) i, We tried different numbers of components (Methods,
‘Selecting the rank of the tensor regression’). The 2-component solutions had
alosssimilar to the more complicated 5-component solutions. Therefore,

for simplicity, we selected a2-component solution.j, Result of the tensor
regression. left, Loadings onto neurons for component1(purple) versus
component2 (cyan). Note that the two components target largely non-
overlapping groups of neurons. middle, Loadings onto timepoints for
component1(purple) versus component 2 (cyan). right, Loadings onto
behavior trial types forcomponent1(purple) versus component 2 (cyan).

k, Todetermine whether the tensor regression simply clusters noise, we asked
thetensor regressionto predict the behavior trial type from the neural activity
inthetestset (see Methods, ‘Training and test sets’). Results are shownasa
confusion matrix for the training (left) and test (right) sets. 1, Shuffles
accompanyingKk. top left, Neuron ID shuffle. top right, Timepoints shuffle.
bottom left, Shuffle both neuron IDs and timepoints. bottom right, Shuffle
behavior trial type. m, Metrics tosummarize the post-outcome period

GLM coefficients (also see Methods, ‘The simpler approach to the neuron
groupsland?2’usedinFig.5).Sustained after failureis the absolute value
ofthe average coefficientin the time window1to 5 s after the time of thearm
outstretched, t,,,. Modulationindex (mod index) is the GLM coefficient
average from2to5 s minus the GLM coefficientaverage from 0 to 2 s after

t.m divided by the sum of these two quantities. n, Response of each neuron
summarized by the metrics explained in panel m. Each dotisaneuron. top,
Colorsare from Cluster1 (purple) and Cluster 2 (cyan) in panel d. bottom, For
simplicity, we drew aline to roughly separate the purple and blue neurons of
Clustersland 2. We used thisline to divide the neuronsinto two groups, called
Consensus Groupland Consensus Group 2. These Consensus Groups were
used to make Fig.5 (see more explanationin Methods, ‘The simpler approach
totheneurongroupsland?2’usedinFig.5).0, Average+ts.e.m.of GLM
coefficients across neurons. Neurons grouped into Consensus Group 1
(purple) and Consensus Group 2 (cyan). “Align” shows cue coefficients after
subtracting pre-cue baseline (i.e., t <0 s). p, Integral-normalized histograms
of behavior metrics from the post-outcome period. left, Chewing duration
after asuccessful reach, comparing cued to uncued successes. P-value from
Wilcoxonrank sumtestis 0.6. right, Number of additional, confirmatory
reaches after afailed reach, comparing cued to uncued failures. P-value from
Wilcoxonrank sumtestis 0.04.n=3685 cued successes, 916 uncued successes,
4724 cued failures, 2414 uncued failures from 17 mice.



nature portfolio

Corresponding author(s): Bernardo Sabatini

Last updated by author(s): Feb 13, 2025

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

)
Q
—
(e
(D
©
O
=
s
<
-
(D
o
O
=
>
(@)
wn
[
3
=
Q
A

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
/N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

XI A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
/N Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

000 0 OO0 00dOs

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  All custom code available at https://github.com/kimerein. Arduino code for behavior rig at https://github.com/kimerein/behaviorRig.
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Multi-unit processing of data from Plexon and WHISPER systems:
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Sample size Fig. 1: no pre-determination of sample size; choice of sample size: initially, we trained 6 mice in the behavior to ensure that animals could
learn, but in the figure, we include the relevant mice collected after training mice for 4 years; sample size is sufficient, because clear
differences in reaching across stages of learning. Fig. 2: no pre-determination of sample size; choice of sample size: we included all relevant
mice after collecting data for 4 years; sample size is sufficient to see changes from first to second half of session, yet no observed change
between control and interleaved pDMSt inhibition trials. Fig. 3: choice of sample size: we predetermined the sample size of mice in each
cohort based on the max behavioral throughput given available experimenters; control and pDMSt silencing mice were run concurrently in
batches of control plus pDMSt silencing mice; sample size is sufficient to see a learning deficit in pDMSt silencing mice (see Fig. 3 for
statistics). Fig. 4: no pre-determination of sample size; choice of sample size: we included all relevant mice after collecting data for 4 years;
sample size is sufficient, because bootstrap analysis indicates similar results and variability when we analyze the group of 37 mice or analyze
the group of 11 mice, and hence adding more mice does not change the result. Fig. 5: no pre-determination of sample size; choice of sample
size: after building a physiology rig, we recorded from all mice passing through the behavior pipeline over more than a year, before we
switched to analysis of this data set without knowing the results; sample size is sufficient, because successful decoding of behavior condition
indicates that sufficient data was acquired to decode held-out test data.

Data exclusions  Fig. 1:includes only mice that learned the task, excluding mice that failed to learn (but all mice are shown in final panel of Fig. 3), as planned.
Fig. 2: all relevant mice and sessions included, as described in figure legend. Fig. 3: one mouse missing from recovery, as this mouse died. Fig.
4: all relevant mice included, except 5 mice were excluded from all analyses throughout the paper, because the behavior rig was not set up
properly (as explained in Methods). Fig. 5: all relevant mice included.

Replication Fig. 1: most mice learned the task, but others did not (Fig. 3 final panel shows all of the control mice that we attempted to train, including
mice that failed to learn). Fig. 2: for in vivo physiology, we measured pDMSt silencing in two separate cohorts of mice recorded on different
physiology rigs separated in time by more than one year -- hence, the pDMSt silencing method replicates; Fig. 2 suggests that the lack of
effect of pDMSt silencing at the end of the session replicates across mice. Fig. 3: experimenters were blinded to genotype, and figure made
with all relevant mice, but no specific replication of this result with another group of mice. Fig. 4: included all mice (n=37 mice), but no specific
replication using another group of mice. Fig. 5: included all mice, and decoder trained on cross-validated data and tested on held-out data set.

Randomization | Genotype of the animal determined its belonging to the control or experimental (pDMSt silencing) group. We used mice as available including
the double transgenic pDMSt silencing mice (Nkx2.1-Cre X ReaChR), preferring to use transgene-negative cage mates as the paired controls.

Blinding Experimenters were blinded to animal genotype in Fig. 3. There was no blinding to genotype in the other figures, but note that training with
the cue is automated and open-loop with little opportunity for experimenter influence.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |:| ChiIP-seq

|:| Eukaryotic cell lines |:| Flow cytometry

|:| Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
|:| Human research participants
|:| Clinical data

|:| Dual use research of concern
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Antibodies
Antibodies used DARPP-32: Novus Biologicals primary antibody (Product # NB110-56929), GFP: anti-GFP from abcam (Product # ab13970), Anti-
chicken: secondary antibody conjugated to Alexa488 from ThermoFisher (Product # A-11039), Anti-rabbit: secondary antibody
conjugated to Alexa594 from ThermoFisher (Product # A-11012)
Validation DARPP-32: There are no validation statements on the website, and we did not specifically validate the antibody. GFP: The abcam

website states that the product was tested and does not cross-react with other proteins that differ from GFP by just a few point
mutations (e.g., YFP). Anti-chicken: ThermoFisher website cites 2722 references. Anti-rabbit: ThermoFisher website cites 3293
references.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals 65 males and 62 females, including WT, Nkx2.1-Cre transgenic mouse line (Jackson Labs Stock #008661), Cre-On and Flp-On ReaChR
transgenic mouse line (R26 LSL FSF ReaChR-mCitrine, Jackson Labs Stock #024846), Adora2a-Cre (GENSAT B6.FVB(Cg)-Tg(Adora2a-
cre)KG139Gsat/Mmucd), D1-Cre (GENSAT B6.FVB(Cg)-Tg(Drd1a-cre)EY262Gsat/Mmcd). All mice (all strains) were initially injected
between 2 and 6 months of age and trained 3 weeks after virus injection. Some animals continued to participate in the behavior up
to 1.5 years of age.

Wild animals no wild animals
Field-collected samples  no field-collected samples

Ethics oversight President and Fellows of Harvard College IACUC

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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