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Moiré materials based on M-point twisting

Dumitru Călugăru1,2,17, Yi Jiang3,17, Haoyu Hu1,3,17, Hanqi Pi3,4,5,17, Jiabin Yu1,6, 
Maia G. Vergniory3,7,8, Jie Shan9,10,11, Claudia Felser12 ✉, Leslie M. Schoop13, Dmitri K. Efetov14,15, 
Kin Fai Mak9,10,11 & B. Andrei Bernevig1,3,16 ✉

When two monolayer materials are stacked with a relative twist, an effective moiré 
translation symmetry emerges, leading to fundamentally different properties in the 
resulting heterostructure. As such, moiré materials have recently provided highly 
tunable platforms for exploring strongly correlated systems1,2. However, previous 
studies have focused almost exclusively on monolayers with triangular lattices and 
low-energy states near the Γ (refs. 3,4) or K (refs. 5–9) points of the Brillouin zone (BZ). 
Here we introduce a new class of moiré systems based on monolayers with triangular 
lattices but low-energy states at the M points of the BZ. These M-point moiré materials 
feature three time-reversal-preserving valleys related by threefold rotational symmetry. 
We propose twisted bilayers of exfoliable 1T-SnSe2 and 1T-ZrS2 as realizations of this 
new class. Using extensive ab initio simulations, we identify twist angles that yield flat 
conduction bands, provide accurate continuum models, analyse their topology and 
charge density and explore the platform’s rich physics. Notably, the M-point moiré 
Hamiltonians exhibit emergent momentum-space non-symmorphic symmetries and 
a kagome plane-wave lattice structure. This represents, to our knowledge, the first 
experimentally viable realization of projective representations of crystalline space 
groups in a non-magnetic system. With interactions, these systems act as six-flavour 
Hubbard simulators with Mott physics. Moreover, the presence of a momentum- 
space non-symmorphic in-plane mirror symmetry renders some of the M-point moiré 
Hamiltonians quasi-one-dimensional in each valley, suggesting the possibility of 
realizing Luttinger-liquid physics.

Moiré heterostructures have recently emerged as versatile quantum 
simulators of archetypal condensed matter models1,2. When two iden-
tical or nearly identical monolayers are twisted, the resulting moiré 
modulation of the interlayer potential gives rise to an effective moiré 
discrete translation symmetry. In the moiré BZ, the moiré-modulated 
interlayer hybridization opens gaps in the folded band structure, 
quenching the kinetic energy of the monolayer electrons10. The moiré 
system thus enters an interaction-dominated regime, providing a tun-
able platform for simulating various prototypical condensed matter 
systems. A notable example is twisted bilayer graphene5, which hosts 
unconventional superconductors11 and correlated insulators12 near 
the magic angle and has recently been shown to simulate topological 
heavy-fermions13,14. Transition-metal dichalcogenide (TMD) heterobi-
layers can emulate the Hubbard model on a triangular lattice7,15, whereas 
twisted WTe2 exhibits signatures of a one-dimensional Luttinger liquid, 
although its theoretical description remains challenging owing to 
the complex monolayer band structure16. Beyond these examples, 
a growing body of theoretical and experimental work has explored 

other exotic phases in TMDs17–22. Furthermore, both integer and frac-
tional Chern insulator states have been reported in moiré TMD23–30, 
graphene31–33 and graphene–boron nitride heterostructures34–37.

Until now, nearly all moiré heterostructures have been based on 
twisting monolayers with triangular lattices and low-energy states 
near the Γ (refs. 3,4) or K (refs. 5–9) points, leading to systems with 
one or two valleys (in the two-valley case, time-reversal exchanges 
the valley). This work introduces a new family of moiré materials by 
twisting monolayers with triangular lattices and low-energy states 
around the M point of the BZ. These M-point moiré systems feature 
three time-reversal-preserving valleys related by C3z rotation symme-
try. Building on extensive ab initio calculations, we propose (among  
others38) experimentally exfoliable twisted SnSe2 and ZrS2 as promising 
platforms for realizing M-point moiré heterostructures. We develop 
quantitative simplified models for these systems and perform a detailed 
analysis of the band structure, topology and charge density of the flat 
bands at the predicted small twist angles. We show analytically that 
M-point moiré Hamiltonians exhibit a new type of symmetry, termed 
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momentum-space non-symmorphic39–43. In crystallography, space 
groups are symmorphic or non-symmorphic, depending on whether 
they include symmetry operations that translate the origin by a frac-
tion of the lattice vectors. Although in real space conventional crys-
talline groups can feature both symmorphic and non-symmorphic 
operations, in momentum space, all conventional crystalline groups 
exhibit only symmorphic operations. M-point moiré systems are 
the first experimentally realizable non-magnetic systems to exhibit 
momentum-space non-symmorphic symmetries, all without requir-
ing an applied magnetic field in the range of thousands of Tesla39–41. 
In a single valley, these non-symmorphic symmetries can render the 
system effectively one-dimensional at the single-particle level, making 
M-point moiré systems prime candidates for Luttinger-liquid simula-
tors16,44. With all three valleys considered, they can realize a multi-orbital 
triangular lattice Hubbard model (H. Hu et al., to be published), in which 
valley-spin local moments couple differently along the three C3z-related 
directions, in a manner reminiscent of Kitaev’s honeycomb model45.

M-point moiré models
For triangular monolayer lattices, the moiré lattice is also triangu
lar, generated by the reciprocal lattice vectors b M1

 and M2
b  (see  

Supplementary Information Section IV). These vectors span the  
moiré reciprocal lattice b bZ ZQ = +M M1 2

, as depicted in Fig.  1a.  
In general, the single-particle Hamiltonians of moiré systems take  
the form of a hopping model in momentum space. This arises because 
the moiré potential breaks the monolayer translation symmetry and 
couples momentum states that are connected by reciprocal moiré 
vectors. The single-particle moiré Hamiltonian can be written 

̂ ̂H ∑ h c c= [ ( )]i j ij i j, , ′, , , ′ , ,
†

, ′,kk Q Q Q Q k Q k Q , in which k Q̂c i, ,
†  denotes the moiré 

plane-wave operators at moiré momentum k, and i denotes a combined 
index comprising orbital, spin, valley, layer or other further degrees 
of freedom.

When the low-energy fermions of the monolayer are located at the 
Γ point3,4, the operators k Q̂c i, ,

†  carry total momentum k − Q and the 
Q-vectors lie on the triangular lattice shown in Fig. 1a. In the case of a 
monolayer with low-energy states located at the K point5–7, the moiré 
fermions carry an extra valley index η = ±, in which the moiré Hamil
tonian is diagonal. The Q-vectors form a honeycomb lattice, as illus-
trated in Fig. 1b. The moiré and monolayer operators are related by 

̂ ̂c a=η i η l i, , ,
†

+ − , ,

†
l
K

k Q K k Q
 for ∈ ′ηlQ Q , in which ̂pa l i, ,

†  represents the monolayer 
operators from layer l = ± at momentum p and l

KK  is the K-point momen-
tum of layer l.

Distinctly, in M-point moiré materials, the Q-vectors form a kagome 
lattice, as shown in Fig. 1c. To be specific, the moiré operators in layer 
l—which, for the present case, include only an extra spin s = ↑,↓ index—
are related to the monolayer ones according to c c=s l C s l, , ,

†

+ − , ,
†

z
η l

3 M
k Q K k Q
̂ ̂ , 

for Q∈ η l+Q , in which Kl
M is the momentum of the monolayer M point. 

The three C3z-related valleys indexed by η = 0, 1 and 2 are implicitly 
encoded by the kagome sublattice to which Q belongs: the valley-η 
fermions are supported on the η±1Q  sublattices (in which η + l is taken 
modulo 3), as derived in Supplementary Information Section IV. As we 
will show, the kagome Q-lattice leads to substantially different proper-
ties of M-point moiré materials.

Materials realizations
We now turn to 1T-SnSe2 and 1T-ZrS2 as experimentally exfoliable mon-
olayers for realizing M-point moiré heterostructures (see Supplemen-
tary Information Section II). The monolayer crystal structure of both 
materials is shown in Fig. 2a,b and belongs to the P m3 11′ group, which 
is generated by translations, C3z rotations, in-plane twofold rotations 
C2x, inversion I  and time-reversal T  symmetries. The Sn (Zr) atoms 
form a triangular lattice, with the Se (S) atoms being located at the 
other C3z-invariant Wyckoff positions above and below the Sn (Zr) plane. 
The ab initio band structures of monolayer SnSe2 and ZrS2 shown in 
Fig. 2c,d reveal two insulators for which the conduction band minimum 
is located at the M point. The first isolated Kramers-degenerate con-
duction band of SnSe2 is atomic, being spanned by an effective s-like 
molecular orbital centred on the Sn atom. For ZrS2, the low-energy 
M-point states are contributed primarily by the d z 2 orbitals of Zr.

Moiré Hamiltonians
Because the SnSe2 and ZrS2 monolayers lack twofold out-of-plane rota-
tion symmetry (C2z), there are two distinct ways to stack and subse-
quently twist them by an angle θ to achieve a large-scale moiré 
periodicity. In the so-called AA-stacking configuration, the top (l = +1) 
and bottom (l = −1) layers are stacked directly on top of each other  
and then twisted by the layer-dependent angle lθ

2
. By contrast, for 

AB-stacking, the bottom layer is first rotated by 180° around the ẑ axis, 
before applying the lθ

2
 twist. As discussed in Supplementary Informa-

tion Section III, the two configurations have different crystalline 
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Fig. 1 | Momentum-space Q-lattices for twisted triangular lattice monolayers. 
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symmetries. Although both stackings feature C3z and T  symmetries, 
they differ in the direction of the in-plane twofold rotation symmetry: 
the AA (AB)-stacking arrangement has C2x (C2y) symmetry.

We perform large-scale ab initio calculations (which include relax-
ation effects) at commensurate twist angles 13.17° ≥ θ ≥ 3.89° (see 
Methods and Supplementary Information Sections III and VIII) and 
construct two types of moiré Hamiltonian model for each angle and 
stacking configuration according to the method outlined in Supple-
mentary Information Section IX. The first is a numerically exact model, 
which accurately reproduces a large set of spinful bands (at least the 
first five in each valley) in both energy and wavefunction. The second 
is an analytical approximate continuum model capturing the dis
persion and wavefunction of the first or first two (depending on the  
angle) lowest-energy spinful gapped bands (and, qualitatively, the 
higher-energy spectrum) in each valley. The comprehensive results 
at all angles are presented in Supplementary Information Section XI. 
Unlike the case of Γ-point or K-point twisting, ab initio simulations 
are crucial for obtaining even the correct qualitative moiré Hamilto-
nian. The two-centred first-monolayer harmonic approximation 
incorrectly predicts continuous translation symmetry along one 
direction (for example, along the C z

η
3 ŷ direction in valley η) and an 

overall gapless spectrum, as shown in Supplementary Information 
Section VI.

Figure 3 summarizes the ab initio results for twisted AA-stacked and 
AB-stacked SnSe2 and ZrS2 at low twist angle. Both stacking configura-
tions exhibit approximate spin SU(2) symmetry (see Supplementary 
Information Section IX) and feature two sets of spinful gapped bands 
in each of the three C3z-related valleys, as shown in Fig. 3a–d. The 
lowest-energy set of bands has a narrow bandwidth of around 10 meV. 
The charge density distribution (CDD) for the lowest two bands in val-
ley η = 0, shown in Fig. 3e–h, reveals that these moiré systems have 
approximate spatial symmetries beyond the exact valley-preserving 
C2x and C2y symmetries expected in the AA-stacked and AB-stacked 
configurations, respectively. For instance, the CDD of the first set of 
spinful bands in AA-stacked SnSe2, as well as the first two sets of bands 
in twisted ZrS2, feature an approximate twofold rotation symmetry 
(the second set of spinful bands in AA-stacked SnSe2 exhibits this 

symmetry to a lesser extent). In the AB-stacked configuration, the cen-
tre of the approximate C2z symmetry aligns with the unit cell origin, 
whereas in the AA-stacked case, the effective ∼C z2  rotation centre is 
shifted away from the unit cell origin and will be specified below. 
Moreover, the CDD suggests the presence of an approximate in-plane 
mirror symmetry, Mz . These effective symmetries (whose origin is 
explained below and in Supplementary Information Section VB) prompt 
us to construct simplified analytical continuum models that can  
capture and explain these features.

In valley η = 0, the simplified M-point moiré Hamiltonian can be 
expressed as
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in which mx and my are the anisotropic effective masses of SnSe2 and 
ZrS2 (see Methods). As shown in Fig. 4a,b, the moiré potential takes the 
form of a hopping model on two of the three sublattices of the kagome 
M-point Q-lattice. Explicitly, the simplified Hermitian moiré potential 
tensor exhibits spin SU(2) symmetry and includes only interlayer  
terms, given by Q Q Q q Q Q q q Q′T w w δ w δ[ ] = (±i + ) +ls l s, ′

AA
;(− ) 1

AA
2
AA

± , ′ 3
AA

±( − ), ′0 1 2
 

and Q Q Q q Q Q q q QT w δ w δ[ ] = + ′ls l s, ′
AB

;(− ) 2
AB

± , ′ 4
AB

±( − ), ′0 1 2
. The interlayer hopp

ing parameters, obtained by fitting to the ab initio band structure, are 
listed in Methods. The band structure of the simplified model for 
AA-stacked SnSe2 is shown in Fig. 4c, indicating excellent qualitative 
agreement with the ab initio results for such a small number of para
meters. In the simplified models, for both SnSe2 and ZrS2, the overlap 
between the fitted and ab initio bands is larger than 95% (85%) with the 
first (second) set of spinful bands, as we show in Supplementary  
Information Section XI.

Momentum-space non-symmorphic symmetries
The approximate symmetries inferred from the layer-resolved CDD of 
the M-point moiré Hamiltonian are exact symmetries in the simplified 
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moiré models from equation (1) (see detailed discussion in Supple-
mentary Information Section VI). Specifically, the centre of the effec-
tive twofold rotation symmetry C z2

∼  for the AA-stacked Hamiltonian is 
located at w warg(i + )

| | 1
AA

2
AAη

η
2

q

q
 in valley η. By contrast, the simplified 

AB-stacked moiré Hamiltonian exhibits C2z symmetry, with its rotation 
centre aligned with the origin of the moiré unit cell. Because both mod-
els are effectively spinless (owing to atomistic arguments presented 
in Supplementary Information Section XI) and exhibit either TC z2

∼  or 
TC z2  symmetry in each valley, the Berry curvature of any gapped set 

of bands is exactly zero. Consequently, the first two sets of bands of 
both the AA-stacked and AB-stacked moiré Hamiltonians are topo-
logical trivial and, hence, Wannierizable. This is also consistent (and 
the result of) the bands being flat and exhibiting a large (40 meV) gap 
from one another. However, the physics of these Hubbard (with inter-
action) bands is far from trivial in this system, as shown below.

Unlike the C2z and ∼C z2  symmetries, the effective mirror Mz symmetry 
has an unconventional action on the momentum-space moiré fermions. 
Specifically, Mz acts non-symmorphically in momentum space, with 
M c M c=z s l z s l, , ,

† −1
+ , + , ,−

†
η ηk Q k q Q q̂ ̂   for ∈ η l+Q Q . Because q

b
=0 2

M1 , the action 
of Mz
  can only be made conventional by folding the moiré BZ along  

ηq , which would break the moiré translation symmetry. The non- 
symmorphic action of the Mz

  symmetry originates from the moiré 
fermions realizing a projective representation of the symmetry  
group of the system. Letting T ′

M1,2a  denote the two moiré translation 
operators for valley η = 0 along the direct moiré lattice vectors aM1,2

 
(with a b πδ⋅ = 2M M iji j

), we find that a a
 T M T M[ ′ , ] = { ′ , } = 0z zM M2 1

 (contrast-
ing with a conventional mirror Mz symmetry, which would commute 
with both aT ′

M1
 and aT ′

M2
).

It is important to note that the effective Mz  symmetry is not acci-
dental. In the AA-stacked case, it can be shown to hold exactly for 
arbitrary moiré harmonics within the local-stacking approximation46. 
In the limit of vanishing twist angle (θ → 0), the moiré Hamiltonian can 
be constrained by the exact symmetries of the untwisted bilayer con-
figuration. The inversion symmetry of the untwisted AA-stacked bilayer 
gives rise to the Mz symmetry of the moiré Hamiltonian, as shown in 
Supplementary Information Sections VB and VI. In the AB-stacked 
case, the true in-plane mirror symmetry of the untwisted bilayer leads 
to an effective inversion symmetry I͠  of the corresponding moiré Ham-
iltonian, which also acts non-symmorphically in momentum space. 
In the simplified AB-stacked model, the approximate C2z symmetry, 
combined with the I͠  symmetry, leads to an I ͠M C=z z2  symmetry of 
the system.

Projective fermion representations that realize momentum-space 
non-symmorphic symmetries have previously been proposed in mag-
netic systems42 or systems subjected to a large magnetic field (on the 
order of thousands of Tesla)40,41,47. M-point moiré materials provide the 
first experimentally viable realization of these symmetries in any (that 
is, magnetic or non-magnetic) system. To better understand the origin 

of the momentum-space non-symmorphic action of the Mz symmetry, 
we construct a simple one-dimensional tight-binding model that incor-
porates it. The resulting ladder model, shown in Fig. 5a, mimics the 
dispersion of an atomic band in the M-point moiré Hamiltonian for 
valley η = 0 along the x̂ direction (see Supplementary Information 
Section VI). Each unit cell is threaded by a uniform perpendicular mag-
netic field, enclosing a π-flux. Because π-flux and (−π)-flux are equiva-
lent, the model also respects time-reversal and Mz  symmetry. In the 
Fourier-transformed basis ∑b b= ek l N n n l

kn
,

† 1
,

† î ̂ , the Mz
  symmetry acts 

non-symmorphically as ̂ ̂
 M b M b=z k l z k π l,

† −1
+ ,−

†
, ensuring that the spectra of 

the Hamiltonian at k and k + π are identical, as shown in Fig. 5b.

Hubbard and Luttinger simulators
Within each valley, the first two sets of spinful bands in SnSe2 and ZrS2 
bilayers are individually Wannierizable, with their bandwidths tunable 
by adjusting the twist angle. Given the excellent SU(2) symmetry, these 
M-point moiré systems become effective simulators of the Hubbard 
model when Coulomb interactions are included (H. Hu et al., to be 
published). However, owing to the extra valley degree of freedom, 
these systems go beyond the single-band U(2) Hubbard model, instead 
realizing a six-flavour U(2) × U(2) × U(2) Hubbard model.

Another key distinction from the standard Hubbard model can arise 
from the Mz

  symmetry. In real space, Mz
  does not change the position 

along the moiré heterostructure. As a result, the continuum moiré 
Hamiltonian can be made diagonal in the Mz

  basis. Because  a aT T( ′ ) ( ′ )2 −1
M M1 2

 
and aT ′

M2
 both commute with Mz

 , each mirror sector of valley η = 0 will 
feature reduced translation symmetry specified by the rectangular 
lattice vectors 2 −M M1 2

a a  and M2
a . The aT ′

M1
 operator anticommutes 

with Mz, exchanging the two mirror sectors. The Wannier orbitals of 
any atomic band—such as the first conduction band of AA-stacked 
SnSe2 from Fig. 5c—can therefore be split by their Mz

  eigenvalues: the 
orbitals of each mirror sector are displaced by aM1

 and form two inter-
penetrating rectangular lattices shown in Fig. 5d. Within each mirror 
sector and in valley η = 0, the interorbital separation is larger by a fac-
tor of 3 along the x̂ direction compared with the ŷ one. Provided that 
the Wannier orbital spread is approximately isotropic (as it happens 
for the first band of AA-stacked SnSe2 but not in the first band of twisted 
ZrS2), this will lead to reduced hopping along x̂ compared with ŷ (see 
Supplementary Information Section VI). As the tunnelling between Mz

  
sectors is forbidden, the system in each valley will behave quasi-one- 
dimensionally, with flatter dispersion along the xC z

η
3 ̂ direction, effec-

tively emulating a Luttinger model. In the three-valley system, this 
quasi-one-dimensional behaviour causes the U(2) × U(2) × U(2) local 
moments to couple differently along three C3z-related directions, 
similar (but not identical) to the couplings of the Kitaev model45.

We note, however, that quasi-one-dimensionality along the ŷC z
η

3  
direction (that is, flatter dispersion along the x̂C z

η
3  direction) is not  
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an inherent or universal feature of M-point moiré materials. Instead, 
it is the presence of the effective Mz symmetry, not previously identi-
fied, that plays a more general role. Together with approximately iso-
tropic Wannier orbitals for the bands, the effective Mz symmetry can 
enforce one-dimensional behaviour in the single-particle valley- 
projected moiré Hamiltonian. However, this symmetry is also compat-
ible with two-dimensional physics in general (see Methods). For 
instance, because of the elongated Wannier orbitals, twisted ZrS2 exhib-
its excellent effective Mz symmetry, but its first set of conduction bands 
is not quasi-one-dimensional along the yC z

η
3 ̂ direction.

Discussion
We have introduced a new platform for moiré materials based on 
monolayers with triangular lattices, in which the low-energy states 
are located at the M points of the BZ. The presence of three C3z-related 
valleys makes M-point moiré materials manifestly different from 
pre-existing Γ-point and K-point twisted heterostructures. We have 
shown that M-point moiré materials can be realized in many materi-
als38,48 and specifically in twisted 1T-SnSe2 and 1T-ZrS2, both of which are 
experimentally exfoliable. By constructing the corresponding moiré 
Hamiltonians, we have shown that these materials provide the first 
experimentally viable example of momentum-space non-symmorphic 
symmetry in a non-magnetic system. The projective representations of 
the crystallographic space groups associated with these symmetries 
extend beyond present theoretical frameworks49, opening new avenues 
for discovering symmetry-protected topological phases.

When electron–electron interactions are considered, twisted SnSe2 
and ZrS2 bilayers can realize strongly correlated, tunable six-flavour 
Hubbard models. As well as exhibiting Mott physics and correlated 
insulating phases at integer fillings, these systems can spontaneously 

break the Mz symmetry, potentially giving rise to various stripe phases, 
which will be explored in future work (H. Hu et al., to be published). 
Notably, we find that the multivalley Wannier model for AA-stacked 
SnSe2 admits exact solutions in the strong-coupling limit, under the 
experimentally justified assumption of weak spin-valley U(6) sym-
metry breaking in the interaction Hamiltonian. At integer fillings 
0 ≤ ν ≤ 6 of the lowest six flat bands, the corresponding ground states 
include classical spin liquids at ν = 1 and ν = 5, valence bond solids at 
ν = 2 and ν = 4 and a quantum spin liquid at ν = 3 (H. Hu et al., to be pub-
lished). The perfect nesting at momentum qη in valley η, enforced by 
the Mz

  symmetry, further enhances the potential for new correlated 
phases, as does the recently introduced quantum nesting condition50, 
satisfied as a result of the same symmetry. Moreover, owing to their 
quasi-one-dimensional nature within each valley, these materials are 
promising candidates for exploring Luttinger physics.
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Methods

First-principles calculation
The ab initio calculations were performed using the Vienna ab initio 
Simulation Package (VASP)51–55 and OpenMX56–59. The lattice relaxa-
tion was carried out in two stages: first, the twisted structures were 
‘pre-relaxed’ using a machine learning force field (MLFF) trained with 
NequIP60 and DPmoire61; second, a further relaxation step was con-
ducted using VASP until the force on each atom was less than 0.01 eV Å−1. 
van der Waals interactions were included using the DFT-D2 method 
of Grimme62 for SnSe2 and the DFT-D3 method of Grimme et al.63 for 
ZrS2, based on benchmarking with bulk structures (details provided 
in Supplementary Information Section III). A vacuum slab larger than 
15 Å was applied along the z-direction to eliminate any artificial layer 
interactions.

The exchange-correlation energy functional within the generalized 
gradient approximation as parameterized by Perdew et al.64 was used 
in the VASP calculations. The calculations were carried out on a 2 × 2 × 1 
k-mesh for θ = 13.17° and θ = 9.43° and on a 1 × 1 × 1 mesh for smaller 
twist angles θ. The energy cut-off for the plane-wave basis is 288 eV 
(337 eV) for SnSe2 (ZrS2). Larger energy cut-offs have been tested to have 
negligible influence on the band structures. Furthermore, the ab initio 
Hamiltonians in the atomic orbital basis, used for valley projection and 
continuum model construction, were generated using OpenMX56–59. In 
these calculations, we used the 2019 version of optimized numerical 
pseudo-atomic orbitals, specifically Sn7.0-s2p2d2 and Se7.0-s2p2d2 
for SnSe2 and Zr7.0-s2p2d2 and S7.0-s2p2d2 for ZrS2.

First-principles results for twisted bilayers
AA-stacked twisted bilayers are obtained by aligning the two layers 
directly on top of one another and rotating them by a small relative 
angle θ. By contrast, the AB-stacked configurations are formed by rotat-
ing the layers by a relative angle of 180° − θ. The AA-stacked and 
AB-stacked configurations exhibit P3211′ and P3121′ symmetries, 
respectively. Both space groups include C3z and T  as symmetry gen-
erators, but P3211′ also features C2x, whereas P3121′ includes C2y. In this 
work, we primarily focus on the AA-stacked configuration of twisted 
SnSe2 and ZrS2, with further details as well as results for AB-stacked 
heterostructures provided in Supplementary Information Section III.

Large-scale ab initio calculations were performed for twisted SnSe2 
and ZrS2 bilayers using the methodology outlined above. The relaxed 
structures for SnSe2 and ZrS2 at a twist angle θ = 3.89° are shown in 
Extended Data Fig. 1, highlighting both interlayer and intralayer relaxa-
tion effects. For SnSe2, the interlayer distance varies by approximately 
0.8 Å and the maximum intralayer displacement is about 0.3 Å. By con-
trast, ZrS2 exhibits smaller variations, with interlayer distance changes 
of approximately 0.6 Å and intralayer displacements up to 0.15 Å. These 
findings underscore the marked lattice relaxation effects in both mate-
rials, which are crucial for the energetics of the moiré potential and the 
resulting band dispersion.

Using the fully relaxed bilayer structures, we calculated the moiré 
band structures for SnSe2 and ZrS2. The band structures for θ = 3.89° are 
shown in Fig. 3, with further results for larger twist angles presented in 
Extended Data Fig. 2. The moiré Hamiltonian reveals one or two sets of 
isolated conduction bands, each consisting of six spinful bands origi-
nating from the three C3z-related M valleys. Each valley contributes two 
nearly degenerate bands owing to the approximate SU(2) symmetry. 
As the twist angle decreases, the moiré bands become increasingly flat, 
with the bandwidth of the lowest set narrowing to just several meV. 
Further details are provided in Supplementary Information Section III.

Constructing faithful continuum models
The workflow used in this work for constructing faithful continuum 
models for twisted SnSe2 and ZrS2 bilayers is summarized schematically 
in Extended Data Fig. 3. The process begins with a rigid twisted bilayer 

structure at a chosen commensurate twist angle θ. This rigid structure 
is relaxed using a combination of machine learning force field and 
density functional theory (DFT), as detailed in Supplementary Informa-
tion Section III. The relaxed structure is then used for large-scale DFT 
calculations to obtain the ab initio spectrum (through VASP) and the 
corresponding tight-binding Kohn–Sham Hamiltonian in an atomic 
orbital basis (through OpenMX).

Next, the ab initio Hamiltonian is projected onto the relevant orbit-
als and valleys to derive a low-dimensional effective Hamiltonian at 
a small set of k-points within the moiré BZ, as described in Supple-
mentary Information Section VIII. Simultaneously, a symmetry-based 
parameterization of the moiré Hamiltonian is constructed symboli-
cally, as explained in Supplementary Information Sections IV, V and 
VII. The parameters of this model are determined through either 
linear extraction or nonlinear fitting, as detailed in Supplementary 
Information Section IX. The final output is an analytic, accurate 
and faithful continuum moiré Hamiltonian for the corresponding  
heterostructure.

With these continuum models, we can compute various spectral 
properties of the moiré system, including the band structures across 
the full moiré BZ, the CDD of the isolated bands, their Berry curvature, 
Wilson loops and interacting tight-binding models, among others. Fur-
ther details are provided in Supplementary Information Section XI and 
H. Hu et al. (to be published). For the simple continuum models shown 
in equation (1) for twisted SnSe2 and ZrS2 at θ = 3.89°, the parameters 
are listed in Extended Data Table 1.

Other M-point moiré materials
As well as 1T-SnSe2 (refs. 65–69) and 1T-ZrS2 (refs. 70–72) studied in 
this work, a wide range of other experimentally exfoliable monolayers 
offer promising platforms for M-point moiré heterostructures, as listed 
in ref. 38. These include materials with structures similar to 1T-SnSe2 
and 1T-ZrS2, such as 1T-ZrSe2 (refs. 71,72), 1T-SnS2 (refs. 73,74), 1T-HfSe2 
(ref. 75) and 1T-HfS2 (refs. 76–78). Also, GaTe (ref. 79), which has a differ-
ent crystalline structure, further expands this moiré ‘universality class’.

Emergence of quasi-one-dimensionality
In the main text, we showed that quasi-one-dimensional physics can 
emerge in M-point moiré materials. However, we also highlighted that 
quasi-one-dimensionality along the ̂C z

η
3 y  direction, as observed in 

AA-stacked twisted SnSe2, is neither a generic nor a fundamental feature 
of M-point moiré systems. To further illustrate this, Extended Data 
Fig. 4 shows the dispersion of the first two sets of conduction bands 
for the four monolayer-stacking configurations considered in this 
work.

Starting with AA-stacked twisted SnSe2, Extended Data Fig. 4a,b 
shows that the two gapped conduction bands are nearly dispersionless 
along the x̂C z

η
3  direction in valley η. This observation aligns with the 

general argument presented in the main text and arises from the com-
bined effects of the effective Mz

  symmetry and the approximately 
isotropic shape of the Wannier orbitals associated with these bands. 
Notably, this dispersion asymmetry is opposite to what would be 
expected from the effective monolayer masses of SnSe2, as given in 
Extended Data Table 1: my > mx would generally favour flatter dispersion 
along the ŷC z

η
3  direction rather than along the C z

η
3 x̂ direction. However, 

in the case of AA-stacked SnSe2, the difference between my and mx is 
not substantial (m my x≫̸ ), allowing the effect of Mz

  symmetry to dom-
inate and promote quasi-one-dimensional behaviour along the ̂C z

η
3 y 

direction (with flatter dispersion along the C z
η

3 x̂ direction).
In AB-stacked SnSe2, Extended Data Fig. 4c,d shows that the bands 

are not quasi-one-dimensional. This behaviour arises because of rela-
tively larger relaxation effects, which worsen the validity of the 
local-stacking approximation for this monolayer and stacking con-
figuration. Because the effective Mz and I͠  symmetries rely on the local- 
stacking approximation, this heterostructure does not exhibit strong 



Mz
  symmetry. Among the four heterostructures considered in this 
work, AB-stacked SnSe2 shows the smallest overlap between the ab 
initio wavefunctions and those computed from the fitted effective 
model with enforced Mz

  symmetry. Consequently, the system does not 
feature quasi-one-dimensional behaviour.

For the first conduction band of either AA-stacked or AB-stacked 
twisted ZrS2, shown in Extended Data Fig. 4f,h, the greatly enhanced 
monolayer mass asymmetry (my ≫ mx) or, equivalently, the real-space 
orbitals elongated along the C z

η
3 x̂ direction—as illustrated in Fig. 3g,h—

leads to a flatter dispersion along the ŷC z
η

3  direction for the first set of 
conduction bands. This occurs despite the system exhibiting excellent 
Mz
  symmetry, which is even stronger than that of AA-stacked SnSe2. 
For the second set of bands of twisted ZrS2, shown in Extended Data 
Fig. 4e,g, the orbitals have nearly equal spread along the C z

η
3 x̂ and ŷC z

η
3  

directions. Consequently, our argument, which incorporates both the 
Mz
  symmetry and the orbital shape, holds, resulting in flatter dispersion 
along the x̂C z

η
3  direction.

These results demonstrate that quasi-one-dimensionality is not a 
generic feature of M-point moiré materials but instead depends on 
both symmetry and energetic considerations. The relevant symmetry 
is compatible with behaviours opposite to those proposed in ref. 80, 
as observed in twisted ZrS2. Specifically, the mass-enforced band flat-
tening, also identified in BC3 (ref. 81), in which my ⋙ mx, occurs in the 
opposite direction to that predicted by ref. 80. Our momentum-space 
non-symmorphic Mz

  symmetry emerges as the unifying principle that 
reconciles these seemingly contradictory emergent behaviours. This 
symmetry, along with the nature of the constituent orbitals, plays a 
crucial role in shaping the interacting Hamiltonian, ultimately deter-
mining the emergence of one-dimensional or two-dimensional physics 
(H. Hu et al., to be published).

All of these findings underscore the importance of performing 
detailed ab initio calculations. As discussed in the main text, without 
such precise insights, simplified models—such as those using the 
two-centred first-monolayer harmonic approximation82—produce 
incorrect results. Specifically, they predict a continuous translational 
symmetry of the system along the ̂C z

η
3 y direction in valley η and an 

overall gapless spectrum, neither of which are observed in the four 
monolayer and stacking configurations analysed in this work.

Wannier model for AA-stacked twisted SnSe2

For AA-stacked twisted SnSe2, the system develops topologically trivial, 
isolated conduction bands for each valley and spin. H. Hu et al. (to be 
published) construct the Wannier orbitals and derive the correspond-
ing interacting models for this system. The Wannier orbitals for each 
valley η, denoted by R̂d η s, ,

†
 for unit cell Z ZR a a∈ +M M1 2

 and spin s, form 
a triangular lattice. The positions of the Wannier orbitals within each 
unit cell for all three valleys are nearly identical.

The tight-binding model is expressed as

∑H t d d= ^ ^ , (2)
η

η s η st
,Δ

Δ , ,

†

+Δ , ,
R R

R R R R

in which, owing to the emergent Mz symmetry, the hopping becomes 
quasi-one-dimensional. The dominant hopping terms are

t tδ= . (3)
η

CΔ Δ ,± z
η

M3 2R R a

The dominant interaction term is the on-site Hubbard repulsion, 
which takes the form

R R
R R∑H

U
n n=

2
, (4)U

ηη
η η

,Δ

′
, , ′

in which ∑n d d=η s η s η s, , ,
†

, ,R R R
̂ ̂  is the density operator associated with 

unit cell R and valley η.

Data availability
All data generated in this study are included in the main text and the 
Supplementary Information. The continuum models for the M-point 
moiré materials derived in this work are available online as a supple-
mentary file. Further data, along with any code required for reproduc-
ing the figures, are available from the authors on reasonable request.
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Extended Data Fig. 1 | Ab initio lattice relaxation results for twisted 
AA-stacked SnSe2 and ZrS2 at θ = 3.89°. a–c, For twisted SnSe2: interlayer 
distance (ILD) (a); intralayer atom displacements in the bottom (b) and  
top (c) layers. d–f, Same as a–c but for twisted ZrS2. The definitions of  
the C3z-symmetric local regions labelled by AAi (for 1 ≤ i ≤ 3) are given in 
Supplementary Information Section III.
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Extended Data Fig. 2 | The ab initio band structures of twisted AA-stacked 
SnSe2 and ZrS2 bilayers for twist angles 13.17° ≥ θ ≥ 5.09°. The twist angle is 
indicated above each panel. a–c, Moiré conduction bands of twisted SnSe2.  
d–f, Band structure of twisted ZrS2. In both cases, the lowest group of 
conduction bands, isolated from other energy bands, consists of six bands 
originating from the three inequivalent M valleys of the monolayer.



Extended Data Fig. 3 | Workflow used for constructing faithful continuum 
models .
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Extended Data Fig. 4 | Small-angle band structures for M-point moiré SnSe2 
and ZrS2. a–d, Results for SnSe2. e–h, Results for ZrS2. Each panel shows the 
dispersion of a gapped set of conduction bands in valley η = 0 across the  
first moiré BZ from Fig. 4b, with the band minimum set to zero for clarity. 

Columns represent different stacking configurations (AA-stacked and 
AB-stacked) and different monolayers and rows show either the first or the 
second set of conduction bands. For each band, the results are averaged over 
the two approximately SU(2)-degenerate bands.



Extended Data Table 1 | Parameters of the simple moiré 
models for twisted SnSe2 and ZrS2 at θ = 3.89°

The effective masses are given in units of the bare electron mass me, whereas the hopping 
amplitudes are given in meV.
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