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The net climate effect of anthropogenic reactive nitrogen (Nr) is the
sum of several terms that vary insign and are associated with substantial
uncertainties. Gong et al.' reported a net negative direct radiative forc-
ing (RF) of Nr in the year 2019 relative to the year 1850. We argue that
their estimates and associated uncertainties of individual Nr climate
effects, most notably aerosol, ozone and methane RF, do not reflect
the current state of the art. We show that ref. 1 presents overly narrow
uncertainty ranges and that their estimates of individual Nr climate
effects are outliers compared with our multi-model ensemble, carrying
importantimplications for future projections.

Emissions of Nr lead to the formation of ammonium nitrate aero-
sols (NH,“NO;; hereafter denoted nitrate), but their atmospheric
abundance is highly uncertain. The Intergovernmental Panel on Cli-
mate Change Sixth Assessment Report (AR6) states that “thereis high
confidence that the NH," and NO,™ burdens have increased from the
pre-industrial period to the present day, although the magnitude of
theincrease is uncertain especially for NO, 2. The present-day global
nitrate burden differs by up to a factor 13 across models in two sepa-
rate studies®*. This spread holds for fine-mode nitrate aerosols, which
drive RF*. The complexity of aerosol processes make it challenging to
represent nitrate in models. Model diversity in this task has remained
almost unchanged between the two latest generations of models?.

Sulfate (SO,*) aerosols, includingammonium sulfate ((NH,"),S0,>),
are also influenced by Nr emissions, mainly through nitrogen oxide
(NO,) emissions, which alter the oxidation pathways of SO, to sulfate
by changing the abundances of hydroxyl radicals (OH), ozone (O5)
and hydrogen peroxide (H,0,)°. Although the latest generation of
aerosol-chemistry models are improved, the diversity in modelled
sulfate burdens remains considerable®and reproducing observations
isstill challenging®**. Estimates of aerosol RF due to Nr must recognize
the large uncertainty reflected in the multi-model intercomparisons.

We have carried out simulations with a set-up similar toref. 1, using
five independent latest-generation models (see method description
in Supplementary Information), namely, one chemistry-transport
model (OsloCTM3 (ref. 7)) and four chemistry-climate models (CESM2
(ref. 8), GISS ModelE®?, GFDL-AM4.1 (ref. 10) and LMDZ-INCAY). The
change over theindustrial eraof nitrate and sulfate aerosol abundances
owingto Nremissions varies greatly across the models, both horizon-
tally (Extended Data Fig.1a,b) and vertically (Extended Data Fig.2a,b).
Consequently, our estimated direct aerosol RF, which is the RF term
with the largest magnitude in ref. 1, differs widely by model, evenin
sign (Fig.1aand Extended Data Fig. 3a). Our multi-model results show

that GEOS-Chem aerosol RF is at the low end (that is, strong cooling).
Moreover, none of the other models fall within the GEOS-Chem uncer-
tainty range, which appears toinclude only emissions uncertainty and
not model diversity. The nitrate RF is negative in all models, and the
sulfate RF caneither add to or counteract the nitrate cooling, depending
onthe model. The different sulfate RF responses in the models are, at
least partly, caused by different responsesin the SO, to sulfate oxidants
OH and H,0, (not shown).

The RF of ozone due to anthropogenic NO, emissions varies widely
across models, ranging from 0.07 W m2t0 0.27 W m (for 1850 t0 2014)
in the study used in AR6 (refs. 2,12). Here we find a similarly large
range in tropospheric ozone caused by anthropogenic Nr emissions
(Extended DataFigs.1cand 2c), and aresulting ozone RF range of 0.17-
0.35W m™across the five models (Fig. 1b and Extended Data Fig. 3b).
Theseresultsareafactor 3-7 higher than the GEOS-Chem ozone RF and
far outside their reported uncertainty (0.03-0.07 W m2). Although the
GEOS-Chemrangeincludes a +30% uncertainty to account for nonlin-
ear atmospheric chemical reactions, it is applied to their very small
ozone RF. The GEOS-Chem results fail to account for the well-known
model diversity.

Aswith ozone, the methane RF due to NO, emissions varies consid-
erably across models, partly as a result of differing CH, lifetimes and
feedbacks'. The common approach of quantifying CH, RF due toNO,
emissions is to base it on atmospheric chemistry model calculations
of CH, lifetime variations due to OH (see Supplementary Information
for details). However, ref.1did not use the GEOS-Chem model for this
purpose but rather a CH, box model, which does not properly account
for the complex and nonlinear atmospheric chemistry, including
effects arising from the inhomogeneous atmospheric distribution
of chemical compounds. The well-known effects of CH, being a pre-
cursor of tropospheric ozone and enhancing stratospheric water
vapour?have also been ignored. Using our five models and amethodin
line with ARG (ref. 2), we get a considerably stronger negative CH,
RF term than that in ref. 1 (Fig. 1c), most of them outside their uncer-
tainty range.

The N,O and CO, RF terms due to anthropogenic Nr have been cal-
culated using the RRTMG radiative transfer scheme in GEOS-Chem
inref. 1. As these two compounds are well mixed in the atmosphere,
and the RRTMG schemeis tailored for fast calculations in global mod-
els, we have instead chosen to base the RF calculations on the expres-
sionsinref. 14, as in AR6 (ref. 15) (see Supplementary Information
for details). Assuming the same N,0 and CO, concentration changes as
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Fig.1|Global pre-industrial to present-day (1850 to 2019) RF due to
anthropogenicNr. Direct aerosol RF (a), ozone RF (b), methane RF (c), N,ORF
(d), CO,RF (e) and the net RF calculated as the sum of the individual terms (f).
Thegreybarsand whiskers are fromref.1(see ref.1for definition of error bars),

inref.1, our calculations give asmaller N,O RF termthatis outside their
uncertainty range (Fig. 1d), but a more similar CO, RF term (Fig. 1e).
If tropospheric adjustments would have been added to obtain effec-
tive RF (ERF), whichis more state of the art, this would change the N,0O,
CO, and CH, forcing by +7 +13%, +5 + 5% and -14 + 15%, respectively,
according to ARG (ref.15).

Interestingly, the sum of the RF terms gives anet RF thatis within the
uncertainty range of ref. 1 for most models, but with nearly all model
estimates being less negative than their net RF (Fig. 1f). Although most
of the individual RF terms are very different, our upwards and down-
wards revisions largely compensate. Although the absolute RF terms
can partly cancel, the absolute uncertainty keeps growing as we add
the terms. The fact that our individual RF terms differ strongly from
those of ref.1could have large consequences for the future predictions
shown in their Fig. 5. We therefore argue that those results cannot be
used without applying appropriate uncertainties. We also note that the
choice of year for present-day Nr emissions (in this case 2019) could
influence the RF results as emissions change rapidly.

Ourresults emphasize whatis clear from previous literature—that a
range of models are needed to quantify the climate effects of anthro-
pogenic Nr, including uncertainty. Future researchis clearly needed on
thisimportant topic, bothto better define and narrow the uncertainties
onthe climate effects given here and (as discussed inref. 1) to quantify
climate effects for processes for which estimates do not yet exist (for
example, aerosol-cloud interactions due to Nr emissions). Crucially,
anatural way forward to reduce uncertainties involves continuous

and the other coloured bars are from this study. N,O RF and CO, RF in this study
are calculated based onref.14 and areindependent of the model data. RF due to
ammoniumisincludedinthenitrate and sulfate termsina.

improvement of key processes in the models based on thoroughevalu-
ations against a range of observations.

Data availability

The GEOS-Chem output from Gong et al.! are available on Zenodo at
https://doi.org/10.5281/zenod0.11202819 (ref.16). The simulation out-
put from the five models used in this work are available on archive.
sigma2.no at https://doi.org/10.11582/2024.00179.
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REPLYING TO: @. Hodnebrog et al. Nature https://doi.org/10.1038/s41586-025-09337-9 (2025).

Themain purpose of Gong et al.'is to show that anthropogenic reactive
nitrogen (Nr) has a net coolinginfluence on climate, which hasimpor-
tant implications for future emissions mitigation strategies. We wel-
come thatin the accompanying Comment?, Hodnebrog et al. confirm
the net cooling influence of anthropogenic Nr. However, Hodnebrog
etal.arguethat Gongetal. underestimate the uncertainties inindividual
effects, such as in aerosol, ozone (O;) and methane (CH,) radiative
forcing (RF) from Nr emissions. Here we show that the varied differ-
ences of each component will not influence the estimates of the net
climate effect under future projections, and we find that biases and
uncertainties in Hodnebrog overemphasize differences between our
and their estimates.

Althoughwe disagree that the central estimatesin Hodnebrogetal.
are comparable to those of Gong et al.! (see below), we first apply their
central estimates of each component to estimate the sensitivities of
RF to carbon dioxide (CO,), nitrous oxide (N,0), CH, concentrations,
or ammonia (NH,) and nitrogen oxide (NO,) emissions, respectively,
and reproduce the assessment of future impacts (Fig. 5in Gong et al.’).
Figure 1 shows that this update provides similar patterns (in terms of
magnitude and trend across the three scenarios) in RF change asin
Gong et al., where the differences between the updated and original
trends are fully covered by the original uncertainty ranges in Gong
etal. Weacknowledge that these future estimates are based on simple
calculationsand, as already writtenin Gong et al., we encourage further
work to integrate more dynamic feedbacks into future projections of
the net climate effect of anthropogenic Nr. However, our new analysis
indicates that the associated uncertainties will not “carry important
implications for future projections” as Hodnebrog et al. argued.

Animportant uncertainty in Hodnebrog et al.is that the RFs of aero-
sols and O; are not calculated by the online radiative transfer mod-
ules in each chemistry-climate model, but by prescribed monthly
three-dimensional maps of aerosol and O, kernel ‘radiative efficiency’
(united by Watts per gram change in aerosol loading (W/g) or Watts per
Dobson unit change in O; (W/DU)) generated from OsloCTM3. Such a
simplified method fails to account for the inter-model differencesin the
particle physical properties (for example, sizes, humidity and mixture),

cloudiness distributions and surface albedo, all of which have very
high temporal heterogeneity and thusintroduce uncertainty into the
assessment of the short-lived greenhouse components aerosol and O,.

Hodnebrog et al.? argue that aerosol cooling effect induced by
anthropogenic Nr is substantially weaker than that in Gong et al.".
Although we have explicitly acknowledged in the main text that “the
negative radiative forcing of nitrate aerosol may be overestimated, as
the GEOS-Chemmodel tends to overestimate nitrate aerosol concentra-
tions”*, we find that the enhancements of fine-mode nitrate loadings in
CESM2 (0.068 Tg yr') and OsloCTM3 (0.089 Tg yr ') are also at the low
endrelative to the ranges given by AeroCom Ill multi-models®. The posi-
tive sulfate aerosol RFs in GISS-MATRIX and OsloCTM3 are also ques-
tionable and require more validation. Furthermore, Hodnebrog et al.
assume all sulfate existsin the form of ammonium sulfate ((NH,),SO,)
when calculating RF, which may enhance global pre-industrial aerosol
mass in the No_alINr experiment and further weaken the present-day
aerosol RF, as the dominant sulfate phase under an ammonia-poor
environment (for example, in the form of H,SO,) has lower molecular
weight than (NH,),SO,.

We are also concerned about the result of the simplified method
applied by Hodnebrog et al.? to derive changes in CH, concentration
fromNO, emissions. Theimplied lifetime changes of CH, forachangein
NO, loading, derived frominverting the calculation of CH, concentra-
tionin Hodnebroget al. (see their methods) suggests that NO, reduces
CH, lifetime in the GISS-Matrix model by approximately 50%. This is
clearly outside the range of a 22-34% reduction in CH, lifetime as a
result of the NO, emission changes between 1850 and 2000 using a
multi-model ensemble’. The other models, including our own esti-
mates, are either at the upper (CESM, LMDZ) or lower (OsloCTM, GFDL,
aswell as our own estimate) end of this range. This finding is also con-
sistent withthe NO,-induced forcing due to CH,-lifetime changes inthe
multi-model ensembleinref. 8 (-0.2 W m2to-0.37 Wm™), whichiden-
tifies the GISS-MATRIX model used in Hodnebrog et al. as an extreme
outlier (-0.53 W m™) for GISS-MATRIX)), whereas the CESM and LMDZ
are at the high end. The additional effects considered by Hodnebrog
etal. but notin Gong et al.! — that is, CH, impacts on tropospheric O,
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Fig.1|Prediction of the climate effects of anthropogenic Nr t02050. The
present-day RFs of each componentare following ‘the central estimates’in
Hodnebrogetal.2, whichare-0.13 W m20fCO,,+0.12W m20fN,0,-0.44 Wm™
of CH,,-0.04 Wm~ofaerosolsand +0.27 W m2of O,. The predicted climate
effects ofanthropogenic Nrare following the scenarios of SSP1-2.6 (a),

and stratospheric water — slightly affect our mean estimate, but remain
within the uncertainty range provided in the original paper.

The RF of 0,induced by anthropogenic Nrin Gongetal.! (+0.03 W m™
to+0.07 W m~) isat the lower end boundary of the Intergovernmental
Panel on Climate Change Sixth Assessment Report model ensemble®’
(+0.07 W m~?to0 +0.27 W m™), which we have already noted in Supple-
mentary Table 3inref.1, relative to ref. 8with arange of 0.2 + 0.07 W m ™
The comparison brought up by Hodnebrog et al.? therefore provides
no new information regarding the wide across-model variations in
the O, RF induced by anthropogenic NO, emissions. We note that the
estimates of CESM2, GISS-MATRIX and LMDZ-INCA (around +0.3 W m™
to+0.35 W m™) exceed the upper boundary of ref. 8, which contributes
to exaggerating the differences between our results and ref. 8.

We agree that line-by-line radiative transfer calculations provide the
most accurate estimates. However, GEOS-Chem RRTMG is internally
consistentin Gongetal.!and includes broadband treatment between
the different forcing factors. We note that the differences in N,O and
CO, will not significantly change the net climate effects as well as the
future projections in our study.

Last but not least, we argue that the accuracy of model predic-
tions should ideally not be determined by the uncertainty ranges of
multi-model means, but by their evaluation against observations.
Hodnebrog et al. do not cite any evidence that these five models have
better performance compared against observations than GEOS-Chem.
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SSP3-7.0 (b) and SSP 5-8.5 (c). The cascading effects of CH, changes on
tropospheric O;and stratospheric water vapour areincluded here following
Hodnebrogetal.?butexcludedin Gongetal.'. The rest of the method is identical
tothatinFig.5inGongetal.!. SSP, Shared Socioeconomic Pathway.

In particular, four of the five models are climate-chemistry models,
and their simulations are affected by uncertainties in meteorology
simulations, simplified chemical mechanisms and intricate feedback
mechanisms'® ™, In contrast, the GEOS-Chem model has been widely
evaluated across different continents against surface observations,
aircraft campaigns and satellite retrievals (for example, refs.3,13-16).

We acknowledge that the RF values of specific Nr components are
subject to uncertainty resulting from using more ensemble members
with higher degrees of feedback processes, but the dominant processes
associated with the climate effects of anthropogenic Nr have been
properly addressed in Gong et al.l.
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