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Replay and representation dynamics in the 
hippocampus of freely flying bats

Angelo Forli1,2,6, Wudi Fan1,2,6, Kevin K. Qi2,3,6 & Michael M. Yartsev1,2,3,4,5 ✉

Cognitive functions for navigation and memory rely on emergent properties of neural 
ensembles in the hippocampus, such as activity replay1–5 and theta sequences6–9. 
However, whether and how these phenomena generalize across species with distinct 
navigational demands and neurophysiological properties remains unclear. Here  
we wirelessly recorded neural activity from large populations of cells and local field 
potentials from the hippocampus of freely flying Egyptian fruit bats (Rousettus 
aegyptiacus) engaged in free, spontaneous foraging behaviour. During rest, we 
identified time-compressed forward and reverse replays of multiple flight trajectories 
coinciding with sharp-wave ripples. Notably, replays occurred predominantly at 
locations that were both spatially and temporally distant from the replayed behaviour, 
and their speed scaled with trajectory length, challenging present models of replay 
mechanisms. During flight, neural ensembles exhibited fast representational sweeps, 
in which the decoded location moved ahead of the bat’s position cyclically. In contrast 
to reports in rodents, sweeps occurred in the absence of theta oscillations, and were 
instead phase locked to a prominent motor behavioural rhythm—the bat’s wing-beat 
cycle. This suggests that behaviourally relevant sensorimotor rhythms can interact 
with hippocampal ensemble dynamics in a highly structured manner. Combined,  
our findings challenge existing models of ensemble dynamics in the mammalian 
hippocampus, and highlight the importance of comparative studies in ethologically 
relevant conditions for elucidating brain function.

The spatial and temporal organization of experiences is crucial for 
forming memories of past events and for guiding future behaviours. 
Previous studies indicate that time-compressed and sequential ensem-
ble phenomena in the hippocampus, such as replay1–5 and oscillatory 
representation dynamics (theta sequences)6–9, are central for sup-
porting this process. However, nearly all previous investigations of 
these phenomena have been performed in rodents, often engaged in 
guided tasks. This raises two major challenges. First, because in guided 
tasks, movement and rest can be experimentally segregated and the 
spatial repertoire can be experimentally constrained (for example, 
on linear tracks or mazes), it remains unclear whether and how these 
phenomena extend to naturalistic behaviours—where spatial experi-
ences are continuous, unconstrained and inherently variable, such that 
animals are free to choose when and where to move and rest. Second, 
in rodents, both replay and theta sequences—which are believed to be 
causally related7,8,10—are fundamentally tied to the presence of strong 
hippocampal theta oscillations during locomotion. Yet many species, 
including bats11 and primates12, lack continuous locomotion-related 
theta rhythms. This raises questions about the mechanisms that 
underlie these ensemble dynamics and whether they represent a 
universal feature of hippocampal computation, or instead reflect 
rodent-specific adaptations. To address these gaps, here we established 
large-scale wireless neural recordings in freely flying Egyptian fruit bats  

(R. aegyptiacus), and exploited their natural tendency to organize 
spontaneous foraging behaviour in a structured manner13,14, during 
both movement and rest. This allowed us to investigate ensemble 
dynamics through a naturally unfolding but highly controlled form 
of spatial behaviour.

Hippocampal replay of flight trajectories
We used Neuropixels 1.0 probes15 to wirelessly record ensemble activ-
ity, at cellular resolution, from the dorsal hippocampus of Egyptian 
fruit bats engaged in rewarded spontaneous aerial foraging13,16 (n = 6 
bats, 23 sessions; Fig. 1a). During recording sessions (mean duration: 
1 h 20 min) we simultaneously monitored the activity of putative sin-
gle neurons (49–322 per session) and the local field potential (LFP) 
while bats spontaneously alternated between periods of rest and flight 
(33–154 flights per session; Fig. 1b). Consistent with previous results in 
bats13,14,16,17, we found that a large portion of single units that were active 
during flight exhibited robust spatial selectivity (place cells: 990 out of 
1,386 flight-active neurons (71%), n = 6 bats; Methods and Extended Data 
Fig. 1), spanning each flight trajectory from take-off to landing (Fig. 1c). 
We further observed that many of the same neurons that were active 
during flight were also transiently active during rest, and that they 
often covered a similar temporal sequence of activation, albeit in much 
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shorter time windows (Fig. 1d). This was reminiscent of ‘replay’ events 
observed in the rodent hippocampus3–5. Because time-compressed 
sequential replay of single-unit activity in the hippocampus has thus 
far been characterized almost exclusively in rodents (but see ref. 18 
for evidence of events involving triplets of neurons in humans), we 
first analysed the nature of putative replay events, detected as brief 
increases in the place-cell spike density during rest (bottom trace in 
Fig. 1d; Methods). For each candidate event, we calculated the rank 
correlation4 between the sequence of cell activations and time, along 
with its statistical significance (Methods). Numerous events had sig-
nificant rank correlations and involved a considerable fraction of the 
flight-active cells (fraction of active cells: 0.45 ± 0.14 (median ± s.d.); 

n = 2,887 replays), the activity of which was compressed within a short 
time window (replay duration: 358 ± 185 ms (median ± s.d.); n = 2,887 
replays). Events with positive correlation (forward replays) outnum-
bered those with negative correlation (reverse replays) under our 
experimental conditions (2,050 forward replays out of 2,887 total 
replays (71%); Fig. 1e). Replays occurred during epochs of low move-
ment and in the absence of echolocation production (the latter being 
restricted mostly to flight epochs; Extended Data Fig. 2). As a comple-
mentary approach, we used a memory-less, uniform-prior Bayesian 
decoding algorithm19 to decode the position of the bat from neural 
activity throughout a session (Methods). This procedure allowed us 
to find candidate events in which the decoded position probability 
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Fig. 1 | Wireless recordings with Neuropixels probes during aerial foraging 
reveal hippocampal replay in bats. a, Top, schematic of the aerial foraging 
experiment. Bottom, dorsal hippocampus (coronal section) in one recorded 
bat, stained for 4′,6-diamidino-2-phenylindole (DAPI, blue) and CM-DiI (red) 
(Methods). White dashed lines marked with arrowheads denote tracks of  
three implanted Neuropixels 1.0 probes. Scale bar, 1 mm. b, Raster plot of 
simultaneously recorded hippocampal neurons during a representative 
session. Neurons are sorted by average firing frequency. Bottom trace, average 
hippocampal LFP across all channels of one probe during the same session. 
Scale bars, 800 μV (vertical) and 1 min (horizontal). c, Top, similar flights from  
a representative session. Arrow indicates take-off. Bottom, raster plot of 
simultaneously recorded place cells, sorted by the location of their firing field 
(Methods). Each row shows the firing during 22 consecutive repetitions of the 
same trajectory. Neural activity is plotted along a normalized flight trajectory, 
with all flights temporally aligned and rescaled (yellow shaded area) such that 
take-off and landing coincide in the visualization. Scale bar, 2 m. d, Neural 
activation of place cells during a representative epoch. Top, raster plots  
showing sorted neural activity during time-compressed candidate replays 

(red rectangles) and during a flight (blue shaded area on the right). Note the 
different temporal scales. Neurons are sorted by the location of their firing 
fields. Middle, raster plot from the same neurons, showing their activity during 
the entire epoch. Bottom, spike density from the same neurons. e, Distribution 
of rank-correlation values for all candidate replay events (n = 16,468, from 23 
sessions and 6 bats; Methods). Grey distribution indicates non-significant 
events and red distribution significant events (P value from rank-correlation 
analysis; Methods). f, Decoded probability of linearized position (take-off 
location is at the bottom; Methods) for example replay events. Numbers 
indicate the temporal and spatial scale of each replay. g, Left, example LFP 
across a subset of contacts (for visualization) during a representative SWR 
event. Scale bar, 100 ms. Middle, example raster plots (top) and LFP epochs in 
the pyramidal cell layer (bottom) during representative replays. Note the 
coincidence between replay and one or more SWRs. Scale bar, 350 ms. Right, 
average cross-correlogram between replay and SWR times (n = 23 sessions 
from 6 bats). Illustration in a adapted from ref. 14, Springer Nature Limited, 
under a Creative Commons licence CC BY 4.0.
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during rest epochs resembled the one during flight trajectories. Nota-
bly, the continuous-time decoding approach provided a robust and 
independent complement to the spike-sequence analysis, because it 
did not rely on predefined place-cell identification or spike-density 
segmentation and was inherently less influenced by spike-sorting cave-
ats20. For each candidate event, we calculated a series of quality scores 
from the decoded probability and assessed their significance through 
shuffling analysis20,21 (Methods). This procedure again revealed the 
presence of replay-like episodes (Fig. 1f), with forward replay being 
more frequent than reverse replay (2,155 forward replays out of 3,775 
total replays; 57%). We further examined the temporal relationship 
between replays and sharp-wave ripples (SWRs): brief and highly 
synchronous network oscillations with a characteristic LFP signature 
across the dorsal hippocampus11,22 (Fig. 1g, left) that were associated 
with a temporary increase in population firing rate (Extended Data 
Fig. 3). In agreement with previous findings in rodents3–5, replay events 
coincided with SWRs (Fig. 1g, middle), occurring within a short time 
interval from the SWR centre (Fig. 1g, right). These results show that 

replays—that is, time-compressed sequential activations of spatially 
selective neurons—are present in the bat hippocampus. Moreover, such 
replay events progress in both forward and reverse directions, and are 
associated with SWRs, consistent with previous reports in rodents3–5. 
Next, we investigated replay dynamics, using the natural diversity and 
complexity of bats’ spontaneous spatial behaviour.

Replay dynamics during aerial foraging
During natural foraging, an animal’s behaviour can be segmented across 
multiple spatio-temporal dimensions, including the spatial features of 
movement patterns, resting locations and behavioural states (for exam-
ple, movement versus rest). We made use of these inherent features 
of spontaneous foraging behaviour alongside the known structured 
spatial patterns of bats13 to investigate replay dynamics across space 
and time. First, within each session, bats repeatedly executed distinct 
and self-selected, yet highly structured flight trajectories13 (1–8 types, 
mean: 4 types per session, n = 23 sessions from 6 bats; Fig. 2a). Different 
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Fig. 2 | Replay dynamics across spatial behaviours during aerial foraging.  
a, Example flight trajectories (top view) from one bat during a representative 
session. Flights are clustered into similar paths (colours); arrow denotes take-
off. Scale bar, 1 m. b, Example posterior probabilities (squares) for candidate 
replays decoded using place fields from different trajectories (traces). Note the 
decoding specificity of replays. Scale bar, 1 m. c, Normalized replay rate (grey) 
and flight times (orange lines) during a session. Scale bar, 5 min. d, Replay rate 
around flight times (orange, within 30 s of a flight) versus periods of rest (grey, 
more than 30 s away from a flight). Bars denote the average replay rate; vertical 
lines denote s.e.m. ***P = 9.7 × 10−8, two-sided Wilcoxon signed-rank test (n = 71 
trajectories from 19 sessions across 5 bats). e, Left, example of a local replay. 
Black dot, position of bat at time of replay; arrow, take-off; black trace, average 
flight trajectory being replayed. Middle, same, but for a remote replay. Scale 
bar, 1 m. Right, bar plot for the median proportion of local and remote replays 
(n = 19 sessions, 5 bats). f, Pie charts showing the percentage of spatial and 
temporally local replays with varying thresholds (the replays shown in the  
chart meet both spatial and temporal proximity criteria simultaneously).  

Δs, distance between location of bat at time of replay and start location of 
replay; Δt, time interval between replay and take-off (forward) or landing 
(reverse) of nearest replayed trajectory (n = 2,050 forward replays, 837 reverse 
replays from 23 sessions and 6 bats). g, Left, cumulative distribution of flight 
trajectory lengths (73 trajectories, 23 sessions from 6 bats). Shaded coloured 
rectangles are the groups of short and long flights used in i. Right, example 
average trajectories (top view) for different lengths. h, Example raster plots  
for forward replays of trajectories with different lengths, sorted from bottom  
left to top right. Note the near constant duration of replays across lengths. 
Scale bar, 500 ms. i, Top, average flight duration (left) and length (right) for  
the group of short (n = 37) versus long (n = 28) flight clusters (see g). Two-sided 
P = 7 × 10−12 and P = 7 × 10−12, Wilcoxon rank-sum test. Bottom, average replay 
duration (left) and speed (right) for the same groups. Two-sided P = 0.796 and 
9.56 × 10−5, Wilcoxon rank-sum test; NS, not significant (n = 37 versus n = 28 
flight clusters). Thick line represents median, coloured area (violin) represents 
the data distribution across flight trajectories. Note that replay speed, but not 
duration, scales with flight length.
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ensembles of place cells participated in the representation of differ-
ent trajectories (Extended Data Fig. 4), allowing us to uniquely assign 
a trajectory for every replay event (Fig. 2b). Next, we observed that 
bats naturally alternated between flight bouts and resting periods, 
each often lasting several minutes (Fig. 1b), and that replays tended to 
be more frequent during the latter (Fig. 2c). This allowed us to investi-
gate the spatio-temporal nature of replay events and specifically ask 
whether replay occurred at times and locations that were proximal 
or distal to the spatial experience. We found that the replay rate was 
significantly higher during extended rest epochs than it was in time 
periods right before or after a flight (0.59 ± 0.06 replays per min during 
rest versus 0.39 ± 0.04 replays per min around flight times (within 30 s 
of a flight), P = 9.7 × 10−8, Wilcoxon signed-rank test; 19 sessions, 5 bats; 
Fig. 2d). Examining the relationship between the bat’s location during 
replay events and the start location of replayed trajectories (examples 
in Fig. 2e), we found that a substantial percentage of both forward and 
reverse replays occurred when the bat was in a remote location relative 
to the replayed trajectory (median fraction of remote forward replays: 
0.69, P = 0.0037, Wilcoxon signed-rank test against 0.5; reverse replays: 
0.69, P = 0.0029, Wilcoxon signed-rank test against 0.5; 2,155 forward 
replays, 1,620 reverse replays; 19 sessions from 5 bats; Fig. 2e, right). The 
nonlocal nature of replays during spontaneous foraging was even more 
pronounced when we combined both spatial and temporal proximity 
constraints, with only a small fraction of forward replays happening 
when the bat was spatio-temporally proximal to flight take-off (223 out 
of 2,050 forward replays (11%); Fig. 2f, left) or reverse replays when it 
was close to landing (150 out of 837 reverse replays (18%); Fig. 2f, right). 
Furthermore, analyses of the relationship between replay and ongoing 
spatial behaviour revealed that replay was not a simple recapitulation 
of the most frequent, recent or rewarded spatial experiences (Extended 
Data Fig. 5). Together, these findings suggest that during naturalistic 
foraging, most replay events are spatio-temporally dissociated from 
the replayed spatial experience.

We also exploited the fact that, unlike in structured tasks, in which 
trajectories typically have a predetermined length (for example, on a 
fixed-length linear track), spontaneous foraging in three-dimensional 
(3D) open environments involves self-selected trajectories that can vary 
considerably in length. Indeed, the length of bat flight trajectories in the 
same experimental environment spanned nearly an order of magnitude 
(minimum, 2.7 m; maximum, 20.0 m; Fig. 2g), raising the question of 
whether replay duration scales with trajectory length. Although such 
scaling aligns with findings in rodents5,20, it presents a clear theoretical 
challenge in animals that naturally forage in large environments, which 
might necessitate replay events orders of magnitude longer than those 
reported in rodents previously20. We therefore examined the relation-
ship between replay duration and flight length, focusing on the larger 
category of forward replays. Notably, average replay duration showed 
no appreciable increase with trajectory length (example replays in 
Fig. 2h; Pearson’s correlation c = 0.12, P = 0.33, n = 71 flight trajectories, 
23 sessions, 6 bats). To quantify this phenomenon, we compared the 
average replay duration and speed (Methods) between two natural 
subdivisions of the flights (Fig. 2g): short flights (mean length 5.9 m; 
mean duration 2.15 s; grey distribution in Fig. 2i, top) and long flights 
(mean length 11.0 m; mean duration 3.85 s; red distribution in Fig. 2i, 
top) (length P = 7 × 10−12, duration P = 7 × 10−12, Wilcoxon rank-sum test). 
Although replay duration did not differ significantly between short and 
long flights (P = 0.796, Wilcoxon rank-sum test; Fig. 2i, bottom left), 
replay speed was significantly higher for long flights (P = 9.6 × 10−5, 
Wilcoxon rank-sum test; Fig. 2i, bottom right). Replay quality metrics 
did not differ significantly between the two groups (Extended Data 
Fig. 6a), ruling out differences in replay quality as an explanation for 
these results. Alternative measures of replay duration and speed, based 
on Bayesian decoding (Methods), yielded consistent findings (Extended 
Data Fig. 6b,c) and indicated a linear relationship between replay speed 
and trajectory length (Extended Data Fig. 6c). The constancy of replay 

duration was further supported by the asymptotic relationship between 
the timing differences in place-cell firing and the distances between the 
place fields of neuron pairs participating in the replay (Extended Data 
Fig. 7). Finally, we found an increase in both the average place-field size 
and the distance between place fields with increasing trajectory length 
(Extended Data Fig. 8), such that a similar number of cells spanned short 
and long flights, and their replays. Together, these findings indicate 
that replay dynamics are shaped mainly by internal mechanisms and 
vary only marginally by the duration or length of spatial behaviour.

Cyclic sweeps of hippocampal representations
Replay events occur predominantly during periods of immobility, but 
it is unclear how neural ensembles are organized during ongoing move-
ment. Theta sequences6,23 are a key phenomenon thought to organize 
temporally compressed neural sequences during movement, and have 
been proposed to causally support the generation of replay events7,8. 
Because theta sequences are, by definition, thought to rely on theta 
oscillations7, it remains unclear how such a mechanism can generalize 
across species that differ markedly from rodents in theta oscillatory 
patterns. Bats present a challenge to such models, owing to the appar-
ent absence of continuous theta oscillations in the bat hippocampus 
during movement11,17,24. However, so far, all studies of oscillatory LFP 
dynamics in bats been performed in either crawling or stationary indi-
viduals, leaving open the possibility that theta oscillations exist in the 
bat’s most natural movement state; that is, during flight25. To address 
this gap, we examined hippocampal LFP directly during flight, overcom-
ing the challenges posed by flight-related artefacts that led previous 
studies to exclude such data17,24. The long shanks of Neuropixels probes, 
combined with the minimal incidence of flight-related artefacts, ena-
bled us to densely sample high-quality LFPs from the hippocampus 
during aerial foraging (n = 8 bats, 32 sessions; Fig. 3a). Theta oscillations 
were mostly undetectable during flight (Fig. 3b), occurred in short 
bouts of increased theta-to-delta ratio mainly during rest and were 
temporally dissociated from SWRs (Extended Data Fig. 9a–d). Only a 
small fraction of flights had detectable theta oscillations (228 out of 
2,472 (9%), n = 8 bats, 32 sessions; Methods), regardless of the location 
of the reference ground (frontal or cerebellar ground, Extended Data 
Fig. 9e–g,i–k). Furthermore, under both referencing configurations, 
the LFP theta power during flight was significantly lower than it was 
during spontaneous theta bouts (frontal ground P = 4 × 10−5, cerebellar 
ground P = 2 × 10−4, Wilcoxon signed-rank test; Extended Data Fig. 9h,l), 
which occurred mainly during rest (fraction of theta events detected 
during rest, frontal ground: 73 ± 4% (mean ± s.e.m.), 22 sessions from 
6 bats; cerebellar ground: 93 ± 2% (mean ± s.e.m.), 10 sessions from 2 
bats). These findings reveal that even during flight, continuous theta 
oscillations are absent in the bat hippocampus.

We next considered whether alternative mechanisms might interact 
with ensemble activity on the fast timescales that are characteristic of 
theta sequences and replays. By analysing accelerometer data during 
foraging sessions (Methods), we observed another oscillatory pattern 
accompanied by a prominent rhythm at about 8 Hz that was associ-
ated with the behaviour of the bat during flight: the wing-beat cycle17,26 
(Fig. 3c), the frequency of which was very consistent across individuals 
and flight trajectories (Extended Data Fig. 10), akin to the high consist-
ency of stepping in rats27. Studies have suggested that behavioural 
movement patterns, such as stepping27, head oscillations28 and whisk-
ing29 in rats or gaze movements in primates30,31, can influence neural 
representations in the hippocampus. We therefore investigated the 
relationship between ensemble activity during flight and the motor 
(wing-beat) aspects of the bat’s behaviour. Notably we observed that 
many place cells exhibited phase locking to the wing-beat cycle (326 
out of 875 neurons (37%) from 6 bats; example neurons in Fig. 3d; Meth-
ods), with most neurons activating around the ascending phase of the 
wing-beat (maximum mean firing at 71° (95% confidence intervals: 
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61°–80°); n = 326 neurons from 6 bats; Fig. 3d, bottom, corrected for 
uneven phase distribution; Methods), suggesting a population-level 
phase-locking mechanism. Notably, phase-locked neurons were pre-
sent even when using more stringent criteria, based on Rayleigh statis-
tics (average: 15%, n = 22 sessions from 6 bats, P < 0.05 from shuffling 
analysis, resultant vector length: 0.13 ± 0.01 (mean ± s.e.m.), Rayleigh 
statistics: 7.6 ± 2.2, spike count: 666 ± 63; Methods), confirming the 

robustness of the phenomenon. Furthermore, both the single-neuron 
and the average autocorrelation function of the phase-locked neu-
rons revealed a slightly faster intrinsic oscillatory rhythm (dominant 
frequency: 9.4 Hz, n = 326 neurons from 6 bats; Methods and Fig. 3e), 
consistent with resonance or adaptation dynamics. Together, these 
findings predict two phenomena that were previously linked to oscilla-
tory patterns in the LFP: behavioural phase precession, in which spike 
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Fig. 3 | Oscillatory representation dynamics during flight and its 
relationship with the wing-beat cycle. a, Top, schematic of the aerial  
foraging experiment coupled with multi-site LFP recordings across the dorsal 
hippocampus. Bottom, representative epoch of the experiment, showing  
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channels, spanning the putative CA1–CA3 regions). Orange lines indicate flight 
times. Scale bars, 800 μV (vertical) and 1 min (horizontal). b, Top, example 
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and average and filtered LFP (black middle and bottom traces) at the optimal 
probe contacts for putative theta (Methods). Note the absence of a prominent 
increase in theta oscillations during flight. c, Left, normalized average power 
spectral density of the raw accelerometer signal during flight (n = 22 sessions,  
6 bats; Methods). Shaded area indicates s.e.m. Inset, example flight epoch 
showing the bat’s absolute acceleration. d, Example place cells and population 
average (bottom row; 326 neurons from 6 bats) showing phase locking to the 
wing-beat. Each histogram shows the fraction of spikes emitted at a certain 
wing-beat phase. Two cycles are shown for clarity. Bin size: 18.9°. Here, and  
in other panels, phase zero corresponds to the trough of the wing-beat 
(downstroke). e, Top, example auto-correlograms from phase-locked place 
cells. Each plot shows the fraction of spike intervals in a 10-ms time bin. Arrows 
indicate the prominent intrinsic oscillations at a frequency slightly higher than 
the wing-beat frequency (orange lines, fundamental and harmonics) for the 
same session. Bottom left, average auto-correlogram (black area) for all the 
phase-locked place cells (n = 326 neurons) and residual trace (grey trace) after 
subtracting the exponentially decaying component of the auto-correlogram 

(Methods). Arrows as in top panel. Bottom right inset, power spectral density 
(dB) of the residual autocorrelation trace, showing a prominent peak at 9.4 Hz 
(black vertical line), slightly higher than the wing-beat frequency (orange 
vertical line). f, Example place cells showing phase precession relative to the 
wing-beat oscillation. Each dot represents the phase ( y axis) and distance along 
the flight (x axis) of a spike. Vertical lines represent the place-field centre. 
Spikes are represented twice for clarity, with a 360° phase shift. g, Decoded 
position during example flights. Grey colour map indicates the posterior 
probability (Methods) of linearized position along the flight. Red dashed lines 
indicate the actual position of the bat. Vertical dashed lines are the wing-beat 
cycles and orange trace shows the oscillatory accelerometer signal. Arrows 
indicate clear and large-amplitude decoded sweeps. Scale bar, 200 ms.  
h, Average decoding error (black trace) across all wing-beat cycles fulfilling 
inclusion criteria (5,141 cycles from 565 flights, 6 bats; Methods), aligned to  
the wing-beat accelerometer signal (orange trace). Dotted lines indicate the 
average decoding error obtained from shuffled data (Methods). Solid lines 
indicate mean; shaded areas are s.e.m. i, Top, example decoded probabilities 
for automatically detected sweeps (Methods). Bottom, wing-beat phase 
distribution for the central point of automatically detected sweeps (n = 1,367 
sweeps, from 49 trajectories, 18 sessions, 6 bats). The central point of each 
sweep was determined using a template matching algorithm with a Gaussian-
shaped template (Methods). Two cycles are shown for clarity. Bin size: 36°. Scale 
bars, 1 m (vertical) and 0.1 s (horizontal). Illustrations in a and c adapted from 
ref. 14, Springer Nature Limited, under a Creative Commons licence CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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timing relative to the wing-beat advances as the bat traverses the place 
field; and fast oscillatory sweeps, analogous to theta sequences, but 
coordinated with the wing-beat cycle. We therefore sought to investi-
gate the existence of these phenomena.

Behavioural phase precession was prominent in a substantial fraction 
of phase-locked place cells (147 out of 326 neurons (45%) from 6 bats; 
examples in Fig. 3f). Furthermore, decoding the bat’s position from 
ensemble activity during flight (Methods) revealed clear representa-
tional sweeps (Fig. 3g), in which the decoded position moved ahead of 
the bat’s current position cyclically before returning to it, reminiscent 
of theta sequences in rodents6,27. We noticed that large amplitude and 
clearly defined sweeps (arrows in Fig. 3g) often occurred at a consistent 
phase of the wing-beat, as predicted by our hypothesis. We used two 
complementary approaches to examine the phase locking of sweeps 
to the wing-beat cycle. First, we averaged the decoding error (decoded 
position minus actual position) across all cycles of the wing-beat (5,141 
cycles from 565 flights, 6 bats; Methods) and compared it with a shuf-
fled distribution, obtained by randomly shifting the wing-beat phase 
at each cycle by up to ±60 ms (Methods). We found that the average 
decoding error was significantly larger than the shuffled distribution 
around the trough of the wing-beat cycle (P < 0.05; Fig. 3h). Applying the 
same alignment procedure but relative to cycles of the non-oscillatory 
LFP phase (Methods) resulted in a significantly smaller average decod-
ing error (Extended Data Fig. 11), suggesting that non-oscillatory 
phase-locking mechanisms24 may be more relevant in the absence of 
prominent behavioural rhythms, such as during immobility or crawl-
ing in bats. This finding was consistent with the significant decrease in 
non-oscillatory LFP power observed during flight, as well as with the 
absence of the spike-triggered LFP relationship relative to non-flight 
(Extended Data Fig. 11a,b and Methods). Next, we used an automatic 
detection algorithm (Methods) to extract all decoded events with a 
stereotypical sweep profile (Fig. 3i, top) and quantified their phase 
relative to the wing-beat (n = 1,367 sweeps, from 49 trajectories, 18 
sessions, 6 bats). The resulting distribution showed a clear peak in the 
ascending phase of the wing-beat (peak at a mean of 116° (95% confi-
dence intervals: 63°–131°); Fig. 3i, bottom). Intriguingly, we found that 
the expression of sweeps was related to ongoing flight behaviour, with 
sweep occurrence decreasing during turns (Extended Data Fig. 12a,b 
and Methods). Because flight turning events were typically accompa-
nied by an increased echolocation rate (Extended Data Fig. 12b,c), we 
investigated whether active sensing, rather than locomotion per se, 
might affect sweep expression by restricting our analysis to flights 
lacking turns (that is, straight flights). In line with this hypothesis, we 
found that the stereotyped decoding error profile observed in relation 
to wing-beat cycles was disrupted during echolocation, as compared 
with wing-beat cycles without echolocation (Extended Data Fig. 12d). 
Consistent with this observation, we found that automatically detected 
sweeps (Methods) were more likely to occur during periods of signifi-
cantly lower echolocation rate than at randomly selected time points 
during movement (Extended Data Fig. 12e). This suggests that active 
sensory sampling, during which bats are at a state of heightened atten-
tion32, transiently interferes with the expression of internal representa-
tions, which, in turn, can be dynamically regulated on a cycle-by-cycle 
basis. Finally, although both wing-beat and sweep dynamics showed 
approximately 8-Hz rhythms, their frequencies did not covary across 
or within flights—an effect that might reflect the limited variability in 
wing-beat frequency, potentially obscuring the detection of subtle 
correlations (Extended Data Fig. 13).

Together, these results confirm the existence of fast and cyclic repre-
sentational sequences that might be related to a behaviourally relevant 
sensorimotor rhythm, rather than a neural oscillatory rhythm (that is, 
theta oscillations). These findings further broaden the applicability of 
such ensemble computations to species that do not show continuous 
theta oscillations, but exhibit clear behavioural rhythms30,33—including 
non-human primates12 and humans34.

Discussion
By recording large-scale ensemble activity and LFPs from the hippocam-
pus of freely behaving and flying bats, we challenge established models 
of replay and oscillatory representation dynamics, and propose a new 
framework, in which behaviourally relevant sensorimotor rhythms 
interact with hippocampal ensemble activity in a temporally structured 
manner. Although replay-like activity (reactivation) has been observed 
across species, including in humans18,35, the specific form of temporally 
compressed, sequential hippocampal replay—widely considered to 
be foundational to models of memory consolidation, planning and 
cognitive map updating36—has so far been robustly demonstrated 
only in rodents. Thus, the generality of these phenomena across spe-
cies that differ from rodents in their behaviour and neurophysiology 
has remained largely unknown. Here, we leveraged the natural spatial 
behaviour of Egyptian fruit bats to reveal temporally compressed, 
sequential hippocampal ensemble phenomena—replay and represen-
tational sweeps—that deviated considerably from predictions based 
on widely accepted models. We found that although basic features of 
ensemble dynamics, such as the existence of both forward and reverse 
replays and their correspondence with SWRs, confirm previous find-
ings in rodents, fundamental aspects, such as the relationship between 
replay duration and trajectory length, or the cyclic organization of 
neural representations in the absence of rhythmic LFP, suggest that 
other underlying mechanisms exist.

Our finding that replay duration is nearly constant across spatial 
scales that span an order of magnitude is in clear contrast with experi-
mental results in rodents, in which replay duration has been reported 
to scale linearly with the length of spatial behaviour5,20. However, 
studies showing that replay features are more dynamic than previ-
ously thought37–39 align with our results, suggesting that replay is more 
than a linear chaining of representations. These findings highlight 
the importance of performing studies under ethologically relevant, 
unconstrained conditions when investigating the neural mechanisms 
that underlie spatial behaviours40,41. The spatial scales investigated here 
reflect the natural foraging behaviour of Egyptian fruit bats at local feed-
ing sites42. Our findings suggest that the approximately constant replay 
duration we observed represents an elemental unit of information 
processing. The same mechanism might also extend to replays of longer 
trajectories, such as those occurring during large-scale commutes in 
this species—which can occur on the scale of dozens of kilometres42,43—
and might be segmented into these fundamental chunks, providing a 
mechanism for efficient coding during large-scale navigation. Future 
studies investigating navigation across larger spatial scales and the 
multi-scale nature of place fields44 could test this hypothesis, offering 
further insights into the hierarchical organization of spatial memory.

By leveraging recording technologies that enable monitoring of hip-
pocampal LFPs during all states of motion in bats, we observed a lack 
of sustained theta oscillations during flight. This finding challenges 
existing models linking replay and cyclic neural sequences during 
movement to theta oscillations7,8,10. Although non-oscillatory dynam-
ics in bats24 have been proposed to explain phase locking and phase 
precession at the single-cell level, these were based solely on LFP data 
from crawling or stationary bats, and, notably, did not address the 
organization of ensemble activity that we observed. By contrast, our 
data provide evidence that non-oscillatory LFP dynamics are substan-
tially attenuated during flight, and that the spike–LFP relationships 
previously reported24 are effectively absent. Instead, the wing-beat 
rhythm provides a more consistent temporal reference, with stronger 
phase relationships to internal representations. These results suggest 
that in bats, behavioural rhythms interact strongly with hippocampal 
activity during flight, on timescales that are conducive to synaptic plas-
ticity10, whereas during rest, in the absence of such rhythms, internally 
generated LFP dynamics may be more prominent45. The mechanistic 
and circuit-level basis of how the wing-beat rhythm can influence neural 
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activity without a prominent LFP signature has yet to be determined. 
Potential mechanisms include cyclic neuromodulatory signals or 
oscillatory synaptic inputs from cortical regions that govern the bat’s 
sensorimotor behaviour (for example, the motor cortex). This notion 
also aligns with findings in rodents, in which locomotion can dynami-
cally entrain hippocampal representations27, potentially also through 
mid-brain nuclei46. Furthermore, continuous motor behaviours rely 
on ongoing sensory feedback (for example, stepping in rodents47 or 
echolocation in bats48), and both sensory and motor components 
are ideally suited to modulate neural activity. We observed that an 
increased echolocation rate corresponded to a reduced expression 
of coherent internal sequences, possibly through a rapid interplay 
between internal and external processes modulated by attentional 
demands. Future studies in spatial environments of varying complexity 
(for example, using obstacles) will be important to further examine 
how wing motion and active sensing (echolocation) interface with 
ensemble dynamics to support navigation. Advancing technologies 
that enable simultaneous recordings of larger neural populations, 
spanning several brain regions, will be crucial to unravel how areas such 
as the motor cortex or entorhinal cortex49 contribute to hippocam-
pal ensemble activity in bats and other animals. At the same time, the 
relationship between motor rhythms and hippocampal activity might 
be shaped by the distinct behavioural repertoires of animal species. 
Indeed, even within a single species, different types of hippocam-
pal oscillations can emerge under different conditions50, and a wide 
range of species-specific motor rhythms—such as whisking, sniffing or  
saccades—can modulate hippocampal dynamics27–30. These complexi-
ties demonstrate the need for cross-species comparisons, and highlight 
the power of comparative approaches in uncovering both conserved 
and specialized mechanisms of spatial navigation and memory40,41.
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Methods

Bats
Experiments involved a total of eight adult male Egyptian fruit bats 
(Rousettus aegyptiacus; body weight around 151–171 g). Six bats were 
used for the analysis of single units and LFP (n = 5 bats implanted with 
3 Neuropixels probes, n = 1 bat implanted with 2 Neuropixels probes). 
We collected 23 sessions (3–4 sessions per bat), during which neural 
activity was recorded during rewarded aerial foraging. Individual bat 
statistics for several measures related to spatial coding and ensemble 
phenomena are reported in Extended Data Fig. 14. Two additional bats 
were used for examining LFPs referenced to a cerebellar ground screw 
(see ‘LFP recordings with cerebellar ground’). All bats were housed in 
a humidity- and temperature-controlled room. Implanted bats were 
single housed after implant surgery. Lights in the housing room were 
maintained on a 12-h–12-h reverse light cycle (lights off–lights on; 
07:00–19:00). All experiments were performed at the same time of 
day during their awake hours (dark cycle). All experimental procedures 
were approved by the Institutional Animal Care and Use Committee at 
the University of California, Berkeley.

Aerial foraging
Foraging experiments took place in an indoor flight room (n = 4 bats, 
5.6 m × 5.2 m × 2.5 m) or an outdoor flight enclosure (n = 2 bats, 10.1 m × 
4.1 m × 2.8 m). All bats were mildly food-restricted (>85% of their base-
line weight) during training and recording sessions. Training (three to 
nine days before neural recordings) consisted of 60–120-min daily ses-
sions in which the bats could spontaneously obtain feeder-dispensed 
puréed reward by landing on designated platforms. No humans 
were inside any of the flight enclosures during experiments to avoid 
human-induced experimental confounding51, unless otherwise stated. 
Recording sessions lasted between 70 min and 115 min.

The indoor flight room was an acoustically, electrically and radio- 
frequency shielded room with high-precision lighting control. The 
flight room ceiling and walls were covered with acoustic foam to mini-
mize acoustic reverberation and dampen noise from adjacent rooms. An 
additional layer of acoustically absorbing black felt was placed around 
the walls and the floor to protect the acoustic foam from being damaged 
by the bats. The 3D spatial position of the bats was tracked at millimetre 
resolution using 16 motion-capture cameras13,52 (Raptor-12HS, Motion 
Analysis). Each camera tracked three reflective markers, attached to 
the neural recording headstage on the head of the bat, at a frame rate 
of 120 Hz. The 3D position of the marker-set centroid was acquired 
using commercially available software (Cortex-64; Motion Analysis). 
Two automated feeders placed on the wall at one end of the room dis-
pensed a puréed fruit reward. Reward was triggered when a bat landed 
on the feeding platform and interrupted an infrared beam break sensor 
mounted in front on the reward port. Feeders were all independently 
controlled by an Arduino (Uno Rev3) and Adafruit Motorshield (1438; 
Adafruit) interfaced with a computer outside the experimental room. 
Reward probability (0.2–0.8) and amount (0.1–0.3 ml) were adjusted 
by the experimenter to fine-tune the bat’s behaviour. On a subset of 
sessions (n = 6 sessions from 3 bats), barriers were added in the room 
or lights were turned off to encourage the execution of new flight 
trajectories. All remaining sessions were performed under uniform 
illumination (luminance level 5 lux) and without barriers.

Two bats participated in foraging experiments in an outdoor flight 
enclosure, following a similar procedure. One computer-controlled 
feeder was remotely triggered by the experimenter after the bat 
landed on an elevated platform. The 3D spatial position of each bat was 
recorded using a modified version of a commercial real-time location 
system14 (RTLS; Ciholas). In brief, the system was composed of a mobile 
tag (DWTAG100), mounted on the neural recording headstage, that was 
localized at a 100-Hz sampling rate by 13 static anchors (DWETH101), 
communicating through ultra-wideband pulses. One additional anchor 

(custom DWETH101) was used to record an external synchronization 
signal. Tags were made of a lightweight (around 2.9 g) transceiver and 
a LiPo battery. The system communicated with a computer located 
outside the experimental enclosure through UDP protocol. The sys-
tem was configured and operated through a web-based user interface 
running on Ubuntu 18.04 Bionic. Data were recorded and saved using 
custom-written scripts in Python. For all experiments, periodic clock 
pulses generated by a Master-9 device (A.M.P.I.) were used to create a 
timing signature that served as a common frame of reference for all the 
recording systems (tracking, neural recordings and audio; see below). 
Accelerometer data were acquired at 30 kHz by the neural recording 
headstage and downsampled to 500 Hz for analysis.

Surgery
Probe implants were performed in two stages, separated by 7–10 days: 
(i) implantation of the training cone; and (ii) insertion of Neuropixels 
1.0 probes.

Implantation of training cone. The bat was anaesthetized using an 
injectable cocktail of ketamine, dexmedetomidine (reversed by ati-
pamezole) and midazolam (reversed by flumazenil). It was then placed 
on a stereotaxic apparatus (Model 942; Kopf) and provided with a con-
tinuous supply of oxygen. Anaesthesia was maintained by injections 
of a cocktail of dexmedetomidine, midazolam, and fentanyl (about 
once per hour). Anaesthesia depth was continuously monitored by 
toe-pinch reaction test and by measurements of the bat’s breathing rate. 
Body temperature was measured with a rectal temperature probe and 
maintained at approximately 35 °C using a regulated heating pad. After 
the correct anaesthetic depth was reached, the skull was exposed, and 
the surrounding skin and tissue were retracted. The exposed skull was 
cleaned of any residual connective tissue and scored to improve cement 
adhesion. A ground screw, which consists of a bone screw (19010-00; 
FST) with two or three stainless-steel wires (203.2 μm coated; A-M Sys-
tems) soldered to the screw head, was inserted into the frontal plate 
of the skull and served as the ground for each Neuropixels probe (one 
wire per probe). In two bats, used for LFP analyses only, the ground 
screw was inserted posterior to the sinus, above the cerebellum (see 
‘LFP recordings with cerebellar ground’). Four shorter bone screws 
(M1.59 mm stainless steel) were placed to further strengthen the attach-
ment of the implant to the skull. A circular 1-mm craniotomy was made 
for each probe insertion point, up to three craniotomies per bat (two 
symmetrical bilateral sites for two probes, plus one additional site in the 
right hemisphere in the case of three probes, all above dorsal CA1 at app
roximately 6.3 mm anterior to the transverse sinus that runs between 
the posterior part of the cortex and the cerebellum and 3.2 mm lateral 
to the midline). The craniotomy was then sealed with a biocompatible 
elastomer (Kwik-Sil; World Precision Instruments) to protect the brain 
surface until probe insertion. The skull and bone screws were covered 
with a thin layer of bone cement (C&B Metabond; Parkell). A custom 
3D-printed cone was positioned and cemented using dental acrylic at 
three points of contact (to facilitate cone removal before probe inser-
tion), and the remaining gaps sealed with biocompatible elastomer 
(Kwik-Sil; World Precision Instruments). The cone was closed with a 
custom 3D-printed cap. At the end of the surgery, reversal agents were 
injected to counteract the dexmedetomidine and midazolam, and 
after the bat had fully awoken from the anaesthesia, an oral analgesic 
(Metacam; Boehringer Ingelheim), was administered. Analgesics (three  
days) and antibiotics (seven days) were given daily until complete  
recovery. Behavioural training was resumed after the bat was allowed 
to fully recover from surgery for three days. During training, the weight 
of the implant was gradually increased over seven to ten days to allow 
the bats to adapt to the final implant weight.

Insertion of Neuropixels 1.0 probes. Before probe insertion, each 
Neuropixels 1.0 probe was sharpened at a 20°–30° angle for 15 min 
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using a Microgrinder (EG-45; Narishige), and a single stainless-steel 
wire (203.2 μm coated; A-M Systems) was soldered to the ground and 
reference of the probe. The probe insertion procedure follows the 
same general surgical practice as described above. In brief, bats were 
anaesthetized and placed in a stereotaxic apparatus. The training cone 
was removed and up to three probes were inserted into pre-existing 
craniotomies after a durotomy. After mounting the Neuropixels 1.0 
probe on a stereotaxic arm, the probe shank was coated with fluorescent 
dye (CM-DiI; Invitrogen C7001) and inserted into the target craniotomy 
at a rate of around 10–20 μm s−1 to a depth of 5,500 μm. The probe was 
then cemented in place using dental acrylic. When the cement had fully 
cured, the ground wire of the probe was connected to the pre-existing 
ground screw. After all probes had been inserted, a new 3D-printed 
cone was positioned and cemented to the skull. The ribbon cable of 
each probe was then connected to a connector piece (SpikeGadgets) 
attached to the top of the cone, which serves both as a protective cap 
and as the interface between the Neuropixels 1.0 probes and the wire-
less headstage. The bat was then woken up using reversal agents to 
counteract the dexmedetomidine and midazolam.

Electrophysiology data acquisition, preprocessing and spike 
sorting
Recordings began one day after probe insertion and were performed 
using a SpikeGadgets wireless Neuropixels 1.0 headstage, which was 
attached to the connector piece on the implanted cone (along with a 
battery and SD card) before each recording session. The maximum num-
ber of recordable channels was 384 in total, from up to 3 probes. Chan-
nel selection to target the hippocampal pyramidal layers (dorsal CA1 
and CA3) was determined by detecting high-frequency ‘ripples’ in the 
LFP signal together with a transient (50–100 ms) increase in multi-unit 
activity, monitored during a dedicated rest session before the start of 
the experiments. Electrical signals (referenced to the ground screw) 
in the spike band (600–6,000 Hz) and LFP band (0.5–200 Hz) were 
amplified 500–1,000× and 125–250×, respectively, and were logged 
locally to a SD card on the headstage. After each recording session, 
the headstage was removed and the SD card was retrieved. Recorded 
data on the SD card were downloaded using a logger dock (SpikeGadg-
ets). Drift correction and spike sorting were done automatically using 
Kilosort453. All units labelled by Kilosort4 as ‘good’ were kept, after 
visual examination in Phy54. Duplicated cells on the same contact (with 
peak cross-correlation within 5 ms) were merged and spikes removed 
if closer than 1 ms.

Histology
At the end of the experimental sessions, bats were given a lethal over-
dose of sodium pentobarbital and perfused transcardially (200 ml 
phosphate-buffered saline (PBS), 0.025 M, pH = 7.4; 200 ml of fixative, 
3.7% formaldehyde in PBS). After perfusion, the probe implant was care-
fully removed, and the brain was dissected and stored in the fixative 
solution for one to two days. The fixed brain was subsequently moved to 
a 30% sucrose solution in PBS overnight for cryoprotection, and 40-µm 
coronal sections were cut using a microtome (HM450; Thermo Fisher 
Scientific) with a freezing stage. Slices around the dorsal hippocampus 
and including the implant were stained for DAPI (Thermo Fisher Scien-
tific) and cover-slipped with aqueous mounting medium (ProLong Gold 
Antifade Mountant, Thermo Fisher Scientific). Fluorescent images of 
each section surrounding the implant were acquired using an Axioscan 
Slide Scanner (Zeiss), and used to localize Neuropixels probe tracks, 
visualized from CM-DiI fluorescence. Probe positions were determined 
by serial reconstruction from adjacent coronal sections. All probes were 
successfully identified in the dorsal hippocampus of implanted bats.

LFP recordings with cerebellar ground
Two bats were used to examine LFPs referenced to a cerebellar 
ground screw (n = 1 bat implanted with 2 Neuropixels probes; n = 1 

bat implanted with 1 Neuropixels probe; 5 sessions each). Experiments 
were performed as described above. On a subset of the sessions, bats 
were encouraged to fly by a human experimenter in the room, to ensure 
sufficient spatial movement for evaluation of LFP during flight.

Recording and detection of echolocation calls
Recording and detection of echolocation calls was done as described 
previously14 (n = 4 bats, indoor flight enclosure). In brief, a dedicated 
ultrasonic microphone (M50; Earthworks) was used to record sounds 
inside the experimental flight room. The microphone was connected 
to a preamplifier (OctaMic II; RME Synthax) and recorded audio data 
at a 192-kHz sampling rate. Audio recordings were controlled with 
the SoundMexPro (HorTech) toolbox for MATLAB (MathWorks) and 
recorded using custom MATLAB scripts. For detecting echolocation 
calls, down-sampled audio data (96 kHz) were bandpass-filtered (10–
40 kHz) and z-scored. All events larger than 10 standard deviations were 
considered as potential echolocation clicks and identified with the 
MATLAB function findpeaks, with a minimum peak distance of 10 ms. 
Echolocation calls were then identified as the most abundant cluster in 
the space defined by the first three principal components of the power 
spectrum of all putative clicks (k-means). The correspondence between 
this cluster and actual echolocation clicks was confirmed by the pres-
ence of two prominent peaks in the inter-click-interval distribution, 
in line with what is expected for this species55, and by the prominent 
phase relationship of echolocation clicks with the wing-beat signal.

Data analysis
All analyses were done using custom code in MATLAB (2021a, Math-
Works).

Processing positional data during behaviour
Positional data recorded by the marker-based (120-Hz acquisition fre-
quency; four bats) or RTLS-based (100-Hz acquisition frequency; two 
bats) systems were preprocessed13,14, to obtain continuous and smooth 
3D positional data. Data from the RTLS system were resampled from 
100 Hz to 120 Hz, to allow for shared downstream analysis. Flights were 
identified on the basis of a velocity threshold of 0.5 ms−1, and used to 
segment a bat’s session into rest and flight epochs. Three-dimensional 
spatial trajectories during flight were clustered into similar paths using 
hierarchical clustering13,14. In brief, flight trajectories were spatially 
down-sampled to seven points per flight (the first and last points cor-
responded to the take-off and landing positions, respectively). The 
Frechet distance56 between down-sampled flights was used as a measure 
of flight similarity and similar flights were clustered by agglomerative 
hierarchical clustering. The linkage distance was set to 0.6–1.5 m after 
manual inspection of flight groupings. The resulting clusters consisted 
of highly similar flight paths and were used for all downstream analysis, 
excluding trajectories with fewer than five flights per cluster. Turns were 
identified as moments of high curvature in the middle of a flight, by 
finding the maximum of the smoothed 3D curvature (Gaussian kernel: 
0.12 s). Flight tails (below 25% and above 75% trajectory length) were 
forced to a curvature of 0 m−1 to avoid edge effects. On the basis of the 
value of maximum curvature across the dataset, flight trajectories were 
classified into straight flights (max curvature < 1 m−1) versus loops (max 
curvature > 1 m−1). Absolute deviation from g for quantifying move-
ment level was calculated as the absolute value of the magnitude of the 
accelerometer signal minus the gravitational acceleration g.

LFP processing
LFPs from all recorded channels (384 channels across 2 or 3 probes) 
were collected at a 2.5-kHz acquisition frequency and down-sampled to 
500 Hz for downstream processing. For detecting SWRs, one probe was 
selected after visual examination of the signal. Next, one channel was 
selected for every pair of collinear recording sites (the one with highest 
root mean squared (RMS) signal) and all the resulting channels were 



processed for SWR detection. In brief, the LFP signal of each channel 
was bandpass-filtered (100–200 Hz, stopband attenuation of 60 dB), 
and the ripple power was calculated as the absolute value of the Hilbert 
transform and smoothed with a 50-ms Gaussian kernel. Peaks in the 
z-scored ripple power exceeding a value of 3 were detected, with a mini-
mum peak distance of 50 ms and a minimum peak width of 10 ms, after 
excluding flight epochs. Candidate events simultaneously detected 
across channels were merged, when closer than 50 ms, keeping only the 
one with the largest ripple power. The correlation between the signal 
across channels of each candidate event and the average of all events 
was calculated, and only events with a minimum correlation value of 
0.2 were kept, using the stereotyped depth profile of SWRs. Analyses 
of the relationship between population firing rate and SWRs (Extended 
Data Fig. 3) were performed on large-amplitude and well-defined events 
(minimum correlation: 0.3; minimum z-scored ripple power: 5).

For the analysis of theta oscillations, one channel from one probe was 
selected after visual examination of the raw LFP data and of the distri-
bution of relative power in the theta band (4–11 Hz) across channels. 
The selected channel was either the one with the highest relative theta 
power or—when no clear peak was visible in the theta power distribution 
across channels—one channel around the estimated region correspond-
ing to the hippocampal fissure–CA1 stratum lacunosum-moleculare, 
where the amplitude of theta is expected to be the largest23,57. Analy-
sis of theta was then performed on the average LFP signal from the 
optimal channel and its four nearest neighbours. The resulting signal 
was bandpass-filtered in the theta (4–11 Hz) or delta (1–4 Hz) range; 
power in each frequency band was calculated as the absolute value of 
the Hilbert transform. Theta bouts were detected as events of mini-
mum 1-s duration, where the ratio of theta to delta power exceeded 
the value of 3, after joining events closer than 100 ms. Relative power 
in the theta band during flight or bouts was calculated from the LFP 
power spectral density, obtained using the MATLAB function pwelch. 
A flight was considered to be associated with significant theta oscilla-
tions if the median theta-to-delta ratio during flight was higher than 2 
and if there was a significant increase in theta power in the first 3 s of 
flight, compared with the 3 s before flight (Wilcoxon rank-sum test).

Replay analysis: spike sequences
Analysis of replay events using spike sequences followed three steps for 
each flight trajectory: (1) identification of spatially tuned cells; (2) detec-
tion of candidate replays; and (3) quantification of replay-associated 
metrics.

Identification of spatially tuned cells. Ensembles of spatially tuned 
cells were identified for each flight trajectory as follows. Spatial firing 
fields along flight paths (one-dimensional (1D) fields) were calculated 
for each repeated path and neuron14. To compute the 1D fields, we lin-
earized flight paths as 1D trajectories between take-off and landing (bin 
size: 0.15 m) and calculated the average firing rate, equal to the average 
number of spikes in a spatial bin, divided by the bin occupancy. The 
firing rate was smoothed with a Gaussian window (seven bins) to gen-
erate the 1D field. Spatial information (SI) per spike23,58 was calculated 
by summing across all bins:

∑
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where pi is the probability of being in bin i, λi is the firing rate on the 
same bin and λ = Σi piλi is the average firing rate across all bins. Stability 
of 1D fields within a session was measured by calculating the Spearman 
correlation between 1D fields for the first versus the second half of the 
flights. One additional quantity (pks) was calculated to avoid ambigui-
ties in the sequence position for neurons with more than one prominent 
place field. pks had a value of ‘0’ for cells with one place field (no peaks 
larger than half of the peak firing), or it was equal to the ratio between 

the second and the first peak for cells with more than one prominent 
place field. For spike-sequence analysis, we considered only cells with 
more than one spike per flight, more than 3 Hz firing at the field peak, 
a minimum stability of 0.4 and a maximum pks value of 0.5 (defined 
as spatially tuned cells or place cells). The same neurons were consid-
ered for the analyses of the relationship between trajectory length 
and place-field size (that is, the width at half prominence) or distance 
between place fields (Extended Data Fig. 8).

Detection of candidate replays and quantification of replay metrics. 
Candidate replays were detected for each flight trajectory as peaks in 
the spike density, calculated by pooling all the spikes from spatially 
tuned cells and convolving them with a Gaussian kernel (100 ms). Flight 
times were excluded from the analysis and peaks in the spike density 
exceeding two standard deviations were found (minimum duration: 
50 ms; maximum duration: 1 s). Events separated by less than 200 ms 
were joined, to make sure that discontinuous replays were not left 
undetected. For each candidate replay, we calculated a series of fea-
tures, after sorting the cell identities on the basis of the position of their 
spatial responses along the 1D flight paths. Replay metrics included 
the number of cells participating in the event, the ratio between this 
number and the total number of cells active during the corresponding 
flight trajectory, the replay duration (corresponding to the width of the 
spike-density event) and the rank correlation between the order of first 
spike and time. A P value was assigned to each replay by comparing the 
observed rank correlation with the rank correlations obtained from a 
shuffled distribution, in which cell identities were randomly permuted 
100 times4. The P value was calculated as the fraction of shuffles with 
a rank correlation greater (in absolute value) than the observed one. 
Replays were considered good if they had a rank correlation greater 
than 0.2 (absolute value), a minimum number of active cells greater 
than 5, a minimum of 30% of the spatially tuned cells were active during 
the replay and the P value was smaller than 0.05. All replays occurring 
during rest and meeting quality criteria were included in the analy-
sis. For the analysis of the relationship between replay and behaviour 
(Extended Data Fig. 5), flights were categorized into trajectories to 
feeder when the bat landed within 75 cm of the feeder. In addition, 
replays were categorized as: (1) immediate previous, replaying the 
trajectory of the most recent flight; (2) immediate next, replaying the 
trajectory of the upcoming flight; or (3) other, replaying a trajectory 
that was that of neither the previous nor the next flight. A small fraction 
of replays (average 2%; n = 23 sessions from 6 bats) was for trajectories 
that overlapped with both the previous and the next flights (that is, 
loops with shared take-off and landing sites) and was excluded from 
subsequent quantifications to preserve statistical power in multiple 
comparisons. To ensure robust categorization, we also excluded a small 
subset of replays (5.4%) that occurred before the first or after the last 
flight in a session, and only included trajectories that were replayed 
more than ten times. Chance levels were calculated for each session as 
one over the number of different flight paths that could be replayed. 
For the analysis of the relationship between replay duration and flight 
duration (Fig. 2), we focused on the subset of forward replays with a 
minimum of 0.4 rank correlation, 7 active cells, 30% of spatially tuned 
cells and P < 0.05. Replay speed from spike sequences was calculated 
as the number of neurons per second during replay, multiplied by the 
average metres per neuron. Neurons per second was obtained by fit-
ting a line to the times of the first spike during replays, and metres per 
neuron was calculated as the distance between the last and the first 
place cells divided by the number of place cells in the trajectory.

Replay analysis: decoding
Spatial response calculation and Bayesian decoder. Replay detec-
tion through spike-sequence analysis (see above) is based on thresh-
olding spike density from place cells and is therefore biased towards 
events that involve large numbers of place cells and/or large firing rates. 
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Given that replay-like events during immobility periods can happen in 
the absence of population bursts59, we implemented a complementary 
method for detecting replays, using a continuous replay detection 
procedure that does not rely on SWR events or population bursts. The 
same procedure, based on Bayesian decoding was repeated using spa-
tial responses from each flight trajectory type.

In brief, after categorizing flights into clusters, the position of the 
bat during each flight was linearized from take-off to landing and the 
entire trajectory was divided into 30 position bins. Spatial responses 
of each cell were calculated as the number of spikes fired in a particular 
position bin divided by the occupancy of the position bin, smoothed 
with a Gaussian kernel with a standard deviation of two bins. Posterior 
probability for each linearized positional bin x, given the vector n of 
spikes emitted by N neurons at a specific time was calculated using a 
Bayesian decoder with uniform prior20:
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where fi(x) is the spatial response of cell i at positional bin x, ni is the 
number of spikes emitted by cell i, τ is the size of the time bin and C is 
a normalization constant that can be determined by imposing uni-
tary sum of P(x|n) at each time bin. To enhance the smoothness of the 
decoded probability, each spike was mirrored by ±5 ms before calculat-
ing the vector n. All subsequent analyses, including shuffling, used the 
sequence of real plus mirrored spikes as input. For validation of decod-
ing during flight, the decoder was applied on 50-ms non-overlapping 
time windows during flight time and a normalized root mean squared 
error was calculated from the estimated bat position (spatial bin with 
maximum posterior probability), minus the observed bat position, 
and normalized by the duration of the flight. For replay detection, the 
Bayesian decoder was applied to spikes within a 20-ms sliding window, 
shifted by 5-ms increments over the entire session excluding flight 
epochs. Different metrics were used to assess the quality and signifi-
cance of replay events, and are described below.

Metrics for evaluating decoded events. Each candidate event was  
assigned four scores20,21,59,60 (weighted correlation, replay score, pos-
terior spread and trajectory coverage). Each decoded event could be 
graphed as a two-dimensional matrix of probabilities, with time on the 
x axis and predicted position on the y axis. The predicted position at 
each time bin was defined as the position bin with the highest decoded 
probability. Weighted correlation was defined as the Pearson’s correla-
tion between time and predicted position, weighted by the posterior 
probability of the decoded position21. Replay score20 was defined as 
the concentration of posterior probability within a line depicting an 
idealized linear trajectory along the entire track. To determine the ideal-
ized trajectory, we found the line of best fit for the predicted position 
(defined for each time bin as the position bin with the highest decoded 
probability). Posterior spread59 was defined as the square root of the 
second moment of the posterior. Trajectory coverage was defined 
as the percentage of trajectory length that was being covered by the 
replay. This value was found by fitting a linear line on the maximum 
posterior probability at each replay time bin, taking the difference in 
line position between the first and the last time bin, then dividing the 
trajectory covered with the trajectory length to obtain a value between 
0 (the decoded sequence is horizontal and thus unlikely to be a replay 
of flight) and 1 (the entire flight is being replayed).

Continuous detection of replay events using whole-session  
decoding. Time bins were excluded from further analysis if there 
was a low confidence of decoded position, as indicated by a posterior 
spread score greater than 0.3, or if the probability at the position of 
maximum probability is less than three times the average probabil-
ity. Each remaining region of continuous time bins was defined as a 

subsequence. Subsequences of less than 25 ms were excluded owing 
to the high chance of being noisy. Considering the possibility that long 
subsequences might get fragmented, neighbouring subsequences 
were merged if the temporal gap was less than 75 ms (without remov-
ing the low-confidence gaps). Sequences that contained more than 
70% of low-confidence regions were excluded. Disjoint subsequences 
constituted candidate replays. Next, to find the centre of the replay, 
each candidate event was randomly trimmed on both ends 1,000 times 
(>50% of the original event duration) and the weighted correlation as 
well as the trajectory coverage were calculated for the resulting seg-
ments. One segment from the top 5% of the sum of weighted correlation 
and trajectory length was selected randomly. This randomness was 
introduced to avoid systematic bias. Segments with a short duration 
(<50 ms) were excluded from subsequent analysis. After finding the 
segment central region, the whole candidate replay event was found by 
including regions of high decoded confidence on either side, stopping 
when a low-decoded-confidence region lasting at least 50 ms was found.

Shuffling. After a candidate event had been found, two shuffling meth-
ods were used to determine the significance of the event. The first 
was a circular shift of position within each time bin, which aimed to 
preserve local smoothness in position by circularly shifting decoded 
probabilities independently for each time bin. The second method 
was a time shuffle, in which the time bins of an event are shuffled. The 
weighted correlation and replay score of the shuffled sequence were 
determined. P values were calculated after 100 shuffles by each method, 
and events with significant P values (P < 0.05) for both shuffling meth-
ods and both replay metrics (weighted correlation and replay score) 
were kept for subsequent analysis. Replays were considered good if 
they had a weighted correlation score (absolute value) greater than 
0.4, replay score greater than 0.4 and trajectory coverage greater than 
0.5. All replays occurring during rest and meeting quality criteria were 
included in the analysis. For the analysis of the relationship between 
replay duration and flight duration, an additional restriction was that 
the trajectory coverage needs to be greater than 0.7 to ensure that the 
replays cover a significant portion of the trajectory. Replay speed was 
calculated by dividing the length of the flight being replayed by the 
duration of the replay.

Wing-beat phase extraction, phase locking and autocorrelation 
function
The wing-beat frequency was calculated as the peak frequency (in the 
interval 6–10 Hz) of the power spectrum obtained from the magnitude 
of the fast Fourier transform (FFT) of the absolute acceleration (norm 
of the 3D accelerometer signal) during flight epochs. For a subset of 
the analyses, we also extracted a time-varying instantaneous wing-beat 
frequency using the Hilbert transform of the absolute acceleration 
(MATLAB function instfreq), bandpass-filtered between 7 Hz and 9 Hz. 
Note that, as expected, the FFT estimate closely matched the time 
average of the instantaneous one (Pearson’s c = 0.83, P = 0, n = 1,442 
flights from 6 bats; Extended Data Fig. 10a). The wing-beat phase was 
calculated as the phase of the Hilbert transform of the bat’s absolute 
acceleration, filtered between 7 Hz and 9 Hz. Phase 0 was defined as 
the trough of the absolute acceleration, such that the wing downstroke 
corresponded to phase 0 − π. The wing-beat phase of each spike emitted 
during flight was calculated as the phase of the closest wing-beat sample 
(as accelerometer data was acquired at 500 Hz). For each cell, a spike 
phase distribution was calculated by binning phase values into 20 angu-
lar bins between −π and +π. Phase distributions were cloned with a 2π 
shift for visualization and fitting. Fitting normalized phase distributions 
between −1 and 1 was done using a cosine function cos(ax − b) and b > 0. 
Spatially tuned cells with an R2 (coefficient of determination) greater 
than 0 and a minimum of 50 spikes during flight were considered as 
phase locked and were used to determine population phase locking, 
by averaging their phase distributions. The resulting average phase 



correlation was corrected for uneven wing-beat phase distribution 
by subtracting the wing-beat phase distribution, averaged across the 
same cells. Phase locking was also examined using standard circular 
statistics measures. The mean resultant vector length r was defined as:
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where n is the total number of spikes emitted during flight and θj is the 
phase of the j-th spike. The Rayleigh statistic is z = r2n. The significance 
of phase locking was assessed using a shuffling procedure, in which the 
mean resultant vector length of each neuron was compared with a shuf-
fled distribution of mean resultant vector lengths obtained by randomly 
assigning to each spike the wing-beat phase taken from flight epochs 
and repeating this procedure 100 times. Similar results were obtained 
using the Hodges-Ajne omnibus test (average 12% phase-locked spa-
tially tuned neurons; r = 0.13 ± 0.01, z = 8.4 ± 2.4, spike count = 718 ± 65, 
mean ± s.e.m., n = 22 sessions from 6 bats), which evaluates general 
deviations from circular uniformity even in small samples (n ≥ 30) with-
out assuming a specific distribution (in contrast to the Rayleigh test, 
which assumes a unimodal von Mises distribution61). All neurons with 
a minimum of 30 spikes were included in the analysis and a neuron was 
considered phase locked if P < 0.05.

Spike autocorrelation for each cell was calculated within ±500 ms, 
using 10-ms time bins and normalized by the total number of counts. 
Residual correlation for the population average was obtained by fit-
ting the average autocorrelation between 100 ms and 500 ms with a 
mono-exponential function and subtracting this fit from it. Phase pre-
cession between wing-beat phase and position of a spike was examined 
by calculating the Spearman correlation between distance along the 
flight and the wing-beat phase of each spike, after finding the phase shift 
that maximized the absolute value of the correlation23,62. Phase-locked 
cells were considered phase preceding when the Spearman correlation 
value was negative and its P value was less than 0.05.

Decoding sequences during flight and relationship with the 
wing-beat
Position probability distributions (Fig. 3g) during flight were obtained 
using Bayesian decoding. First, 1D linearized spatial responses of neu-
rons during a flight were calculated as the average firing rate in 15-cm 
bins, spanning each trajectory from take-off to landing, as described 
in ‘Identification of spatially tuned cells’. Only neurons with stability 
(as defined in ‘Identification of spatially tuned cells’) greater than 0.6 
were used for decoding. Spatial responses from these neurons were 
used to train a Bayesian decoder, as was done for replay detection. Each 
spike was mirrored at ±5 and ±10 ms, to enhance the smoothness of the 
decoded probability. Posterior probability for each of the 15-cm spatial 
bins was calculated on a sliding window of 30-ms duration, moved by 
5 ms from take-off to landing, using equation (2). The decoded position 
of the bat at each time bin during flight was calculated as the centre of 
the spatial bin with highest posterior probability. The decoding error 
(as typically defined in the replay literature36) was calculated as the 
decoded position minus the real position of the bat at that time bin. 
For each flight, we calculated a RMS decoding error and the fraction 
of decoded bins (removing bins where no spikes were emitted). The 
average decoding error during a wing-beat cycle was calculated by 
averaging decoding errors on single wing-beat cycles (−π to +π) from 
all flights with a RMS decoding error smaller than 1.3 m and fraction 
decoded bins higher than 0.7. Flight tails, where the bat was at less 
than 0.15 or at more than 0.85 of the total flight length, were discarded. 
Similar criteria were used for the analysis of the average decoding error 
across wing-beat cycles with or without echolocation, with the differ-
ence that flight tails were included (whole-flight analysis) or only the 
first half of the flight length was considered (first-half analysis). The 
shuffled average decoding error was obtained by randomly shifting 

the wing-beat phase at each wing-beat cycle by up to ±60 ms, repeat-
ing this procedure 20 times and averaging the results. A P value for 
the difference between real and shuffled data was calculated at each 
time bin as the fraction of shuffled average decoding errors that were 
larger than the observed average decoding errors. To find the preferred 
phase of decoded sweeps, we focused on large-amplitude and clearly 
defined events (Fig. 3i), identified across all flights with a RMS decod-
ing error smaller than 1.3 m and fraction decoded bins higher than 
0.7. A template-matching algorithm was used to segment windows of 
decoded probability clearly resembling sweeps, followed by a cleaning 
step based on a deep neural network. In brief, the average decoding 
error was convolved with a Gaussian-shaped template (60 ms temporal 
width and 0.9 m spatial extent) and candidate events were found by 
thresholding the resulting trace. A preferred phase was assigned to each 
candidate event, corresponding to the wing-beat phase at its centre. For 
every candidate event, the posterior probability was extracted within 
a (−60, +60 ms) time interval and a (−0.9, +1.8 m) space interval and 
shifted by the real position of the bat at each time bin. The resulting 
matrixes (Fig. 3i, top) correspond to the posterior probability of the bat, 
corrected by its real position. To filter out noisy events, we retrained 
AlexNet63 (modified to distinguish between 2 classes: good sweeps 
versus noise) using 1,000 manually labelled sweeps, after balancing 
the number of negative and positive examples (sampling a similar 
number from the 1,000 manually labelled sweeps). The dataset was 
randomly split into training (80%) and validation (20%) subsets and the 
network was trained using stochastic gradient descent with momentum 
(SGDM) for 10 epochs, with a mini-batch size of 32, an initial learning 
rate of 0.0001 and shuffled data at each epoch. The power spectral 
density of the decoding error (Extended Data Fig. 13) was calculated 
from the magnitude of the FFT of the decoding error during flight, after 
subtracting the exponentially decaying part of the spectrum (fitting 
with a mono-exponential for frequencies greater than 2 Hz). The peak 
of the spectrum between 5 Hz and 16 Hz was used as an estimate for the 
sweep frequency during a flight. The instantaneous sweep frequency 
for consecutive sweeps was calculated for the subset of automatically 
detected sweeps (see above) that were separated by less than 180 ms, 
as the inverse of the time interval between their centres, determined 
by the template-matching algorithm.

Analysis of non-oscillatory LFP power and phase-locking 
comparisons
The analysis of non-oscillatory LFP (Extended Data Fig. 11) followed 
methods described in previous work24. In brief, the same LFP signal 
that was used for analysing theta oscillations (see ‘LFP processing’) 
was filtered between 1 Hz and 10 Hz and used for downstream pro-
cessing. To extract the cycle-by-cycle phase of the non-rhythmic LFP, 
we linearly interpolated the times between consecutive LFP troughs 
between 0° and 360°. Non-oscillatory power was calculated as the 
square of the absolute Hilbert transform of the filtered LFP signal. 
Time averages during flight versus non-flight epochs were used for 
comparing non-oscillatory power (Extended Data Fig. 11a). Overall 
duration of non-flight and flight epochs for each session was matched 
by randomly sampling from non-flight times a number of samples 
equal to flight sample size. The average decoding error during a 
non-oscillatory LFP cycle was calculated by averaging decoding errors 
(as defined above) on single LFP cycles (−π to +π), using the same 
inclusion criteria as for the wing-beat phase averages. Cycles with a 
low average non-oscillatory power (below the 25th percentile of the 
in-flight distribution), were discarded as described previously24. The 
average decoding error during a wing-beat cycle and the shuffled dis-
tribution were calculated as described above, with the only difference 
being that all wing-beat cycles coming from flights with no valid LFP 
cycles (because of the 25th percentile power threshold) were removed 
from the analysis, to ensure that cycles came from the same pool of 
flights. The resulting mean decoding error (aligned to wing-beat or 
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non-oscillatory LFP phases) was phase-averaged around the centre 
of the cycle (−π/2 to +π/2) and normalized by subtracting the mean of 
the phase-averaged shuffled distribution and dividing by its standard  
deviation.

Statistical analysis
No formal methods were used to predetermine sample sizes; adopted 
sample sizes were similar to those used in relevant previous studies. 
No randomization of experimental sessions and no blinding to experi-
mental conditions were used during the analysis. All statistical compari-
sons were performed using two-tailed non-parametric tests (Wilcoxon 
rank-sum test, Wilcoxon signed-rank test, bootstrap or randomization 
tests) unless otherwise stated.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The dataset from this study is available from the corresponding author 
on reasonable request. A demo session and associated material can 
be found via Zenodo at https://doi.org/10.5281/zenodo.15738988 
(ref. 64). Source data are provided with this paper.

Code availability
All analyses were performed using custom code in MATLAB (Math-
Works), with the exclusion of spike sorting, which was done with 
Python-based Kilosort4. The code generated in the current study is 
available at https://github.com/kevin-qi/ripple-bat.git.
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Extended Data Fig. 1 | Spatially selective cells during flight. a, Example 
spatially selective cells across one flight trajectory. Left column depicts the 
flight trajectory (grey lines, top view) and overlaid spikes (red dots) of seven 
example neurons, sorted by location of peak firing from take-off (grey triangle) 
to landing (bottom to top row). Right column shows the raster plot across 22 
repetitions of the same trajectory. Neural activity is plotted along a normalized 
flight trajectory, with all flights temporally aligned and rescaled, such that 
take-off and landing coincide in the visualization. Note that owing to the high 
similarity of flights, minimal rescaling is needed. b, Distributions of field size, 
stability, peak firing rate and spatial information (Methods) for 1,620 neurons x 
trajectory. Data are from 990 spatially tuned neurons, 6 bats (Methods).
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Extended Data Fig. 2 | Echolocation rate and movement level around 
replay. a, Raster plots of echolocation calls (vertical ticks) from three different 
bats during individual flight sessions. Each flight epoch is normalized to  
have the same duration across trials. Non-flight epochs before and after each 
flight are shown with durations equal to the corresponding flight. b, Average 
echolocation rate around take-off and landing (n = 16 sessions from 4 bats). 
Shaded area represents s.e.m. c, Box plot for the average echolocation rate 
during flight versus non-flight (two-sided P from Wilcoxon signed-rank test, 
n = 16 sessions from 4 bats), The box plot shows the maximum and minimum 
values (whiskers), median (centre line) and 25th to 75th percentiles (box limits) 
across sessions. d, Schematics of the analysis of echolocation production and 
movement level around replay times. Mic: environment microphone; IMU: 
inertial measurement unit, measuring acceleration data on the headstage.  

e, Average echolocation rate around replay times (red trace) versus random 
epochs of non-flight (black trace, n = 2,364 replays from 16 sessions, 4 bats). 
Traces are compared with the time-averaged echolocation rate during flight 
and non-flight for the same sessions (dotted lines). Inset shows a magnified 
view of the plot; significance of the difference between the two traces is tested 
at time 0 (Wilcoxon signed-rank test, n = 2,364 replays from 16 sessions, 4 bats). 
f, Same as e, but for the movement around replay, quantified as the absolute 
value of the difference between the absolute acceleration and g. Note the near-
zero echolocation production and minimal movement around replay times, 
which is even lower than during randomly selected non-flight epochs. In e,f, 
solid traces represent the mean and shaded areas are s.e.m. P values are  
two-sided.



Extended Data Fig. 3 | Population activity around SWRs. a, Raster plots from 
three example sessions (three different bats) of population activity around 
SWRs. Spikes (black ticks) are pooled from all the simultaneously recorded 
single units. b, Average population firing rate (top) and LFP profile (bottom, 
normalized between minimum and maximum) around SWRs. The average 
firing rate in each time bin (111 ms) is tested against baseline level (Wilcoxon 
signed-rank test, n = 22 sessions from 6 bats). Note that firing rate is 
indistinguishable from baseline up until the SWR event. Solid traces represent 
the mean and shaded areas are s.e.m. P values are two-sided. ***P < 0.001;  
ns: P > 0.05.
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Extended Data Fig. 4 | Different neural ensembles are active during 
different flights. a, Example posterior probability matrixes obtained by 
decoding neural activity during single flights, when using neural ensembles 
extracted from the same flight trajectory (diagonal) or from another flight 
trajectory (off-diagonal) during the same experimental session. Scale bar, 1 m. 
b, Root mean squared error (normalized; Methods) when decoding the bat’s 
position during flight using the ensemble of cells active during the same flight 
(grey, 1,479 flight trajectories from 23 sessions, 6 bats) or a different flight 
within the same session (red, 4,544 flight trajectory pairs from 23 sessions, 6 
bats). two-sided P = 0, two-sample Kolmogorov–Smirnov test. Note that bats, 
unlike rodents, never traversed the same trajectory in two opposite directions.



Extended Data Fig. 5 | Simple models do not explain the relationship 
between replay content and behaviour. a, Most common flight hypothesis. 
Left: schematic illustrating the hypothesis that replays are more likely for the 
most frequently taken flight paths (e.g., blue path). Middle: fraction of flights 
belonging to the 1st, 2nd and 3rd most common trajectories, ranked by 
frequency within each session. Right: corresponding fraction of replays for 
each trajectory rank. Box plots show median (centre line), 25th–75th percentiles 
(box) and minimum and maximum (whiskers) across sessions (n = 9 sessions 
from 3 bats in which at least 3 different trajectory types were each replayed  
at least 15 times; Wilcoxon signed-rank test between 1st and 3rd ranks). Note  
that replay fraction does not scale with flight frequency. b, Top: schematic 
illustrating the hypothesis that replays reflect the immediately preceding 
(orange) or following (purple) flight. Bottom: fraction of replays classified as 
immediate previous (left), immediate next (centre), or other (right), compared 
with chance level (n = 17 sessions from 5 bats; Wilcoxon signed-rank test, 
Methods). Chance level for each session is calculated as one over the number  
of different flight trajectories in that session that could be replayed. Thin  
lines depict single sessions; thick lines show the averages. c, Rewarded  
flight hypothesis. Left: schematic illustrating the hypothesis that replays 
prioritize flights to rewarded locations (feeders). Right: fraction of replays 
corresponding to flights ending at feeders (black) or perches (blue), for all, 
forward, and reverse replays. Replay fractions are normalized by the number  
of feeder- or perch-bound flight types present in each session, so values do not 
sum to 1. Box plots as in a (n = 23 sessions from 6 bats; Wilcoxon signed-rank 
test). No significant difference was observed between replays for reward- and 
perch-directed flights. P values are two-sided. ***P < 0.001; **P < 0.01; *P < 0.05; 
ns: P > 0.05. Illustration in c adapted from ref. 14, Springer Nature Limited, 
under a Creative Commons licence CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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Extended Data Fig. 6 | Replay features for flights of different lengths and 
durations. a, Comparison of different replay metrics (Methods) between  
short and long flights (P values are from Wilcoxon rank-sum test, P values are 
two-sided, n = 37 short versus 28 long flights for rank correlation and fraction 
active cells, obtained from spike-sequence analysis; n = 51 short versus 22 long 
flights for the remaining scores, obtained from decoding analysis). Here and in 
b, thick line represents median; thin lines represent s.e.m. b, Comparison of 

replay duration calculated from decoded replays between short (n = 51 
trajectories) and long (n = 22 trajectories) flights. P values are two-sided.  
c, Flight length versus replay speed calculated from decoded replays. Black 
dotted line denotes the line of best fit. Note the linear increase in replay speed 
as flight length gets longer. Each dot represents the average replay duration for 
a single flight trajectory, colour-coded by the identity of the bat, n = 78 flight 
trajectories.



Extended Data Fig. 7 | Distance between place fields versus timing between 
spikes during replay. a, Schematic showing the interval between first spikes 
and the distance between place fields for a specific neuron pair participating  
in a replay event. b, Interval between first spikes versus distance between place 
fields for all the place-cell pairs that participated in replay events fulfilling 
analysis criteria (8,328 valid pairs from 1,073 replays; Methods). Note that  
at short distances the time between first spikes increases with the distance 
between place fields, but this increase plateaus at distances of a few metres, in 
line with the approximate constancy of replay duration across varying lengths.
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Extended Data Fig. 8 | Place-field size and distance for flights of different 
lengths. a, Average distance between place cells (left) or average field size 
(right) versus flight length (Methods). Each marker represents the average 
value for place cells active on a flight cluster (n = 82 flight clusters from 23 
sessions and 6 bats). Solid line represents linear fit. c and p: value and P value of 
Pearson’s correlation. P values are two-sided. b, Comparison between average 
field size (top), place-cell distance (middle) and number of recruited place cells 
(bottom) for short versus long flights (n = 46 short (3–7 m) versus n = 30 long 

(7–13 m) flights). Two-sided P values obtained from Wilcoxon rank-sum test: 
7.9e-5, 0.001, 0.057 respectively. Thick line represents median, thin lines 
represent s.e.m. c, Distribution of single-session Pearson correlation values 
between average place-cell distance (left) or average place-field size (right)  
and flight trajectory length (n = 22 sessions from 6 bats with more than one 
analysable flight cluster). Note the highly skewed distributions, suggesting a 
positive correlation between field distance (or size) and trajectory length at the 
single-session level.



Extended Data Fig. 9 | Hippocampal LFPs in bats lack continuous theta 
oscillations during flight, independent of reference site. a, Example theta 
bouts around and during flight (left), and during rest (right). For each example, 
absolute acceleration filtered between 7 and 9 Hz (top, orange trace), LFP trace 
(middle, black trace) and spectrogram (bottom) are shown. White arrows 
indicate theta bouts (Methods). b, Distribution of all theta bouts durations, 
including rest and flight time (1,512 bouts from 22 sessions and 6 bats). c, Left, 
box plot showing the ratio of delta power during non-flight versus flight. The 
box plot shows the maximum and minimum values (whiskers), median (centre 
line) and 25th to 75th percentiles (box limits) across sessions (n = 22 from 6 bats). 
P value is for a two-sided Wilcoxon signed-rank test against unit ratio. Right: time 
course of theta (red) and delta (blue) power around the onset of theta bouts, 
normalized to their average values during randomly chosen rest epochs. Shaded 
grey rectangle indicates theta bout duration (average ± s.e.m.: 1.53 ± 0.02 s). 
Shaded areas indicate s.e.m. d, Left: average rate of theta bouts around observed 
SWRs (red) and random epochs during non-flight (control, black). The average 
rate in each time bin (555 ms) is compared between observed data and control 
(two-sided Wilcoxon signed-rank test; n = 22 sessions from 6 bats). Difference is 
not significant in all epochs. Note the extremely low rate of theta bouts around 
SWRs. Right: box plot showing the average rate of theta bouts in the epochs 

preceding SWRs (from −5 to 0 s, red) or random events (same interval, black). 
P = 0.14 Wilcoxon signed-rank test, n = 22 sessions from 6 bats. e, Schematics 
diagram showing the reference ground screw (red) positioning above the frontal 
cortex. Transparency shows brain outline. f, Absolute acceleration (top), 
unfiltered LFP trace (middle) and spectrogram (bottom) around take-off for 
seven example flights, where LFP was referenced to a frontal ground. Note the 
absence of theta during flight (217 out of 2,128 flights with theta, 10%, n = 6 
bats, 22 sessions; Methods). g, Power spectral density (PSD) of the LFP during 
epochs of non-flight (black trace) and flight (orange trace) for one example 
session where LFP was referenced to a frontal ground. Note the absence of 
prominent peaks in the theta frequency range (4–11 Hz). h, Power in the 4–11 Hz 
band, relative to power across the whole spectrum during theta bouts (bouts) 
versus during flight (Flight). P = 4e-5 two-sided Wilcoxon signed-rank test, n = 22 
sessions from 6 bats. Thick line represents median; thin lines represent s.e.m.  
i–k, Same as in e–g, but for data collected with the reference ground screw (red) 
positioned above the cerebellum (two bats). Note, as in f,g, the absence of  
theta during flight (11 out of 344 flights with theta, 3%, n = 2 bats, 10 sessions; 
Methods). l, Same as h, but with LFP referenced to a cerebellar ground. P = 2e-4 
Wilcoxon signed-rank test, n = 10 sessions from 2 bats.
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Extended Data Fig. 10 | Limited wing-beat frequency variability across 
flights. a, Scatter plot and histogram for the wing-beat frequency calculated 
from the FFT of the absolute acceleration during a flight (vertical axis) or as the 
average during flight of the time-varying frequency obtained from the Hilbert 
transform (Methods). Each dot is one flight (n = 1,442 flights from 6 bats). Note 
the high correlation between the two measures and their narrow distributions. 
b, Heat maps representing the accelerometer signal (filtered between 7 Hz and 
9 Hz) during repeated executions of the same flight in a path (three example 
paths from different bats). Number below the heat map indicates duration of 
the shown flight interval. c, Distribution of the coefficient of variation (CV) for 
the wing-beat frequency across flights belonging to the same path (n = 80 flight 
paths from 6 bats). The vertical line represents the coefficient of variation of 
the wing-beat frequency across all flights (n = 1,442 flights from 6 bats). Note 
that most of the coefficients of variation of wing-beat frequency within a path 

were significantly smaller than the coefficient of variation across all flights 
(97.5%, P = 0.025). d, Scatter plot for the average speed versus average wing-
beat frequency during flight (each dot is a flight, n = 1,442 flights from 6 bats). 
To improve visibility, only data within 5th–99th percentiles are shown. c and p: 
value and two-sided P value of Spearman’s correlation. e, Example trajectories 
(left insets), average speed profile (solid line) and average wing-beat frequency 
(dotted line) for straight flights (n = 1,057, top) versus loops (n = 385, bottom; 
Methods). Shaded areas represent s.e.m. Average profiles are calculated by 
rescaling the speed (or wing-beat frequency) between 0 (take-off) and 100 
(landing) and then averaging the obtained traces across flights. Flight tails are 
excluded to avoid edge effects. f, Unfiltered power spectral densities of the raw 
accelerometer signal during flight for all sessions (n = 22, 6 bats; coloured lines, 
scaled between 0 and 1). Black line shows the average.



Extended Data Fig. 11 | Comparison between non-oscillatory LFP and 
wing-beat phase locking of hippocampal neurons. a, Mean power of the 
non-oscillatory LFP (Methods) during non-flight versus flight epochs. The box 
plot shows the maximum and minimum values (whiskers), median (centre line) 
and the 25th to 75th percentiles (box limits) across sessions (two-sided p = 4e-5, 
n = 22 sessions from 6 bats, Wilcoxon signed-rank test). b, Top, spike-triggered 
LFP, computed as the mean of the single-session spike-triggered LFP traces 
(n = 22 sessions from 6 bats) for all the spikes emitted during non-flight (black) 
versus flight (purple). Shaded areas represent s.e.m. Middle: Same as above, but 
for the spike-triggered wing-beat. Bottom: Same as above but only including 
spikes from phase-locked neurons (n = 22 sessions from 6 bats; Methods).  
c, Average decoding error (Methods) aligned to either the wing-beat phase 
(orange bar) or the non-oscillatory LFP phase (purple bar) and normalized to a 
shuffled distribution (two-sided P = 0.044 Wilcoxon rank-sum test, n = 4,546 
wing-beat cycles versus 4,393 LFP cycles from 643 flights, 6 bats). Bars indicate 
the mean, error bars are s.e.m.
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Extended Data Fig. 12 | Fast representational sequences around turns and 
echolocation. a, Top: Example flights with turns, shown in top view. The colour 
at each position indicates the local 3D curvature. Grey triangles mark the turn 
point, defined as the location of maximum curvature (Methods). Bottom: 
Distribution of maximum curvature across flights (n = 1,354 flights from  
22 sessions, 6 bats). The vertical line denotes the threshold value of 1 m−1 used to 
distinguish loops from straight flights. b, Top: Distribution of representational 
sequence (sweep) occurrence within a [−1, 1] s window around detected turns 
(n = 122 automatically detected sweeps, 18 flights with turns, 6 sessions, 5 bats; 
median turn time from start/stop of flight: 1.9 s/1.7 s). Black line shows the 
kernel density estimation. Bottom: Average echolocation rate, velocity and 
curvature aligned to the turn point (n = 274 flights with turns from 10 sessions,  
4 bats). Thick lines represent the mean; shaded areas denote s.e.m. c, Average 
echolocation rate across normalized flight phase (%; 0 = take-off, 100 = landing) 
for straight flights versus loops (n = 880 straight flights from 16 sessions, 4 bats;  

n = 274 flights with turns from 10 sessions, 4 bats). Each echolocation trace was 
normalized to its maximum value before averaging. Note the transient increase 
in echolocation rate near the midpoint of loops. Thick lines indicate mean; 
shaded areas denote s.e.m. d, Average decoding error (top) and echolocation 
rate (bottom) across wing-beat cycles from straight flights (n = 591 straight 
flights from 15 sessions, 4 bats). Traces are aligned to the phase of the wing-beat 
and split into cycles with (blue, n = 3,451 cycles for whole flight, n = 1,712 for 1st 
half) versus without (red, n = 6,184 cycles for whole flight, n = 3,166 for 1st half) 
echolocation. Plots on the right include only wing-beat cycles from the first 
half of flights. Solid lines indicate mean; shaded areas indicate s.e.m. Note the 
reduction in decoding error during cycles with echolocation. e, Average 
echolocation rate in a [−40:40] ms window around observed sweeps versus 
randomly selected time points (two-sided Wilcoxon sign rank test, n = 1,214 
sweeps, 4 bats; Methods). Bars indicate the mean, error bars are s.e.m.



Extended Data Fig. 13 | Relationship between the frequency of wing-beat 
and of internal representations. a, Average power spectral density (PSD, 
normalized to unit area) for the decoding error during flight (n = 659 flights 
from 16 sessions and 6 bats). Dashed line shows fit with exponential decay. The 
inset shows the residual after subtracting the exponential decay. Note the peak 
around 8 Hz. b, Scatter plot and histograms for the peak of the residual PSD of 
the decoding error (after subtracting the exponential decay) versus average 
wing-beat frequency for single flights (dots, n = 659 flights from 16 sessions 
and 6 bats; Methods). Inset shows the same data at higher magnification.  
c, Same as b, but for the estimated sweep frequency for consecutive sweeps 
(example in the topmost inset, calculated as the inverse of their time interval, 
n = 360 from 15 sessions, 5 bats) versus average wing-beat frequency calculated 

from the time average of the instantaneous wing-beat frequency on the same 
time interval between sweeps (Methods). Inset shows the same data at higher 
magnification. d, Average P value (calculated over 30 repetitions, shaded  
area indicates s.d.) for the Spearman correlation between simulated sweep 
frequency versus empirical wing-beat frequency, plotted against imposed 
correlation values. Simulated sweep frequency ( f ) was generated from the 
empirical wing-beat frequency values (x) as f = r·zscore(x) + √(1 − r2) ·z + mean(x), 
where z ≈ N(0,1). Inset shows data for one simulated sample at r = 0.5. 
Simulations suggest that even under idealized conditions, detecting weak 
correlations (e.g., r ≈ 0.2, similar to the value observed between stepping and 
theta in rats27) could be challenging, given the little wing-beat frequency 
variability.



Article

Extended Data Fig. 14 | Statistics for individual bats for spatial coding, 
replay and oscillatory dynamics variables. a–p, Box plots showing individual 
statistics for several variables. Each box plot, excluding k (see below), shows 
the maximum and minimum values (whiskers), median (centre line), and 25th  
to 75th percentiles (box limits) across sessions (or session × replay type: 
forward or reverse; numbers in parentheses). The plot in k shows, for each  

bat, the Pearson correlation between flight trajectory length and the median 
replay speed for that flight (number of flight trajectories used to calculate  
the correlation in parentheses). Note the strongly skewed distribution of 
correlations toward positive values across bats, suggesting that replay speed 
increases with trajectory length. Bats 2 and 3 were flown in the outdoor 
enclosure; the remaining bats were flown in the indoor flight room (see Methods).
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