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Coghnitive functions for navigation and memory rely on emergent properties of neural
ensembles in the hippocampus, such as activity replay'® and theta sequences® ™.
However, whether and how these phenomena generalize across species with distinct
navigational demands and neurophysiological properties remains unclear. Here

we wirelessly recorded neural activity from large populations of cells and local field
potentials from the hippocampus of freely flying Egyptian fruit bats (Rousettus
aegyptiacus) engaged in free, spontaneous foraging behaviour. During rest, we
identified time-compressed forward and reverse replays of multiple flight trajectories
coinciding with sharp-wave ripples. Notably, replays occurred predominantly at
locations that were both spatially and temporally distant from the replayed behaviour,
and their speed scaled with trajectory length, challenging present models of replay
mechanisms. During flight, neural ensembles exhibited fast representational sweeps,
inwhich the decoded location moved ahead of the bat’s position cyclically. In contrast

toreportsinrodents, sweeps occurred in the absence of theta oscillations, and were
instead phase locked to a prominent motor behavioural rhythm—the bat’s wing-beat
cycle. This suggests that behaviourally relevant sensorimotor rhythms caninteract
with hippocampal ensemble dynamics in a highly structured manner. Combined,
our findings challenge existing models of ensemble dynamics in the mammalian
hippocampus, and highlight the importance of comparative studies in ethologically
relevant conditions for elucidating brain function.

The spatial and temporal organization of experiences is crucial for
forming memories of past events and for guiding future behaviours.
Previous studiesindicate that time-compressed and sequential ensem-
ble phenomena in the hippocampus, such as replay’ and oscillatory
representation dynamics (theta sequences)®®, are central for sup-
porting this process. However, nearly all previous investigations of
these phenomena have been performed in rodents, often engaged in
guidedtasks. This raises two major challenges. First, because inguided
tasks, movement and rest can be experimentally segregated and the
spatial repertoire can be experimentally constrained (for example,
on linear tracks or mazes), it remains unclear whether and how these
phenomena extend to naturalistic behaviours—where spatial experi-
encesare continuous, unconstrained and inherently variable, such that
animals are free to choose when and where to move and rest. Second,
inrodents, bothreplay and thetasequences—which arebelieved tobe
causally related”®°—are fundamentally tied to the presence of strong
hippocampal theta oscillations during locomotion. Yet many species,
including bats" and primates', lack continuous locomotion-related
theta rhythms. This raises questions about the mechanisms that
underlie these ensemble dynamics and whether they represent a
universal feature of hippocampal computation, or instead reflect
rodent-specific adaptations. To address these gaps, here we established
large-scale wireless neural recordings in freely flying Egyptian fruit bats

(R. aegyptiacus), and exploited their natural tendency to organize
spontaneous foraging behaviour in a structured manner*, during
both movement and rest. This allowed us to investigate ensemble
dynamics through a naturally unfolding but highly controlled form
of spatial behaviour.

Hippocampal replay of flight trajectories

We used Neuropixels 1.0 probes® to wirelessly record ensemble activ-
ity, at cellular resolution, from the dorsal hippocampus of Egyptian
fruit bats engaged in rewarded spontaneous aerial foraging™¢ (n=6
bats, 23 sessions; Fig. 1a). During recording sessions (mean duration:
1h 20 min) we simultaneously monitored the activity of putative sin-
gle neurons (49-322 per session) and the local field potential (LFP)
whilebats spontaneously alternated between periods of rest and flight
(33-154 flights per session; Fig. 1b). Consistent with previous resultsin
bats®*1¢77 we found that a large portion of single units that were active
during flight exhibited robust spatial selectivity (place cells: 990 out of
1,386 flight-active neurons (71%), n = 6 bats; Methods and Extended Data
Fig.1), spanning eachflight trajectory from take-offto landing (Fig. 1c).
We further observed that many of the same neurons that were active
during flight were also transiently active during rest, and that they
often covered asimilar temporal sequence of activation, albeitinmuch
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Fig.1|Wireless recordings with Neuropixels probes during aerial foraging
reveal hippocampal replay inbats. a, Top, schematic of the aerial foraging
experiment. Bottom, dorsal hippocampus (coronal section) inone recorded
bat, stained for 4’,6-diamidino-2-phenylindole (DAPI, blue) and CM-Dil (red)
(Methods). White dashed lines marked with arrowheads denote tracks of
threeimplanted Neuropixels 1.0 probes. Scale bar,1 mm. b, Raster plot of
simultaneously recorded hippocampal neurons during arepresentative
session.Neuronsare sorted by average firing frequency. Bottom trace, average
hippocampal LFP across all channels of one probe during the same session.
Scalebars, 800 pV (vertical) and 1 min (horizontal). ¢, Top, similar flights from
arepresentative session. Arrow indicates take-off. Bottom, raster plot of
simultaneously recorded place cells, sorted by the location of their firing field
(Methods). Each row shows the firing during 22 consecutive repetitions of the
same trajectory. Neural activityis plotted along a normalized flight trajectory,
withallflights temporally aligned and rescaled (yellow shaded area) such that
take-off and landing coincide in the visualization. Scale bar,2 m.d, Neural
activation of place cells during arepresentative epoch. Top, raster plots
showingsorted neural activity during time-compressed candidate replays

shorter time windows (Fig. 1d). This was reminiscent of ‘replay’ events
observed in the rodent hippocampus®~. Because time-compressed
sequential replay of single-unit activity in the hippocampus has thus
far been characterized almost exclusively in rodents (but see ref. 18
for evidence of events involving triplets of neurons in humans), we
first analysed the nature of putative replay events, detected as brief
increases in the place-cell spike density during rest (bottom trace in
Fig.1d; Methods). For each candidate event, we calculated the rank
correlation* between the sequence of cell activations and time, along
with its statistical significance (Methods). Numerous events had sig-
nificant rank correlations and involved a considerable fraction of the
flight-active cells (fraction of active cells: 0.45 + 0.14 (median +s.d.);
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(red rectangles) and during a flight (blue shaded areaon the right). Note the
different temporal scales. Neurons are sorted by the location of their firing
fields. Middle, raster plot from the same neurons, showing their activity during
the entire epoch. Bottom, spike density from the same neurons. e, Distribution
ofrank-correlation values for all candidate replay events (n=16,468, from 23
sessions and 6 bats; Methods). Grey distribution indicates non-significant
events and red distribution significant events (Pvalue from rank-correlation
analysis; Methods). f, Decoded probability of linearized position (take-off
locationis at the bottom; Methods) for example replay events. Numbers
indicate the temporal and spatial scale of each replay. g, Left, example LFP
acrossasubset of contacts (for visualization) during arepresentative SWR
event.Scalebar,100 ms. Middle, example raster plots (top) and LFP epochsin
the pyramidal cell layer (bottom) during representative replays. Note the
coincidence betweenreplay and one or more SWRs. Scale bar, 350 ms. Right,
average cross-correlogram between replay and SWR times (n =23 sessions
from 6 bats). lllustrationinaadapted fromref. 14, Springer Nature Limited,
under a Creative Commons licence CC BY 4.0.

n=2,887replays), theactivity of which was compressed within ashort
time window (replay duration: 358 + 185 ms (median +s.d.); n = 2,887
replays). Events with positive correlation (forward replays) outnum-
bered those with negative correlation (reverse replays) under our
experimental conditions (2,050 forward replays out of 2,887 total
replays (71%); Fig. 1e). Replays occurred during epochs of low move-
mentand in the absence of echolocation production (the latter being
restricted mostly to flight epochs; Extended Data Fig. 2). Asacomple-
mentary approach, we used a memory-less, uniform-prior Bayesian
decoding algorithm® to decode the position of the bat from neural
activity throughout a session (Methods). This procedure allowed us
to find candidate events in which the decoded position probability
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Fig.2|Replay dynamics across spatial behaviours during aerial foraging.
a, Example flight trajectories (top view) from one bat during arepresentative
session. Flights are clustered into similar paths (colours); arrow denotes take-
off.Scalebar,1m.b, Example posterior probabilities (squares) for candidate
replays decoded using place fields from different trajectories (traces). Note the
decoding specificity of replays. Scale bar,1 m. ¢, Normalized replay rate (grey)
and flight times (orange lines) during asession. Scale bar, 5 min. d, Replay rate
around flight times (orange, within 30 s of aflight) versus periods of rest (grey,
more than 30 saway fromaflight). Bars denote the average replay rate; vertical
lines denotes.e.m.**P=9.7 x10°%, two-sided Wilcoxon signed-rank test (n =71
trajectories from19 sessions across 5bats). e, Left, example of alocal replay.
Black dot, position of bat at time of replay; arrow, take-off; black trace, average
flight trajectory being replayed. Middle, same, but for aremote replay. Scale
bar,1m.Right, bar plot for the median proportion of local and remote replays
(n=19sessions, 5bats).f, Pie charts showing the percentage of spatial and
temporallylocal replays with varying thresholds (the replays shownin the
chart meetboth spatial and temporal proximity criteria simultaneously).

duringrestepochs resembled the one during flight trajectories. Nota-
bly, the continuous-time decoding approach provided a robust and
independent complement to the spike-sequence analysis, because it
did not rely on predefined place-cell identification or spike-density
segmentation and was inherently less influenced by spike-sorting cave-
ats®. For each candidate event, we calculated a series of quality scores
from the decoded probability and assessed their significance through
shuffling analysis?®* (Methods). This procedure again revealed the
presence of replay-like episodes (Fig. 1f), with forward replay being
more frequent than reverse replay (2,155 forward replays out of 3,775
total replays; 57%). We further examined the temporal relationship
between replays and sharp-wave ripples (SWRs): brief and highly
synchronous network oscillations with a characteristic LFP signature
across the dorsal hippocampus'?* (Fig. 1g, left) that were associated
with atemporary increase in population firing rate (Extended Data
Fig.3).Inagreementwith previous findingsinrodents®, replay events
coincided with SWRs (Fig. 1g, middle), occurring within a short time
interval from the SWR centre (Fig. 1g, right). These results show that
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As, distancebetweenlocation of batat time of replay and startlocation of
replay; At, time interval between replay and take-off (forward) or landing
(reverse) of nearest replayed trajectory (n=2,050 forward replays, 837 reverse
replays from23 sessions and 6 bats). g, Left, cumulative distribution of flight
trajectorylengths (73 trajectories, 23 sessions from 6 bats). Shaded coloured
rectangles are the groups of short and long flights used ini. Right, example
averagetrajectories (top view) for differentlengths. h, Example raster plots
for forward replays of trajectories with different lengths, sorted frombottom
leftto top right. Note the near constant duration of replays acrosslengths.
Scale bar, 500 ms. i, Top, average flight duration (left) and length (right) for
thegroup of short (n=37) versuslong (n =28) flight clusters (see g). Two-sided
P=7x10"and P=7 x107"2, Wilcoxon rank-sum test. Bottom, average replay
duration (left) and speed (right) for the same groups. Two-sided P=0.796 and
9.56 x107%, Wilcoxon rank-sum test; NS, not significant (n =37 versusn=28
flight clusters). Thick line represents median, coloured area (violin) represents
the datadistribution across flight trajectories. Note that replay speed, but not
duration, scales with flight length.

replays—that s, time-compressed sequential activations of spatially
selective neurons—are presentin the bat hippocampus. Moreover, such
replay events progress in both forward and reverse directions, and are
associated with SWRs, consistent with previous reports in rodents®>.
Next, we investigated replay dynamics, using the natural diversity and
complexity of bats’ spontaneous spatial behaviour.

Replay dynamics during aerial foraging

During natural foraging, an animal’'s behaviour canbe segmented across
multiple spatio-temporal dimensions, including the spatial features of
movement patterns, resting locations and behavioural states (for exam-
ple, movement versus rest). We made use of these inherent features
of spontaneous foraging behaviour alongside the known structured
spatial patterns of bats® to investigate replay dynamics across space
andtime. First, within each session, bats repeatedly executed distinct
andself-selected, yet highly structured flight trajectories® (1-8 types,
mean: 4 types per session, n =23 sessions from 6 bats; Fig. 2a). Different



ensembles of place cells participated in the representation of differ-
ent trajectories (Extended Data Fig. 4), allowing us to uniquely assign
atrajectory for every replay event (Fig. 2b). Next, we observed that
bats naturally alternated between flight bouts and resting periods,
each oftenlasting several minutes (Fig.1b), and that replays tended to
be more frequent during the latter (Fig. 2c). This allowed us to investi-
gate the spatio-temporal nature of replay events and specifically ask
whether replay occurred at times and locations that were proximal
or distal to the spatial experience. We found that the replay rate was
significantly higher during extended rest epochs than it was in time
periodsright before or after a flight (0.59 + 0.06 replays per min during
rest versus 0.39 + 0.04 replays per minaround flight times (within30 s
ofaflight), P=9.7 x 1078, Wilcoxon signed-rank test; 19 sessions, 5 bats;
Fig.2d). Examining therelationship betweenthebat’s location during
replay events and the startlocation of replayed trajectories (examples
inFig.2e), we found that asubstantial percentage of both forward and
reversereplays occurred whenthe bat wasinaremote locationrelative
tothereplayed trajectory (median fraction of remote forward replays:
0.69, P=0.0037, Wilcoxon signed-rank test against 0.5; reverse replays:
0.69, P=0.0029, Wilcoxon signed-rank test against 0.5; 2,155 forward
replays, 1,620 reverse replays; 19 sessions from 5 bats; Fig. 2e, right). The
nonlocal nature of replays during spontaneous foraging was even more
pronounced when we combined both spatial and temporal proximity
constraints, with only a small fraction of forward replays happening
when the bat was spatio-temporally proximal to flight take-off (223 out
of 2,050 forward replays (11%); Fig. 2f, left) or reverse replays when it
was close to landing (150 out of 837 reverse replays (18%); Fig. 2f, right).
Furthermore, analyses of the relationship between replay and ongoing
spatial behaviour revealed that replay was not a simple recapitulation
ofthe most frequent, recent or rewarded spatial experiences (Extended
Data Fig. 5). Together, these findings suggest that during naturalistic
foraging, most replay events are spatio-temporally dissociated from
the replayed spatial experience.

We also exploited the fact that, unlike in structured tasks, in which
trajectories typically have a predetermined length (for example, ona
fixed-lengthlinear track), spontaneous foraging in three-dimensional
(3D) open environmentsinvolves self-selected trajectories that canvary
considerablyinlength.Indeed, the length of bat flight trajectoriesin the
same experimental environment spanned nearly an order of magnitude
(minimum, 2.7 m; maximum, 20.0 m; Fig. 2g), raising the question of
whether replay duration scales with trajectory length. Although such
scaling aligns with findings in rodents>?, it presents a clear theoretical
challenge in animals that naturally forage inlarge environments, which
might necessitate replay events orders of magnitude longer than those
reported inrodents previously?. We therefore examined the relation-
shipbetweenreplay duration and flight length, focusing on the larger
category of forward replays. Notably, average replay duration showed
no appreciable increase with trajectory length (example replays in
Fig.2h; Pearson’s correlationc = 0.12, P= 0.33, n = 71flight trajectories,
23 sessions, 6 bats). To quantify this phenomenon, we compared the
average replay duration and speed (Methods) between two natural
subdivisions of the flights (Fig. 2g): short flights (mean length 5.9 m;
mean duration 2.15 s; grey distribution in Fig. 2i, top) and long flights
(mean length 11.0 m; mean duration 3.85 s; red distribution in Fig. 2i,
top) (length P=7 x 102, duration P=7 x 102, Wilcoxon rank-sum test).
Althoughreplay duration did not differ significantly between short and
long flights (P=0.796, Wilcoxon rank-sum test; Fig. 2i, bottom left),
replay speed was significantly higher for long flights (P=9.6 x 107,
Wilcoxon rank-sum test; Fig. 2i, bottom right). Replay quality metrics
did not differ significantly between the two groups (Extended Data
Fig. 6a), ruling out differences in replay quality as an explanation for
theseresults. Alternative measures of replay duration and speed, based
onBayesiandecoding (Methods), yielded consistent findings (Extended
DataFig. 6b,c) andindicated alinear relationship betweenreplay speed
andtrajectorylength (Extended DataFig. 6¢). The constancy of replay

durationwas further supported by the asymptotic relationship between
the timing differencesin place-cell firing and the distances between the
placefields of neuron pairs participating in the replay (Extended Data
Fig.7).Finally, wefound anincreasein boththe average place-field size
and the distance between place fields with increasing trajectory length
(Extended DataFig. 8), such thatasimilar number of cells spanned short
and long flights, and their replays. Together, these findings indicate
that replay dynamics are shaped mainly by internal mechanisms and
vary only marginally by the duration or length of spatial behaviour.

Cyclicsweeps of hippocampal representations

Replay events occur predominantly during periods of immobility, but
itisunclear how neural ensembles are organized during ongoing move-
ment. Thetasequences®? are akey phenomenon thought to organize
temporally compressed neural sequences during movement, and have
been proposed to causally support the generation of replay events™,
Because theta sequences are, by definition, thought to rely on theta
oscillations’, it remains unclear how such amechanism can generalize
across species that differ markedly from rodents in theta oscillatory
patterns. Bats presenta challenge to suchmodels, owing to the appar-
ent absence of continuous theta oscillations in the bat hippocampus
during movement'”?**, However, so far, all studies of oscillatory LFP
dynamicsinbatsbeen performedineither crawling or stationary indi-
viduals, leaving open the possibility that theta oscillations existin the
bat’s most natural movement state; that is, during flight®. To address
this gap, we examined hippocampal LFP directly during flight, overcom-
ing the challenges posed by flight-related artefacts that led previous
studies to exclude such data?*. The long shanks of Neuropixels probes,
combined with the minimal incidence of flight-related artefacts, ena-
bled us to densely sample high-quality LFPs from the hippocampus
during aerial foraging (n = 8 bats, 32 sessions; Fig. 3a). Theta oscillations
were mostly undetectable during flight (Fig. 3b), occurred in short
bouts of increased theta-to-delta ratio mainly during rest and were
temporally dissociated from SWRs (Extended Data Fig. 9a-d). Only a
small fraction of flights had detectable theta oscillations (228 out of
2,472 (9%), n =8 bats, 32 sessions; Methods), regardless of the location
of the reference ground (frontal or cerebellar ground, Extended Data
Fig. 9e-g,i-k). Furthermore, under both referencing configurations,
the LFP theta power during flight was significantly lower than it was
during spontaneous thetabouts (frontal ground P= 4 x 1075, cerebellar
ground P=2x107*, Wilcoxon signed-rank test; Extended Data Fig. 9h,1),
which occurred mainly during rest (fraction of theta events detected
duringrest, frontal ground: 73 + 4% (mean + s.e.m.), 22 sessions from
6 bats; cerebellar ground: 93 + 2% (mean + s.e.m.), 10 sessions from 2
bats). These findings reveal that even during flight, continuous theta
oscillations are absent in the bat hippocampus.

We next considered whether alternative mechanisms mightinteract
with ensemble activity on the fast timescales that are characteristic of
thetasequences and replays. By analysing accelerometer data during
foraging sessions (Methods), we observed another oscillatory pattern
accompanied by a prominent rhythm at about 8 Hz that was associ-
ated with the behaviour of the bat during flight: the wing-beat cycle”*
(Fig.3c), the frequency of which was very consistent across individuals
andflight trajectories (Extended DataFig.10), akin to the high consist-
ency of stepping in rats?. Studies have suggested that behavioural
movement patterns, such as stepping”, head oscillations® and whisk-
ing® in rats or gaze movements in primates®>?, can influence neural
representations in the hippocampus. We therefore investigated the
relationship between ensemble activity during flight and the motor
(wing-beat) aspects of the bat’s behaviour. Notably we observed that
many place cells exhibited phase locking to the wing-beat cycle (326
outof 875neurons (37%) from 6 bats; example neuronsin Fig. 3d; Meth-
ods), with most neurons activating around the ascending phase of the
wing-beat (maximum mean firing at 71° (95% confidence intervals:
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Fig.3|Oscillatory representation dynamics during flight and its
relationship with the wing-beat cycle. a, Top, schematic of the aerial
foraging experiment coupled with multi-site LFP recordings across the dorsal
hippocampus. Bottom, representative epoch of the experiment, showing
theLFPrecorded across depthsinthe dorsal hippocampus (asubset of 20
channels, spanning the putative CA1-CA3 regions). Orange linesindicate flight
times. Scalebars, 800 pV (vertical) and 1 min (horizontal). b, Top, example
traces around flight time showing the bat’s absolute acceleration (orange)
and average and filtered LFP (black middle and bottom traces) at the optimal
probe contacts for putative theta (Methods). Note the absence of a prominent
increasein thetaoscillations during flight. c, Left, normalized average power
spectral density of the raw accelerometer signal during flight (n =22 sessions,
6 bats; Methods). Shaded areaindicatess.e.m. Inset, example flightepoch
showing thebat’s absolute acceleration. d, Example place cells and population
average (bottom row; 326 neurons from 6 bats) showing phase locking to the
wing-beat. Each histogram shows the fraction of spikes emitted ata certain
wing-beat phase. Two cycles are shown for clarity. Bin size: 18.9°. Here, and
inother panels, phase zero corresponds to the trough of the wing-beat
(downstroke). e, Top, example auto-correlograms from phase-locked place
cells. Each plot shows the fraction of spike intervalsin a10-ms time bin. Arrows
indicate the prominentintrinsic oscillations ata frequency slightly higher than
thewing-beat frequency (orangelines, fundamental and harmonics) for the
same session. Bottom left, average auto-correlogram (black area) for all the
phase-locked place cells (n =326 neurons) and residual trace (grey trace) after
subtracting the exponentially decaying component of the auto-correlogram

61°-80°); n =326 neurons from 6 bats; Fig. 3d, bottom, corrected for
uneven phase distribution; Methods), suggesting a population-level
phase-locking mechanism. Notably, phase-locked neurons were pre-
sent even when using more stringent criteria, based on Rayleigh statis-
tics (average: 15%, n = 22 sessions from 6 bats, P < 0.05 from shuffling
analysis, resultant vector length: 0.13 + 0.01(mean + s.e.m.), Rayleigh
statistics: 7.6 + 2.2, spike count: 666 + 63; Methods), confirming the
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(Methods). Arrows asintop panel. Bottomrightinset, power spectral density
(dB) of the residual autocorrelation trace, showing a prominent peak at 9.4 Hz
(black verticalline), slightly higher than the wing-beat frequency (orange
vertical line). f, Example place cells showing phase precessionrelative to the
wing-beat oscillation. Each dot represents the phase (y axis) and distance along
the flight (x axis) of aspike. Vertical lines represent the place-field centre.
Spikes are represented twice for clarity, with a360° phase shift. g, Decoded
position during example flights. Grey colour map indicates the posterior
probability (Methods) of linearized position along the flight. Red dashed lines
indicate the actual position of the bat. Vertical dashed lines are the wing-beat
cyclesand orangetrace shows the oscillatory accelerometer signal. Arrows
indicate clear and large-amplitude decoded sweeps. Scale bar, 200 ms.

h, Average decodingerror (black trace) across all wing-beat cycles fulfilling
inclusion criteria (5,141 cycles from 565 flights, 6 bats; Methods), aligned to
the wing-beat accelerometer signal (orange trace). Dotted lines indicate the
average decodingerror obtained from shuffled data (Methods). Solid lines
indicate mean; shaded areas ares.e.m. i, Top, example decoded probabilities
forautomatically detected sweeps (Methods). Bottom, wing-beat phase
distribution for the central point of automatically detected sweeps (n=1,367
sweeps, from49 trajectories, 18 sessions, 6 bats). The central point of each
sweep was determined using a template matching algorithm with a Gaussian-
shaped template (Methods). Two cycles are shown for clarity. Bin size: 36°. Scale
bars,1m(vertical) and 0.1s (horizontal). Illustrationsinaand cadapted from
ref.14, Springer Nature Limited, under a Creative Commonslicence CCBY 4.0.

robustness of the phenomenon. Furthermore, both the single-neuron
and the average autocorrelation function of the phase-locked neu-
rons revealed a slightly faster intrinsic oscillatory rhythm (dominant
frequency: 9.4 Hz, n=326 neurons from 6 bats; Methods and Fig. 3e),
consistent with resonance or adaptation dynamics. Together, these
findings predict two phenomena that were previously linked to oscilla-
tory patternsinthe LFP: behavioural phase precession, in which spike
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timing relative to the wing-beat advances as the bat traverses the place
field; and fast oscillatory sweeps, analogous to theta sequences, but
coordinated with the wing-beat cycle. We therefore sought to investi-
gate the existence of these phenomena.

Behavioural phase precession was prominentinasubstantial fraction
of phase-locked place cells (147 out of 326 neurons (45%) from 6 bats;
examples in Fig. 3f). Furthermore, decoding the bat’s position from
ensemble activity during flight (Methods) revealed clear representa-
tional sweeps (Fig.3g), in which the decoded position moved ahead of
thebat’s current position cyclically before returning toit, reminiscent
of thetasequencesin rodents®”. We noticed that large amplitude and
clearly defined sweeps (arrowsin Fig. 3g) often occurred at a consistent
phase of the wing-beat, as predicted by our hypothesis. We used two
complementary approaches to examine the phase locking of sweeps
tothe wing-beat cycle. First, we averaged the decoding error (decoded
position minus actual position) across all cycles of the wing-beat (5,141
cycles from 565 flights, 6 bats; Methods) and compared it with a shuf-
fled distribution, obtained by randomly shifting the wing-beat phase
at each cycle by up to +60 ms (Methods). We found that the average
decodingerror was significantly larger than the shuffled distribution
around the trough of the wing-beat cycle (P < 0.05; Fig. 3h). Applying the
same alignment procedure but relative to cycles of the non-oscillatory
LFP phase (Methods) resulted inasignificantly smaller average decod-
ing error (Extended Data Fig. 11), suggesting that non-oscillatory
phase-locking mechanisms* may be more relevant in the absence of
prominent behavioural rhythms, such as during immobility or crawl-
inginbats. This finding was consistent with the significant decrease in
non-oscillatory LFP power observed during flight, as well as with the
absence of the spike-triggered LFP relationship relative to non-flight
(Extended Data Fig. 11a,b and Methods). Next, we used an automatic
detection algorithm (Methods) to extract all decoded events with a
stereotypical sweep profile (Fig. 3i, top) and quantified their phase
relative to the wing-beat (n =1,367 sweeps, from 49 trajectories, 18
sessions, 6 bats). The resulting distribution showed aclear peakin the
ascending phase of the wing-beat (peak at a mean of 116° (95% confi-
denceintervals: 63°-131°); Fig. 3i, bottom). Intriguingly, we found that
the expression of sweeps was related to ongoing flight behaviour, with
sweep occurrence decreasing during turns (Extended Data Fig. 12a,b
and Methods). Because flight turning events were typically accompa-
nied by anincreased echolocation rate (Extended Data Fig.12b,c), we
investigated whether active sensing, rather than locomotion per se,
might affect sweep expression by restricting our analysis to flights
lacking turns (that is, straight flights). In line with this hypothesis, we
found that the stereotyped decodingerror profile observedinrelation
to wing-beat cycles was disrupted during echolocation, as compared
with wing-beat cycles without echolocation (Extended Data Fig. 12d).
Consistent with this observation, we found that automatically detected
sweeps (Methods) were more likely to occur during periods of signifi-
cantly lower echolocation rate than at randomly selected time points
during movement (Extended Data Fig. 12e). This suggests that active
sensory sampling, during which bats are at a state of heightened atten-
tion®, transiently interferes with the expression of internal representa-
tions, which, inturn, canbe dynamically regulated ona cycle-by-cycle
basis. Finally, although both wing-beat and sweep dynamics showed
approximately 8-Hz rhythms, their frequencies did not covary across
or within flights—an effect that might reflect the limited variability in
wing-beat frequency, potentially obscuring the detection of subtle
correlations (Extended Data Fig.13).

Together, these results confirm the existence of fast and cyclic repre-
sentational sequences that might be related to abehaviourally relevant
sensorimotor rhythm, rather thananeural oscillatory rhythm (that s,
theta oscillations). These findings further broaden the applicability of
such ensemble computations to species that do not show continuous
theta oscillations, but exhibit clear behavioural rhythms***—including
non-human primates'?and humans®.

Discussion

Byrecording large-scale ensemble activity and LFPs from the hippocam-
pus of freely behaving and flying bats, we challenge established models
of replay and oscillatory representation dynamics, and propose a new
framework, in which behaviourally relevant sensorimotor rhythms
interact with hippocampal ensemble activity inatemporally structured
manner. Although replay-like activity (reactivation) hasbeen observed
across species, includinginhumans'?, the specific form of temporally
compressed, sequential hippocampal replay—widely considered to
be foundational to models of memory consolidation, planning and
cognitive map updating**—has so far been robustly demonstrated
only in rodents. Thus, the generality of these phenomena across spe-
cies that differ fromrodents in their behaviour and neurophysiology
hasremained largely unknown. Here, we leveraged the natural spatial
behaviour of Egyptian fruit bats to reveal temporally compressed,
sequential hippocampal ensemble phenomena—replay and represen-
tational sweeps—that deviated considerably from predictions based
on widely accepted models. We found that although basic features of
ensemble dynamics, such as the existence of both forward and reverse
replays and their correspondence with SWRs, confirm previous find-
ingsinrodents, fundamental aspects, such astherelationship between
replay duration and trajectory length, or the cyclic organization of
neural representations in the absence of rhythmic LFP, suggest that
other underlying mechanisms exist.

Our finding that replay duration is nearly constant across spatial
scalesthat spananorder of magnitudeisinclear contrast with experi-
mental results inrodents, in which replay duration has been reported
to scale linearly with the length of spatial behaviour>*°. However,
studies showing that replay features are more dynamic than previ-
ously thought¥* align with our results, suggesting that replay is more
than a linear chaining of representations. These findings highlight
the importance of performing studies under ethologically relevant,
unconstrained conditions wheninvestigating the neural mechanisms
thatunderlie spatial behaviours*®*', The spatial scalesinvestigated here
reflect the natural foraging behaviour of Egyptian fruit bats at local feed-
ing sites*2. Our findings suggest that the approximately constant replay
duration we observed represents an elemental unit of information
processing. The same mechanism might also extend toreplays of longer
trajectories, such as those occurring during large-scale commutes in
this species—which can occur on the scale of dozens of kilometres*>**—
and might be segmented into these fundamental chunks, providing a
mechanism for efficient coding during large-scale navigation. Future
studies investigating navigation across larger spatial scales and the
multi-scale nature of place fields* could test this hypothesis, offering
further insights into the hierarchical organization of spatial memory.

By leveraging recording technologies that enable monitoring of hip-
pocampal LFPs during all states of motion in bats, we observed a lack
of sustained theta oscillations during flight. This finding challenges
existing models linking replay and cyclic neural sequences during
movement to theta oscillations”®'°, Although non-oscillatory dynam-
ics in bats** have been proposed to explain phase locking and phase
precession at the single-cell level, these were based solely on LFP data
from crawling or stationary bats, and, notably, did not address the
organization of ensemble activity that we observed. By contrast, our
data provide evidence that non-oscillatory LFP dynamics are substan-
tially attenuated during flight, and that the spike-LFP relationships
previously reported* are effectively absent. Instead, the wing-beat
rhythm provides amore consistent temporal reference, with stronger
phaserelationshipstointernal representations. These results suggest
thatinbats, behavioural rhythmsinteract strongly with hippocampal
activity during flight, on timescales that are conducive to synaptic plas-
ticity', whereas during rest, in the absence of such rhythms, internally
generated LFP dynamics may be more prominent®. The mechanistic
and circuit-level basis of how the wing-beat rhythm caninfluence neural
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activity without a prominent LFP signature has yet to be determined.
Potential mechanisms include cyclic neuromodulatory signals or
oscillatory synaptic inputs from cortical regions that govern the bat’s
sensorimotor behaviour (for example, the motor cortex). This notion
alsoaligns with findings in rodents, in which locomotion can dynami-
cally entrain hippocampal representations?, potentially also through
mid-brain nuclei*®. Furthermore, continuous motor behaviours rely
on ongoing sensory feedback (for example, stepping in rodents* or
echolocation in bats*®), and both sensory and motor components
are ideally suited to modulate neural activity. We observed that an
increased echolocation rate corresponded to a reduced expression
of coherent internal sequences, possibly through a rapid interplay
between internal and external processes modulated by attentional
demands. Future studiesin spatial environments of varying complexity
(for example, using obstacles) will be important to further examine
how wing motion and active sensing (echolocation) interface with
ensemble dynamics to support navigation. Advancing technologies
that enable simultaneous recordings of larger neural populations,
spanning several brain regions, will be crucial to unravel how areas such
as the motor cortex or entorhinal cortex*’ contribute to hippocam-
pal ensemble activity in bats and other animals. At the same time, the
relationship between motor rhythms and hippocampal activity might
be shaped by the distinct behavioural repertoires of animal species.
Indeed, even within a single species, different types of hippocam-
pal oscillations can emerge under different conditions®, and a wide
range of species-specific motor rhythms—such as whisking, sniffing or
saccades—can modulate hippocampal dynamics?*°, These complexi-
ties demonstrate the need for cross-species comparisons, and highlight
the power of comparative approaches in uncovering both conserved
and specialized mechanisms of spatial navigation and memory*°*.
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Methods

Bats

Experiments involved a total of eight adult male Egyptian fruit bats
(Rousettus aegyptiacus; body weight around 151-171 g). Six bats were
used for the analysis of single units and LFP (n = 5 bats implanted with
3 Neuropixels probes, n =1batimplanted with2 Neuropixels probes).
We collected 23 sessions (3—-4 sessions per bat), during which neural
activity was recorded during rewarded aerial foraging. Individual bat
statistics for several measures related to spatial coding and ensemble
phenomenaarereported in Extended Data Fig.14. Two additional bats
were used for examining LFPs referenced to acerebellar ground screw
(see ‘LFP recordings with cerebellar ground’). All bats were housed in
a humidity- and temperature-controlled room. Implanted bats were
single housed after implant surgery. Lights in the housing room were
maintained on a12-h-12-h reverse light cycle (lights off-lights on;
07:00-19:00). All experiments were performed at the same time of
day during their awake hours (dark cycle). All experimental procedures
were approved by the Institutional Animal Care and Use Committee at
the University of California, Berkeley.

Aerial foraging

Foraging experiments took place in anindoor flight room (n = 4 bats,
5.6 mx5.2m x2.5m)oranoutdoor flightenclosure (n =2bats,10.1 m x
4.1mx2.8m). Allbats were mildly food-restricted (>85% of their base-
line weight) during training and recording sessions. Training (three to
nine days before neural recordings) consisted of 60-120-min daily ses-
sionsinwhich the bats could spontaneously obtain feeder-dispensed
puréed reward by landing on designated platforms. No humans
were inside any of the flight enclosures during experiments to avoid
human-induced experimental confounding™, unless otherwise stated.
Recording sessions lasted between 70 min and 115 min.

The indoor flight room was an acoustically, electrically and radio-
frequency shielded room with high-precision lighting control. The
flight room ceiling and walls were covered with acoustic foam to mini-
mize acoustic reverberationand dampen noise fromadjacentrooms. An
additional layer of acoustically absorbingblack felt was placed around
thewallsand the floor to protect the acoustic foam frombeing damaged
by the bats. The 3D spatial position of the bats was tracked at millimetre
resolution using 16 motion-capture cameras™>** (Raptor-12HS, Motion
Analysis). Each camera tracked three reflective markers, attached to
the neural recording headstage on the head of the bat, at a frame rate
of 120 Hz. The 3D position of the marker-set centroid was acquired
using commercially available software (Cortex-64; Motion Analysis).
Two automated feeders placed on the wall at one end of the room dis-
pensed a puréed fruit reward. Reward was triggered when abat landed
onthefeeding platformandinterrupted aninfrared beam break sensor
mounted in front on the reward port. Feeders were all independently
controlled by an Arduino (Uno Rev3) and Adafruit Motorshield (1438;
Adafruit) interfaced with acomputer outside the experimental room.
Reward probability (0.2-0.8) and amount (0.1-0.3 ml) were adjusted
by the experimenter to fine-tune the bat’s behaviour. On a subset of
sessions (n = 6 sessions from 3 bats), barriers were added in the room
or lights were turned off to encourage the execution of new flight
trajectories. All remaining sessions were performed under uniform
illumination (luminance level 5 lux) and without barriers.

Two bats participated in foraging experiments in an outdoor flight
enclosure, following a similar procedure. One computer-controlled
feeder was remotely triggered by the experimenter after the bat
landed onanelevated platform. The 3D spatial position of each bat was
recorded using amodified version of acommercial real-time location
system™ (RTLS; Ciholas). In brief, the system was composed of amobile
tag (DWTAG100), mounted onthe neural recording headstage, that was
localized at a100-Hz sampling rate by 13 static anchors (DWETH101),
communicating through ultra-wideband pulses. One additional anchor

(custom DWETH101) was used to record an external synchronization
signal. Tags were made of alightweight (around 2.9 g) transceiver and
aLiPo battery. The system communicated with acomputer located
outside the experimental enclosure through UDP protocol. The sys-
tem was configured and operated through aweb-based user interface
running on Ubuntu 18.04 Bionic. Data were recorded and saved using
custom-written scripts in Python. For all experiments, periodic clock
pulses generated by a Master-9 device (A.M.P.l.) were used to createa
timing signature that served asacommon frame of reference for all the
recording systems (tracking, neural recordings and audio; see below).
Accelerometer data were acquired at 30 kHz by the neural recording
headstage and downsampled to 500 Hz for analysis.

Surgery

Probeimplants were performed in two stages, separated by 7-10 days:
(i) implantation of the training cone; and (ii) insertion of Neuropixels
1.0 probes.

Implantation of training cone. The bat was anaesthetized using an
injectable cocktail of ketamine, dexmedetomidine (reversed by ati-
pamezole) and midazolam (reversed by flumazenil). It was then placed
onastereotaxicapparatus (Model 942; Kopf) and provided with a con-
tinuous supply of oxygen. Anaesthesia was maintained by injections
of a cocktail of dexmedetomidine, midazolam, and fentanyl (about
once per hour). Anaesthesia depth was continuously monitored by
toe-pinchreaction test and by measurements of the bat’s breathing rate.
Body temperature was measured with arectal temperature probe and
maintained at approximately 35 °C using aregulated heating pad. After
the correct anaesthetic depth was reached, the skull was exposed, and
thesurrounding skinand tissue wereretracted. The exposed skull was
cleaned of any residual connective tissue and scored to improve cement
adhesion. A ground screw, which consists of abone screw (19010-00;
FST) with two or three stainless-steel wires (203.2 um coated; A-M Sys-
tems) soldered to the screw head, was inserted into the frontal plate
oftheskulland served as the ground for each Neuropixels probe (one
wire per probe). In two bats, used for LFP analyses only, the ground
screw was inserted posterior to the sinus, above the cerebellum (see
‘LFP recordings with cerebellar ground’). Four shorter bone screws
(M1.59 mm stainless steel) were placed to further strengthen the attach-
ment of theimplant to the skull. A circular 1-mm craniotomy was made
for each probe insertion point, up to three craniotomies per bat (two
symmetrical bilateral sites for two probes, plus one additional site in the
right hemisphereinthe case of three probes, allabove dorsal CAlat app-
roximately 6.3 mm anterior to the transverse sinus that runs between
the posterior part of the cortex and the cerebellumand 3.2 mm lateral
tothe midline). The craniotomy was then sealed with abiocompatible
elastomer (Kwik-Sil; World Precision Instruments) to protect the brain
surface until probeinsertion. The skulland bone screws were covered
with a thin layer of bone cement (C&B Metabond; Parkell). A custom
3D-printed cone was positioned and cemented using dental acrylic at
three points of contact (to facilitate cone removal before probe inser-
tion), and the remaining gaps sealed with biocompatible elastomer
(Kwik-Sil; World Precision Instruments). The cone was closed with a
custom 3D-printed cap. At the end of the surgery, reversal agents were
injected to counteract the dexmedetomidine and midazolam, and
after the bat had fully awoken from the anaesthesia, an oral analgesic
(Metacam; Boehringer Ingelheim), was administered. Analgesics (three
days) and antibiotics (seven days) were given daily until complete
recovery. Behavioural training was resumed after the bat was allowed
tofully recover fromsurgery for three days. During training, the weight
of theimplant was gradually increased over seven to ten days to allow
the bats to adapt to the final implant weight.

Insertion of Neuropixels 1.0 probes. Before probe insertion, each
Neuropixels 1.0 probe was sharpened at a 20°-30° angle for 15 min



Article

using a Microgrinder (EG-45; Narishige), and a single stainless-steel
wire (203.2 pm coated; A-M Systems) was soldered to the ground and
reference of the probe. The probe insertion procedure follows the
same general surgical practice as described above. In brief, bats were
anaesthetized and placed in a stereotaxic apparatus. The training cone
was removed and up to three probes were inserted into pre-existing
craniotomies after a durotomy. After mounting the Neuropixels 1.0
probeonastereotaxicarm, the probe shank was coated with fluorescent
dye (CM-Dil; Invitrogen C7001) and inserted into the target craniotomy
atarateofaround10-20 pm s™ toadepth of 5,500 pm. The probe was
then cementedin place using dental acrylic. When the cement had fully
cured, the ground wire of the probe was connected to the pre-existing
ground screw. After all probes had been inserted, a new 3D-printed
cone was positioned and cemented to the skull. The ribbon cable of
each probe was then connected to a connector piece (SpikeGadgets)
attached to the top of the cone, which serves both as a protective cap
and as theinterface between the Neuropixels1.0 probes and the wire-
less headstage. The bat was then woken up using reversal agents to
counteract the dexmedetomidine and midazolam.

Electrophysiology data acquisition, preprocessing and spike
sorting

Recordings began one day after probe insertion and were performed
using a SpikeGadgets wireless Neuropixels 1.0 headstage, which was
attached to the connector piece on the implanted cone (along with a
battery and SD card) before eachrrecording session. The maximum num-
ber of recordable channels was 384 in total, from up to 3 probes. Chan-
nel selection to target the hippocampal pyramidal layers (dorsal CAl
and CA3) was determined by detecting high-frequency ‘ripples’in the
LFPsignal together with atransient (50-100 ms) increase in multi-unit
activity, monitored during a dedicated rest session before the start of
the experiments. Electrical signals (referenced to the ground screw)
in the spike band (600-6,000 Hz) and LFP band (0.5-200 Hz) were
amplified 500-1,000x and 125-250x%, respectively, and were logged
locally to a SD card on the headstage. After each recording session,
the headstage was removed and the SD card was retrieved. Recorded
dataonthe SD card were downloaded using alogger dock (SpikeGadg-
ets). Drift correction and spike sorting were done automatically using
Kilosort4. All units labelled by Kilosort4 as ‘good’ were kept, after
visual examination in Phy**. Duplicated cells on the same contact (with
peak cross-correlation within 5 ms) were merged and spikes removed
ifcloser than1 ms.

Histology

Atthe end of the experimental sessions, bats were given a lethal over-
dose of sodium pentobarbital and perfused transcardially (200 ml
phosphate-buffered saline (PBS), 0.025 M, pH = 7.4;200 ml of fixative,
3.7%formaldehydein PBS). After perfusion, the probe implant was care-
fully removed, and the brain was dissected and stored in the fixative
solution for one to two days. The fixed brain was subsequently moved to
a30%sucrose solution in PBS overnight for cryoprotection,and 40-pm
coronal sections were cut using a microtome (HM450; Thermo Fisher
Scientific) with afreezing stage. Slices around the dorsal hippocampus
andincluding theimplant were stained for DAPI (Thermo Fisher Scien-
tific) and cover-slipped with aqueous mounting medium (ProLong Gold
Antifade Mountant, Thermo Fisher Scientific). Fluorescent images of
eachsectionsurrounding the implant were acquired using an Axioscan
Slide Scanner (Zeiss), and used to localize Neuropixels probe tracks,
visualized from CM-Dil fluorescence. Probe positions were determined
by serial reconstruction fromadjacent coronal sections. All probes were
successfully identified in the dorsal hippocampus of implanted bats.

LFPrecordings with cerebellar ground
Two bats were used to examine LFPs referenced to a cerebellar
ground screw (n =1bat implanted with 2 Neuropixels probes; n=1

batimplanted with1Neuropixels probe; 5 sessions each). Experiments
were performed as described above. On a subset of the sessions, bats
were encouraged to flyby ahuman experimenterintheroom, to ensure
sufficient spatial movement for evaluation of LFP during flight.

Recording and detection of echolocation calls

Recording and detection of echolocation calls was done as described
previously™ (n =4 bats, indoor flight enclosure). In brief, a dedicated
ultrasonic microphone (M50; Earthworks) was used to record sounds
inside the experimental flight room. The microphone was connected
to a preamplifier (OctaMic II; RME Synthax) and recorded audio data
at a192-kHz sampling rate. Audio recordings were controlled with
the SoundMexPro (HorTech) toolbox for MATLAB (MathWorks) and
recorded using custom MATLAB scripts. For detecting echolocation
calls, down-sampled audio data (96 kHz) were bandpass-filtered (10—
40 kHz) and z-scored. All events larger than10 standard deviations were
considered as potential echolocation clicks and identified with the
MATLAB function findpeaks, with aminimum peak distance of 10 ms.
Echolocation calls were thenidentified as the most abundant cluster in
the space defined by thefirst three principal components of the power
spectrum of all putative clicks (k-means). The correspondence between
this cluster and actual echolocation clicks was confirmed by the pres-
ence of two prominent peaks in the inter-click-interval distribution,
in line with what is expected for this species®, and by the prominent
phase relationship of echolocation clicks with the wing-beat signal.

Data analysis
All analyses were done using custom code in MATLAB (2021a, Math-
Works).

Processing positional data during behaviour

Positional datarecorded by the marker-based (120-Hz acquisition fre-
quency; four bats) or RTLS-based (100-Hz acquisition frequency; two
bats) systems were preprocessed™*, to obtain continuous and smooth
3D positional data. Data from the RTLS system were resampled from
100 Hzto120 Hz, to allow for shared downstream analysis. Flights were
identified on the basis of a velocity threshold of 0.5 ms™, and used to
segmentabat’ssessioninto rest and flight epochs. Three-dimensional
spatial trajectories during flight were clustered into similar paths using
hierarchical clustering™. In brief, flight trajectories were spatially
down-sampled to seven points per flight (the first and last points cor-
responded to the take-off and landing positions, respectively). The
Frechet distance® between down-sampled flights was used asameasure
of flight similarity and similar flights were clustered by agglomerative
hierarchical clustering. The linkage distance was set to 0.6-1.5 m after
manualinspection of flight groupings. The resulting clusters consisted
of highly similar flight paths and were used for all downstream analysis,
excludingtrajectories with fewer than five flights per cluster. Turns were
identified as moments of high curvature in the middle of a flight, by
finding the maximum of the smoothed 3D curvature (Gaussian kernel:
0.12s). Flight tails (below 25% and above 75% trajectory length) were
forced toacurvature of 0 m™to avoid edge effects. On the basis of the
value of maximum curvature across the dataset, flight trajectories were
classified into straight flights (max curvature <1 m™) versus loops (max
curvature >1m™). Absolute deviation from g for quantifying move-
ment level was calculated as the absolute value of the magnitude of the
accelerometer signal minus the gravitational acceleration g.

LFP processing

LFPs from all recorded channels (384 channels across 2 or 3 probes)
were collected at a2.5-kHz acquisition frequency and down-sampled to
500 Hzfor downstream processing. For detecting SWRs, one probe was
selected after visual examination of the signal. Next, one channel was
selected for every pair of collinear recording sites (the one with highest
root mean squared (RMS) signal) and all the resulting channels were



processed for SWR detection. In brief, the LFP signal of each channel
was bandpass-filtered (100-200 Hz, stopband attenuation of 60 dB),
andtheripple power was calculated as the absolute value of the Hilbert
transform and smoothed with a 50-ms Gaussian kernel. Peaks in the
z-scored ripple power exceeding a value of 3 were detected, with amini-
mum peak distance of 50 ms and aminimum peak width of 10 ms, after
excluding flight epochs. Candidate events simultaneously detected
across channels were merged, when closer than 50 ms, keeping only the
one with the largest ripple power. The correlation between the signal
across channels of each candidate event and the average of all events
was calculated, and only events with a minimum correlation value of
0.2 were kept, using the stereotyped depth profile of SWRs. Analyses
oftherelationship between population firing rate and SWRs (Extended
DataFig.3) were performed onlarge-amplitude and well-defined events
(minimum correlation: 0.3; minimum z-scored ripple power: 5).

For the analysis of theta oscillations, one channel from one probe was
selected after visual examination of the raw LFP data and of the distri-
bution of relative power in the theta band (4-11 Hz) across channels.
Theselected channel was either the one with the highest relative theta
power or—when no clear peak was visible in the theta power distribution
across channels—one channel around the estimated region correspond-
ing to the hippocampal fissure-CAl stratum lacunosum-moleculare,
where the amplitude of theta is expected to be the largest®¥. Analy-
sis of theta was then performed on the average LFP signal from the
optimal channel and its four nearest neighbours. The resulting signal
was bandpass-filtered in the theta (4-11 Hz) or delta (1-4 Hz) range;
power in each frequency band was calculated as the absolute value of
the Hilbert transform. Theta bouts were detected as events of mini-
mum 1-s duration, where the ratio of theta to delta power exceeded
the value of 3, after joining events closer than 100 ms. Relative power
in the theta band during flight or bouts was calculated from the LFP
power spectral density, obtained using the MATLAB function pwelch.
Aflight was considered to be associated with significant theta oscilla-
tionsif the median theta-to-deltaratio during flight was higher than 2
and if there was a significant increase in theta power in the first 3 s of
flight, compared with the 3 s before flight (Wilcoxon rank-sum test).

Replay analysis: spike sequences

Analysis of replay events using spike sequences followed three steps for
eachflight trajectory: (1) identification of spatially tuned cells; (2) detec-
tion of candidate replays; and (3) quantification of replay-associated
metrics.

Identification of spatially tuned cells. Ensembles of spatially tuned
cellswereidentified for each flight trajectory as follows. Spatial firing
fields along flight paths (one-dimensional (1D) fields) were calculated
for each repeated path and neuron™. To compute the 1D fields, we lin-
earized flight paths as 1D trajectories between take-off and landing (bin
size: 0.15 m) and calculated the average firing rate, equal to the average
number of spikes in a spatial bin, divided by the bin occupancy. The
firing rate was smoothed with a Gaussian window (seven bins) to gen-
erate the 1D field. Spatial information (SI) per spike***® was calculated
by summing across all bins:
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where p;is the probability of being in bin i, A;is the firing rate on the
samebinandA = X;p;\;is the average firing rate across all bins. Stability
of 1D fields within a session was measured by calculating the Spearman
correlation between 1D fields for the first versus the second half of the
flights. One additional quantity (pks) was calculated to avoid ambigui-
tiesin the sequence position for neurons with more than one prominent
place field. pks had a value of ‘O’ for cells with one place field (no peaks
larger than half of the peak firing), or it was equal to the ratio between

the second and the first peak for cells with more than one prominent
placefield. For spike-sequence analysis, we considered only cells with
more than one spike per flight, more than 3 Hz firing at the field peak,
aminimum stability of 0.4 and a maximum pks value of 0.5 (defined
as spatially tuned cells or place cells). The same neurons were consid-
ered for the analyses of the relationship between trajectory length
and place-field size (that is, the width at half prominence) or distance
between place fields (Extended Data Fig. 8).

Detection of candidate replays and quantification of replay metrics.
Candidate replays were detected for each flight trajectory as peaksin
the spike density, calculated by pooling all the spikes from spatially
tuned cells and convolving them with a Gaussian kernel (100 ms). Flight
times were excluded from the analysis and peaks in the spike density
exceeding two standard deviations were found (minimum duration:
50 ms; maximum duration: 1s). Events separated by less than 200 ms
were joined, to make sure that discontinuous replays were not left
undetected. For each candidate replay, we calculated a series of fea-
tures, after sorting the cell identities on the basis of the position of their
spatial responses along the 1D flight paths. Replay metrics included
the number of cells participating in the event, the ratio between this
number and the total number of cells active during the corresponding
flight trajectory, the replay duration (corresponding to the width of the
spike-density event) and the rank correlation between the order of first
spike and time. A Pvalue was assigned to each replay by comparing the
observed rank correlation with the rank correlations obtained from a
shuffled distribution, inwhich cellidentities were randomly permuted
100 times*. The Pvalue was calculated as the fraction of shuffles with
arank correlation greater (in absolute value) than the observed one.
Replays were considered good if they had a rank correlation greater
than 0.2 (absolute value), a minimum number of active cells greater
than 5, aminimum of 30% of the spatially tuned cells were active during
thereplay and the Pvalue was smaller than 0.05. All replays occurring
during rest and meeting quality criteria were included in the analy-
sis. For the analysis of the relationship between replay and behaviour
(Extended Data Fig. 5), flights were categorized into trajectories to
feeder when the bat landed within 75 cm of the feeder. In addition,
replays were categorized as: (1) immediate previous, replaying the
trajectory of the most recent flight; (2) immediate next, replaying the
trajectory of the upcoming flight; or (3) other, replaying a trajectory
thatwasthat of neither the previous nor the next flight. A small fraction
of replays (average 2%; n = 23 sessions from 6 bats) was for trajectories
that overlapped with both the previous and the next flights (that is,
loops with shared take-off and landing sites) and was excluded from
subsequent quantifications to preserve statistical power in multiple
comparisons. To ensure robust categorization, we also excluded asmall
subset of replays (5.4%) that occurred before the first or after the last
flightin a session, and only included trajectories that were replayed
more thanten times. Chance levels were calculated for each session as
one over the number of different flight paths that could be replayed.
For the analysis of the relationship between replay duration and flight
duration (Fig. 2), we focused on the subset of forward replays with a
minimum of 0.4 rank correlation, 7 active cells, 30% of spatially tuned
cells and P< 0.05. Replay speed from spike sequences was calculated
asthe number of neurons per second during replay, multiplied by the
average metres per neuron. Neurons per second was obtained by fit-
tingalinetothe times of the first spike during replays, and metres per
neuron was calculated as the distance between the last and the first
place cells divided by the number of place cells in the trajectory.

Replay analysis: decoding

Spatial response calculation and Bayesian decoder. Replay detec-
tion through spike-sequence analysis (see above) is based on thresh-
olding spike density from place cells and is therefore biased towards
events thatinvolve large numbers of place cells and/or large firing rates.
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Given thatreplay-like events during immobility periods can happenin
theabsence of population bursts*’, we implemented acomplementary
method for detecting replays, using a continuous replay detection
procedure that does not rely on SWR events or population bursts. The
same procedure, based on Bayesian decoding was repeated using spa-
tial responses from each flight trajectory type.

In brief, after categorizing flights into clusters, the position of the
bat during each flight was linearized from take-off to landing and the
entire trajectory was divided into 30 position bins. Spatial responses
ofeachcell were calculated as the number of spikes fired ina particular
position bin divided by the occupancy of the position bin, smoothed
witha Gaussian kernel with a standard deviation of two bins. Posterior
probability for each linearized positional bin x, given the vector n of
spikes emitted by N neurons at a specific time was calculated using a
Bayesian decoder with uniform prior®:
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where f(x) is the spatial response of cell i at positional bin x, n;is the
number of spikes emitted by cell i, Tis the size of the time bin and Cis
anormalization constant that can be determined by imposing uni-
tary sum of P(x|n) at each time bin. To enhance the smoothness of the
decoded probability, each spike was mirrored by +5 ms before calculat-
ingthe vector n. Allsubsequent analyses, including shuffling, used the
sequence of real plus mirrored spikes as input. For validation of decod-
ing during flight, the decoder was applied on 50-ms non-overlapping
time windows during flight time and anormalized root mean squared
error was calculated from the estimated bat position (spatial bin with
maximum posterior probability), minus the observed bat position,
and normalized by the duration of the flight. For replay detection, the
Bayesian decoder was applied to spikes within a20-mssliding window,
shifted by 5-ms increments over the entire session excluding flight
epochs. Different metrics were used to assess the quality and signifi-
cance of replay events, and are described below.

Metrics for evaluating decoded events. Each candidate event was
assigned four scores?***%¢° (weighted correlation, replay score, pos-
terior spread and trajectory coverage). Each decoded event could be
graphed as atwo-dimensional matrix of probabilities, with time on the
x axis and predicted position on the y axis. The predicted position at
eachtimebinwas defined as the position bin with the highest decoded
probability. Weighted correlation was defined as the Pearson’s correla-
tion between time and predicted position, weighted by the posterior
probability of the decoded position?. Replay score?® was defined as
the concentration of posterior probability within a line depicting an
idealizedlinear trajectory along theentire track. To determine the ideal-
ized trajectory, we found the line of best fit for the predicted position
(defined for eachtime bin as the position bin with the highest decoded
probability). Posterior spread®® was defined as the square root of the
second moment of the posterior. Trajectory coverage was defined
as the percentage of trajectory length that was being covered by the
replay. This value was found by fitting a linear line on the maximum
posterior probability at each replay time bin, taking the difference in
line position between the first and the last time bin, then dividing the
trajectory covered with the trajectorylength to obtain a value between
0 (thedecoded sequenceis horizontal and thus unlikely tobe areplay
of flight) and 1 (the entire flight is being replayed).

Continuous detection of replay events using whole-session
decoding. Time bins were excluded from further analysis if there
was alow confidence of decoded position, as indicated by a posterior
spread score greater than 0.3, or if the probability at the position of
maximum probability is less than three times the average probabil-
ity. Each remaining region of continuous time bins was defined as a

subsequence. Subsequences of less than 25 ms were excluded owing
tothe high chance of being noisy. Considering the possibility that long
subsequences might get fragmented, neighbouring subsequences
were merged if the temporal gap was less than 75 ms (without remov-
ing the low-confidence gaps). Sequences that contained more than
70% of low-confidence regions were excluded. Disjoint subsequences
constituted candidate replays. Next, to find the centre of the replay,
each candidate event was randomly trimmed onboth ends1,000 times
(>50% of the original event duration) and the weighted correlation as
well as the trajectory coverage were calculated for the resulting seg-
ments. One segment from the top 5% of the sum of weighted correlation
and trajectory length was selected randomly. This randomness was
introduced to avoid systematic bias. Segments with a short duration
(<50 ms) were excluded from subsequent analysis. After finding the
segment central region, the whole candidate replay event was found by
including regions of high decoded confidence oneither side, stopping
whenalow-decoded-confidence regionlasting at least 50 ms was found.

Shuffling. After acandidate event had been found, two shuffling meth-
ods were used to determine the significance of the event. The first
was a circular shift of position within each time bin, which aimed to
preserve local smoothness in position by circularly shifting decoded
probabilities independently for each time bin. The second method
was a time shuffle, in which the time bins of an event are shuffled. The
weighted correlation and replay score of the shuffled sequence were
determined. P values were calculated after 100 shuffles by each method,
and events withsignificant P values (P < 0.05) for both shuffling meth-
ods and both replay metrics (weighted correlation and replay score)
were kept for subsequent analysis. Replays were considered good if
they had a weighted correlation score (absolute value) greater than
0.4, replay score greater than 0.4 and trajectory coverage greater than
0.5.Allreplays occurring during rest and meeting quality criteria were
included in the analysis. For the analysis of the relationship between
replay duration and flight duration, an additional restriction was that
thetrajectory coverage needsto be greater than 0.7 toensure that the
replays cover asignificant portion of the trajectory. Replay speed was
calculated by dividing the length of the flight being replayed by the
duration of the replay.

Wing-beat phase extraction, phase locking and autocorrelation
function

Thewing-beat frequency was calculated as the peak frequency (inthe
interval 6-10 Hz) of the power spectrum obtained from the magnitude
ofthe fast Fourier transform (FFT) of the absolute acceleration (norm
of the 3D accelerometer signal) during flight epochs. For a subset of
the analyses, we also extracted atime-varying instantaneous wing-beat
frequency using the Hilbert transform of the absolute acceleration
(MATLAB functioninstfreq), bandpass-filtered between7 Hzand 9 Hz.
Note that, as expected, the FFT estimate closely matched the time
average of the instantaneous one (Pearson’sc=0.83,P=0,n=1,442
flights from 6 bats; Extended Data Fig. 10a). The wing-beat phase was
calculated as the phase of the Hilbert transform of the bat’s absolute
acceleration, filtered between 7 Hz and 9 Hz. Phase O was defined as
the trough of the absolute acceleration, such that the wing downstroke
corresponded to phase O - 1. The wing-beat phase of each spike emitted
during flight was calculated as the phase of the closest wing-beat sample
(as accelerometer data was acquired at 500 Hz). For each cell, a spike
phase distribution was calculated by binning phase valuesinto 20 angu-
lar bins between -t and +1t. Phase distributions were cloned witha2m
shift for visualization and fitting. Fitting normalized phase distributions
between-1and1was done usingacosine function cos(ax-b)and b >0.
Spatially tuned cells with an R* (coefficient of determination) greater
than 0 and a minimum of 50 spikes during flight were considered as
phase locked and were used to determine population phase locking,
by averaging their phase distributions. The resulting average phase



correlation was corrected for uneven wing-beat phase distribution
by subtracting the wing-beat phase distribution, averaged across the
same cells. Phase locking was also examined using standard circular
statistics measures. The mean resultant vector length rwas defined as:

r=

n
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where nis the total number of spikes emitted during flight and 6;is the
phase of thej-th spike. The Rayleigh statistic is z = r*n. The significance
of phase locking was assessed using a shuffling procedure, in which the
meanresultant vector length of each neuron was compared with ashuf-
fled distribution of meanresultant vector lengths obtained by randomly
assigning to each spike the wing-beat phase taken from flight epochs
andrepeating this procedure 100 times. Similar results were obtained
using the Hodges-Ajne omnibus test (average 12% phase-locked spa-
tially tuned neurons; r=0.13 + 0.01,z=8.4 + 2.4, spike count =718 + 65,
mean + s.e.m., n =22 sessions from 6 bats), which evaluates general
deviations from circular uniformity evenin small samples (n > 30) with-
out assuming a specific distribution (in contrast to the Rayleigh test,
which assumes a unimodal von Mises distribution®). All neurons with
aminimum of 30 spikes were included in the analysis and aneuron was
considered phase locked if P< 0.05.

Spike autocorrelation for each cell was calculated within £500 ms,
using 10-ms time bins and normalized by the total number of counts.
Residual correlation for the population average was obtained by fit-
ting the average autocorrelation between 100 ms and 500 ms with a
mono-exponential function and subtracting this fit from it. Phase pre-
cession between wing-beat phase and position of a spike was examined
by calculating the Spearman correlation between distance along the
flight and the wing-beat phase of each spike, after finding the phase shift
that maximized the absolute value of the correlation”**, Phase-locked
cellswere considered phase preceding when the Spearman correlation
value was negative and its P value was less than 0.05.

Decoding sequences during flight and relationship with the
wing-beat

Position probability distributions (Fig. 3g) during flight were obtained
using Bayesian decoding. First, 1D linearized spatial responses of neu-
rons during a flight were calculated as the average firing rate in 15-cm
bins, spanning each trajectory from take-off to landing, as described
in ‘Identification of spatially tuned cells’. Only neurons with stability
(as defined in‘Identification of spatially tuned cells’) greater than 0.6
were used for decoding. Spatial responses from these neurons were
used to train aBayesian decoder, as was done for replay detection. Each
spike was mirrored at +5and +10 ms, to enhance the smoothness of the
decoded probability. Posterior probability for each of the 15-cm spatial
bins was calculated on a sliding window of 30-ms duration, moved by
5 msfromtake-offto landing, using equation (2). The decoded position
ofthebat ateach timebin during flight was calculated as the centre of
the spatial bin with highest posterior probability. The decoding error
(as typically defined in the replay literature®) was calculated as the
decoded position minus the real position of the bat at that time bin.
For each flight, we calculated a RMS decoding error and the fraction
of decoded bins (removing bins where no spikes were emitted). The
average decoding error during a wing-beat cycle was calculated by
averaging decoding errors on single wing-beat cycles (-1 to +1) from
all flights with a RMS decoding error smaller than 1.3 m and fraction
decoded bins higher than 0.7. Flight tails, where the bat was at less
than 0.15 or at more than 0.85 of the total flight length, were discarded.
Similar criteriawere used for the analysis of the average decoding error
across wing-beat cycles with or without echolocation, with the differ-
ence that flight tails were included (whole-flight analysis) or only the
first half of the flight length was considered (first-half analysis). The
shuffled average decoding error was obtained by randomly shifting

the wing-beat phase at each wing-beat cycle by up to +60 ms, repeat-
ing this procedure 20 times and averaging the results. A Pvalue for
the difference between real and shuffled data was calculated at each
time bin as the fraction of shuffled average decoding errors that were
larger thanthe observed average decoding errors. To find the preferred
phase of decoded sweeps, we focused on large-amplitude and clearly
defined events (Fig. 3i), identified across all flights with a RMS decod-
ing error smaller than 1.3 m and fraction decoded bins higher than
0.7. A template-matching algorithm was used to segment windows of
decoded probability clearly resembling sweeps, followed by a cleaning
step based on a deep neural network. In brief, the average decoding
error was convolved with a Gaussian-shaped template (60 mstemporal
width and 0.9 m spatial extent) and candidate events were found by
thresholding the resulting trace. A preferred phase was assigned to each
candidate event, corresponding to the wing-beat phase atits centre. For
every candidate event, the posterior probability was extracted within
a (=60, +60 ms) time interval and a (0.9, +1.8 m) space interval and
shifted by the real position of the bat at each time bin. The resulting
matrixes (Fig. 3i, top) correspond to the posterior probability of the bat,
corrected by its real position. To filter out noisy events, we retrained
AlexNet® (modified to distinguish between 2 classes: good sweeps
versus noise) using 1,000 manually labelled sweeps, after balancing
the number of negative and positive examples (sampling a similar
number from the 1,000 manually labelled sweeps). The dataset was
randomly splitinto training (80%) and validation (20%) subsets and the
network was trained using stochastic gradient descent with momentum
(SGDM) for 10 epochs, with a mini-batch size of 32, an initial learning
rate of 0.0001 and shuffled data at each epoch. The power spectral
density of the decoding error (Extended Data Fig. 13) was calculated
fromthe magnitude of the FFT of the decoding error during flight, after
subtracting the exponentially decaying part of the spectrum (fitting
with amono-exponential for frequencies greater than 2 Hz). The peak
ofthespectrumbetween 5 Hzand 16 Hz was used as an estimate for the
sweep frequency during a flight. The instantaneous sweep frequency
for consecutive sweeps was calculated for the subset of automatically
detected sweeps (see above) that were separated by less than 180 ms,
as the inverse of the time interval between their centres, determined
by the template-matching algorithm.

Analysis of non-oscillatory LFP power and phase-locking
comparisons

The analysis of non-oscillatory LFP (Extended Data Fig. 11) followed
methods described in previous work?. In brief, the same LFP signal
that was used for analysing theta oscillations (see ‘LFP processing’)
was filtered between 1 Hz and 10 Hz and used for downstream pro-
cessing. To extract the cycle-by-cycle phase of the non-rhythmic LFP,
we linearly interpolated the times between consecutive LFP troughs
between 0° and 360°. Non-oscillatory power was calculated as the
square of the absolute Hilbert transform of the filtered LFP signal.
Time averages during flight versus non-flight epochs were used for
comparing non-oscillatory power (Extended Data Fig. 11a). Overall
duration of non-flight and flight epochs for each session was matched
by randomly sampling from non-flight times a number of samples
equal to flight sample size. The average decoding error during a
non-oscillatory LFP cycle was calculated by averaging decoding errors
(as defined above) on single LFP cycles (-t to +11), using the same
inclusion criteria as for the wing-beat phase averages. Cycles with a
low average non-oscillatory power (below the 25th percentile of the
in-flight distribution), were discarded as described previously*. The
average decoding error during a wing-beat cycle and the shuffled dis-
tribution were calculated as described above, with the only difference
being that all wing-beat cycles coming from flights with no valid LFP
cycles (because of the 25th percentile power threshold) were removed
from the analysis, to ensure that cycles came from the same pool of
flights. The resulting mean decoding error (aligned to wing-beat or
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non-oscillatory LFP phases) was phase-averaged around the centre
ofthe cycle (-1t/2 to +1/2) and normalized by subtracting the mean of
the phase-averaged shuffled distribution and dividing by its standard
deviation.

Statistical analysis

No formal methods were used to predetermine sample sizes; adopted
sample sizes were similar to those used in relevant previous studies.
No randomization of experimental sessions and no blinding to experi-
mental conditions were used during the analysis. All statistical compari-
sons were performed using two-tailed non-parametric tests (Wilcoxon
rank-sumtest, Wilcoxon signed-rank test, bootstrap or randomization
tests) unless otherwise stated.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The dataset from this study is available from the corresponding author
on reasonable request. A demo session and associated material can
be found via Zenodo at https://doi.org/10.5281/zenodo.15738988
(ref. 64). Source data are provided with this paper.

Code availability

All analyses were performed using custom code in MATLAB (Math-
Works), with the exclusion of spike sorting, which was done with
Python-based Kilosort4. The code generated in the current study is
available at https://github.com/kevin-qi/ripple-bat.git.
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Extended DataFig.1|Spatially selective cells during flight. a, Example
spatially selective cellsacross one flight trajectory. Left column depicts the
flighttrajectory (grey lines, top view) and overlaid spikes (red dots) of seven
example neurons, sorted by location of peak firing from take-off (grey triangle)
tolanding (bottom to top row). Right column shows the raster plotacross 22
repetitions of the same trajectory. Neural activity is plotted along anormalized
flight trajectory, with all flights temporally aligned and rescaled, such that
take-off andlanding coincide in the visualization. Note that owing to the high
similarity of flights, minimal rescaling is needed.b, Distributions of field size,
stability, peak firing rate and spatial information (Methods) for 1,620 neurons x
trajectory. Dataare from 990 spatially tuned neurons, 6 bats (Methods).
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Extended DataFig.2|Echolocationrate and movementlevel around
replay. a, Raster plots of echolocation calls (vertical ticks) from three different
bats duringindividual flight sessions. Each flight epochis normalized to

have the same duration across trials. Non-flight epochs before and after each
flight are shown with durations equal to the corresponding flight. b, Average
echolocationrate around take-offand landing (n =16 sessions from 4 bats).
Shaded arearepresentss.e.m.c, Box plot for the average echolocationrate
during flight versus non-flight (two-sided Pfrom Wilcoxon signed-rank test,
n=16sessions from4 bats), The box plot shows the maximum and minimum
values (whiskers), median (centre line) and 25th to 75th percentiles (box limits)
acrosssessions.d, Schematics of the analysis of echolocation productionand
movement level around replay times. Mic: environment microphone; IMU:
inertial measurement unit, measuring acceleration dataonthe headstage.
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e, Average echolocationratearound replay times (red trace) versus random
epochsofnon-flight (black trace, n=2,364 replays from16 sessions, 4 bats).
Tracesare compared with the time-averaged echolocation rate during flight
and non-flight for the same sessions (dotted lines). Inset shows a magnified
view of the plot; significance of the difference between the two tracesis tested
attime O (Wilcoxonsigned-rank test, n=2,364 replays from16 sessions, 4 bats).
f,Same as e, but for the movement around replay, quantified as the absolute
value of the difference between the absolute acceleration and g. Note the near-
zero echolocation production and minimal movement around replay times,
whichis evenlower thanduringrandomly selected non-flightepochs.Ine,f,
solidtracesrepresent the meanandshaded areasares.e.m.Pvaluesare
two-sided.
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Extended DataFig. 3 | Population activity around SWRs. a, Raster plots from
three example sessions (three different bats) of population activity around
SWRs. Spikes (black ticks) are pooled from all the simultaneously recorded
single units. b, Average population firing rate (top) and LFP profile (bottom,
normalized between minimum and maximum) around SWRs. The average
firingrateineach timebin (111 ms) is tested against baseline level (Wilcoxon
signed-ranktest, n=22sessions from 6 bats). Note that firing rate is
indistinguishable from baseline up until the SWR event. Solid traces represent
the meanand shaded areas are s.e.m. Pvalues are two-sided. ***P < 0.001;
ns:P>0.05.
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Extended DataFig. 4 |Different neural ensembles areactive during
different flights. a, Example posterior probability matrixes obtained by
decodingneural activity during single flights, when using neural ensembles
extracted from the same flight trajectory (diagonal) or from another flight
trajectory (off-diagonal) during the same experimental session. Scale bar, 1 m.
b, Root meansquared error (normalized; Methods) when decoding the bat’s
positionduring flight using the ensemble of cells active during the same flight
(grey, 1,479 flight trajectories from 23 sessions, 6 bats) or a different flight
withinthe same session (red, 4,544 flight trajectory pairs from 23 sessions, 6
bats). two-sided P= 0, two-sample Kolmogorov-Smirnov test. Note that bats,
unlike rodents, never traversed the same trajectory in two opposite directions.
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Extended DataFig.5|Simple models do not explain the relationship
betweenreplay contentand behaviour. a, Most common flight hypothesis.
Left:schematicillustrating the hypothesis that replays are more likely for the
most frequently taken flight paths (e.g., blue path). Middle: fraction of flights
belonging to the1st,2nd and 3rd most common trajectories, ranked by
frequency within each session. Right: corresponding fraction of replays for
eachtrajectory rank. Box plots show median (centre line), 25th-75th percentiles
(box) and minimum and maximum (whiskers) across sessions (n =9 sessions
from3batsinwhichatleast 3 different trajectory types were eachreplayed
atleast15times; Wilcoxon signed-rank test between 1stand 3rd ranks). Note
thatreplay fraction does not scale with flight frequency. b, Top: schematic
illustrating the hypothesis that replays reflect theimmediately preceding
(orange) or following (purple) flight. Bottom: fraction of replays classified as
immediate previous (left),immediate next (centre), or other (right), compared
with chancelevel (n =17 sessions from 5bats; Wilcoxon signed-rank test,
Methods). Chance level for each sessionis calculated as one over the number
of different flight trajectoriesin that session that could be replayed. Thin

lines depictsingle sessions; thick lines show the averages. ¢, Rewarded

flight hypothesis. Left: schematicillustrating the hypothesis that replays
prioritize flights to rewarded locations (feeders). Right: fraction of replays
correspondingto flights ending at feeders (black) or perches (blue), for all,
forward, and reversereplays. Replay fractions are normalized by the number
offeeder- or perch-bound flight types presentin each session, so values do not
sumtol.Boxplotsasina(n=23sessions from 6 bats; Wilcoxon signed-rank
test). Nosignificant difference was observed betweenreplays for reward-and
perch-directed flights. Pvalues are two-sided. ***P< 0.001; **P < 0.01; *P< 0.05;
ns: P>0.0S. llustrationin cadapted fromref. 14, Springer Nature Limited,
under aCreative Commons licence CCBY 4.0.
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Extended DataFig. 6 | Replay features for flights of different lengths and
durations. a, Comparison of different replay metrics (Methods) between
shortandlong flights (Pvalues are from Wilcoxon rank-sum test, Pvalues are
two-sided, n =37 short versus 28 long flights for rank correlation and fraction
activecells, obtained from spike-sequence analysis; n = 51short versus 22 long
flights for the remaining scores, obtained from decoding analysis). Hereand in
b, thickline represents median; thinlinesrepresent s.e.m.b, Comparison of
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replay duration calculated from decoded replays between short (n =51
trajectories) and long (n =22trajectories) flights. Pvalues are two-sided.

¢, Flightlength versus replay speed calculated from decoded replays. Black
dottedline denotes theline of best fit. Note the linear increase in replay speed
asflightlength getslonger. Each dotrepresents the average replay duration for
asingle flight trajectory, colour-coded by the identity of the bat, n = 78 flight
trajectories.
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Extended DataFig.7|Distance between placefields versus timing between
spikes duringreplay. a, Schematic showing the interval between first spikes
and the distance between place fields for aspecific neuron pair participating
inareplayevent.b, Interval between first spikes versus distance between place
fields for all the place-cell pairs that participated in replay events fulfilling
analysis criteria (8,328 valid pairs from 1,073 replays; Methods). Note that
atshortdistancesthe time between first spikes increases with the distance
between place fields, but thisincrease plateaus at distances of afew metres, in
line with the approximate constancy of replay duration across varying lengths.
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Extended DataFig. 8| Place-field size and distance for flights of different
lengths. a, Average distance between place cells (left) or average field size
(right) versus flightlength (Methods). Each marker represents the average
value for place cellsactive on aflight cluster (n = 82 flight clusters from 23
sessionsand 6 bats). Solid line represents linear fit.cand p: value and Pvalue of
Pearson’s correlation. Pvalues are two-sided. b, Comparison between average
field size (top), place-cell distance (middle) and number of recruited place cells
(bottom) for short versus long flights (n =46 short (3-7 m) versus n =30 long

(7-13 m) flights). Two-sided Pvalues obtained from Wilcoxon rank-sum test:
7.9e-5,0.001,0.057 respectively. Thick line represents median, thin lines
represents.e.m.c, Distribution of single-session Pearson correlation values
betweenaverage place-cell distance (left) or average place-field size (right)

and flight trajectorylength (n=22sessions from 6 bats withmore than one
analysable flight cluster). Note the highly skewed distributions, suggesting a
positive correlation between field distance (or size) and trajectory length at the
single-session level.
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Extended DataFig.9 |Hippocampal LFPsinbats lack continuous theta
oscillations during flight, independent of reference site. a, Example theta
boutsaround and during flight (left), and during rest (right). For each example,
absoluteaccelerationfiltered between 7 and 9 Hz (top, orange trace), LFP trace
(middle, black trace) and spectrogram (bottom) are shown. White arrows
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rateineach timebin (555 ms) is compared between observed data and control
(two-sided Wilcoxon signed-rank test; n=22sessions from 6 bats). Difference is
notsignificantinall epochs. Note the extremely low rate of theta bouts around
SWRs. Right: box plot showing the average rate of thetabouts in the epochs
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preceding SWRs (from-5to 0 s, red) or random events (same interval, black).
P=0.14 Wilcoxonsigned-rank test, n = 22 sessions from 6 bats. e, Schematics
diagram showingthe reference ground screw (red) positioning above the frontal
cortex. Transparency shows brain outline. f, Absolute acceleration (top),
unfiltered LFP trace (middle) and spectrogram (bottom) around take-off for
sevenexample flights, where LFP was referenced to a frontal ground. Note the
absence of thetaduring flight (217 out of 2,128 flights with theta, 10%,n=6
bats, 22 sessions; Methods). g, Power spectral density (PSD) of the LFP during
epochsofnon-flight (black trace) and flight (orange trace) for one example
session where LFP was referenced to afrontal ground. Note the absence of
prominent peaksinthethetafrequencyrange (4-11Hz). h,Powerinthe 4-11Hz
band, relative to power across the whole spectrum during theta bouts (bouts)
versus during flight (Flight). P = 4e-5 two-sided Wilcoxon signed-rank test, n =22
sessions from 6 bats. Thick line represents median; thinlines represents.e.m.
i-k, Sameasine-g, butfor datacollected withthereference ground screw (red)
positioned above the cerebellum (two bats). Note, asinf,g, the absence of
thetaduring flight (11 out of 344 flights with theta, 3%, n =2 bats, 10 sessions;
Methods).l,Sameash,but with LFPreferenced toacerebellar ground. P=2e-4
Wilcoxonsigned-ranktest,n =10 sessions from2bats.
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Extended DataFig.10|Limited wing-beat frequency variability across
flights. a, Scatter plot and histogram for the wing-beat frequency calculated
fromthe FFT of the absolute acceleration during a flight (vertical axis) or as the
average during flight of the time-varying frequency obtained from the Hilbert
transform (Methods). Each dotis one flight (n =1,442 flights from 6 bats). Note
the high correlationbetween the two measures and their narrow distributions.
b,Heat mapsrepresenting the accelerometer signal (filtered between 7 Hzand
9 Hz) during repeated executions of the same flightina path (three example
paths from different bats). Number below the heat map indicates duration of
theshown flightinterval. ¢, Distribution of the coefficient of variation (CV) for
thewing-beat frequency across flights belonging to the same path (n =80 flight
paths from 6 bats). The vertical line represents the coefficient of variation of
thewing-beat frequency acrossall flights (n =1,442 flights from 6 bats). Note
that most of the coefficients of variation of wing-beat frequency withina path

were significantly smaller than the coefficient of variation across all flights
(97.5%, P=0.025).d, Scatter plot for the average speed versus average wing-
beat frequency during flight (each dotisaflight, n=1,442flights from 6 bats).
Toimprove visibility, only data within 5th-99th percentiles are shown. cand p:
value and two-sided Pvalue of Spearman’s correlation. e, Example trajectories
(leftinsets), average speed profile (solid line) and average wing-beat frequency
(dottedline) for straight flights (n =1,057, top) versus loops (n = 385, bottom;
Methods). Shaded areas represents.e.m. Average profiles are calculated by
rescaling the speed (or wing-beat frequency) between O (take-off) and 100
(landing) and then averaging the obtained traces across flights. Flight tails are
excludedto avoid edge effects. f, Unfiltered power spectral densities of the raw
accelerometer signal during flight for all sessions (n =22, 6 bats; coloured lines,
scaled between O and1). Black line shows the average.
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Extended DataFig.11|Comparisonbetweennon-oscillatory LFPand
wing-beat phaselocking ofhippocampal neurons. a, Mean power of the
non-oscillatory LFP (Methods) during non-flight versus flight epochs. The box
plot shows the maximum and minimum values (whiskers), median (centre line)
and the 25thto 75th percentiles (box limits) across sessions (two-sided p = 4e-5,
n=22sessions from 6 bats, Wilcoxon signed-rank test). b, Top, spike-triggered
LFP,computed as the mean of the single-session spike-triggered LFP traces
(n=22sessions from 6 bats) for all the spikes emitted during non-flight (black)
versus flight (purple). Shaded areas represent s.e.m. Middle: Same as above, but
for the spike-triggered wing-beat. Bottom: Same as above but only including
spikes from phase-locked neurons (n =22 sessions from 6 bats; Methods).

¢, Average decodingerror (Methods) aligned to either the wing-beat phase
(orangebar) or the non-oscillatory LFP phase (purple bar) and normalized toa
shuffled distribution (two-sided P=0.044 Wilcoxon rank-sumtest, n=4,546
wing-beat cycles versus 4,393 LFP cycles from 643 flights, 6 bats). Barsindicate
themean, error barsares.e.m.
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Extended DataFig.12|Fastrepresentational sequences around turns and
echolocation. a, Top: Example flights with turns, shown in top view. The colour
ateach positionindicatesthelocal 3D curvature. Grey triangles mark the turn
point, defined as the location of maximum curvature (Methods). Bottom:
Distribution of maximum curvature across flights (n=1,354 flights from
22sessions, 6 bats). The vertical line denotes the threshold value of 1m™ used to
distinguish loops from straight flights. b, Top: Distribution of representational
sequence (sweep) occurrence withina[-1,1]swindow around detected turns
(n=122automatically detected sweeps, 18 flights with turns, 6 sessions, 5 bats;
medianturntime fromstart/stop of flight:1.9 s/1.7 s). Black line shows the
kernel density estimation. Bottom: Average echolocationrate, velocity and
curvature aligned to the turn point (n =274 flights with turns from 10 sessions,
4 bats). Thicklines represent the mean; shaded areas denote s.e.m. ¢, Average
echolocationrate across normalized flight phase (%; 0 = take-off,100 =landing)
for straight flights versus loops (n = 880 straight flights from 16 sessions, 4 bats;

n=274flights with turns from10 sessions, 4 bats). Each echolocation trace was
normalized toits maximum value before averaging. Note the transientincrease
inecholocationrate near the midpoint ofloops. Thick linesindicate mean;
shaded areasdenotes.e.m.d, Average decodingerror (top) and echolocation
rate (bottom) across wing-beat cycles from straight flights (n =591 straight
flights from15sessions, 4 bats). Traces are aligned to the phase of the wing-beat
and splitinto cycles with (blue, n =3,451 cycles for whole flight,n=1,712 for 1st
half) versus without (red, n = 6,184 cycles for whole flight, n = 3,166 for 1st half)
echolocation. Plots on therightinclude only wing-beat cycles from the first
halfof flights. Solid lines indicate mean; shaded areasindicates.e.m. Note the
reductionindecodingerror during cycles with echolocation. e, Average
echolocationrateina[-40:40] ms window around observed sweeps versus
randomly selected time points (two-sided Wilcoxon signrank test, n =1,214
sweeps, 4 bats; Methods). Barsindicate the mean, error barsares.e.m.
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Extended DataFig.13|Relationship between the frequency of wing-beat
and ofinternal representations. a, Average power spectral density (PSD,
normalized to unitarea) for the decoding error during flight (n = 659 flights
from16 sessions and 6 bats). Dashed line shows fit with exponential decay. The
inset shows the residual after subtracting the exponential decay. Note the peak
around 8 Hz. b, Scatter plot and histograms for the peak of the residual PSD of
thedecodingerror (after subtracting the exponential decay) versus average
wing-beat frequency for single flights (dots, n = 659 flights from 16 sessions
and 6 bats; Methods). Inset shows the same data at higher magnification.
c,Same asb, but for the estimated sweep frequency for consecutive sweeps
(exampleinthe topmostinset, calculated as the inverse of their time interval,
n=360from15sessions, Sbats) versus average wing-beat frequency calculated
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from the time average of the instantaneous wing-beat frequency on the same
time interval between sweeps (Methods). Inset shows the same dataat higher
magnification.d, Average Pvalue (calculated over 30 repetitions, shaded
areaindicatess.d.) for the Spearman correlation between simulated sweep
frequency versus empirical wing-beat frequency, plotted againstimposed
correlation values. Simulated sweep frequency (f) was generated fromthe
empirical wing-beat frequency values (x) asf=rzscore(x) +v(1-r2) -z+ mean(x),
wherez=N(0,1). Inset shows data for one simulated sampleatr=0.5.
Simulations suggest that evenunderidealized conditions, detecting weak
correlations (e.g.,r= 0.2, similar to the value observed between stepping and
thetainrats?) could be challenging, given the little wing-beat frequency
variability.
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