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The application of biocatalysis in synthesis has the potential to offer streamlined
routes towards target molecules’, tunable catalyst-controlled selectivity?, as well
as processes with improved sustainability®. Despite these advantages, biocatalysis
isoften a high-risk strategy to implement, as identifying an enzyme capable of
performing chemistry on aspecificintermediate required for a synthesis canbea
roadblock that requires extensive screening of enzymes and protein engineering
to overcome®. Strategies for predicting which enzyme and small molecule are
compatible have been hindered by the lack of well-studied biocatalytic reaction
datasets®. The underexploration of connections between chemical and protein
sequence space constrains navigation between these two landscapes. Here we
report atwo-phase effort relying on high-throughput experimentation to populate
connections between productive substrate and enzyme pairs and the subsequent
development of atool, CATNIP, for predicting compatible a-ketoglutarate (a-KG)/
Fe(11)-dependent enzymes for a given substrate or, conversely, for ranking potential
substrates for a given a-KG/Fe(11)-dependent enzyme sequence. We anticipate that

our approach canbe readily expanded to further enzyme and transformation classes
and will derisk the investigation and application of biocatalytic methods.

The use of enzymes in small-molecule synthesis has transformed the
production of commodity chemicals and enabled the construction
of complex molecules for decades®. Recent examples of biocatalytic
routes to achieve the commercial production of pharmaceutical agents
underscore the potential of designing synthetic strategies thatinclude
key biocatalytic steps®. New enzyme-mediated process routes towards
drugs have decreased step counts by 33% and more than doubled overall
yield, on average, compared with the highest-performing chemical
syntheses’ (Supplementary Information, scheme 1). The potential
to enable new routes towards target molecules through biocatalysis
existsinarenas outside process chemistry, as evidenced by agrowing
body of work from academic groups specializing in chemoenzymatic
synthesis'and the potential of enzymatic late-stage functionalization
in discovery chemistry?.

One common limitation of biocatalysis is the unpredictable sub-
strate scope of individual enzymes, which can contribute to difficulty
in developing a biocatalytic method*. Even simple methyl, ethyl and
propyl substituent series, which typically do not show notable reactivity
differences for small-molecule catalysts, can reveal large differencesin
anenzymatic reaction®. Therefore, to plan an enzymatic reaction into
asynthetic route carries substantial risk if the exact reaction on the
planned substrate is not already known. As a result, the application of
biocatalysis is often constrained to known reactions discovered through
primary or secondary metabolism®. Once a starting point enzyme-sub-
strate pairis identified, local exploration of chemical space or protein

sequence space canlead tothe desired reactivity. For example, towards
the synthesis of GSK2330672, the known transformation of epichloro-
hydrin by an epoxide hydrolase was used as a starting point for local
chemical space exploration to extend this chemistry to anew epoxide'®
(Fig.1a). Asanalternative, we can explore local protein sequence space
through protein engineering™. Several notable examples of protein
engineering have been applied in the synthesis of pharmaceutical
agents”?, including the engineering of a transaminase for the synthe-
sisof sacubitril, aneprilysininhibitor, which involved the substitution
of 26 amino-acid residues to achieve a 500,000-fold improvement in
activity® (Fig.1a). Thus, established strategies for applying biocatalysis
rely heavily onknown reactions and local explorationin chemical space
and protein sequence space forward from these defined connections
(Fig.1b). Unfortunately, the percentage of enzymes for which chemistry
hasbeen experimentally characterized is extremely low, with less than
0.3% of sequenced enzymes having acomputationally annotated func-
tion®. As such, most enzymes do not have known connections to sub-
strate chemical space, contributing to the difficulty in tapping into the
potential that these catalysts could bring to the scientificcommunity.

Machine learning methods can expedite the biocatalytic reaction
discovery process'. For example, a contrastive learning model was
developed to predict the enzyme commission number of uncharacter-
ized enzymes®. This provides a prediction for what type of reaction a
given enzymeis capable of. However, it does not guide us towards the
native substrate of anenzyme nor provide information on the substrate
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a Present approaches to discovering biocatalytic reactions
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Fig.1|Presentstate of the artinbiocatalyticreactiondiscovery.

a, Established methods for new biocatalytic reaction discovery. Known
connections between chemical and proteinsequence space can be exploited
fornewreactiondiscovery throughlocal exploration. The known reaction
between epichlorohydrin and epoxide hydrolase (EH) was used to enable the
reaction on the epoxide analogue towards the synthesis of GSK2330672
(ref.10). Alternatively, local protein sequence space was explored through
protein engineeringtoimprove the transformation of the known substrate
(Ar = p-biphenyl) with wild-type (wt) amino transaminase (ATA), resultingin
ATA-r11after 11 rounds of directed evolution (positions of mutations shown
inpurple)®. b, Limitations of present methods. Expansion of characterized

scope. Computational tools canalso predict other qualities of a protein
based onits sequence, suchas EnzymeMiner, which predicts amenabil-
ity to heterologous expression in Escherichia coli (E. coli)'®. These tools
are useful for guiding initial selection of enzymes to explore experi-
mentally. However, itis well documented that enzyme annotation and
predicted compatible substrates often do not align with experimental
validation”, hindering their use in generating in silico datasets.
Advances towards achieving predictability in biocatalysis have pro-
vided solutions for navigating locally in either chemical or sequence
space. Reaction discovery campaigns, such as the profiling of a nitrilase
library against a small panel of highly similar substrates'® and the
fluorogenic-guided investigation of the substrate scope of hydrolases',
haverevealed trendsin enzyme promiscuity. There has also been work
to curate datasets detailing the substrate scope of variants of a given
parent enzyme?, as exemplified by the profiling of P450 BM3 variants
against a panel of small molecules?. From these types of dataset, local
sequence space exploration can be aided by machine learning tools to
identify variant enzymes with superior catalytic activity?, stereoselec-
tivity?, substrate scope?* and thermal stability”. These datasets explore
locally insequence space, chemical space or both landscapes (Fig. 1b).
Attempts to predict biocatalytic reactions have been carried out in
several enzyme families®*?. However, established approaches have
limitationsin applicability and accessibility. These constraintsinclude
difficulty extrapolating beyond the training set® and an absence of user-
friendly tools®. Further, established approaches that are not restricted

biocatalyticreactivityis limited to local exploration of chemical and sequence
space, inhibitinglarger, non-intuitive leaps between the landscapes.
Thereremains avast unexplored region of substrates and enzymes with
unknown biocatalytic reactivity, creating a higher risk for theirincorporation
as key stepsinchemical synthesis. Thereis at present no method to predict
compatible enzymes or substrates in the NHlenzyme superfamily.
c,Ourapproachtostreamlinebiocatalytic reaction discovery. We examined
diverse substrates and protein sequences for new biocatalytic reactions and
use these datato build machinelearning models to predict compatible enzymes
and substrates.

to a specific enzyme family underperform?®, probably because of the
large differencesin substrate selectivity observed across various pro-
tein families?®. The generation of models that rely on pre-existing data-
sets®®, which are largely taken from the biosynthetic and metabolism
literature, create limitations, as the array of enzymes and substrates
have not been experimentally validated against each other, leading to
arisk of false negatives, poor annotations and inaccurate proposed
biocatalytic reactions that can lead to false positives".

Towards characterizing the chemistry possible across an enzyme
family and derisking the incorporation of biocatalytic steps into syn-
thetic routes, we visualized a two-pronged approach involving high-
throughput experimentation and machine learning. We anticipated
that this would require conducting reactions that profile substrates
sampled across chemical space with enzymes that represent the
sequence diversity encompassed by a protein family (Fig. 1c). Oncea
sufficient dataset was obtained, then machine learning models could
bebuilt to navigate between these two landscapes and enable the dis-
covery of biocatalytic reactions in a substrate-oriented or enzyme-
oriented fashion. Here we detail the first, to our knowledge, example
ofthisapproachfocused on C-H functionalization reactions mediated
by a-KG non-haemiron(i1)-dependent (NHI) enzymes. Ultimately, this
experimental effortled to the discovery of more than200 biocatalytic
reactions and provided the datanecessary to build aweb-based toolkit
to suggest compatible substrates and enzymes for an oxidative bio-
catalytic transformation.
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In considering which protein family and reaction class touse as a
test case, we sought an enzyme class that has proved to be useful on
the preparative scale® and performs valuable reactions while argu-
ably still underdeveloped in synthetic chemistry®. On the basis of
this, we chose to focus on a subclass of NHI enzymes that use a-KG as
aco-substrate. From a reactivity standpoint, this class of enzymes is
appealing on the basis of their ability to access a range of chemistries
fromaconserved radical intermediate to afford C-H functionalization
products and desaturation products and mediate skeletal rearrange-
ments*?** (Fig. 2a). Also, a-KG-dependent NHI enzymes have practical
advantages over other types of enzymes that can mediate the cleavage
of strong C-Hbonds or perform oxidative transformations on several
bonds. For example, other subclasses of NHI and cytochrome P450
enzymes are fuelled by electrons that are often supplied by a partner
reductase®, whereas a-KG-dependent NHI enzymes rely on the oxida-
tion of the small-molecule co-substrate a-KG to drive the formation of
the active oxidant species® (Fig. 2a). This difference provides a more
uniform set of conditions for a-KG-dependent NHI reactions, which
have proved to be scalable®.

To design alibrary of a-KG-dependent NHI enzymes that represent
the sequence diversity of this protein family, we gathered all sequences
annotated to have the facial triad of iron-coordinating residues that
is conserved for hydroxylases® (Fig. 2b). Using the Enzyme Function
Initiative-Enzyme Similarity Tool (EFI-EST), 265,632 unique sequences
were associated with this class®. To reduce the number of sequences
to amanageable amount, redundant orthologues (>90% similarity)
and clusters containing enzymes associated with primary metabolism
were removed, giving a resultant sequence similarity network (SSN)
consisting of 27,005 sequences (Fig. 2b). Work by Lewis and colleagues
demonstrated that SSN representations canreveal trends in sequence-
substrate relationships within the flavin-dependent halogenase family*°
and subsequent studies have shown this correlationin further enzyme
classes* . Therefore, we sampled several clusters as a strategy to
achieve a protein library with a broad substrate scope. In total, 102
sequences were selected from the most populated cluster, 125 unchar-
acterized sequences from poorly annotated clusters and 87 further
sequences of enzymes with known or proposed function were selected
toarrive at a 314 enzyme library (aKGLib1; Supplementary Fig. 1).

Ofthe enzymes selected, 94 (30%) have aknown or suggested native
reactionincluding hydroxylation, desaturation, halogenation, epoxi-
dation, endoperoxidation, demethylation, C-C bond formation and
skeletal rearrangements (Fig. 2c and Supplementary Figs. 2 and 3).In
anattemptto extrapolate beyond known activity, we used the enzyme
commission machine learning model CLEAN (Contrastive Learning
enabled Enzyme ANnotation)”. CLEAN assigned enzymes in aKGLib1
as oxidoreductases, transferases, hydrolases, lyases and isomerases,
of which 80% were annotated with low confidence (Supplementary
Table 1and Supplementary Figs. 4 and 5). As anticipated, trends in
substrate class are evident from the SSN generated at a more stringent
alignmentscore threshold (Fig. 2c). Forexample, atalignment score 75,
enzymes characterized to be compatible with anindolizidine scaffold
are found within a cluster. All selected sequences showed an average
sequence percent identity of 13.7%, indicating high library sequence
diversity (Fig. 2c). DNA for the library was synthesized and cloned
into a pET-28b(+) expression vector. E. coli cells were transformed
with plasmids encoding for each library member and overexpression
was carried out in 96-well-plate format. Sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) analysis of crude cell
lysate showed clear protein bands at the expected molecular weight
for 78% of enzymes (Supplementary Figs. 6-29).

High-throughput biocatalytic reaction discovery

WithaKGLiblin hand, we nextinvestigated thereactivity of eachenzyme
inahigh-throughput fashion. To profile the reactivity of each enzyme
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witharange of substrates, reactions were performed on the 50-pl scale
in 96-well plates and were analyzed by liquid chromatography-mass
spectrometry (LC-MS). Eachreaction was investigated for masses cor-
responding to hydroxylation, chlorination, desaturation and rear-
rangement products (Fig. 3a). Notably, each reaction was conducted
in triplicate and compared with two negative controls: (1) cell pellet
containing no overproduced NHIenzyme and (2) ano-substrate control.

More than a hundred compounds were assessed as substrates for
eachenzymeinaKGLibl, including arange of scaffolds from commer-
cially available amino acids to drugs and other complex molecules
(Supplementary Table 5). Of the 111 substrates evaluated in reactions
with the entire enzyme library, 35 compounds were transformed by at
least one enzymein aKGLib1, a32% success rate (Fig. 3a). Furthermore,
119 of 314 enzymes showed biocatalytic activity on at least one substrate
tested, including 74 with no previously reported activity (Supplemen-
tary Table 4). Notably, numerous enzymes for which a protein band was
not clearly seen by SDS-PAGE analysis showed biocatalytic activity. Most
ofthe observedreactions were hydroxylation, although desaturation
reactions constituted about 20% of the reactions discovered (Fig. 3a).
In total, 215 new biocatalytic reactions were observed (Supplemen-
tary Table 3). The collection of discovered reactions encompassed
substrates that varied substantially in structure, including natural
productssuch as cannabidivarin (4), humulene (12) and harmaline (13),
chemical building blocks such as cinnamic acid analogue (1) and usnic
acid (3), commonreagents such as1,8-diazabicyclo[5.4.0]Jundec-7-ene
(DBU, 10) and pharmaceutical agents (for example, glyburide (5)). To
define therelationship between compounds, each substrate was quanti-
fied with MORFEUS descriptors*® to generate 21 parameters including
measurements of sterics (for example, volume, solvent-accessible
surface area), electronics (for example, HOMO and LUMO energies,
electrophilicity) and intermolecular interactions (for example, disper-
siondescriptors, charge) (Supplementary Table 7). With these features
quantified, we carried out a principal component analysis to represent
the compoundsin chemical space (Fig.3b). Notably, substrates trans-
formed by enzymes in aKGLib1 are well dispersed in chemical space.
Ultimately, our experimental effort produced hundreds of new con-
nections between chemical space and protein sequence space. Thus,
the development of models that would allow for navigation between
these landscapes was now within reach.

Translation from reaction data to machine learning
models

With the goal of creating robust compatibility predictive models, we
sought to maximize the number of biocatalytic reactions available
for modeltraining. Therefore, the 215 reactions discovered were com-
bined with previously reported biocatalytic reactions associated with
enzymes in aKGLib1 (Supplementary Information Section 12). Of the
literature reactions, eight had been observed experimentally during
our reaction discovery efforts and the extra139 reactions were added
tothe dataset to create BioCatSetl (Supplementary Table 3). To convert
these substrate-enzyme pairs to inputs for machine learning mod-
els, reaction partners were divided into their individual components,
comprising 119 substrates and 163 enzymes (Fig. 4a). Each substrate
was converted to a SMILES string using the main protonation state at
pH 7.5 (ref. 47), featurized using MORFEUS*¢ and mapped to chemical
space. To quantify the relationship between enzymes, the alignment
scores were extracted from the SSN and converted to a normalized
value (AS%) to capture the relationships as a quantitative matrix input.

With these metrics defined, we took steps towards building pre-
dictive models for navigating between chemical and sequence
space. In a synthetic-chemistry-based endeavour, we constructed a
substrate-to-enzyme recommendation system to enable the identifi-
cation of new biocatalytic reactions with a given substrate. To achieve
this, each substrate was mapped to chemical space and ten of its nearest
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and either a carboxylate-containing residue (R = Asp/Glu) or anenvironmentally
sourced halide (R = Ala/Gly). On a-KG binding and oxidation by atmospheric
oxygen, theactiveiron(1v)-oxo species caninitiate hydrogen atomabstraction
from the substrate to yield the iron(111)-hydroxy species and a radical
intermediate. This intermediate can undergo structural rearrangements
before being terminated by rebound hydroxylation, carbocation formation

or halogenation (functionalization by a-KG NHI enzymes in natural product
biosynthesis showningreen) and generate succinate as aby-product.

b, Workflow to curate abioinformatics-guided a-KG-dependent NHl enzyme
library (aKGLib1). The enzymelibrary was selected by collecting characterized
of-interest enzyme sequences, which led to the inclusion of protein families
IPRO08775,IPRO05123,1PR027443,IPR026992 and IPR044861. These families

neighbourswithinthe BioCatSetl database were identified (Fig.4b). The
compatible enzymes for each neighbouring substrate were retrieved
and the ten most similar enzymes within aKGLibl were used to populate
an output for the ranking model. The entirety of the output enzyme
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were used asaseed for the generation of aSSN (e-value = 5, UniRef90),
which, after filtering, resulted in the network shown containing 27,005
proteinsequences (alignment score = 50, organic full layout). 314 enzymes
(purple) representing 1.16% of the total sequences (grey) were selected across
160 clusters, togenerate adiverse enzymelibrary.c, Trends in substrates
within clusters of aSSN and efficacy of aKGLibl. The sequences in the SSN
atalignmentscore =75 contain 94 enzymes that have previously been
characterized (purple diamonds) and 220 sequences that are previously
uncharacterized (lavender circles, 70% of total library). In clusters containing
several characterized proteins, the known compatible common scaffold
ishighlighted. On performing amultisequence percent identity matrix, it
was found that sequences only contained 13.7% shared identity, on average.
Ontransformation and overexpressionin£. coli, the presence of protein was
investigated through gel electrophoresis, in which 78% of aKGLibl showed
soluble protein overexpressed at the expected molecular weight.

list, or subsetsidentified in decreasing order (k), were used to measure
the precision@k, recall@k, enrichment@k and normalized discounted
cumulative gain (nDCG)@*k (Fig. 4b). precision@k measures the frac-
tion of entries within the list that are known to be compatible with the
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a Biocatalytic reactions examined
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mixture containing a-KG-dependent NHI enzymes in whole-cell pellet format
(40% vol/vol of roughly 200 mg mI™ 50 mM TES pH 7.5 suspensions), a-KG
(2mMin H,0), sodium ascorbate (NaAsc,1 mMin H,0) and iron(11) sulfate
heptahydrate (FeSO,, 0.1 mMinH,0) and then treated with toluene (10% vol/
vol) toafinal volume of 50 pl. Reactions were incubated at 30 °C while shaking
at300 rpm (15-mmorbital radius) for 4 h. Reactions were quenched, pooled
andfiltered toyield ananalytical sample containing one enzyme with five
substrates (0.100 pM) and all generated reaction products. Reactions were
monitored by LC-MS using a3-minreverse-phase method toidentify unreacted
substrate, hydroxylation, desaturation, rearrangement and chlorination
products by mass (functionalization showningreen). Using this high-throughput
reaction platform, 111 unique substrates were scrutinized against 314 NHI

input and recall@k describes the fraction of entries compatible with
theinput that were populated within the prediction list. enrichment@k
compares the precision with what would be achieved by randomly
sampling BioCatSetl. nDCG@k reflects aweighted version of precision,
forwhich entriesranked higher have agreater contribution to the total
score.Ideally, atalow value of k, these metrics are high, signifying the
curation of astreamlined rank list.

We anticipated that this dataset and approach could also be used to
navigate fromagiven protein sequence to an area of chemical space to
answer the question of which substrate a given enzyme might trans-
form. Thus, we designed a complementary enzyme-to-substrate
model. Inthis approach, each enzyme is compared with the members
of aKGLibl to identify its most similar sequences. The compatible
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of substratesat pH 7.5, calculating their MORFEUS descriptors, performing a
principal componentanalysis and representing the substrates as values of PC1
and PC2. Partof the substrates with identified activity are showninrespectto
their positionin chemical space.

substrates for each similar enzyme are retrieved and their nearest
neighbours in chemical space are identified to generate a substrate
rank list. In a similar fashion, precision@k, recall@k, enrichment@k
and nDCG@k are calculated for the generated substrate prediction list.

After generating the BioCatSetl dataset, designing the machine
learning pipeline and establishing evaluation metrics, we trained an effi-
cientmodel to navigate across substrate chemical and proteinsequence
space. Akey stepinthis process was determining the most appropriate
data-splitting strategy. For arank-list-based task, the possible division of
train-test datainclude substrate-oriented, enzyme-oriented or asimul-
taneous substrate/enzyme split (Fig. 4c). For the substrate-to-enzyme
model, we implemented a 50/50 training/test split based on the sub-
strate data and likewise performed a 50/50 training/test split based
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substrates at low kisrepresented. ¢, Division of train-test splitinasubstrate-
to-enzyme (top) and enzyme-to-substrate (bottom) rank list task. For the
substrate-oriented model, asubstrate split was chosen to allow for the
introduction of new substrates, without the high data cost of adual split,and
likewise inthe enzyme-oriented model, an enzyme split was chosen. Training of
asubstrate-oriented gradient-boosted model identifies the optimal number of
trees (50) and tree depth (2) and in the enzyme-oriented model, the optimal
number of trees (100) and tree depth (6) were found. Machine learning models
with the parameter optimizationincorporated were evaluated against the
baselinemodels to calculate precision, recall, nDCG and enrichment at various
degrees of k. The GBM modelisrepresented asasolid line and the baseline
linear modelisindicated by adashedline. Precision and nDCG are shownin
darkgreenandrecalland enrichment areshowninlightgreen.

than would be observed by randomly sampling aKGLib1 (Supplemen-
tary Table 8). To further minimize the experimental burden associated
with enzyme screening, amodel that rewards populating the enzyme
prediction list with compatible enzymes at a low k was needed. After
optimization, we found that distance over five dimensions of chemi-
cal space provided a more robust calculation for chemical similar-
ity. To further improve performance, we trained a gradient-boosted
decision tree ensemble model (GBM)*® with YetiRank loss function®.
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This model offers an advantage with arbitrarily complex relationships
andisrelatively robust to overfitting when using proper hyperparam-
eters®’. The number of trees and their depth were optimized using a
grid search procedure®, yielding amodel of 50 trees with a depth of 2
(Fig. 4¢).

The performance of the substrate-to-enzyme GBM was compared
with the baseline linear model. The GBM has a higher nDCG than the
baseline model at all values of k. Furthermore, the top ten predicted
enzymes are >7-fold more likely to be compatible with the input sub-
strate than through random sampling of aKGLib1. At low values of k
(k<20),the GBM outperforms the baseline modelin precision, indicat-
ingthatthe GBM is most well suited for the curation of afocused enzyme
prediction list (Supplementary Table 8). Given this performance, we
used aGBM to build the final workflow. Analysis of feature importance
revealed that PC3, which mostly comprises two dipole moments and
nucleofugality, has the greatest weight on the model, followed by PC1
(most heavily comprising dispersion descriptors, solvent-accessible
surface area and volume) and the alignment score percent (Supple-
mentary Figs. 30 and 31).

Following this model development, we trained an enzyme-to-
substrate prediction rank model. The baseline model was construc-
ted using the distancein five dimensions of chemical space and nearest-
neighbours calculations were extended to include the training set of
sequence space and entirety of chemical space in the algorithm. The
hyperparameters of a GBM approach were optimized on the basis of
nDCG at k=10, yielding a model of 100 trees with a depth of 6. With
these optimizations, the precision, recall, nDCG and enrichment were
each measured at various rankings of k. Although minimal differences
inthese metrics were observed between the baselineand GBM models,
these results highlight the generality of the GBM approach, even in
challenging scenarios (Supplementary Tables 12 and 13).

CATNIP: aweb app for prediction of biocatalytic
reactions

With two machine learning models constructed, we created aninterface
to allow others to access predictions between a-KG NHI enzymes and
small-molecule substrates. We created CATNIP (https://catnip.cheme.
cmu.edu/), aweb platform that allows scientists to interact directly
with the substrate-to-enzyme and enzyme-to-substrate models. In
the substrate-oriented model, users can input a chemical structure
and receive aranked list of aKGLib1 enzymes (and the corresponding
sequences) potentially capable of transforming the targeted substrate
(Supplementary Information Tutorial 1). Furthermore, users can gain
insightinto potential small-molecule substrates for NHI enzymes, using
the enzyme-to-substrate model (Supplementary Information Tutorial
2).In this model, users can submit a protein sequence and receive a
ranked list of small molecules beyond the scope of the training and
test set that may be compatible. With the information provided by
CATNIP, the user can execute a highly focused set of experiments to
identify new biocatalytic reactivity. This strategy effectively derisks
the implementation of biocatalysis in target-oriented synthesis by
making use of machine learning.

The CATNIP substrate-to-enzyme workflow was tested with a selec-
tion of substrates, starting with the commercially available plant alka-
loid sparteine (16, train set; Fig. 5a). Sparteine (16) was mapped to
chemical space and CATNIP determined the ten nearest substrates
within BioCatSetl, whichincludes highly decorated nitrogen heterocy-
cles, specifically a piperidine, abicyclicamidine, five indolizidines and
three tetracyclic diamines. These neighbour substrates fed the machine
learning model to generate a ranked list of enzymes, which contained
four characterized enzyme sequences and six previously uncharacter-
ized sequences, which were tested in reactions with sparteine (16).
Seven of the ten reactions conducted resulted in a hydroxylation prod-
uct as observed by LC-MS (Supplementary Fig. 33). The enzyme that
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produced the greatest amount of product on the analytical scale was
used for a 50-mg-scale reaction from which hydroxylated product 17
was isolated in 35% isolated yield.

Similar success was achieved for more substrates tested in CATNIP.
For example, matridine (18, train set), a synthetic precursor towards
matrine natural products provided by Kerkovius et al.*!, was hydroxy-
lated by seven of the top ten enzymes predicted. From a 50-mg-scale
reaction, (125)-hydroxymatridine (19) was isolated in 50% yield (Sup-
plementary Fig. 34). Also, seven of the top ten enzymes predicted to
transform 6-methyleneandrost-4-ene-3,17-dione (20, test set) led to
productive reactions. On the preparative scale, 20 was converted ina
12% yield to the oxidative alkene cleavage product 21 (Supplementary
Fig. 35). To the best of our knowledge, this is the first example of an
«-KG NHI enzyme performing oxidative alkene cleavage of this type.
Moreover, since the time that our machine learning models and predic-
tive workflow were built, new reactions have beenreported with this class
of enzymes, providing extra test cases for CATNIP. For example, small
molecules that Renata and colleagues experimentally determined as
compatible substrates of enzymes within thislibrary werein agreement
with CATNIP substrate-to-enzyme outputs® (Supplementary Fig. 36).

The enzyme-to-substrate model was tested in a similar fashion
(Fig. 5b). Using NHI123 from Schizosaccharomyces pombe (test set)
as an input sequence, Clustal Omega was used to identify the ten
most similar enzymes within aKGLib1. The substrates associated with
these enzymes were retrieved, providing insight into the potential
regions of chemical space compatible with these sequences. The ten
best-ranked substrates, largely made up of monocyclic and bicyclic
oxygen-containing molecules, were tested as substrates in reactions
with NHI123. Four of these substrates were oxidized by NHI123. The top
ranked prediction, substrate 22, was transformed by NHI123 to asingle
product in 7% conversion (Supplementary Fig. 37). Similarly, the top
ranked substrate for NHI177 from Photorhabdus thracensis (test set),
humulene (12), was transformed by NHI177 to deliver a single oxidized
productin 41% conversion (Supplementary Fig. 38). To test the accu-
racy of this model beyond enzymes within BioCatSet1, we submitted
Tqal from Streptomyces violaceusniger (external validation) to CATNIP
to identify the region of chemical space proposed to be compatible
with the input enzyme sequence. The top 12 ranked substrates were
subjected to analytical-scale reactions with TqaL, of which four were
oxidized, including the second ranked substrate (23), providing an
oxidized productin42% conversion (Supplementary Fig. 39). Although
this enzyme has no characterized activity, it isahomologue of a char-
acterized enzyme that operates on similar amino acid substrates®,
reinforcing the performance of the model.

Conclusion

Overall, the development of this toolkit advances our ability to navi-
gate between chemical and protein sequence space. Specifically, the
curation of aKGLibl, a diverse NHI enzyme library comprising >300
wild-type proteins with low sequence identity and profiling of the
biocatalytic activity of these enzymes against >100 small-molecule
substrates led to the discovery of 215 new reactions. This dataset was
combined with literature-reported reactions to make BioCatSetl,
which was used to train two GBMs, generating substrate-to-enzyme
and enzyme-to-substrate rank lists as outputs. With these models, we
created CATNIP, an open-access web interface that enables stream-
lined biocatalytic reaction discovery. The power of these tools was
demonstrated through expedited biocatalytic reaction discovery on
substrates and enzymes outside the dataset. These reactions represent
new connections between chemical and protein sequence space, creat-
ing opportunities for further exploration of the landscapes through
substrate and protein engineering. We anticipate that this approach
canbebroadly applied to further enzyme families and reaction classes,
offering amethod to navigate between chemical and protein sequence
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space. Furthermore, this innovation effectively derisks the application
of biocatalysts in organic synthesis.
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