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Connecting chemical and protein sequence 
space to predict biocatalytic reactions

Alexandra E. Paton1, Daniil A. Boiko2, Jonathan C. Perkins1,3, Nicholas I. Cemalovic1,3, 
Thiago Reschützegger4, Gabe Gomes2,5,6,7 ✉ & Alison R. H. Narayan1,3 ✉

The application of biocatalysis in synthesis has the potential to offer streamlined 
routes towards target molecules1, tunable catalyst-controlled selectivity2, as well  
as processes with improved sustainability3. Despite these advantages, biocatalysis  
is often a high-risk strategy to implement, as identifying an enzyme capable of 
performing chemistry on a specific intermediate required for a synthesis can be a 
roadblock that requires extensive screening of enzymes and protein engineering  
to overcome4. Strategies for predicting which enzyme and small molecule are 
compatible have been hindered by the lack of well-studied biocatalytic reaction 
datasets5. The underexploration of connections between chemical and protein 
sequence space constrains navigation between these two landscapes. Here we  
report a two-phase effort relying on high-throughput experimentation to populate 
connections between productive substrate and enzyme pairs and the subsequent 
development of a tool, CATNIP, for predicting compatible α-ketoglutarate (α-KG)/
Fe(ii)-dependent enzymes for a given substrate or, conversely, for ranking potential 
substrates for a given α-KG/Fe(ii)-dependent enzyme sequence. We anticipate that 
our approach can be readily expanded to further enzyme and transformation classes 
and will derisk the investigation and application of biocatalytic methods.

The use of enzymes in small-molecule synthesis has transformed the 
production of commodity chemicals and enabled the construction 
of complex molecules for decades6. Recent examples of biocatalytic 
routes to achieve the commercial production of pharmaceutical agents 
underscore the potential of designing synthetic strategies that include 
key biocatalytic steps3. New enzyme-mediated process routes towards 
drugs have decreased step counts by 33% and more than doubled overall 
yield, on average, compared with the highest-performing chemical 
syntheses7 (Supplementary Information, scheme 1). The potential 
to enable new routes towards target molecules through biocatalysis 
exists in arenas outside process chemistry, as evidenced by a growing 
body of work from academic groups specializing in chemoenzymatic 
synthesis1 and the potential of enzymatic late-stage functionalization 
in discovery chemistry2.

One common limitation of biocatalysis is the unpredictable sub-
strate scope of individual enzymes, which can contribute to difficulty 
in developing a biocatalytic method4. Even simple methyl, ethyl and 
propyl substituent series, which typically do not show notable reactivity 
differences for small-molecule catalysts, can reveal large differences in 
an enzymatic reaction8. Therefore, to plan an enzymatic reaction into 
a synthetic route carries substantial risk if the exact reaction on the 
planned substrate is not already known. As a result, the application of 
biocatalysis is often constrained to known reactions discovered through 
primary or secondary metabolism9. Once a starting point enzyme–sub-
strate pair is identified, local exploration of chemical space or protein 

sequence space can lead to the desired reactivity. For example, towards 
the synthesis of GSK2330672, the known transformation of epichloro-
hydrin by an epoxide hydrolase was used as a starting point for local 
chemical space exploration to extend this chemistry to a new epoxide10 
(Fig. 1a). As an alternative, we can explore local protein sequence space 
through protein engineering11. Several notable examples of protein 
engineering have been applied in the synthesis of pharmaceutical 
agents7,12, including the engineering of a transaminase for the synthe-
sis of sacubitril, a neprilysin inhibitor, which involved the substitution 
of 26 amino-acid residues to achieve a 500,000-fold improvement in 
activity13 (Fig. 1a). Thus, established strategies for applying biocatalysis 
rely heavily on known reactions and local exploration in chemical space 
and protein sequence space forward from these defined connections 
(Fig. 1b). Unfortunately, the percentage of enzymes for which chemistry 
has been experimentally characterized is extremely low, with less than 
0.3% of sequenced enzymes having a computationally annotated func-
tion5. As such, most enzymes do not have known connections to sub-
strate chemical space, contributing to the difficulty in tapping into the 
potential that these catalysts could bring to the scientific community.

Machine learning methods can expedite the biocatalytic reaction 
discovery process14. For example, a contrastive learning model was 
developed to predict the enzyme commission number of uncharacter-
ized enzymes15. This provides a prediction for what type of reaction a 
given enzyme is capable of. However, it does not guide us towards the 
native substrate of an enzyme nor provide information on the substrate 
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scope. Computational tools can also predict other qualities of a protein 
based on its sequence, such as EnzymeMiner, which predicts amenabil-
ity to heterologous expression in Escherichia coli (E. coli)16. These tools 
are useful for guiding initial selection of enzymes to explore experi-
mentally. However, it is well documented that enzyme annotation and 
predicted compatible substrates often do not align with experimental 
validation17, hindering their use in generating in silico datasets.

Advances towards achieving predictability in biocatalysis have pro-
vided solutions for navigating locally in either chemical or sequence 
space. Reaction discovery campaigns, such as the profiling of a nitrilase 
library against a small panel of highly similar substrates18 and the  
fluorogenic-guided investigation of the substrate scope of hydrolases19, 
have revealed trends in enzyme promiscuity. There has also been work 
to curate datasets detailing the substrate scope of variants of a given 
parent enzyme20, as exemplified by the profiling of P450 BM3 variants 
against a panel of small molecules21. From these types of dataset, local 
sequence space exploration can be aided by machine learning tools to 
identify variant enzymes with superior catalytic activity22, stereoselec-
tivity23, substrate scope24 and thermal stability25. These datasets explore 
locally in sequence space, chemical space or both landscapes (Fig. 1b). 
Attempts to predict biocatalytic reactions have been carried out in 
several enzyme families26,27. However, established approaches have 
limitations in applicability and accessibility. These constraints include 
difficulty extrapolating beyond the training set28 and an absence of user-
friendly tools26. Further, established approaches that are not restricted 

to a specific enzyme family underperform28, probably because of the 
large differences in substrate selectivity observed across various pro-
tein families29. The generation of models that rely on pre-existing data-
sets30, which are largely taken from the biosynthetic and metabolism 
literature, create limitations, as the array of enzymes and substrates 
have not been experimentally validated against each other, leading to 
a risk of false negatives, poor annotations and inaccurate proposed 
biocatalytic reactions that can lead to false positives17.

Towards characterizing the chemistry possible across an enzyme 
family and derisking the incorporation of biocatalytic steps into syn-
thetic routes, we visualized a two-pronged approach involving high-
throughput experimentation and machine learning. We anticipated 
that this would require conducting reactions that profile substrates 
sampled across chemical space with enzymes that represent the 
sequence diversity encompassed by a protein family (Fig. 1c). Once a 
sufficient dataset was obtained, then machine learning models could 
be built to navigate between these two landscapes and enable the dis-
covery of biocatalytic reactions in a substrate-oriented or enzyme-
oriented fashion. Here we detail the first, to our knowledge, example 
of this approach focused on C–H functionalization reactions mediated 
by α-KG non-haem iron(ii)-dependent (NHI) enzymes. Ultimately, this 
experimental effort led to the discovery of more than 200 biocatalytic 
reactions and provided the data necessary to build a web-based toolkit 
to suggest compatible substrates and enzymes for an oxidative bio-
catalytic transformation.
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Fig. 1 | Present state of the art in biocatalytic reaction discovery.  
a, Established methods for new biocatalytic reaction discovery. Known 
connections between chemical and protein sequence space can be exploited 
for new reaction discovery through local exploration. The known reaction 
between epichlorohydrin and epoxide hydrolase (EH) was used to enable the 
reaction on the epoxide analogue towards the synthesis of GSK2330672 
(ref. 10). Alternatively, local protein sequence space was explored through 
protein engineering to improve the transformation of the known substrate 
(Ar = p-biphenyl) with wild-type (wt) amino transaminase (ATA), resulting in 
ATA-r11 after 11 rounds of directed evolution (positions of mutations shown  
in purple)13. b, Limitations of present methods. Expansion of characterized 

biocatalytic reactivity is limited to local exploration of chemical and sequence 
space, inhibiting larger, non-intuitive leaps between the landscapes.  
There remains a vast unexplored region of substrates and enzymes with 
unknown biocatalytic reactivity, creating a higher risk for their incorporation 
as key steps in chemical synthesis. There is at present no method to predict 
compatible enzymes or substrates in the NHI enzyme superfamily.  
c, Our approach to streamline biocatalytic reaction discovery. We examined 
diverse substrates and protein sequences for new biocatalytic reactions and 
use these data to build machine learning models to predict compatible enzymes 
and substrates.
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In considering which protein family and reaction class to use as a 

test case, we sought an enzyme class that has proved to be useful on 
the preparative scale31 and performs valuable reactions while argu-
ably still underdeveloped in synthetic chemistry32. On the basis of 
this, we chose to focus on a subclass of NHI enzymes that use α-KG as 
a co-substrate. From a reactivity standpoint, this class of enzymes is 
appealing on the basis of their ability to access a range of chemistries 
from a conserved radical intermediate to afford C–H functionalization 
products and desaturation products and mediate skeletal rearrange-
ments33,34 (Fig. 2a). Also, α-KG-dependent NHI enzymes have practical 
advantages over other types of enzymes that can mediate the cleavage 
of strong C–H bonds or perform oxidative transformations on several 
bonds. For example, other subclasses of NHI and cytochrome P450 
enzymes are fuelled by electrons that are often supplied by a partner 
reductase35, whereas α-KG-dependent NHI enzymes rely on the oxida-
tion of the small-molecule co-substrate α-KG to drive the formation of 
the active oxidant species36 (Fig. 2a). This difference provides a more 
uniform set of conditions for α-KG-dependent NHI reactions, which 
have proved to be scalable37.

To design a library of α-KG-dependent NHI enzymes that represent 
the sequence diversity of this protein family, we gathered all sequences 
annotated to have the facial triad of iron-coordinating residues that 
is conserved for hydroxylases38 (Fig. 2b). Using the Enzyme Function 
Initiative–Enzyme Similarity Tool (EFI-EST), 265,632 unique sequences 
were associated with this class39. To reduce the number of sequences 
to a manageable amount, redundant orthologues (>90% similarity) 
and clusters containing enzymes associated with primary metabolism 
were removed, giving a resultant sequence similarity network (SSN) 
consisting of 27,005 sequences (Fig. 2b). Work by Lewis and colleagues 
demonstrated that SSN representations can reveal trends in sequence–
substrate relationships within the flavin-dependent halogenase family40 
and subsequent studies have shown this correlation in further enzyme 
classes41–45. Therefore, we sampled several clusters as a strategy to 
achieve a protein library with a broad substrate scope. In total, 102 
sequences were selected from the most populated cluster, 125 unchar-
acterized sequences from poorly annotated clusters and 87 further 
sequences of enzymes with known or proposed function were selected 
to arrive at a 314 enzyme library (aKGLib1; Supplementary Fig. 1).

Of the enzymes selected, 94 (30%) have a known or suggested native 
reaction including hydroxylation, desaturation, halogenation, epoxi-
dation, endoperoxidation, demethylation, C–C bond formation and 
skeletal rearrangements (Fig. 2c and Supplementary Figs. 2 and 3). In 
an attempt to extrapolate beyond known activity, we used the enzyme 
commission machine learning model CLEAN (Contrastive Learning 
enabled Enzyme ANnotation)15. CLEAN assigned enzymes in aKGLib1 
as oxidoreductases, transferases, hydrolases, lyases and isomerases, 
of which 80% were annotated with low confidence (Supplementary 
Table 1 and Supplementary Figs. 4 and 5). As anticipated, trends in 
substrate class are evident from the SSN generated at a more stringent 
alignment score threshold (Fig. 2c). For example, at alignment score 75, 
enzymes characterized to be compatible with an indolizidine scaffold 
are found within a cluster. All selected sequences showed an average 
sequence percent identity of 13.7%, indicating high library sequence 
diversity (Fig. 2c). DNA for the library was synthesized and cloned 
into a pET-28b(+) expression vector. E. coli cells were transformed 
with plasmids encoding for each library member and overexpression 
was carried out in 96-well-plate format. Sodium dodecyl sulfate– 
polyacrylamide gel electrophoresis (SDS-PAGE) analysis of crude cell 
lysate showed clear protein bands at the expected molecular weight 
for 78% of enzymes (Supplementary Figs. 6–29).

High-throughput biocatalytic reaction discovery
With aKGLib1 in hand, we next investigated the reactivity of each enzyme 
in a high-throughput fashion. To profile the reactivity of each enzyme 

with a range of substrates, reactions were performed on the 50-μl scale 
in 96-well plates and were analyzed by liquid chromatography-mass 
spectrometry (LC-MS). Each reaction was investigated for masses cor-
responding to hydroxylation, chlorination, desaturation and rear-
rangement products (Fig. 3a). Notably, each reaction was conducted 
in triplicate and compared with two negative controls: (1) cell pellet 
containing no overproduced NHI enzyme and (2) a no-substrate control.

More than a hundred compounds were assessed as substrates for 
each enzyme in aKGLib1, including a range of scaffolds from commer-
cially available amino acids to drugs and other complex molecules 
(Supplementary Table 5). Of the 111 substrates evaluated in reactions 
with the entire enzyme library, 35 compounds were transformed by at 
least one enzyme in aKGLib1, a 32% success rate (Fig. 3a). Furthermore, 
119 of 314 enzymes showed biocatalytic activity on at least one substrate 
tested, including 74 with no previously reported activity (Supplemen-
tary Table 4). Notably, numerous enzymes for which a protein band was 
not clearly seen by SDS-PAGE analysis showed biocatalytic activity. Most 
of the observed reactions were hydroxylation, although desaturation 
reactions constituted about 20% of the reactions discovered (Fig. 3a). 
In total, 215 new biocatalytic reactions were observed (Supplemen-
tary Table 3). The collection of discovered reactions encompassed 
substrates that varied substantially in structure, including natural 
products such as cannabidivarin (4), humulene (12) and harmaline (13), 
chemical building blocks such as cinnamic acid analogue (1) and usnic 
acid (3), common reagents such as 1,8-diazabicyclo[5.4.0]undec-7-ene 
(DBU, 10) and pharmaceutical agents (for example, glyburide (5)). To 
define the relationship between compounds, each substrate was quanti-
fied with MORFEUS descriptors46 to generate 21 parameters including 
measurements of sterics (for example, volume, solvent-accessible 
surface area), electronics (for example, HOMO and LUMO energies, 
electrophilicity) and intermolecular interactions (for example, disper-
sion descriptors, charge) (Supplementary Table 7). With these features 
quantified, we carried out a principal component analysis to represent 
the compounds in chemical space (Fig. 3b). Notably, substrates trans-
formed by enzymes in aKGLib1 are well dispersed in chemical space. 
Ultimately, our experimental effort produced hundreds of new con-
nections between chemical space and protein sequence space. Thus, 
the development of models that would allow for navigation between 
these landscapes was now within reach.

Translation from reaction data to machine learning 
models
With the goal of creating robust compatibility predictive models, we 
sought to maximize the number of biocatalytic reactions available 
for model training. Therefore, the 215 reactions discovered were com-
bined with previously reported biocatalytic reactions associated with 
enzymes in aKGLib1 (Supplementary Information Section 12). Of the 
literature reactions, eight had been observed experimentally during 
our reaction discovery efforts and the extra 139 reactions were added 
to the dataset to create BioCatSet1 (Supplementary Table 3). To convert 
these substrate–enzyme pairs to inputs for machine learning mod-
els, reaction partners were divided into their individual components, 
comprising 119 substrates and 163 enzymes (Fig. 4a). Each substrate 
was converted to a SMILES string using the main protonation state at 
pH 7.5 (ref. 47), featurized using MORFEUS46 and mapped to chemical 
space. To quantify the relationship between enzymes, the alignment 
scores were extracted from the SSN and converted to a normalized 
value (AS%) to capture the relationships as a quantitative matrix input.

With these metrics defined, we took steps towards building pre-
dictive models for navigating between chemical and sequence 
space. In a synthetic-chemistry-based endeavour, we constructed a 
substrate-to-enzyme recommendation system to enable the identifi-
cation of new biocatalytic reactions with a given substrate. To achieve 
this, each substrate was mapped to chemical space and ten of its nearest 
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neighbours within the BioCatSet1 database were identified (Fig. 4b). The 
compatible enzymes for each neighbouring substrate were retrieved 
and the ten most similar enzymes within aKGLib1 were used to populate 
an output for the ranking model. The entirety of the output enzyme 

list, or subsets identified in decreasing order (k), were used to measure 
the precision@k, recall@k, enrichment@k and normalized discounted 
cumulative gain (nDCG)@k (Fig. 4b). precision@k measures the frac-
tion of entries within the list that are known to be compatible with the 
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Fig. 2 | Rationale and curation of a diverse α-KG NHI enzyme library, aKGLib1. 
a, Abbreviated catalytic cycle and enzymatic transformations with α-KG-
dependent C–H functionalization in natural product biosynthesis. In the active 
site of α-KG-dependent enzymes, iron is complexed by two histidine residues 
and either a carboxylate-containing residue (R = Asp/Glu) or an environmentally 
sourced halide (R = Ala/Gly). On α-KG binding and oxidation by atmospheric 
oxygen, the active iron(iv)-oxo species can initiate hydrogen atom abstraction 
from the substrate to yield the iron(iii)-hydroxy species and a radical 
intermediate. This intermediate can undergo structural rearrangements 
before being terminated by rebound hydroxylation, carbocation formation  
or halogenation (functionalization by α-KG NHI enzymes in natural product 
biosynthesis shown in green) and generate succinate as a by-product.  
b, Workflow to curate a bioinformatics-guided α-KG-dependent NHI enzyme 
library (aKGLib1). The enzyme library was selected by collecting characterized 
of-interest enzyme sequences, which led to the inclusion of protein families 
IPR008775, IPR005123, IPR027443, IPR026992 and IPR044861. These families 

were used as a seed for the generation of a SSN (e-value = 5, UniRef90),  
which, after filtering, resulted in the network shown containing 27,005  
protein sequences (alignment score = 50, organic full layout). 314 enzymes 
(purple) representing 1.16% of the total sequences (grey) were selected across 
160 clusters, to generate a diverse enzyme library. c, Trends in substrates 
within clusters of a SSN and efficacy of aKGLib1. The sequences in the SSN  
at alignment score = 75 contain 94 enzymes that have previously been 
characterized (purple diamonds) and 220 sequences that are previously 
uncharacterized (lavender circles, 70% of total library). In clusters containing 
several characterized proteins, the known compatible common scaffold  
is highlighted. On performing a multisequence percent identity matrix, it  
was found that sequences only contained 13.7% shared identity, on average.  
On transformation and overexpression in E. coli, the presence of protein was 
investigated through gel electrophoresis, in which 78% of aKGLib1 showed 
soluble protein overexpressed at the expected molecular weight.
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input and recall@k describes the fraction of entries compatible with 
the input that were populated within the prediction list. enrichment@k 
compares the precision with what would be achieved by randomly 
sampling BioCatSet1. nDCG@k reflects a weighted version of precision, 
for which entries ranked higher have a greater contribution to the total 
score. Ideally, at a low value of k, these metrics are high, signifying the 
curation of a streamlined rank list.

We anticipated that this dataset and approach could also be used to 
navigate from a given protein sequence to an area of chemical space to 
answer the question of which substrate a given enzyme might trans-
form. Thus, we designed a complementary enzyme-to-substrate 
model. In this approach, each enzyme is compared with the members 
of aKGLib1 to identify its most similar sequences. The compatible 

substrates for each similar enzyme are retrieved and their nearest 
neighbours in chemical space are identified to generate a substrate 
rank list. In a similar fashion, precision@k, recall@k, enrichment@k 
and nDCG@k are calculated for the generated substrate prediction list.

After generating the BioCatSet1 dataset, designing the machine 
learning pipeline and establishing evaluation metrics, we trained an effi-
cient model to navigate across substrate chemical and protein sequence 
space. A key step in this process was determining the most appropriate 
data-splitting strategy. For a rank-list-based task, the possible division of 
train–test data include substrate-oriented, enzyme-oriented or a simul-
taneous substrate/enzyme split (Fig. 4c). For the substrate-to-enzyme 
model, we implemented a 50/50 training/test split based on the sub-
strate data and likewise performed a 50/50 training/test split based 
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biocatalytic reactions discovered. a, Biocatalytic reactions were investigated 
in 96-well plates, in which substrate (1 mM in DMSO) was added to a reaction 
mixture containing α-KG-dependent NHI enzymes in whole-cell pellet format 
(40% vol/vol of roughly 200 mg ml−1 50 mM TES pH 7.5 suspensions), α-KG 
(2 mM in H2O), sodium ascorbate (NaAsc, 1 mM in H2O) and iron(ii) sulfate 
heptahydrate (FeSO4, 0.1 mM in H2O) and then treated with toluene (10% vol/
vol) to a final volume of 50 µl. Reactions were incubated at 30 °C while shaking 
at 300 rpm (15-mm orbital radius) for 4 h. Reactions were quenched, pooled 
and filtered to yield an analytical sample containing one enzyme with five 
substrates (0.100 µM) and all generated reaction products. Reactions were 
monitored by LC-MS using a 3-min reverse-phase method to identify unreacted 
substrate, hydroxylation, desaturation, rearrangement and chlorination 
products by mass (functionalization shown in green). Using this high-throughput 
reaction platform, 111 unique substrates were scrutinized against 314 NHI 

enzymes in triplicate. 32% of substrates underwent biocatalytic transformations 
and 38% of the enzymes showed activity with at least one substrate. This reaction 
platform generated 215 new compatible enzyme and substrate pairs. 
Discovered reactions are represented as a sunburst diagram, including 
hydroxylation (dark green, 64%), desaturation (light green, 18%) and mixed 
reaction outcomes (medium green, 14% hydroxylation/desaturation 
combination, 4% rearrangement). b, All substrates mapped in chemical space. 
Substrates with activity (dark blue, n = 35), substrates without any observed 
activity (light blue, n = 76) and further substrates (grey, n = 335) are represented 
in chemical space. This was generated by using the charge/protonation states 
of substrates at pH 7.5, calculating their MORFEUS descriptors, performing a 
principal component analysis and representing the substrates as values of PC1 
and PC2. Part of the substrates with identified activity are shown in respect to 
their position in chemical space.
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on the enzyme data for the enzyme-to-substrate model. This unusual 
equal split between training and test sets was made to avoid potential 
biases caused by uneven dataset sizes.

As a baseline model, we built a simple substrate-to-enzyme predic-
tion ranking formula that weighed the distance in chemical space over 
two dimensions and the distance in protein sequence space linearly. 
This model was able to enrich the predictions ranked in the top ten 
positions with enzymes compatible with each substrate >4-fold better 

than would be observed by randomly sampling aKGLib1 (Supplemen-
tary Table 8). To further minimize the experimental burden associated 
with enzyme screening, a model that rewards populating the enzyme 
prediction list with compatible enzymes at a low k was needed. After 
optimization, we found that distance over five dimensions of chemi-
cal space provided a more robust calculation for chemical similar-
ity. To further improve performance, we trained a gradient-boosted 
decision tree ensemble model (GBM)48 with YetiRank loss function49. 
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Fig. 4 | Machine learning approach, model building and output. a, The 215 
newly discovered reactions were combined with all reported reactions  
(147 total, 139 not experimentally validated) for enzyme sequences in aKGLib1. 
119 substrates, from discovered and literature reactions, were parameterized 
with MORFEUS before undergoing principal component analysis of the 21 
features. Enzyme sequences were used to generate a SSN at alignment 
score = 5. Alignment scores were normalized as a fraction of the maximum 
percent identity to generate the alignment score percent (AS %). b, A machine 
learning model was designed to map a substrate (dark blue) or enzyme (dark 
purple) of interest, identify its nearest neighbours (light blue or light purple, 
respectively), identify their compatible enzyme sequences (dark purple) and 
substrates (dark blue) and populate a rank list with their nearest neighbours 
(light purple or light blue, respectively). Metrics to evaluate the rank lists are 
shown and optimization to populate the rank list with compatible enzymes and 

substrates at low k is represented. c, Division of train–test split in a substrate-
to-enzyme (top) and enzyme-to-substrate (bottom) rank list task. For the 
substrate-oriented model, a substrate split was chosen to allow for the 
introduction of new substrates, without the high data cost of a dual split, and 
likewise in the enzyme-oriented model, an enzyme split was chosen. Training of 
a substrate-oriented gradient-boosted model identifies the optimal number of 
trees (50) and tree depth (2) and in the enzyme-oriented model, the optimal 
number of trees (100) and tree depth (6) were found. Machine learning models 
with the parameter optimization incorporated were evaluated against the 
baseline models to calculate precision, recall, nDCG and enrichment at various 
degrees of k. The GBM model is represented as a solid line and the baseline 
linear model is indicated by a dashed line. Precision and nDCG are shown in 
dark green and recall and enrichment are shown in light green.
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This model offers an advantage with arbitrarily complex relationships 
and is relatively robust to overfitting when using proper hyperparam-
eters50. The number of trees and their depth were optimized using a 
grid search procedure50, yielding a model of 50 trees with a depth of 2  
(Fig. 4c).

The performance of the substrate-to-enzyme GBM was compared 
with the baseline linear model. The GBM has a higher nDCG than the 
baseline model at all values of k. Furthermore, the top ten predicted 
enzymes are >7-fold more likely to be compatible with the input sub-
strate than through random sampling of aKGLib1. At low values of k 
(k < 20), the GBM outperforms the baseline model in precision, indicat-
ing that the GBM is most well suited for the curation of a focused enzyme 
prediction list (Supplementary Table 8). Given this performance, we 
used a GBM to build the final workflow. Analysis of feature importance 
revealed that PC3, which mostly comprises two dipole moments and 
nucleofugality, has the greatest weight on the model, followed by PC1 
(most heavily comprising dispersion descriptors, solvent-accessible 
surface area and volume) and the alignment score percent (Supple-
mentary Figs. 30 and 31).

Following this model development, we trained an enzyme-to- 
substrate prediction rank model. The baseline model was construc
ted using the distance in five dimensions of chemical space and nearest-
neighbours calculations were extended to include the training set of 
sequence space and entirety of chemical space in the algorithm. The 
hyperparameters of a GBM approach were optimized on the basis of 
nDCG at k = 10, yielding a model of 100 trees with a depth of 6. With 
these optimizations, the precision, recall, nDCG and enrichment were 
each measured at various rankings of k. Although minimal differences 
in these metrics were observed between the baseline and GBM models, 
these results highlight the generality of the GBM approach, even in 
challenging scenarios (Supplementary Tables 12 and 13).

CATNIP: a web app for prediction of biocatalytic 
reactions
With two machine learning models constructed, we created an interface 
to allow others to access predictions between α-KG NHI enzymes and 
small-molecule substrates. We created CATNIP (https://catnip.cheme.
cmu.edu/), a web platform that allows scientists to interact directly 
with the substrate-to-enzyme and enzyme-to-substrate models. In 
the substrate-oriented model, users can input a chemical structure 
and receive a ranked list of aKGLib1 enzymes (and the corresponding 
sequences) potentially capable of transforming the targeted substrate 
(Supplementary Information Tutorial 1). Furthermore, users can gain 
insight into potential small-molecule substrates for NHI enzymes, using 
the enzyme-to-substrate model (Supplementary Information Tutorial 
2). In this model, users can submit a protein sequence and receive a 
ranked list of small molecules beyond the scope of the training and 
test set that may be compatible. With the information provided by 
CATNIP, the user can execute a highly focused set of experiments to 
identify new biocatalytic reactivity. This strategy effectively derisks 
the implementation of biocatalysis in target-oriented synthesis by 
making use of machine learning.

The CATNIP substrate-to-enzyme workflow was tested with a selec-
tion of substrates, starting with the commercially available plant alka-
loid sparteine (16, train set; Fig. 5a). Sparteine (16) was mapped to 
chemical space and CATNIP determined the ten nearest substrates 
within BioCatSet1, which includes highly decorated nitrogen heterocy-
cles, specifically a piperidine, a bicyclic amidine, five indolizidines and 
three tetracyclic diamines. These neighbour substrates fed the machine 
learning model to generate a ranked list of enzymes, which contained 
four characterized enzyme sequences and six previously uncharacter-
ized sequences, which were tested in reactions with sparteine (16). 
Seven of the ten reactions conducted resulted in a hydroxylation prod-
uct as observed by LC-MS (Supplementary Fig. 33). The enzyme that 

produced the greatest amount of product on the analytical scale was 
used for a 50-mg-scale reaction from which hydroxylated product 17 
was isolated in 35% isolated yield.

Similar success was achieved for more substrates tested in CATNIP. 
For example, matridine (18, train set), a synthetic precursor towards 
matrine natural products provided by Kerkovius et al.51, was hydroxy-
lated by seven of the top ten enzymes predicted. From a 50-mg-scale 
reaction, (12S)-hydroxymatridine (19) was isolated in 50% yield (Sup-
plementary Fig. 34). Also, seven of the top ten enzymes predicted to 
transform 6-methyleneandrost-4-ene-3,17-dione (20, test set) led to 
productive reactions. On the preparative scale, 20 was converted in a 
12% yield to the oxidative alkene cleavage product 21 (Supplementary 
Fig. 35). To the best of our knowledge, this is the first example of an 
α-KG NHI enzyme performing oxidative alkene cleavage of this type.  
Moreover, since the time that our machine learning models and predic-
tive workflow were built, new reactions have been reported with this class 
of enzymes, providing extra test cases for CATNIP. For example, small 
molecules that Renata and colleagues experimentally determined as 
compatible substrates of enzymes within this library were in agreement 
with CATNIP substrate-to-enzyme outputs52 (Supplementary Fig. 36).

The enzyme-to-substrate model was tested in a similar fashion 
(Fig. 5b). Using NHI123 from Schizosaccharomyces pombe (test set) 
as an input sequence, Clustal Omega was used to identify the ten 
most similar enzymes within aKGLib1. The substrates associated with 
these enzymes were retrieved, providing insight into the potential 
regions of chemical space compatible with these sequences. The ten 
best-ranked substrates, largely made up of monocyclic and bicyclic 
oxygen-containing molecules, were tested as substrates in reactions 
with NHI123. Four of these substrates were oxidized by NHI123. The top 
ranked prediction, substrate 22, was transformed by NHI123 to a single 
product in 7% conversion (Supplementary Fig. 37). Similarly, the top 
ranked substrate for NHI177 from Photorhabdus thracensis (test set), 
humulene (12), was transformed by NHI177 to deliver a single oxidized 
product in 41% conversion (Supplementary Fig. 38). To test the accu-
racy of this model beyond enzymes within BioCatSet1, we submitted 
TqaL from Streptomyces violaceusniger (external validation) to CATNIP 
to identify the region of chemical space proposed to be compatible 
with the input enzyme sequence. The top 12 ranked substrates were 
subjected to analytical-scale reactions with TqaL, of which four were 
oxidized, including the second ranked substrate (23), providing an 
oxidized product in 42% conversion (Supplementary Fig. 39). Although 
this enzyme has no characterized activity, it is a homologue of a char-
acterized enzyme that operates on similar amino acid substrates53, 
reinforcing the performance of the model.

Conclusion
Overall, the development of this toolkit advances our ability to navi-
gate between chemical and protein sequence space. Specifically, the 
curation of aKGLib1, a diverse NHI enzyme library comprising >300 
wild-type proteins with low sequence identity and profiling of the 
biocatalytic activity of these enzymes against >100 small-molecule 
substrates led to the discovery of 215 new reactions. This dataset was 
combined with literature-reported reactions to make BioCatSet1, 
which was used to train two GBMs, generating substrate-to-enzyme 
and enzyme-to-substrate rank lists as outputs. With these models, we 
created CATNIP, an open-access web interface that enables stream-
lined biocatalytic reaction discovery. The power of these tools was 
demonstrated through expedited biocatalytic reaction discovery on 
substrates and enzymes outside the dataset. These reactions represent 
new connections between chemical and protein sequence space, creat-
ing opportunities for further exploration of the landscapes through 
substrate and protein engineering. We anticipate that this approach 
can be broadly applied to further enzyme families and reaction classes, 
offering a method to navigate between chemical and protein sequence 

https://catnip.cheme.cmu.edu/
https://catnip.cheme.cmu.edu/
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Fig. 5 | Use of the machine learning model for CATNIP. a, Demonstration  
of substrate-to-enzyme CATNIP with sparteine (16), matridine (18) and 
6-methyleneandrost-4-ene-3,17-dione (20). In the chemical space map, the 
substrate of interest (open black circle), the nearest substrates over five 
dimensions (dark blue circle), unchosen substrates in BioCatSet1 (light blue 
circle) and substrates without known biocatalytic activity (grey circle) are 
shown. The sequence space shows all enzymes in the cluster (SSN at alignment 
score = 75) with predicted compatible enzymes (k = 10), with rank shown in 
decreasing shades of purple. Enzymes not predicted in the top ten sequences 
are represented as grey nodes. The top ten predicted enzyme sequences were 
prepared in whole-cell E. coli and examined for relative product formation in 
triplicate. The x-axis contains the enzyme prediction rank, for which X = no 
enzyme control. The y-axis shows the average relative extracted ion count (n = 3). 
Several products are represented with various shades of green. The enzyme 
generating the most product was then produced (1 -l cultures in Terrific Broth) 
and used in 50-mg-scale biocatalytic reactions as clarified cell lysate. Oxidation 

products were isolated and characterized for the three substrates of interest, 
providing (4S)-hydroxysparteine (17), (12S)-hydroxymatridine (19) and androst-
4-ene-3,6,17-trione (21) in 35%, 50% and 12% isolated yields, respectively.  
b, Demonstration of the enzyme-to-substrate CATNIP model with NHI123, 
NHI177 and TqaL. Each enzyme was mapped to sequence space, which shows  
all enzymes in the cluster (SSN at alignment score = 75), with the ten most similar 
enzymes shown in decreasing shades of purple. Enzymes not predicted in the 
top ten sequences are represented as grey nodes. The predicted compatible 
substrates are identified (dark blue) and mapped to chemical space among all 
substrates in BioCatSet1 (light blue) and substrates outside the dataset (grey). 
The best-ranked substrates were tested with the enzyme of interest in triplicate 
and the relative product conversion was measured. The x-axis shows the rank of 
the small molecule substrate in decreasing order. The y-axis shows the average 
normalized relative conversion, as compared with the empty vector control of 
each sample (n = 3). The structure for the best-ranked substrate for each enzyme 
is shown as 22, 12 and 23, respectively.
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space. Furthermore, this innovation effectively derisks the application 
of biocatalysts in organic synthesis.
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