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Achieving superpolynomial speed-ups for optimization has long been a central goal
for quantum algorithms'. Here we introduce decoded quantum interferometry (DQI),
aquantum algorithm that uses the quantum Fourier transform to reduce optimization
problems to decoding problems. When approximating optimal polynomial fits over
finite fields, DQIl achieves a superpolynomial speed-up over known classical algorithms.
The speed-up arises because the algebraic structure of the problemis reflected inthe

decoding problem, which can be solved efficiently. We then investigate whether this
approach can achieve aspeed-up for optimization problems that lack an algebraic
structure but have sparse clauses. These problems reduce to decoding low-density
parity-check codes, for which powerful decoders are known?>. To test this, we
construct amax-XORSAT instance for which DQI finds an approximate optimum
substantially faster than general-purpose classical heuristics, such as simulated
annealing. Although a tailored classical solver can outperform DQI on this instance,
our results establish that combining quantum Fourier transforms with powerful
decoding primitives provides a promising new path towards quantum speed-ups for
hard optimization problems.

NP-hardness results indicate that finding exact optima and even suf-
ficiently good approximate optima for worst-case instances of many
optimization problems is probably out of reach for polynomial-time
algorithms both classical and quantum®. Nevertheless, there remain
combinatorial optimization problems, such as the closest vector prob-
lem, for which there is a large gap between the best approximation
achieved by a polynomial-time classical algorithm® and the strongest
complexity-theoretic inapproximability result®. When considering
average-case complexity, such gaps become more prevalent, as few
average-case inapproximability results are known. These gaps present
apotential opportunity for quantum computers, namely achievingin
polynomial time an approximation that requires superpolynomial time
to achieve using known classical algorithms.

Quantum algorithms for combinatorial optimization have been the
subject of intense research over the last three decades” 2, which has
uncovered some evidence of a possible superpolynomial quantum
speed-up for certain optimization problems™2°. Nevertheless, the
problem of finding a superpolynomial quantum advantage for opti-
mization is extremely challenging and remains largely open.

Here we propose a quantum algorithm for optimization that uses
interference patterns as its main underlying principle. We call this
algorithm decoded quantum interferometry (DQI). DQl uses a quan-
tum Fourier transform to arrange that amplitudes interfere con-
structively on symbol strings for which the objective value is large,
thereby enhancing the probability of obtaining good solutions upon
measurement. Most previous approaches to quantum optimization

have been Hamiltonian-based’®, with a notable exception being the
superpolynomial speed-up due to Chen, Liu and Zhandry' for finding
shortlattice vectors, which uses Fourier transforms and canbe seen as
an ancestor of DQI. Whereas Hamiltonian-based quantum optimiza-
tion methods are often regarded as exploiting the local structure of
the optimization landscape (for example, tunnelling across barriers?),
our approach instead exploits the sparsity that is routinely present
inthe Fourier spectrum of the objective functions for combinatorial
optimization problems, and it can also exploit more elaborate struc-
turein the spectrumif present.

Before presenting evidence that DQI can efficiently obtain approx-
imate optima not achievable by known polynomial-time classical
algorithms, we quickly illustrate the essence of the DQI algorithm by
applying it to max-XORSAT. We use max-XORSAT as our first example
because, although it is not the problem on which DQI has achieved its
greatest success, it is the context in which DQI is simplest to explain.

Given an m x n matrix Bwith m > n, the max-XORSAT problem is to
find an n-bit string x satisfying as many as possible of the mlinear mod-2
equations Bx = v. As we are working modulo 2, we regard all entries of
the matrix B and the vectors x and v as coming from the finite field I,.
The max-XORSAT problem canbe rephrased as maximizing the objec-
tive function
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where b; is the ith row of Band v;is the ith entry of v. Thus, f(x) is the
number of the mlinear equations that are satisfied minus the number
unsatisfied.

From equation (1), one can see that the Hadamard transform
of fisextremely sparse: it has mnon-zero amplitudes, which are on the
stringsb,, ..., b,,. The state ermgf(x) [X)is, thus, easy to prepare. Sim-
ply prepare the superposition Y%, (-1)*|b;) and apply the quantum
Hadamard transform. (Here, for simplicity, we have omitted normali-
zation factors). Measuring the state erwf(x)lx) in the computa-
tional basis yields a biased sample, where a string x is obtained with
probability proportional to f(x)? whichslightly enhances the likelihood
of obtaining strings with a large objective value relative to uniform
random sampling.

To obtain stronger enhancement, DQI prepares states of the form

PN =2 PEG)IX), @)
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where Pis anappropriately normalized degree-f polynomial. The Had-
amard transform of such a state always takes the form
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for some coefficients w,, ..., w,. Here |y| denotes the Hamming weight
ofthebit stringy. The DQl algorithm prepares |P(f)) in five steps. The
first step is to prepare the superposition Ei:o wilDy, 1), where

% > ly
%)

yEFY (4)
lyl=k

isthe Dicke state of weight k. Preparing such superpositions over Dicke
states can be done with O(m?) quantum gates using the techniques in
refs.22,23.Second, the phase (-1)*¥isimposed by applying the product
7' ® ... ® Zlm where Z,,is the Pauli-Z operator acting on the mth qubit.
Third, the quantity By is computed into an ancilla register using a
reversible circuit for matrix multiplication. This yields the state

;
k=0 (m)
|k

The fourth step is to use the value B'y to infer y, which can then
be subtracted from|y), thereby bringing it back to the all zeros state,
which canbe discarded. (This is known as ‘uncomputation?). The fifth
and final step is to apply a Hadamard transform to the remaining
register, yielding |P(f)). This sequence of stepsisillustrated in Fig. 1.

The fourth step, in which |y) isuncomputed, is not straightforward
because Bis a non-square matrix and, thus, inferringy from By is an
underdetermined linear algebra problem. However, we also know that
ly| < £.The problemof solving this underdetermined linear system with
a Hamming weight constraint is precisely the syndrome decoding
problem for the classical error-correcting code Ct={d € F7: B'd = 0}
with up to £ errors.

In general, syndrome decoding is an NP-hard problem”. However,
when Bis very sparse or has certain kinds of algebraic structure, the
decoding problem can be solved by polynomial-time classical algo-
rithms even when £is large (for example, linear in m). By solving this
decoding problem using areversibleimplementation of such a classi-
cal decoder, one uncomputes|y) in the first register. If the decoding
algorithmrequires Tquantumgates, then the number of gates required
to prepare |P(f)) is O(T + m?).

Approximate solutions to the optimization problem are obtained
by measuring|P(f))inthe computational basis. The higher the degree
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Fig.1|Schematicillustration of DQI. As theinitial Dicke state is of weight ¢,
the final polynomial Pis of degree £. Here, for simplicity, we take w,=1and
w,=0forall k # £.Recycling icon adapted from FreeSVG (https://freesvg.org)
under aCC01.0 Universal Public Domainlicence.

of the polynomial in |P(f)), the greater one can bias the measured bit
strings towards solutions with a large objective value. However, this
requires solving a harder decoding problem, as the maximum number
of errorsisequal to the degree of P. Next, we summarize how, by making
anoptimal choice of Pand ajudicious choice of decoder, DQIcanbea
powerful optimizer for some classes of problems.

Although DQI can be applied more broadly, the most general opti-
mization problem that we apply DQI to in this paper is max-LINSAT,
which we define as follows.

Definition1. Let[F, beafinitefieldandlet B € F " Foreachi=1,...,m,
letF,c F, be an arbitrary subset of Fp, whichyields a corresponding
constraint }j_; Byx; € F;. The max-LINSAT problemis to find x € ),
satisfying as many as possible of these m constraints.

We focus primarily on the case that p has at most polynomially
large magnitude and the subsets F,, ..., F,, are given as explicit lists.
The max-XORSAT problem is the special case where p=2and |F;| =1
foralli.

Consider a max-LINSAT instance where the sets F,, ..., F,,each have
sizer. Let (s) be the expected number of constraints satisfied by the
symbolstring sampled in the final measurement of the DQIl algorithm.
Suppose we have a polynomial-time algorithm that can correct up to
2 bit flip errors on codewords from the code C+={d € ]FZZ :B"d=0}.
Then, in polynomial time, DQI achieves the following approximate
optimum to the max-LINSAT problem:
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Fig.2|Illustration of OPI problem. A stylized example of the OPI problem. For
Y, €F, theorange setabove the pointy, represents Fyp Both polynomials Q,(y)
and Q,(y) represent solutions that have alarge objective value, as they each
intersectallbutonesetF,.

ifr/p <1-¢/mand(s)/m=1otherwise.See Supplementary Theorem1.1
for the precise statement for perfect decoding and Supplementary
Theorem7.1for the analogous statementin the presence of decoding
errors. This is achieved by a specific optimal choice of the coefficients
w, ..., W, which can be classically precomputed in polynomial time,
as described in Supplementary Information section 6.

Note that r/pis the fraction of constraints that would be satisfied if
the variables were assigned uniformly at random. Whenr/p =1/2, equa-
tion (6) becomes the equation of a semicircle. Hence, we informally
refer to equation (6) as the ‘semicircle law’.

From equation (6), any result on decoding a class of linear codes
implies a corresponding result regarding the performance of DQI for
solving aclass of combinatorial optimization problems that are dual to
these codes. This enables two new lines of research in quantum optimi-
zation. Thefirstis to harvest the coding theory literature for rigorous
theoremsonthe performance of decoders for various codes and obtain
as corollaries guarantees on the approximation achieved by DQI for
the corresponding optimization problems. The second is to perform
computer experiments to determine the empirical performance of clas-
sical heuristic decoders, which, through equation (6), can be compared
against the empirical performance of classical heuristic optimizers.In
this manner, DQI can be benchmarked instance-by-instance against
classical heuristics, even for optimization problems far too large to
attempt on present-day quantum hardware. We next describe our
results so far from each of these two lines of research.

We first use rigorous decoding guarantees to analyse the perfor-
mance of DQI on the following problem.

Definition 2. Given integers n < p — 1 with p prime, an instance of the

optimal polynomial intersection (OPI) problem is as follows. Let

F,, ..., F,1besubsets of the finite field Fp- Find a polynomial Q € IE‘p[y]

of degree at most n — 1 that maximizes fo,(Q) = |{y €{l, ..., p —1}:

Q(y) € K}, thatis, that intersects as many of these subsets as possible.
Anillustration of this problem is given in Fig. 2.
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Fig.3 | Approximate optima for OPI. Plot of the expected fraction (s)/p of
satisfied constraints achieved by DQI with the Berlekamp-Massey decoder
and by Prange’s algorithm for the OPl problemin the balanced caser/p=1/2,
asafunctionof theratio of variables to constraints n/p. At n/p =1/10, Prange’s
algorithmsatisfies afraction 0.55 of the clauses whereas DQI satisfies
(s)/p=1/2+/19/20 = 0.7179. As a concrete challenge to the classical algorithms
community, we propose matching or exceeding this value in polynomial
time. Inour concrete resource estimation, we consider n/p =1/2, where OPI
achieves(s)/p=1/2+/3/4=0.9330 and Prange’s algorithm achieves 0.75. BM,
Berlekamp-Massey decoder.

InSupplementary Information section 2, we show that OPlis a special
case of max-LINSAT over F, with m =p —1constraints inwhich Bisa
Vandermonde matrix and, thus, C* isaReed-Solomon code. Syndrome
decoding for Reed-Solomon codes can be solved in polynomial time
outto halfthe distance of the code, for example, using the Berlekamp-
Massey algorithm?. Consequently, in DQIwe can take £ = | (n +1)/2].
For the regime where r/p and n/p are constants and p is taken asymp-
totically large, the fraction of satisfied constraints achieved by DQI
using the Berlekamp-Massey decoder can be obtained by substituting
¢/m=n/2pinto equation (6).

OPIl and special cases of it have been studied in several domains.
In the coding theory literature, OPl is studied under the name ‘list-
recovery’, and in the cryptography literature it is studied under the
name ‘noisy polynomial reconstruction/interpolation’”, OPI can also
be viewed as a generalization of the polynomial approximation prob-
lem, studiedinrefs.29-31, in which each set F;is a contiguous range of
values in [, In Supplementary Information section 8, we analyse the
algorithms from these works in the literature and find that, for the
parameter regime addressed by DQI, the best approximation achieved
in polynomial time classically is 1/2 + n/2p using Prange’s algorithm.
As shown inFig. 3, for r/p =1/2 and any fixed O < n/p <1, DQIl with the
Berlekamp-Massey decoder exceeds the satisfaction fraction achieved
by Prange’s algorithmin the limit of large p. Classically, the only meth-
ods we are aware of to exceed the satisfaction fraction achieved by
Prange’s algorithm are brute force search or slight refinements thereof,
which have exponential runtime. Thus, DQl achieves asuperpolynomial
speed-up for this problem, assuming no polynomial-time algorithm
is found that can match the satisfaction fraction that DQIl achieves.
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Atpresent, there are noresults directly showing that the OPI problem
inthe parameter regime that we consider is classically intractable under
any standard complexity-theoretic or cryptographic assumptions.
However, such results are known for certain limiting cases of the OPI
problem, and we propose the task of extending these results to regimes
more relevant to DQI for future research. The hardness of the special
case of OPIwhen Lfi'l (+1)|=1,ina certain parameter regime, has been
proposed as acryptographicassumptioninref. 32, whichhasnot been
brokento our knowledge. Finding exact optimafor OPIwith [fl.’l +1=1
canbe castas maximum-likelihood decoding for Reed-Solomon codes,
which is known to be NP-hard**?**. Finding sufficiently good approxi-
mate optimais known to be as hard as discrete log®?¢, but these hard-
ness results do not match the parameter regime addressed by DQI.

Asaconcrete example, forn = p/10 and r/p =1/2, the fraction of con-
straints satisfied by Prange’s algorithm is 0.55, whereas DQI achieves
1/2 ++/19/20 = 0.7179. As aspecific point of comparison, we challenge
the algorithms community to beat this with a classical polynomial-time
algorithm. Interestingly, for these parameters, one statistically expects
that solutions satisfying all p — 1 constraints exist, but they apparently
remain out of reach of polynomial-time algorithms both quantum and
classical.

To find classically intractable instances of OPI solvable by DQI with
minimal quantum resources, we find it is advantageous to choose
n/p=r/p=1/2.For these parameters, DQIl achieves satisfaction frac-
tion 0.933. As discussed in Supplementary Information section 13,
achieving this using classical algorithms known to us has a prohibitive
computational cost for passmallas 521. The dominant costin DQI plus
the Berlekamp-Massey decoder is the reversible implementation of
the subroutineto find the shortest linear-feedback shift register used
in the Berlekamp-Massey algorithm. Using Qualtran®, we find that at
p =521, the linear-feedback shift register can be found using approxi-
mately 1x 108 logical Toffoli gates and 9 x 10* logical qubits.

We next use computer experiments to benchmark the performance
of DQl against classical heuristics on average-case instances from cer-
tain families of max-XORSAT with sparse B. DQI reduces such problems
to decoding problems on codes with sparse parity-check matrices.
Such codes are known as low-density parity-check (LDPC) codes.
Polynomial-time classical algorithms, such as belief propagation, can
decode randomly sampled LDPC codes up to numbers of errors that
nearly saturate information-theoretic limits>***, This makes sparse
max-XORSAT an enticing target for DQI. Although we use max-XORSAT
asaconvenient test bed for DQI, other commonly studied optimization
problems, such as max-k-SAT, could be addressed similarly. Specifically,
consider any binary optimization problemin which the objective func-
tion counts the number of satisfied constraints, where each constraint
is a Boolean function of at most k variables. By taking the Hadamard
transform of the objective function, one converts suchaprobleminto
aninstance of weighted max-k-XORSAT, where the number of variables
isunchanged and the number of constraints has been increased by at
most a factor of 2,

Although we are able to analyse the asymptotic average-case perfor-
mance of DQI rigorously, we do not restrict the classical competition to
algorithms withrigorous performance guarantees. Instead, we choose
tosetahighbar by also attempting to beat the empirical performance
of classical heuristics that lack such guarantees.

Through careful tuning of sparsity patternsin B, we are able to find
some families of sparse max-XORSAT instances for which DQI with
standard belief-propagation decoding finds solutions satisfying a larger
fraction of constraints than we are able to find using a comparable
number of computational steps by any of the general-purpose clas-
sical optimization heuristics that we tried, which are listed in Table 1.
However, unlike our OPl example, we do not put this forth as a poten-
tial example of superpolynomial quantum advantage. Rather, we are
able to construct a tailored classical algorithm specialized to these
instances, which, with 7 min of runtime, finds solutions where the
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Table 1| Approximate optima for max-XORSAT

Algorithm Fraction satisfied
Tailored heuristic (7min x1core) 0.880

Long anneal (73hx5 cores) 0.832

DQI+BP >0.831

Prange’s algorithm 0.812

Short anneal (8sx1 core) 0.764

Greedy algorithm 0.666

AdvRand 0.554

Here we compare DQ)I, using a standard belief-propagation decoder, against classical
algorithms for a randomly generated max-XORSAT instance with irregular degree distribution
specified in Supplementary Information section 9. We consider an example instance with
31,216 variables and 50,000 constraints. The classical algorithms above are defined in
Supplementary Information section 8. For simulated annealing, the satisfaction fraction grows
with the runtime, so we report two numbers. The first is the optimum reachable by limiting
simulated annealing to the same runtime used by belief propagation to solve the problem

to which the max-XORSAT instance is reduced by DQI (8sx1 core), and the second is for the
shortest anneal that matched the satisfaction fraction achieved by DQI+BP (73hx5 cores).

fraction of constraints satisfied slightly beats DQI plus belief propa-
gation (DQI + BP). As discussed in Supplementary Information section
9, our tailored heuristicis a variant of simulated annealing that assigns
temperature-dependent weights to the termsin the cost function deter-
mined by how many variables they contain.

The comparison against simulated annealing is complicated because,
as shown in Supplementary Information section 8.2, the fraction of
clauses satisfied by simulated annealing increases as a function of
the duration of the anneal. Thus, there is not aunique sharply defined
number indicating the maximum satisfaction fraction reachable by
simulated annealing. DQI reduces our sparsity-tuned max-XORSAT
problemtoan LDPC decoding problem, which ourimplementation of
belief propagation solvesinapproximately 8 sonasingle core, exclud-
ing the time used to load and parse the instance. Thus, a natural point of
comparisonistheresult obtained by simulated annealing with asimilar
runtime. By running our optimized C++implementation of simulated
annealing for 8 s,weare only abletoreach 0.764. If we allow the parallel
execution of several anneals and increase our runtime allowance, we
are able to eventually replicate the satisfaction fraction achieved by
DQI + BP using simulated annealing. The shortest anneal that achieved
thisused five cores and ran for 73 h, whichis five orders of magnitude
longer thanour belief-propagationdecoder. Although thisis dependent
on the implementation details, we can take this ratio of runtimes as a
rough indicator of the ratio of computational steps. In the context of
DQI, the decoder would need to be implemented as areversible circuit
and subject to an overhead due to quantum error correction, so this
should not be interpreted as an indicator of the quantum versus the
classical runtime.

Discussion

The idea that quantum Fourier transforms could be used to achieve
reductions between problems on lattices and their duals originates
in the early 2000s in the work of Regev, Aharonov and Ta-Shma* ™,
Linear codes, as considered here, are closely analogous to lattices
but over finite fields. By considering lattices with only a geometric
structure, no quantum speed-ups were found using these reductions
until the 2021 breakthrough of Chen, Liu and Zhandry'¢, who obtained
asuperpolynomial speed-up for a constraint satisfaction problem
by combining these ideas with an intrinsically quantum decoding
method. Other recent explorations of Regev-style reductions to gen-
eralunstructured codes and lattices are givenin refs.20,44,45. Here we
restrict attention to codes defined by matrices that are either sparse
oralgebraically structured, and in the latter case, we are able to obtain



anapparent superpolynomial quantum speed-up for an optimization
problem.

Recently, Yamakawaand Zhandry have also considered the applica-
tion of Regev-style reductions to a problem with extra structure and
obtained a quantum advantage*®. They defined an oracle problem
that they proved can be solved using polynomially many quantum
queries but requires exponentially many classical queries. Their prob-
lem is essentially equivalent to max-LINSAT over an exponentially
large finite field F,;, where the sets F,, ..., F,, are defined by random
oracles and the matrix B is obtained from a folded Reed-Solomon
code.InSupplementary Information section 11, we recount the exact
definition of the Yamakawa-Zhandry problem and argue that DQI can
be extended to the Yamakawa-Zhandry problem and, in this case,
probably yields solutions satisfying all constraints. Although problems
with exponentially large F,, ..., F,, defined by oracles are far removed
from industrial optimization problems, this limiting case provides
evidence against the possibility of efficiently simulating DQI with
classical algorithms and thereby ‘dequantizing’ it, as has happened
with some previous quantum algorithms proposed as potential super-
polynomial speed-ups*. More precisely, our argument indicates that
DQI cannot be dequantized by any relativizing techniques, in the sense
ofref.48.

We conclude by noting that the work reported here initiates the
exploration of quantum speed-ups through DQI but is very far from
completingit.In particular, we highlight three avenues for future work:
multivariate OPI, custom decoders for solving max-XORSAT by DQI,
and sampling problems. First, we note that the DQI algorithm can be
straightforwardly adapted to solve the multivariate generalization of
OPI. Asshownin Supplementary Information section12, multivariate
OPIgetsreduced by DQI to the decoding of Reed—-Muller codes. Known
polynomial-time classical algorithms can decode all Reed-Muller codes
out to half their distance®. (Reed-Solomon codes are the univariate
special case.) Consequently, one expects aregion of parameter space
for which DQI achieves superpolynomial speed-up on multivariate
OPI, whichincludes the speed-up on univariate OPI presented here as
aspecial case. Mapping out this region of quantum advantage remains
for future work.

Second, we note that our exploration of DQl applied to max-XORSAT
isfar from exhaustive. In particular, equation (6) enables abenchmark-
drivenapproachto the development of tailored heuristics for decoding
designed to achieve quantum speed-up on some class of optimiza-
tion problems using DQI. This search can be guided by upper bounds
on the performance of DQI that, through the semicircle law, follow
from information-theoretic limits on decoding. Such an analysis is
given in Supplementary Information section 10 and shows that for
D-regular max-k-XORSAT instances, the upper bound on the possi-
ble performance of DQI with classical decoders is already exceeded
by the empirical performance of simulated annealing when k is too
small relative to D. Additionally, we compare the performance of DQI
against the quantum approximate optimization algorithm for various
ensembles of max-k-XORSAT instances at k=2and k= 3.Onall of these,
the quantum approximate optimization algorithm exceeds the upper
bound on performance for DQI with classical decoders.

These limits show that, for DQI to achieve an advantage on max-
k-XORSAT, one must either go to large k or move to quantum decoders
that exploit the coherence of the bit flip errors. Large-k problems are
reduced by DQIto decoding problemsin which the parity-check matrix
isdenser thanin typical LDPC codes. The increased density degrades
the performance of belief propagation. This indicates the need for
future research developing decoders to tolerate denser parity-check
matrices than are typically used. Despite some progress along these
lines*®%, this remains an underexplored area compared with the decod-
ing of codes with very sparse parity-check matrices. With quantum
decoders, it remains information-theoretically possible for DQI to
achieve advantage over known polynomial-time classical and quantum

algorithms, even for small k. Realizing this potential advantage depends
onthe development of polynomial-size quantum circuits for this quan-
tum decoding problem. Some exciting progress on this problem has
beenreported inrefs.16,44,57.

Third, we note that DQI produces unbiased samples, in which the
probability of obtaining a given solution to an optimization problem
is constantacross all solutions achieving a given objective value. This
guarantee of fair sampling is absent for most classical optimization
algorithms and has known applications to very hard problems of
approximate counting.
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