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Optimization by decoded quantum 
interferometry

Stephen P. Jordan1 ✉, Noah Shutty1 ✉, Mary Wootters2,3, Adam Zalcman1, 
Alexander Schmidhuber1,4, Robbie King1,5, Sergei V. Isakov1, Tanuj Khattar1 & Ryan Babbush1

Achieving superpolynomial speed-ups for optimization has long been a central goal 
for quantum algorithms1. Here we introduce decoded quantum interferometry (DQI), 
a quantum algorithm that uses the quantum Fourier transform to reduce optimization 
problems to decoding problems. When approximating optimal polynomial fits over 
finite fields, DQI achieves a superpolynomial speed-up over known classical algorithms. 
The speed-up arises because the algebraic structure of the problem is reflected in the 
decoding problem, which can be solved efficiently. We then investigate whether this 
approach can achieve a speed-up for optimization problems that lack an algebraic 
structure but have sparse clauses. These problems reduce to decoding low-density 
parity-check codes, for which powerful decoders are known2,3. To test this, we 
construct a max-XORSAT instance for which DQI finds an approximate optimum 
substantially faster than general-purpose classical heuristics, such as simulated 
annealing. Although a tailored classical solver can outperform DQI on this instance, 
our results establish that combining quantum Fourier transforms with powerful 
decoding primitives provides a promising new path towards quantum speed-ups for 
hard optimization problems.

NP-hardness results indicate that finding exact optima and even suf-
ficiently good approximate optima for worst-case instances of many 
optimization problems is probably out of reach for polynomial-time 
algorithms both classical and quantum4. Nevertheless, there remain 
combinatorial optimization problems, such as the closest vector prob-
lem, for which there is a large gap between the best approximation 
achieved by a polynomial-time classical algorithm5 and the strongest 
complexity-theoretic inapproximability result6. When considering 
average-case complexity, such gaps become more prevalent, as few 
average-case inapproximability results are known. These gaps present 
a potential opportunity for quantum computers, namely achieving in 
polynomial time an approximation that requires superpolynomial time 
to achieve using known classical algorithms.

Quantum algorithms for combinatorial optimization have been the 
subject of intense research over the last three decades7–13, which has 
uncovered some evidence of a possible superpolynomial quantum 
speed-up for certain optimization problems14–20. Nevertheless, the 
problem of finding a superpolynomial quantum advantage for opti-
mization is extremely challenging and remains largely open.

Here we propose a quantum algorithm for optimization that uses 
interference patterns as its main underlying principle. We call this 
algorithm decoded quantum interferometry (DQI). DQI uses a quan-
tum Fourier transform to arrange that amplitudes interfere con-
structively on symbol strings for which the objective value is large, 
thereby enhancing the probability of obtaining good solutions upon 
measurement. Most previous approaches to quantum optimization 

have been Hamiltonian-based7,8, with a notable exception being the 
superpolynomial speed-up due to Chen, Liu and Zhandry16 for finding 
short lattice vectors, which uses Fourier transforms and can be seen as 
an ancestor of DQI. Whereas Hamiltonian-based quantum optimiza-
tion methods are often regarded as exploiting the local structure of 
the optimization landscape (for example, tunnelling across barriers21), 
our approach instead exploits the sparsity that is routinely present 
in the Fourier spectrum of the objective functions for combinatorial 
optimization problems, and it can also exploit more elaborate struc-
ture in the spectrum if present.

Before presenting evidence that DQI can efficiently obtain approx-
imate optima not achievable by known polynomial-time classical 
algorithms, we quickly illustrate the essence of the DQI algorithm by 
applying it to max-XORSAT. We use max-XORSAT as our first example 
because, although it is not the problem on which DQI has achieved its 
greatest success, it is the context in which DQI is simplest to explain.

Given an m × n matrix B with m > n, the max-XORSAT problem is to 
find an n-bit string x satisfying as many as possible of the m linear mod-2 
equations Bx = v. As we are working modulo 2, we regard all entries of 
the matrix B and the vectors x and v as coming from the finite field F2. 
The max-XORSAT problem can be rephrased as maximizing the objec-
tive function
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where bi is the ith row of B and vi is the ith entry of v. Thus, f(x) is the 
number of the m linear equations that are satisfied minus the number 
unsatisfied.

From equation  (1), one can see that the Hadamard transform  
of f is extremely sparse: it has m non-zero amplitudes, which are on the 
strings b1, …, bm. The state x xx F f∑ ( ) ⟩∈ n

2
 is, thus, easy to prepare. Sim-

ply prepare the superposition ∑ (−1) ⟩i
m v

i=1
i b  and apply the quantum 

Hadamard transform. (Here, for simplicity, we have omitted normali-
zation factors). Measuring the state x xx f∑ ( ) ⟩∈ n

2F  in the computa
tional basis yields a biased sample, where a string x is obtained with 
probability proportional to f(x)2, which slightly enhances the likelihood 
of obtaining strings with a large objective value relative to uniform 
random sampling.

To obtain stronger enhancement, DQI prepares states of the form

∑P f P f( )⟩ = ( ( )) ⟩, (2)
∈ n

2F
x x

x

where P is an appropriately normalized degree-ℓ polynomial. The Had-
amard transform of such a state always takes the form
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for some coefficients w0, …, wℓ. Here ∣y∣ denotes the Hamming weight 
of the bit string y. The DQI algorithm prepares |P( f )⟩ in five steps. The 
first step is to prepare the superposition w D∑ ⟩k
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is the Dicke state of weight k. Preparing such superpositions over Dicke 
states can be done with O m( )2  quantum gates using the techniques in 
refs. 22,23. Second, the phase (−1)v⋅y is imposed by applying the product 
Z Z⊗ … ⊗v

m
v

1
m1 , where Zm is the Pauli-Z operator acting on the mth qubit. 

Third, the quantity BTy is computed into an ancilla register using a 
reversible circuit for matrix multiplication. This yields the state
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The fourth step is to use the value BTy to infer y, which can then  
be subtracted from y⟩, thereby bringing it back to the all zeros state, 
which can be discarded. (This is known as ‘uncomputation’24). The fifth 
and final step is to apply a Hadamard transform to the remaining  
register, yielding |P( f )⟩. This sequence of steps is illustrated in Fig. 1.

The fourth step, in which |y⟩ is uncomputed, is not straightforward 
because B is a non-square matrix and, thus, inferring y from BTy is an 
underdetermined linear algebra problem. However, we also know that 
∣y∣ ≤ ℓ. The problem of solving this underdetermined linear system with 
a Hamming weight constraint is precisely the syndrome decoding 
problem for the classical error-correcting code Fd d 0C B= { ∈ : = }m⊥

2
T  

with up to ℓ errors.
In general, syndrome decoding is an NP-hard problem25. However, 

when B is very sparse or has certain kinds of algebraic structure, the 
decoding problem can be solved by polynomial-time classical algo-
rithms even when ℓ is large (for example, linear in m). By solving this 
decoding problem using a reversible implementation of such a classi-
cal decoder, one uncomputes ⟩y  in the first register. If the decoding 
algorithm requires T quantum gates, then the number of gates required 
to prepare |P( f )⟩ is O T m( + )2 .

Approximate solutions to the optimization problem are obtained 
by measuring |P( f )⟩ in the computational basis. The higher the degree 

of the polynomial in |P( f )⟩, the greater one can bias the measured bit 
strings towards solutions with a large objective value. However, this 
requires solving a harder decoding problem, as the maximum number 
of errors is equal to the degree of P. Next, we summarize how, by making 
an optimal choice of P and a judicious choice of decoder, DQI can be a 
powerful optimizer for some classes of problems.

Although DQI can be applied more broadly, the most general opti-
mization problem that we apply DQI to in this paper is max-LINSAT, 
which we define as follows.

Definition 1. Let pF  be a finite field and let FB ∈ p
m n× . For each i = 1, …, m, 

let FF ⊂i p be an arbitrary subset of Fp, which yields a corresponding 
constraint B x F∑ ∈j

n
ij j i=1 . The max-LINSAT problem is to find x F∈ p

n  
satisfying as many as possible of these m constraints.

We focus primarily on the case that p has at most polynomially 
large magnitude and the subsets F1, …, Fm are given as explicit lists.  
The max-XORSAT problem is the special case where p = 2 and ∣Fi∣ = 1 
for all i.

Consider a max-LINSAT instance where the sets F1, …, Fm each have 
size r. Let ⟨s⟩ be the expected number of constraints satisfied by the 
symbol string sampled in the final measurement of the DQI algorithm. 
Suppose we have a polynomial-time algorithm that can correct up to 
ℓ bit flip errors on codewords from the code Fd d 0C B= { ∈ : = }p

m⊥ T . 
Then, in polynomial time, DQI achieves the following approximate 
optimum to the max-LINSAT problem:






























s
m

ℓ
m

r
p

r
p

ℓ
m

⟨ ⟩
= 1 − + 1 − , (6)

2

Matrix
multiplication

Syndrome
decoding

Ancilla bitDicke state

|y〉 |0〉

Output:

H

y  2
m

Z1
1 Zm

m

∑

1

( )m√
(–1)v.y |y〉 |0〉

|y | = 

y  2
m

∑

(–1)v.y |y〉 |BT y〉

y  2
m

∑

(–1)v.y |BT y〉

y  2
m

∑

∑
x  2

n

P(f(x)) |x〉

n

ℓ

ℓ

1

( )m√ ℓ

1

( )m√ ℓ

|y | = ℓ

|y | = ℓ

|y | = ℓ

1

( )m√ ℓ

• • •

Fig. 1 | Schematic illustration of DQI. As the initial Dicke state is of weight ℓ, 
the final polynomial P is of degree ℓ. Here, for simplicity, we take wℓ = 1 and 
wk = 0 for all k ≠ ℓ. Recycling icon adapted from FreeSVG (https://freesvg.org) 
under a CC0 1.0 Universal Public Domain licence.

https://freesvg.org
https://creativecommons.org/publicdomain/zero/1.0/
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if r/p ≤ 1 − ℓ/m and ⟨s⟩/m = 1 otherwise. See Supplementary Theorem 1.1 
for the precise statement for perfect decoding and Supplementary 
Theorem 7.1 for the analogous statement in the presence of decoding 
errors. This is achieved by a specific optimal choice of the coefficients 
w0, …, wℓ, which can be classically precomputed in polynomial time, 
as described in Supplementary Information section 6.

Note that r/p is the fraction of constraints that would be satisfied if 
the variables were assigned uniformly at random. When r/p = 1/2, equa-
tion (6) becomes the equation of a semicircle. Hence, we informally 
refer to equation (6) as the ‘semicircle law’.

From equation (6), any result on decoding a class of linear codes 
implies a corresponding result regarding the performance of DQI for 
solving a class of combinatorial optimization problems that are dual to 
these codes. This enables two new lines of research in quantum optimi-
zation. The first is to harvest the coding theory literature for rigorous 
theorems on the performance of decoders for various codes and obtain 
as corollaries guarantees on the approximation achieved by DQI for 
the corresponding optimization problems. The second is to perform 
computer experiments to determine the empirical performance of clas-
sical heuristic decoders, which, through equation (6), can be compared 
against the empirical performance of classical heuristic optimizers. In 
this manner, DQI can be benchmarked instance-by-instance against 
classical heuristics, even for optimization problems far too large to 
attempt on present-day quantum hardware. We next describe our 
results so far from each of these two lines of research.

We first use rigorous decoding guarantees to analyse the perfor-
mance of DQI on the following problem.

Definition 2. Given integers n < p − 1 with p prime, an instance of the 
optimal polynomial intersection (OPI) problem is as follows. Let 
F1, …, Fp−1 be subsets of the finite field Fp. Find a polynomial FQ y∈ [ ]p  
of degree at most n − 1 that maximizes fOPI(Q) = ∣{y ∈ {1, …, p − 1}: 
Q(y) ∈ Fy}∣, that is, that intersects as many of these subsets as possible.

An illustration of this problem is given in Fig. 2.

In Supplementary Information section 2, we show that OPI is a special 
case of max-LINSAT over Fp with m = p − 1 constraints in which B is a 
Vandermonde matrix and, thus, C⊥ is a Reed–Solomon code. Syndrome 
decoding for Reed–Solomon codes can be solved in polynomial time 
out to half the distance of the code, for example, using the Berlekamp–
Massey algorithm26. Consequently, in DQI we can take ℓ = ⌊(n + 1)/2⌋. 
For the regime where r/p and n/p are constants and p is taken asymp-
totically large, the fraction of satisfied constraints achieved by DQI 
using the Berlekamp–Massey decoder can be obtained by substituting 
ℓ/m = n/2p into equation (6).

OPI and special cases of it have been studied in several domains.  
In the coding theory literature, OPI is studied under the name ‘list-
recovery’, and in the cryptography literature it is studied under the 
name ‘noisy polynomial reconstruction/interpolation’27,28. OPI can also 
be viewed as a generalization of the polynomial approximation prob-
lem, studied in refs. 29–31, in which each set Fi is a contiguous range of 
values in Fp. In Supplementary Information section 8, we analyse the 
algorithms from these works in the literature and find that, for the 
parameter regime addressed by DQI, the best approximation achieved 
in polynomial time classically is 1/2 + n/2p using Prange’s algorithm. 
As shown in Fig. 3, for r/p = 1/2 and any fixed 0 < n/p < 1, DQI with the 
Berlekamp–Massey decoder exceeds the satisfaction fraction achieved 
by Prange’s algorithm in the limit of large p. Classically, the only meth-
ods we are aware of to exceed the satisfaction fraction achieved by 
Prange’s algorithm are brute force search or slight refinements thereof, 
which have exponential runtime. Thus, DQI achieves a superpolynomial 
speed-up for this problem, assuming no polynomial-time algorithm 
is found that can match the satisfaction fraction that DQI achieves.

y1

Fy1

Q2 (y)

Q1 (y)

p

p

Fig. 2 | Illustration of OPI problem. A stylized example of the OPI problem. For 
Fy ∈ p1 , the orange set above the point y1 represents Fy1

. Both polynomials Q1( y) 
and Q2( y) represent solutions that have a large objective value, as they each 
intersect all but one set Fy.
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Fig. 3 | Approximate optima for OPI. Plot of the expected fraction ⟨s⟩/p of 
satisfied constraints achieved by DQI with the Berlekamp–Massey decoder  
and by Prange’s algorithm for the OPI problem in the balanced case r/p = 1/2,  
as a function of the ratio of variables to constraints n/p. At n/p = 1/10, Prange’s 
algorithm satisfies a fraction 0.55 of the clauses whereas DQI satisfies 
s p⟨ ⟩/ = 1/2 + 19 /20 ≈ 0.7179. As a concrete challenge to the classical algorithms 

community, we propose matching or exceeding this value in polynomial  
time. In our concrete resource estimation, we consider n/p = 1/2, where OPI 
achieves s p⟨ ⟩/ = 1/2 + 3 /4 ≈ 0.9330 and Prange’s algorithm achieves 0.75. BM, 
Berlekamp–Massey decoder.
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At present, there are no results directly showing that the OPI problem 

in the parameter regime that we consider is classically intractable under 
any standard complexity-theoretic or cryptographic assumptions. 
However, such results are known for certain limiting cases of the OPI 
problem, and we propose the task of extending these results to regimes 
more relevant to DQI for future research. The hardness of the special 
case of OPI when f (+ 1) = 1i

−1∣ ∣ , in a certain parameter regime, has been 
proposed as a cryptographic assumption in ref. 32, which has not been 
broken to our knowledge. Finding exact optima for OPI with ∣ ∣f (+ 1) = 1i

−1  
can be cast as maximum-likelihood decoding for Reed–Solomon codes, 
which is known to be NP-hard33,34. Finding sufficiently good approxi-
mate optima is known to be as hard as discrete log35,36, but these hard-
ness results do not match the parameter regime addressed by DQI.

As a concrete example, for n ≈ p/10 and r/p ≈ 1/2, the fraction of con-
straints satisfied by Prange’s algorithm is 0.55, whereas DQI achieves 
1/2 + 19 /20 ≈ 0.7179. As a specific point of comparison, we challenge 
the algorithms community to beat this with a classical polynomial-time 
algorithm. Interestingly, for these parameters, one statistically expects 
that solutions satisfying all p − 1 constraints exist, but they apparently 
remain out of reach of polynomial-time algorithms both quantum and 
classical.

To find classically intractable instances of OPI solvable by DQI with 
minimal quantum resources, we find it is advantageous to choose 
n/p ≈ r/p ≈ 1/2. For these parameters, DQI achieves satisfaction frac-
tion 0.933. As discussed in Supplementary Information section 13, 
achieving this using classical algorithms known to us has a prohibitive 
computational cost for p as small as 521. The dominant cost in DQI plus 
the Berlekamp–Massey decoder is the reversible implementation of 
the subroutine to find the shortest linear-feedback shift register used 
in the Berlekamp–Massey algorithm. Using Qualtran37, we find that at 
p = 521, the linear-feedback shift register can be found using approxi-
mately 1 × 108 logical Toffoli gates and 9 × 103 logical qubits.

We next use computer experiments to benchmark the performance 
of DQI against classical heuristics on average-case instances from cer-
tain families of max-XORSAT with sparse B. DQI reduces such problems 
to decoding problems on codes with sparse parity-check matrices. 
Such codes are known as low-density parity-check (LDPC) codes. 
Polynomial-time classical algorithms, such as belief propagation, can 
decode randomly sampled LDPC codes up to numbers of errors that 
nearly saturate information-theoretic limits3,38,39. This makes sparse 
max-XORSAT an enticing target for DQI. Although we use max-XORSAT 
as a convenient test bed for DQI, other commonly studied optimization 
problems, such as max-k-SAT, could be addressed similarly. Specifically, 
consider any binary optimization problem in which the objective func-
tion counts the number of satisfied constraints, where each constraint 
is a Boolean function of at most k variables. By taking the Hadamard 
transform of the objective function, one converts such a problem into 
an instance of weighted max-k-XORSAT, where the number of variables 
is unchanged and the number of constraints has been increased by at 
most a factor of 2k.

Although we are able to analyse the asymptotic average-case perfor-
mance of DQI rigorously, we do not restrict the classical competition to 
algorithms with rigorous performance guarantees. Instead, we choose 
to set a high bar by also attempting to beat the empirical performance 
of classical heuristics that lack such guarantees.

Through careful tuning of sparsity patterns in B, we are able to find 
some families of sparse max-XORSAT instances for which DQI with 
standard belief-propagation decoding finds solutions satisfying a larger 
fraction of constraints than we are able to find using a comparable 
number of computational steps by any of the general-purpose clas-
sical optimization heuristics that we tried, which are listed in Table 1. 
However, unlike our OPI example, we do not put this forth as a poten-
tial example of superpolynomial quantum advantage. Rather, we are 
able to construct a tailored classical algorithm specialized to these 
instances, which, with 7 min of runtime, finds solutions where the 

fraction of constraints satisfied slightly beats DQI plus belief propa-
gation (DQI + BP). As discussed in Supplementary Information section 
9, our tailored heuristic is a variant of simulated annealing that assigns 
temperature-dependent weights to the terms in the cost function deter-
mined by how many variables they contain.

The comparison against simulated annealing is complicated because, 
as shown in Supplementary Information section 8.2, the fraction of 
clauses satisfied by simulated annealing increases as a function of 
the duration of the anneal. Thus, there is not a unique sharply defined 
number indicating the maximum satisfaction fraction reachable by 
simulated annealing. DQI reduces our sparsity-tuned max-XORSAT 
problem to an LDPC decoding problem, which our implementation of 
belief propagation solves in approximately 8 s on a single core, exclud-
ing the time used to load and parse the instance. Thus, a natural point of 
comparison is the result obtained by simulated annealing with a similar 
runtime. By running our optimized C++ implementation of simulated 
annealing for 8 s, we are only able to reach 0.764. If we allow the parallel 
execution of several anneals and increase our runtime allowance, we 
are able to eventually replicate the satisfaction fraction achieved by 
DQI + BP using simulated annealing. The shortest anneal that achieved 
this used five cores and ran for 73 h, which is five orders of magnitude 
longer than our belief-propagation decoder. Although this is dependent 
on the implementation details, we can take this ratio of runtimes as a 
rough indicator of the ratio of computational steps. In the context of 
DQI, the decoder would need to be implemented as a reversible circuit 
and subject to an overhead due to quantum error correction, so this 
should not be interpreted as an indicator of the quantum versus the 
classical runtime.

Discussion
The idea that quantum Fourier transforms could be used to achieve 
reductions between problems on lattices and their duals originates 
in the early 2000s in the work of Regev, Aharonov and Ta-Shma40–43. 
Linear codes, as considered here, are closely analogous to lattices 
but over finite fields. By considering lattices with only a geometric 
structure, no quantum speed-ups were found using these reductions 
until the 2021 breakthrough of Chen, Liu and Zhandry16, who obtained 
a superpolynomial speed-up for a constraint satisfaction problem 
by combining these ideas with an intrinsically quantum decoding 
method. Other recent explorations of Regev-style reductions to gen-
eral unstructured codes and lattices are given in refs. 20,44,45. Here we 
restrict attention to codes defined by matrices that are either sparse 
or algebraically structured, and in the latter case, we are able to obtain 

Table 1 | Approximate optima for max-XORSAT

Algorithm Fraction satisfied

Tailored heuristic (7 min  × 1 core) 0.880

Long anneal (73 h × 5 cores) 0.832

DQI + BP ≥0.831

Prange’s algorithm 0.812

Short anneal (8 s × 1 core) 0.764

Greedy algorithm 0.666

AdvRand 0.554

Here we compare DQI, using a standard belief-propagation decoder, against classical 
algorithms for a randomly generated max-XORSAT instance with irregular degree distribution 
specified in Supplementary Information section 9. We consider an example instance with 
31,216 variables and 50,000 constraints. The classical algorithms above are defined in  
Supplementary Information section 8. For simulated annealing, the satisfaction fraction grows 
with the runtime, so we report two numbers. The first is the optimum reachable by limiting 
simulated annealing to the same runtime used by belief propagation to solve the problem 
to which the max-XORSAT instance is reduced by DQI (8 s × 1 core), and the second is for the 
shortest anneal that matched the satisfaction fraction achieved by DQI + BP (73 h × 5 cores).
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an apparent superpolynomial quantum speed-up for an optimization  
problem.

Recently, Yamakawa and Zhandry have also considered the applica-
tion of Regev-style reductions to a problem with extra structure and 
obtained a quantum advantage46. They defined an oracle problem 
that they proved can be solved using polynomially many quantum 
queries but requires exponentially many classical queries. Their prob-
lem is essentially equivalent to max-LINSAT over an exponentially 
large finite field F2t, where the sets F1, …, Fm are defined by random 
oracles and the matrix B is obtained from a folded Reed–Solomon 
code. In Supplementary Information section 11, we recount the exact 
definition of the Yamakawa–Zhandry problem and argue that DQI can 
be extended to the Yamakawa–Zhandry problem and, in this case, 
probably yields solutions satisfying all constraints. Although problems 
with exponentially large F1, …, Fm defined by oracles are far removed 
from industrial optimization problems, this limiting case provides 
evidence against the possibility of efficiently simulating DQI with 
classical algorithms and thereby ‘dequantizing’ it, as has happened 
with some previous quantum algorithms proposed as potential super-
polynomial speed-ups47. More precisely, our argument indicates that 
DQI cannot be dequantized by any relativizing techniques, in the sense 
of ref. 48.

We conclude by noting that the work reported here initiates the 
exploration of quantum speed-ups through DQI but is very far from 
completing it. In particular, we highlight three avenues for future work: 
multivariate OPI, custom decoders for solving max-XORSAT by DQI, 
and sampling problems. First, we note that the DQI algorithm can be 
straightforwardly adapted to solve the multivariate generalization of 
OPI. As shown in Supplementary Information section 12, multivariate 
OPI gets reduced by DQI to the decoding of Reed–Muller codes. Known 
polynomial-time classical algorithms can decode all Reed–Muller codes 
out to half their distance49. (Reed–Solomon codes are the univariate 
special case.) Consequently, one expects a region of parameter space 
for which DQI achieves superpolynomial speed-up on multivariate 
OPI, which includes the speed-up on univariate OPI presented here as 
a special case. Mapping out this region of quantum advantage remains 
for future work.

Second, we note that our exploration of DQI applied to max-XORSAT 
is far from exhaustive. In particular, equation (6) enables a benchmark- 
driven approach to the development of tailored heuristics for decoding 
designed to achieve quantum speed-up on some class of optimiza-
tion problems using DQI. This search can be guided by upper bounds 
on the performance of DQI that, through the semicircle law, follow 
from information-theoretic limits on decoding. Such an analysis is 
given in Supplementary Information section 10 and shows that for 
D-regular max-k-XORSAT instances, the upper bound on the possi-
ble performance of DQI with classical decoders is already exceeded 
by the empirical performance of simulated annealing when k is too 
small relative to D. Additionally, we compare the performance of DQI 
against the quantum approximate optimization algorithm for various 
ensembles of max-k-XORSAT instances at k = 2 and k = 3. On all of these, 
the quantum approximate optimization algorithm exceeds the upper 
bound on performance for DQI with classical decoders.

These limits show that, for DQI to achieve an advantage on max- 
k-XORSAT, one must either go to large k or move to quantum decoders 
that exploit the coherence of the bit flip errors. Large-k problems are 
reduced by DQI to decoding problems in which the parity-check matrix 
is denser than in typical LDPC codes. The increased density degrades 
the performance of belief propagation. This indicates the need for 
future research developing decoders to tolerate denser parity-check 
matrices than are typically used. Despite some progress along these 
lines50–56, this remains an underexplored area compared with the decod-
ing of codes with very sparse parity-check matrices. With quantum 
decoders, it remains information-theoretically possible for DQI to 
achieve advantage over known polynomial-time classical and quantum 

algorithms, even for small k. Realizing this potential advantage depends 
on the development of polynomial-size quantum circuits for this quan-
tum decoding problem. Some exciting progress on this problem has 
been reported in refs. 16,44,57.

Third, we note that DQI produces unbiased samples, in which the 
probability of obtaining a given solution to an optimization problem 
is constant across all solutions achieving a given objective value. This 
guarantee of fair sampling is absent for most classical optimization 
algorithms and has known applications to very hard problems of 
approximate counting58.

Online content
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ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-025-09527-5.
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