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In Gram-negative bacteria, the outer membrane is the first line of defence against
antimicrobial agents and immunological attacks'. Akey part of outer membrane
biogenesis is the insertion of outer membrane proteins by the B-barrel-assembly
machinery (BAM)**. Here we report the cryo-electron microscopy structure of a

BAM complex isolated from Flavobacterium johnsoniae, amember of the Bacteroidota,

aphylumthatincludes key human commensals and major anaerobic pathogens.

This BAM complex is extensively modified from the canonical Escherichia colisystem
andincludes an extracellular canopy that overhangs the substrate folding site and a
subunit that inserts into the BAM pore. The novel BamG and BamH subunits that are
involved in forming the extracellular canopy are required for BAM function and are
conserved across the Bacteroidota, suggesting that they form an essential extension
to the canonical BAM core in this phylum. For BamH, isolation of a suppressor mutation
enables the separation of its essential and non-essential functions. The need for a highly
remodelled and enhanced BAM complex reflects the unusually complex membrane
proteins found in the outer membrane of the Bacteroidota.

Thewell-characterized E. coliBAM complex (BAM,,) iscomposed of the
outer membrane protein (OMP) BamA together with four periplasmic
lipoprotein subunits®. Only BamA and the lipoprotein BamD are individ-
ually essential for BAM function, and the roles of the remaining subunits
remain poorly defined®. BamA is a16-stranded OMP? that is related to
the central subunit of the machinery thatinserts 3-barrel proteinsinto
the mitochondrial outer membrane (OM)®. The BamA barrel has a peri-
plasmic extension composed of five polypeptide transport-associated
(POTRA) domains to which the lipoprotein subunits bind”°. Within the
BamA barrel the seam between the first and last strands is unusually
shortand can open”, exposing the N-terminal strand of the BamA barrel
to pair with the C-terminal strand of an incoming substrate OMP'*™,
This structure in turn acts as a template for insertion and folding of
successive strands of the nascent OMP through -augmentation. The
resultis the formation of ahybrid barrel between BamA and the client
OMP thatis resolved when the substrate barrel is completed and closes
torelease it from BamA3*,

The Bacteroidota are a phylum of abundant Gram-negative com-
mensals found in the human gut and other human microbiomes'? that
includes major opportunistic anaerobic pathogens thatare responsible
for sepsis (for example, Prevotella species and Bacteroides fragilis)
and severe dental disease (Porphyromonas gingivalis). OM proteins
in the Bacteroidota exhibit considerably greater structural diversity
than the OM proteome of E. coli, raising the possibility that the Bacte-
roidota BAM machinery might be functionally augmented relative to
BAM,. Bacteroidota OMPs commonly possess much larger extracellular
domains thanE. coli OMPs" ™ and Bacteroidota BAM must be capable of
assembling these. Furthermore, and unlike E. coli, the Bacteroidota pos-
sess abundant cell surface lipoproteins (SLPs), whichthe BAM complex

hasbeen speculated to export™'®. Notably, both of these biosynthetic
requirements are involvedin the assembly of starch utilization system
(SUS) nutrient uptake systems, a characteristic and highly abundant
feature of the Bacteroidota OM, which consist of a SLP (SusD) and an
OMP with large extracellular regions (SusC)™>". A further intriguing
aspect of Bacteroidota BAM is a possible functional connection with
the Bacteroidota-specific type 9 secretion system (T9SS)™ which has
two essential components encoded at the bamA locus®.

To investigate the nature of the Bacteroidota BAM system we iso-
lated and characterized the BAM complex from the T9SS-possessing
bacterium F. johnsoniae.

F.johnsoniae BAM complex structure

We isolated the native F. johnsoniae BAM complex (BAM;) using an
affinity tag fused to BamA (Fjoh_1690). Biochemical (Fig.1a) and struc-
tural (Fig. 1b Extended Data Figs. 1 and 2a and Extended Data Table 1)
analysis of the BAM complex revealed that it contains five proteinsin
additionto BamA, one of which could be assigned asBamD (Fjoh_3469).
The remaining co-purifying proteins were unrelated to known BAM
subunits from other organisms, and did not include T9SS compo-
nents. We named these novel BAM; subunits BamG (Fjoh_1412), BamH
(Fjoh_0823), BamM (metalion-containing; Fjoh_0050) and BamP (peri-
plasmic; Fjoh_1771). Smaller BamA-containing complexes presentin the
sample appear to be fragmentation products (Extended Data Fig. 1).
AsinBAM,, BamA forms the core of BAM;, to which the other subu-
nitsaredirectly orindirectly attached (Fig. 1c). However, whereas all the
accessory subunits of BAM arelocated in the periplasm (Fig. 1c), BAM;
has aremarkably different organizationin which only BamD and BamP
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Fig.1|Structure ofthe BAMcomplex. a, Size-exclusion chromatography
profile of the purified BAM; preparation and Coomassie-stained SDS-PAGE gel
oftheindicated fractions. Bands were identified by peptide fingerprinting.
Fraction Awas used to determine the structure of the full BAM; complex and
fraction Bwas used for the structure of the BamAP complex. Similar datawere
obtained for three independent preparations. b, Cryo-electron microscopy
(cryo-EM) volume for the BAM; complex overlaid on the hybrid model shownin
d.Thevolumeisshownatahigh contourlevel (coloured) and atalow contour
level (semi-transparent). c,d, Comparison of the most similar E. coli BAM
complexstructure (darobactin 9-bound complex; PDB: 8ADI) (c) with the BAM;
complex (d). Structures are shownin cartoon representation with lipids and
metalionsinspace-fillingatom representation coloured by element. For BAM,;,

are periplasmicor part periplasmic proteins (Fig.1b,d,e). Uniquely, the
BamG subunitis atransmembrane OMP, whereas BamH and BamM are
SLPs that together form an extensive extracellular structure. BamGis
boundtothe ‘rear’ of the BamA barrel relative to the lateral seam. The
interaction between BamA and BamGisreinforced by lipid binding on
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thepoorlyresolved BamA POTRA 1-3 domains and BamP C-terminal domain
aremodelled by placing AlphaFold®® structures in the electron microscopy
density (lighter coloured domains). e-i, The BAM; hybrid model (Supplementary
Datal) with protein componentsinspacefilling representation and lipids shown
asatomspheres coloured by element. e, View in the same orientation asd, left.

f, The N-acyland S-diacylglyceryl groups attached to the N-terminal cysteine of
BamH.g, Theresolved portionofalipopolysaccharide (LPS) moleculeinthe
outer leaflet of the OM and two ordered phospholipid molecules on the inner
leaflet of the OM. h, View from the periplasm with the periplasmic side of the
complex cutaway to the membrane midpoint.i, View from the exterior with
the extracellular side of the complex cut away to the membrane midpoint.

eitherside of the proteininterface. Ononeside, these interactions are
provided by the phospholipid tail of BamH (Fig. 1f) and on the other,
they are provided by the ordered lipid portion of a lipopolysaccha-
ride molecule in the outer leaflet of the membrane and two ordered
phospholipid moleculesintheinnerleaflet (Fig. 1g). BamH and BamM
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interact with each other to formalong canopy structure on the extra-
cellular side of the OM that extends from the rear of BamA across the
BamA barrel and out beyond the lateral seam to cover the positionin
the membrane where client OMPs assemble on BamA (Fig. 1b,d,e,h).
The canopy is positioned at an approximately constant height of 40 A
above the inferred position of the membrane bilayer and delineates
an approximately 3,000 A® space above the membrane surface. The
canopy is anchored to the BAM complex through binding to extracel-
lular ‘pillars’ provided by the BamA and BamG subunits. At the peri-
plasmic side of the membrane the folded domains of the novel BamP
subunitarebound to BamD and to the POTRA domains of BamA. These
domains are linked by aloop that enterstheinterior of the BamAbarrel
and exitsat the periplasmic end of the lateral seam (Fig.1b,d,e,h,i). The
more membrane-distal POTRA 1-3 domains of BamA, together with
the C-terminal portion of BamP, are poorly resolved in the structure
andare modelledin all figures by placement of AlphaFold?’ structures
intothe electronmicroscopy map (Fig.1d and Supplementary Data1l).

In structurally characterized BAM complexes, the lateral seam of
BamaA has been observed to be either open or closed**. In our BAMy;
structure, BamAisin the closed state with the lateral seam sealed by a
two-residue overlap between the N-and C-terminal strands (Fig. 1d,e).
Multipleinterstrand loops of the F. johnsoniaeBamA barrel are extended
relative to the canonical E. coli protein (Fig. 2a,b). First, 15 additional
residuesin periplasmicturn1(T1) formashortamphipathicstructure
alongthe periplasmic face of the OM that extends away from the BamA
barrel. Second, 76 additional residues in extracellular loop 5 (L5) fold
into a 3-sheet domain that provides the binding platform for BamM.
Finally, asin other BamA proteins, extracellular loop 6 (L6) enters the
barrel lumen, where it contacts the barrel wall through a conserved
VRGF/Y motif®?**? (the actual sequence being L”’RGY’®*in BamAy).
However, inBamAanadditional 16 residues forma -strand-containing
loop that extends across and fills the extracellular end of the pore,
notably contacting the most deeply inserted piece of BamP. AlphaFold
3 modelling®indicates thatall three of these extended loop structures
arehighly conserved across BacteroidotaBamA proteins, although only
the proteins from Flavobacteriainclude the BamM-binding domain at
the tip of L5 (Supplementary Fig.1).

The novel BamP subunit has a tripartite structure in which the
N-terminal and C-terminal structured domains are joined by an
extended linker (Fig. 2c). The N-terminal domain binds to POTRA 4
and POTRA 5 of BamA (Figs. 1d,e and 2c). The linker then extends up
intothe BamA barrel, whichit penetrates as far asloop L6 (Fig. 2a) while
making conserved contacts with the interior of the barrel (Fig. 2d),
then exits the open periplasmic end of the lateral seam running back
into the periplasm (Figs. 1d,e and 2a,c). BamP ends in a three-helix
C-terminal domain thatis sandwiched between, and thus links, BamA
POTRA 1and BamD (Fig.1d,e,i).

BamGis amember of the FadL family of 14-stranded OMPs, which are
characterized by alateral opening in the transmembrane barreland a
long N-terminal tail that threads through the barrel pore to reach the
extracellular side of the membrane* (Fig. 2e,f). Canonical FadL proteins
function as transporters for hydrophobic molecules. Inthese proteins,
the lateral opening acts as a conduit to move hydrophobic substrate
molecules between the protein interior and the membrane bilayer®.
However, in BamG the N-terminal tail is extended and threads through
the lateral opening with the N-terminal residue of the tail touching
BamaA (Fig.2e-g). Many additional contacts between BamG and BamA
are present and span the entire width of the bilayer. BamG also makes
limited contact with BamD through the final three amino acids of its
C-tail (Fig. 1d, right). BamG is O-glycosylated on the periplasmic por-
tion of the N tail.

The extracellular portions of BamG anchor BamH to the BAM;
complex through extensive contacts. Strands 3 to 7 of the BamG bar-
rel extend into the extracellular space to form the pillar onto which
the proximal folded end of BamH docks (Fig. 2e-g). The lipidated

N-terminal tail of BamH extends around the pillarina deep groove on
the BamG surface before exiting towards BamA (Fig. 2g), packing the
three acyl chains betweenthe BamA and BamG barrels (Figs. 1g and 2g).

BamH and BamM are both elongated two-domain proteins (Fig. 2h).
The BamG-proximal end of BamH adopts a chondroitin sulfate-binding
carbohydratebinding fold andis O-glycosylated facing BamA (Extended
DataFig.2b,d). The N-terminal domain of BamM has a peptidyl-prolyl
isomerase (PPI) fold (Extended Data Fig. 2c), whereas the C-terminal
domain contains no well-defined secondary structural elements but
isstructured in part by the presence of seven metal ions (Fig. 2h and
Extended Data Fig. 2e) assigned by their co-ordination chemistry as
calciumions. The phospholipid tail of BamMis not resolved. However,
the N terminus of BamM is positioned to allow it to insert in the OM
(Fig.1b,d,e).

BamH and BamM pack alongtheirlong axes, where eachinterdigitates
a B-hairpin into the other protein (Fig. 2h). The membrane-proximal
side of the BamHM unit is likely to face substrate proteins and has a
deep central valley (Fig. 2i). This surface is hydrophilic and highly
acidicinthe BamM portion, and shows little amino acid conservation
(Fig. 2i), suggesting that it does not make highly specific interactions
with substrates.

Subunit conservation and essentiality

BamA, BamD, BamG and BamH are universally conserved across the
Bacteroidota, whereashomologues of the full-length BamM proteinare
only found in the genus Flavobacterium and detectable homologues
of BamP arerestricted to the family Flavobacteriaceae (Extended Data
Table 2 and Supplementary Table 1). This suggests that BamADGH
constitute the core of the Bacteroidota BAM system. The BamG and
BamH subunits are also conserved across six of the seven phyla that
together with the Bacteroidota comprise the wider Fibrobacterota-
Chlorobiota-Bacteroidota (FCB) superphylum (Extended Data
Table 2), indicating that these phyla also possess a Bacteroidota-like
BAM complex.

F. johnsoniae possesses homologues of BamG (BamG2), BamH
(BamH2) and three additional homologues of BamP (BamP2, BamP3
and PamP4) (Extended Data Fig. 3a and Extended Data Table 1). With
the exception of BamP4, none of these homologues is expressed at
an appreciable level in cells cultured on rich medium?. Pull-down
experiments confirm that BamP4 binds to BAM;; in vivo (Extended
DataFig.3b-d).

We were unable to delete the genes for BamG or BamH (or in control
experiments BamA and BamD) (Extended DataFig. 4a), suggesting that
these core BAM;; proteins are essential (confirmed below). By contrast,
thegenes encodingthe accessory proteins BamM and BamP, as well as
the various BAM; subunit homologues could all be deleted (Extended
DataFig.4a,b). Strains lacking either BamM or BamP, or all BamP homo-
logues, exhibit no defects in growth on rich medium (Extended Data
Fig. 4c) or on carbon sources (galactomannan or xyloglucan) that
require SusCD systems to metabolize” (Extended Data Fig. 4d), or
in the T9SS-dependent process of gliding motility?® (Extended Data
Fig. 4e). They also show no defect in the canonical BAM function of
OMP insertion as assessed through standard chemical challenges for
loss of OMintegrity’ (Extended Data Fig. 4f,g), with the exception that
loss of BamP4 results ina modest increase in sensitivity to vancomycin,
which canbereversed by BamP overexpression, showing a functional
equivalence between BamP4 and BamP (Extended Data Fig. 4h).

Structural consequences of BamP removal

The central loop of BamP is bound at the lateral seam of BamAin a
way that would sterically impede hybrid barrel formation with the
substrate protein. This suggests that our BAM,;structure representsan
inhibited orinactive state and that for catalysis to occur the BamP loop
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Fig.2|Structural features of the BAMsubunits. a,b, Comparison of the
F.johnsoniae (a) and E. coli (PDB: 8ADI) (b) BamA barrels. The strands closest
totheviewer have beenremoved, revealing BamP within the F. johnsoniae
barrel. The structureinaalso highlights the hydrogen-bondinginteraction
between the side chain of GIn801 (substituted in the bamH suppressor
mutant) and the main chain of Gly591 (both in ball and stick representation).
¢, Cartoonrepresentation of BamP (orange). The C-terminal domain
(pale yellow) is an AlphaFold model docked into the electron microscopy
density. Portions of the BamA barrel (blue) are shown for orientation.
d, Sequence conservation and intra-chaininteractions of the inter-domain
loop of BamP (cartoon with ball and stick side chains) within the BamA barrel
(surface representation). Min, minimum; max, maximum. e,f, Superimposition
of BamG (chainbows colouring) and £. coli FadL (grey; PDB: 3DWO). A proposed
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substrate-mimicking C4E; detergent molecule in FadLis showningrey spheres.
Inf, the front walls of the barrels, oriented asin e, left, are cut away and the
N-terminal amino acid of FadL together with the equivalent sequence position
residue in BamG are shown as spheres. g, View from outside the cell showing
how the N-terminal region of BamH is bound by BamG. BamGisin surface
representation with the N tail (residues 1-32) coloured blue. Partial structures
of BamA and BamH are shown in cartoon representation with the N-terminal
cysteineof BamH and its attached lipid groups shown as atomic spheres and
coloured by atom. h, The BAM,; extracellular canopy viewed from BamA.
Bound calciumions and their coordinating side chainsin BamM and glycosylation
of BamH areshowninballandstick representation.i, Surface conservation (left)
and electrostatics (right, kcal (mol.e) " at 298 K) of the extracellular canopy in
thesameorientationasinh.
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Fig.3|Structural and functional consequences oflosing BamP.

a, Comparison of the structure of the BamAD complex from a BamP-deleted
(AbampP)background and aBamAP complex from the wild-type (WT)
background. The proposed phenylalanine molecule isshown in orange space-
filling representation. b, Overlay of the structures showninaaligned onthe
N-terminal 100 residues of the BamA barrel. ¢, Detail from b showing the
enlargement andregister shift of the sheet between the BamAbarrelNand C
terminal strands upon BamP removal and the incompatible binding modes of
BamP and the putative phenylalanine (orange space-filling representation).
Spheres show the Caatom of Gly897 in each model. d, Cryo-EM volume for the
BamAD complex from aBamP-deleted background reveals a partially occupied
second barrel (silver). Inset shows the putative phenylalanine density.

must bedisplaced. Inanattempt to mimic the loop-displaced state we
deleted the BamP subunit and structurally characterized the resulting
BamA complex. Following grid preparation, only BamAD complexes
wereidentified, even though the preparation also contained BamGHM
proteins (Fig.3a, Extended Data Fig. 5 and Extended Data Table 1). The
loss of BamGHM does notinitself affect the conformation of the BamA
barrel, because the barrel conformer does not change between the
full BAM,; complex and a BamAP sub-complex that is present in the
original BAM; preparation (Figs.1aand 3a,b Extended Data Fig. 6 and
Extended Data Table1).

Inthe absence of BamP, the lateral seam of the BamA barrel remains
closed (Fig.3a). However, the sheet between the barrel N and C termini
shifts register and is enlarged through the formation of an additional
hydrogen bond (Fig. 3b,c). The structure contains partial density for
asecond p-barrel next to the lateral seam (Fig. 3d) that is likely to rep-
resent a second copy of BamA (Fig. 3e and Extended Data Fig. 5e), as
wellas unconnected density at the periplasmic side of the BamA lateral
seam that we model as a phenylalanine side chain of unknown origin
(Fig.3a-d).

9 Darobactin concentration (ug mi™)

AbamP-P4

e, Superposition of the complexindwithanE. coliBamA-EspP complex?®
(PDB: 8B02; yellow) aligning onthe blue BamA ;. The view is from the cell
exterior but truncatedinthe periplasmfor clarity. Asecond copy of BamA
(silver) hasbeen docked into the second barrel density ind and occupies
the same position as the EspP substrate (yellow barrel, right). f, Removal of
BamP homologues sensitizes F. johnsoniaeto darobactin. The AporV Aplug
background permeabilizes the OM by opening the T9SS translocon channel®.
g, BamP overexpression restores darobactinresistance toastrainlackingall
BamP homologues. Strains contain plasmids overexpressing Twin-Strep-
tagged BamP (p"*BamP) or BamP4 (p"SBamP4).f,g, Similar data were obtained
for three biological repeats.

The BamP-deleted state closely and uniquely resembles a complex
between £. coliBAM and the substrate protein EspP (BAM-pair3-EspPin
ref.29; Protein Data Bank (PDB): 8BO2), which exhibits the same register
shift between the firstand last strands of BamA (Fig. 3e). Notably the posi-
tionofthe folded EspP substrate in the E. coli complexis very similar to
the position of the second barrelin our BamP-deleted structure (Fig. 3e)
suggestinga correlation between theregister shift at the lateral seamand
the presence of abarrelinteracting at this position. The E. coli complex
hasbeen interpreted as representing the end state in OMP insertion®
and so our BamP-deleted complex may be an analogue of this state.

The presence of the BamP loop within the lateral seam of BAM;would
be expected to block binding of the BAM-specific antibiotic darobactin
that also binds at this position® (Fig. 1c), potentially explaining the
insensitivity of Bacteroidota to this antibiotic®**'. Consistent with this
hypothesis, we found that removing all four BamP homologues renders
F.johnsoniae sensitive to darobactin (Fig. 3f). Deletion of BamP4 had
the largest effect on darobactin sensitivity, but this was additive with
removal of the other BamP homologues (Fig. 3f), and overexpression of
BamP alone suppressed the effect of deleting all four BamP homologues
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(Fig. 3g and Extended Data Fig. 4h). Thus, all four BamP homologues
are likely to interact with the same site on BamA to prevent darobac-
tin binding, and the BamP proteins must be interacting with BamA
during normal cell growthin order to provide their protective effect.
Therestricted phylogenetic distribution of BamP proteins within the
Bacteroidota (Extended Data Table 2) suggests that other organisms
withinthe phylumeither have other mechanisms for darobactinresist-
ance or possess unrecognized, mechanistically analogous proteins.

Depletion of essential BAM subunits

To gaininsightinto the roles of the essential BamG and BamH proteins
we developed agenetic systemto enable gene depletioninF. johnsoniae.
In this system, a duplicate copy of the gene of interest is expressed
ectopically onthe chromosome under the control of a TetR-repressible
promoter (Extended Data Fig. 7a-d). Provided expression of this sec-
ond copy of the gene is maintained by the inclusion of the inducer
anhydrotetracyline (aTC) in the growth medium, the native copy of the
gene can be deleted. Omission of aTC in the resultant strain prevents
further synthesis of the target protein leading to its depletion as the
cells grow and divide. Using this strategy, we confirmed that BamG,
BamH and BamA are essential for growth under standard laboratory
conditions (Fig.4a).Inallthree cases, full depletion of the target protein
isapparent by 6 h after removal of theinducer (Fig. 4b), at which point
cell growth slows (Fig. 4a). Within a further 2 h, the cells become mis-
shapen (Extended DataFig. 7e) and start to lose periplasmic contents
(Fig. 4b, SkpA lanes). More detailed analysis of the depleted cells by
transmission electron microscopy shows that all three depletion strains
exhibit a similar perturbed morphology in which the OM no longer
buds OM vesicles®?, but is deformed by massive blebbing, while the
inner membrane remainsintact (Fig. 4c). Thus, depletion of any of the
three essential BAM,; subunits leads to gross defects in OM biogenesis,
similar to those reported in E. coli following BamA depletion®,

We used immunoblotting to assess the effects of depletion of BAM
subunits on the cellular levels of the remaining BAM,; components
and of representative OMPs and SLPs (Fig. 4b). The analysed proteins
include the two most abundant F. johnsoniae OM components?3*,
OmpA (Fjoh_0697), an 8-strand OMP that anchors the OM to the cell
wall, and a SUS complex of unknown function that we show here to
be composed of a 22-strand SusC OMP (Fjoh_0403) together with its
SusD SLP partner (Fjoh_0404) and a structurally unrelated SLP SusE
(Fjoh_0405) (Extended DataFig. 7f). We also assessed the levels of SprF,
al4-strand OMP involved in gliding motility®. The effects of depleting
allthree BAM,;subunits were broadly similar. Levels of OMPs decreased
after depletion of the target subunit, although at differing rates. OmpA
is notably slow to deplete, and it is possible that other BamA homo-
logues present in F.johnsoniae may also be able to insert this simple
OMP, as has recently been demonstrated for the E. coli translocation
assembly module (TAM) complex®. The levels of the SLPs (SusD and
SusE) also decreased, with the exception of BamH, which instead
increased.

Because F. johnsoniae releases OM vesicles (Fig. 2c and ref. 32), we
investigated whether the reduced OM protein levels in the depletion
strains were aconsequence of OM loss through vesicle shedding. How-
ever, we detected no increase in OM protein in the vesicle fraction of
the culture supernatant (Extended Data Fig. 7g). Thus, as in E. coli*®,
the OM is not lost through vesicle production when BAM is depleted.
The observed reduction in OMP levels therefore reflects defects in
their biogenesis.

Analysis of the surface exposure of an overexpressed tagged version
ofthe SLP SusE provides no evidence that SLPs are accumulatinginside
the depletionstrains, and thus no evidence that their exportis blocked
(Fig. 4d and Extended Data Fig. 7h).

We extended our analysis of the effects of the BAM subunit deple-
tions to the whole OM proteome (Fig. 4e and Extended Data Fig. 7i).
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We analysed membranes collected 6 h after removal of the inducer, at
which point depletion of the target subunit is complete but the other
BAM;; subunitsarestill present and the OMis still intact (Fig. 4a—c). The
overall pattern of OM proteome changesinall three depletionsis simi-
lar, with marked decreases in the levels of many OMPs and some SLPs
(Fig.4e and Extended DataFig. 8a). Thus, removal of the essential BAM,;
subunits has the general effect of reducing the levels of OM proteins.

Asanalternative tofully depleting the BAM; subunits, we also inves-
tigated the effects of chronically reducing the steady-state concentra-
tionof BamH to alevel at which there is a marked effect on cell growth
(Fig.4a,f). Cells of this strain had less severe defectsin OM morphology
than after full BamH depletion, although the budding of OM vesicles
seeninthe parental strain was almost fully suppressed (Fig. 4c). The dif-
ferencesin the steady-state OM proteomein thisstrainrelative to that
in wild-type cells followed the same trends as the proteome changes
seeninthetotal depletion experimentsinshowing ageneral reduction
in OMPs and SLPs (Fig. 4f,g and Extended Data Figs. 7i and 8a).

In summary, the loss of either BamG or BamH results in changes in
the OM proteome and cellular morphology that closely match those
associated with the totalloss of BAM function that occurs when BamA
isremoved. Thus, BamG and BamH are both essential for the core BAM;
function of OMP insertion.

Isolation of a bamH suppressor mutant

The requirement for BamG and BamH in BAM; function could reflect
adirectinvolvement of these subunits in the general OMP biogenesis
function of the BAM complex. However, the same phenotype could also
ariseindirectly ifBamG and BamH have aspecialized rolein the matura-
tionof asubset of BAM;clients such thatin their absence these clients
accumulate on BamA and interfere with its ability to carry out general
OMP biogenesis. Although no additional proteins corresponding to
trapped substrates were co-purified with BamA complexes isolated
from strains depleted for BamG or BamH (Extended Data Fig. 9a,b),
the hypothesis that BamG and BamH have client-specific roles in BAM;
functionsuggests thatit might be possible toidentify suppressor muta-
tions that relieve the secondary effects on general BAM function of
BamG or BamH removal.

We were able to select aspontaneous mutant of the BamH depletion
strain thatallowed growth in the absence of the inducer aTC. Genome
sequencingidentified a Q801K substitutionin BamA as most probably
responsible for the suppressor phenotype. Re-creation of the BamA
Q801K substitutionin acleanbackground permitted deletion of both
bamH and its orthologue bamH2, confirming that this single amino
acid substitution was responsible for the bamH suppressor phenotype
and that it did not operate through upregulating hamH2 expression.
The resultant bamA%°™* AbamH AbamH2 strain (hereafter bamH*"?)
grew as rapidly as the wild-type strain on rich medium (Fig. 5a), even
though BamH was absent (Fig. 5b). Thus, although bamH behaves as
anessential component of BAMy;in the native context, itis dispensable
in an experimentally modified genetic background. This has paral-
lels to the way that E. coli BamD can be deleted in a bamA suppressor
background®. Of note, the bamA%°™ mutation did not allow deletion
of bamG, indicating that BamH and BamG have non-identical functions
(Extended Data Fig. 4a).

The bamH** strain had normal cellular morphology (Fig. 5¢) and no
defectin OM integrity, SLP export or gliding motility (Extended Data
Fig.9c-e). The SusC, SusD and SusE proteins were restored to wild-type
levels (Fig. 5b) and the cell was able to assemble these proteins into
SusCDE complexes (Extended Data Fig. 9f). Thus, the most abundant
F.johnsoniae SUS system does not depend on BamH for its biogenesis.

Analysis of the OM proteome of the suppressor strain showed
strong restoration of the levels of many OMPs and SLPs relative to
BamH-depleted conditions (Fig. 5d and Extended Data Fig. 8b). How-
ever, thelevels of other OM proteins recovered poorly, suggesting that
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Fig.4|Depletionanalysis of the essential BAM; subunits. Strains are the
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with either astrong (bamH“?) or weak (bamH"") inducible promoter. SkpA s
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a-d, Strains were cultured inrich (Casitone yeast extract, CYE) medium.
TheaTCinducer of the target gene was removed at 0 hwhere indicated (-aTC)
toinitiate subunitdepletion. Samplesinb-d were taken at the indicated time
pointsina.a, Growth curves. Dataare mean +s.d. b, Immunoblots of whole-cell
lysates. ¢, Representative transmission electron microscopy images showing
OMdefectsinthe depletionstrains. Yellow arrows highlight budding OM
vesicles; black arrows highlight OM blebbing and rupture. Scale bar, 500 nm.

d, Depletion of BAM; subunits for 6 h does not change the surface exposure of
the SLPSusE as assessed by proteinase Kaccessibility. Triton X-100 permeabilizes

these proteins were particularly sensitive to the loss of BamH. These
sensitive proteins were almost all SusCD pairs and their SLP partners
(Extended DataFig. 8b). Thus, BamH may be particularlyimportantin
the biogenesis of a subset of SUS systems.

Discussion

Our phylogenetic and experimental analysesindicate that BamADGH
constitute the essential core of the Bacteroidota BAM complex with
whichaspecies-variable complement of accessory subunits associate.
This patternis consistent with acontemporaneous characterization of

log, FC (depleted/induced) log, FC (induced/WT)

the OM. Reactions were stopped immediately (¢,) or after 20 min (¢,,) and
analysed byimmunoblotting. e, Comparative whole-membrane proteome
analysis of depleted (-aTC) versusinduced (+aTC) strains collected at the 6 h
time pointina.Datapoints for OMPs and SLPs are coloured asindicated and the
most highly expressed OM proteins are labelled. A significance threshold is
drawnaccording to atwo-tailed t-test with a false discovery rate (FDR) of 0.1
andavariance correction constant S,of 0.1. Data are averaged over three
biological repeats. FC, fold change. f,g, Analysis of chronic BamH depletion
inaninduced strain (hamH"" + aTC) in which aweak promoter resultsinthe
incompleterestoration of wild-type BamH levels. f, Whole-cellimmunoblots.
Arrow indicates BamH; asterisk indicates a non-specific band. g, As e but
comparing chronic BamH depletion (bamH"" strain + aTC) relative to the wild
type.a-d,f,Similar datawere obtained for three biological repeats.

BAM complexes from Bacteroides thetaiotaomicron and P. gingivalis*,
which conserve only BamADGH from the BAM; complex but have three
distinct and non-essential SLP subunits (though two of these have PPI
folds resembling one of the BamM, domains). Note that the subunit
nomenclature in that study matches that used here. Variationin acces-
sory subunit composition has previously been observed between the
BAM complexes of Proteobacteria**2.

The Bacteroidota BAM complex has previously been proposed
to be involved in SLP export™*¢, Consistent with this suggestion, we
find that blocking core BAM,; function through depletion of BamA
reduces SLP levels (Fig.4a-c). However, assigning causality is complex
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Fig.5|Characterization of a bamH suppressor mutant. Comparative
characterization of the recreated bamH**” mutant (bamA%°* AbamH AbamH?2)
and wild-typestrains.a, Growth onrich (CYE) mediumin the absence of aTc.
Dataaremean +s.d.b, Whole-cellimmunoblots. SkpAis a periplasmic protein
to control for OMintegrity. GroEL is acytoplasmic protein as loading control.
BamAand BamG are detected via epitope tags. Asterisk indicates non-specific
bands. ¢, Representative transmission electron microscopy images of the
wild type and bamH**? mutant. Yellow arrows highlight budding OM vesicles.
Scalebar,500 nm.d, Comparative whole-membrane proteome analysis of the
bamH*** strainrelative to aBamH-induced strain (bamH®? + aTC). Data points

because any OM proteininvolved in SLP export willindirectly depend on
BAM;; for their ownbiogenesis. Furthermore, our biochemical analysis
provides no evidence that loss of BAM,; leads to the accumulation of
non-exported SLPs inside the cell (Fig. 4d).

The BAM,; canopy provides a protected extracellular cavity above
the position in the membrane where client OMPs assemble on BamA,
suggesting thatit functions as an extracellular folding vestibule. A pos-
sible precedent for a BAM-like machine providing trans-side folding
assistance comes from the mitochondrial SAM complex, which contains
subunitsthat contact client OMPs from the cytoplasmic (external) side
of the membrane*. The BAM; canopy might protect folding intermedi-
ates on the BAM complex from proteolysis by sterically blocking the
access of proteases in the extracellular environment. Similarly, the
presence of the canopy should sterically exclude lipopolysaccharide
molecules (which have large head groups and form rigid arrays in the
OM"*) from the region of the membrane next to the lateral seam. This
would provide a patch of phospholipid bilayer in the OM for client
OMPs to fold into.

The novel BamG, BamH and BamM subunits of BAMj; are likely to
expand the range of OMPs inserted relative to the canonical BAM,
complex and therefore act on specific structural classes of proteins
thatarefoundonlyinthe Bacteroidota. Inaddition, their cell surface
location implies that the novel subunits act on the extracellular por-
tions of BAM substrates. Given these expectations, itis likely that these
components are involved in one or more of the following processes:
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WT bamH**

- .

- —

for OMPs and SLPs are coloured as indicated and the most highly expressed OM
proteins arelabelled. Proteins that show poor recovery in the bamH**" strain
inaposthoc ANOVA withBamH-induced and depleted strains are numbered
asinExtended DataFig.8b. Asignificance thresholdisdrawnaccordingtoa
two-tailed t-test withaFDR of 0.1and a S, of 0.1. Data are averaged over three
biological repeats. a-c, Similar data were obtained for three biological repeats.
Cellswere analysed (b,c) and membranes prepared (d) at the 6 h time pointina.
e, Size comparisonbetween BAMand atypical SusCD complexand OmpA.
SusCD and OmpA areillustrated using homologous proteins of known sstructure
fromother organisms (labelled with their PDB accession numbers).

biogenesis of OMPs with large extracellular regions; assisting BamA
totransportand fold SLPs (but see comments above); or allowing the
assembly of the abundant SusCD family complexes that characterize
the Bacteroidota OM. In this context, it may be important that the only
FCB phylum that lacks BamG and BamH proteins (the Chlorobiota) also
lacks SusCD systems and the FCB-specific T9SS translocon channel
SprA, which has more than 150 kDa of polypeptide on the extracel-
lular side of the membrane® (Extended Data Table 2). Thus, thereisa
correlation between having a BAM,-like BAM complex and being able
to build the complex OMPs that characterize the FCB superphylum.
Our observation that a subset of SusCD proteins are only minimally
recovered by abamH suppressor mutation (Fig. 5d) supportstheidea
thatatleast BamHisinvolvedin the assembly of some SusCD systems.

InFig. 5e, we compare the proportions of BAM; with those of the
SusCD unitthat it may assemble as well as the more classical E. coli OMP
substrate OmpA that does not have an extensive extracellular domain.
Although SusC could be accommodated under the BAM; canopy, the
full SusCD complex cannot do so without the canopy being raised. This
appears unlikely owing to the tethering of the canopy to BamA and
BamG atone end, and to the membrane by the lipid anchor of BamM at
the other. Thus, SusCis likely to fold on BAM, and be at least partially
released before forming a complex with its SusD partner.

We were able to select a suppressor mutation in bamA that com-
pensates for the loss of the BamH subunit. This single amino acid
substitution in BamA is sufficient to restore OMP biogenesis and



OM morphology (Fig. 5b,c), showing that general OMP insertion in
F.johnsoniae does not physically require the presence of BamH. It is
unlikely that the suppressing amino acid substitution in BamA func-
tions by replicating the role of BamH, asit is difficult to see how altera-
tions in BamA could create a similar structural environment to the
BamH-containing extracellular canopy. Instead, it is most plausible
that the suppressor substitution acts by compensating for the toxic
consequences of loss of BamH function. Since removal of BamH closely
phenocopies the loss of BamA (Fig. 4b,c,e-g), the most probable sup-
pression scenario is that loss of BamH blocks BamA function through
the accumulation of stalled BamH-requiring substrates and that this
blockage is relieved by a structural change in BamA that corrects the
problem, for example, by accelerating substrate release. GIn801, the
BamA residue thatis substituted in the bamH suppressor, islocatedin
extracellularloop L6, whichlies over the extracellular end of the BamA
pore (Fig.2a). GIn801is hydrogen-bonded through its side-chain oxygen
atomto the main chain amine of Gly591in adjacentloop L5 (Fig. 2a), so
itislikely that its substitution disrupts the packing of the BamA extra-
cellular cap. We speculate that this may marginally destabilize BAM-
substrate interactions, allowing the release of misfolded substrates.
Although analysis of the bamH suppressor allowed us to identify
certain SusCD proteins that are heavily dependent on BamH for their
biogenesis, many other SusCD systems, including the most abundant
SusCDE complex, were well-restored in the same background (Fig.5b,d
Extended DataFig. 9d). Weinterpret this asindicating that most BamH
clientsareable to fold without BamH during the vast majority of BAM;
turnovers and that BamH is only required to correct asmall proportion
of insertion events that go wrong. In this model, BamH has arole in
quality control that preventsinfrequent errors in folding blocking the
BAM,; complex. Alternatively, BamH may have amore critical rolein the
biogenesis of these proteins under specific conditions, such as stress
or under conditions that are not readily replicated in the laboratory.
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Methods

Bacterial strains and growth conditions

Allstrains and plasmids used in this work are listed in Supplementary
Tables2and 3. F. johnsoniaewas routinely cultured aerobically in Casi-
tone yeast extract (CYE) medium* at 30 °C with shaking. For some
physiological studies the cells were cultured in PY2 medium®* as indi-
cated below. For experiments testing growth on complex sugars cells
were culturedina96-well platein a CLARIOstarPlus plate reader using
modified minimal A medium® and containing 0.25% (w/v) of either
carob galactomannan (Megazyme, 11078-30-1) or tamarind xyloglu-
can (Megazyme, 37294-28-3) as the sole carbon source. E. coli strains
were routinely grown aerobically in LB medium at 37 °C with shaking,
or on LB agar plates. Where required, 100 pg ml™ erythromycin was
used in the growth medium for F. Johnsoniae. 100 pg ml™ ampicillin
or 50 pg ml™ kanamycin were used in the growth medium for E. coli.
aTC (CAY10009542-50 mg, Cambridge Bioscience) was used as afinal
concentration of 0.2 pg ml™ (liquid culture) and 2 pg ml™ (agar plates).

Genetic constructs

Plasmids were constructed by Gibson cloning* using the primers and
target DNA in Supplementary Table 4. Suicide and expression plas-
mids were introduced into the appropriate F. johnsoniae background
strain by triparental mating as previously described*. Chromosomal
modifications were introduced using the suicide vector pYT313 har-
bouring the counter-selectable sacB gene as previously described*. All
plasmid constructs and chromosomal modifications were confirmed
by sequencing.

Construction of a tightly regulated gene expression system for
F.johnsoniae

The aTC-inducible systems for the depletion of essential Bam com-
ponents (Extended DataFig. 7a) were based on the native F. johnsoniae
ompA and fjoh_0824 promoters and contain the 100 bp upstream of
ompA or fjoh_0824. Guided by the observations of Lim et al.**, a tet02
site (TetR binding site) was inserted upstream of the conserved -33
motifin these promoters and another tetO2 site downstream of the
conserved -7 motif generating the synthetic promoters P, 4inq,c and
Pyon 0s24mauc (EXtended Data Fig. 7b). The constructs also contain tetR
under the control of an additional copy of the constitutive F. johnso-
niaeompA promoter. The finalinducible systems containing the gene
to beinduced were integrated into the chromosome at an assumed
phenotypically neutral site?**° by replacing fjoh 4538 to fjoh 4540.

The designed inducible systems were validated using strainsinwhich
aNanoLuc reporter gene® was placed under the control of the chro-
mosomally integrated aTC-inducible systems (Extended DataFig. 7c).
Overnight cultures of these strains were diluted 1:100 into fresh CYE
medium in the absence or presence of 0.2 ug ml™ aTC and cultured
for 6 h to mid-exponential phase (ODg,, ~ 0.6). Cells were collected
and resuspended in PY2 medium to OD,, = 0.6. A volume of 50 pl of
cell resuspension was mixed with 50 pl of reaction solution (48 pl PY2
mediumsupplemented with 2 pl of furimazine (Promega)) ina96-well
plate and the luminescence signal measured in a CLARIOstar™s plate
reader.

Strains to enable the depletion of the essential BAM; subunits were
constructed by introducing a copy of the target gene under the control
of the designed inducible system into the chromosome at the phe-
notypically neutral site. The native copy of the target gene was then
deleted in the presence of aTC to allow expression of the introduced
copy of the gene.

Purification of BAM and SusCDE complexes

To purify complexes containing Twin-Strep tagged BamA, the rele-
vant strain was cultured for 22 h in CYE medium using 11 culture vol-
ume in 2.5 | flasks. A total culture volume of 12 | was used for sample

preparations for structure determination, and 4 | of culture was used
for analytical purifications of BAM; variants. Cells were collected by
centrifugationat12,000g for 30 min and stored at—20 °C until further
use. All purification steps were carried out at 4 °C. Cell pellets were
resuspended inbuffer W (100 mM Tris-HCIpH 8.0,150 mM NaCl,1 mM
EDTA) containing 30 pg mi™ DNase I, 400 pg ml™ lysozyme and 1 mM
phenylmethylsulfonyl fluoride (PMSF) at a ratio of 5 ml of buffer to
1g of cell pellet. Cells were incubated on ice for 30 min with constant
stirring before being lysed by two passages through a TS series 1.1 kW
cell disruptor (Constant Systems) at 30,000 PSI. Unbroken cells were
removed by centrifugation at 20,000g for 20 min. The supernatant
wasrecovered and total membranes were collected by centrifugation
at230,000g for 75 min. Membranes were resuspended in buffer W to
a protein concentration of 6.5 mg ml™ and solubilized by incubation
with 1% (w/v) lauryl maltose neopentyl glycol (LMNG, Anatrace) for
2 h.Insoluble material was removed by centrifugation at 230,000g for
75 min. Endogenous biotin-containing proteins were masked by addi-
tion of 1 ml BioLock solution (IBA Lifesciences) per 100 ml of superna-
tantand incubation for 20 min with constant stirring. The solution was
then circulated through a Strep-TactinXT 4Flow High Capacity column
(IBA Lifesciences) overnight. The column was washed with 10 column
volumes of buffer W containing 0.01% LMNG (buffer WD) and bound
proteins were eluted with 6 column volumes Strep-TactinXT BXT buffer
(IBA Lifesciences) containing 0.01% LMNG. The eluate was concentrated
to 500 pl using a100-kDa molecular weight cut-off (MWCO) Amicon
ultra-15 centrifugalfilter unit (Merck) and theninjected onto aSuperose
6Increase10/300 GL column (Cytiva) previously equilibrated in buffer
WD. Peak fractions were collected and concentrated using a100-kDa
MWCO Vivaspin 500 column (Sartorius).

Purification of SusCDE complexes with aN-terminal Twin-Strep tag
on SusC was carried out by the same protocol.

Peptide mass fingerprinting

Samples were excised from Coomassie-stained gels. For whole sample
proteomic analysis, SDS-PAGE was carried out only until the sample
had fully entered the gel and the protein smear at the top of the gel
was excised. Samples were subject to in-gel trypsin digestion and
electrospray mass spectrometry at the Advanced Proteomics Facility
(University of Oxford, UK).

Immunoblotting
Immunoblotting was carried out as previously described®. Antibodies
against BAM,; subunits, Sus proteins and SkpA were raised in rabbits
against His-tagged recombinant proteins produced using the plasmids
listed in Supplementary Table 3. Antiserum against OmpA>* was pro-
vided by S. Shibata and antiserum against SprF>® by M. McBride. The
following commercial antisera were used: anti-Strep-tag (34850 Qia-
gen), anti-GroEL (G6532 Merck), anti-ALFA-Tag (N1582 Synaptic Systems
GmbH), anti-His-tag (H1029-100UL Merck Life Science), anti-HA-tag
(26183 Thermo Fisher Scientific), anti-mouse IgG peroxidase conju-
gate (A4416 Merck) and anti-rabbit IgG peroxidase conjugate (31462
Pierce). Antibodies were used at the following dilutions: anti-His-tag
and anti-HA-tag, 1:1,000; anti-SprF, 1:2,500; anti-BamH, anti-BamM,
anti-BamP, anti-SusC, anti-SusD, anti-SusE, anti-SkpA, anti-Strep-tag
and anti-ALFA-tag, 1:3,000; anti-OmpA and anti-GroEL, 1:50,000.
Original uncropped gels and immunoblots are shown in Supple-
mentary Fig. 2.

Darobactininhibition experiments

E. coli or F.johnsoniae strains were cultured, respectively, in LB and
CYE medium (supplemented with erythromycin if carrying p"*BamP
or p"BamP4 plasmids). Five-millilitre starter cultures were grown
aerobically overnightat 30 °C, thendiluted into 5 ml fresh medium to
0D = 0.02 and then grown to OD,,, between 0.6 to 0.8. The cultures
were then diluted with freshmedium to OD,, = 0.006. Fifty microlitre



aliquots were transferred into a 96-well plate and mixed with 50 plof the
required concentration of darobactin solutionin growthmedium. The
minimum inhibitory concentration (MIC) for darobactin was assessed
after overnight incubation at 30 °C in a CLARIOstarPlus plate reader.

BamP pull-downs

Strains with pCP11-derived plasmids expressing N-terminal Twin-Strep-
tagged BamP or BamP4 under the control of a remA promoter were
grown aerobically overnight at 30 °Cin erythromycin-supplemented
CYE medium. The culture was diluted into 100 ml fresh medium to
0Dy =0.02and growntoan OD,, = 0.8-1.0. Cells were then collected
by centrifugationat 8,000gfor10 minand resuspendedin 3 ml of buffer
W containing 30 pg mIi™ DNasel,400 pg ml™ lysosome and 1 mM PMSF.
The cells were incubated for 30 min at 4 °C, and then lysed by sonica-
tionfor3 minoniceusingaSonics Vibra Cell Ultrasonic Processor VCX
130 witha 6 mm probe at40% amplitude, withal0 sonto10 s off cycle.
Unbroken cells were removed by centrifugationat20,000g for 20 min.
The supernatant fraction was then centrifuged at 200,000g for1hto
pellet total membranes. The membrane pellets were resuspended toa
protein concentration of 6.5 mg ml™ with buffer W and solubilized by
incubation with1% (w/v) LMNG for 2 h. Insoluble material was removed
by centrifugation at 230,000g for 1 h, and the recovered supernatant
supplemented with 1% BioLock solution before mixing with 50 pl Strep-
TactinXT 4Flow Ibeads (IBA Lifesciences) that had been equilibrated in
buffer WD. Samples were rotated slowly at 4 °C for 2 h and then trans-
ferred into Mini Bio-Spin Chromatography columns (Bio-Rad, 7326207),
and centrifugation at 100g for 1 min. The beads were washed 3 times
with 250 pl buffer WD and bound proteins then eluted with 150 pl of
1x Strep-TactinXT BXT buffer containing 0.01% LMNG. The elute was
concentrated to 30 pl using a10 kDa MWCO Vivispin500 centrifugal
concentrator (VS0102, Sartorius).

BAM,; subunit depletion experiments

Thedesired depletion strain was grown overnightin CYE medium sup-
plemented with 0.2 pg mI™aTC. Cells from 1 ml of the overnight culture
were collected, washed once in1ml CYE, and resuspended in1 ml of
CYE medium. Cells from this sample were then used to inoculate 15 ml
of CYE medium, either with or without 0.2 pg ml™aTC, to OD,, = 0.02.
The cells were then cultured aerobically at 30 °C and cell samples col-
lected into SDS sample buffer every 2 h for subsequent analysis by
immunoblotting. Samples forimaging or membrane preparation were
collected and analysed as detailed below.

To purify BamA complexes after depleting the essential BamG or
BamH subunits, a200 ml overnight culture of the appropriate strain
growninthe presence of 0.2 pg ml™ aTC was collected and resuspended
inthe same volume of fresh CYE medium without aTC. This sample was
usedtoinoculation8 1of CYE without aTC to OD,, = 0.1which was then
cultured aerobically at 30 °C for 6 h. Cells were collected and BamA
complexes processed for purification as described above.

Microscopic analysis of cells during BAM subunit depletions

Live cellswereimaged directly in growth medium by spotting samples
taken from depletion cultures onto a 1% agarose pad prepared in PY2
medium. Phase contrastimages were acquired on aninverted fluores-
cence microscope (Ti-E, Nikon) equipped with a perfect focus system,
a100xNA1.4 oilimmersion objective, amotorized stage,and asCMOS
camera (OrcaFlash 4, Hamamatsu).

For transmission electron microscopy, cells were collected at the
required time points during depletion by centrifugation at 8,000g
for 5 min. After carefully removing the supernatant, cell pellets were
gently resuspended in 1 ml of fixative solution (2.5% glutaraldehyde,
4% formaldehydein 0.1 M PIPES buffer, pH 7.4) and incubated at room
temperature for 1 h. Following fixation cells were washed with TEM
buffer (100 mM PIPES NaOH pH 7.2), treated with TEM buffer contain-
ing 50 mM glycine, washed againin TEM buffer, and then subjected to

secondary fixation with TEM buffer containing 1% (w/v) osmium tetrox-
ideand 1.5% (w/v) potassium ferrocyanide. Samples were then washed
extensively with Milli-Q water, stained with aqueous 0.5% (w/v) uranyl
acetate overnight, then washed again with Milli-Q water. The samples
were dehydrated through an ethanol series and infiltrated with and
embeddedin TAAB low viscosity epoxy resin ahead of polymerization at
60 °Cfor24 h.Sections of 90 nmwere cut from the resin blocks using a
LeicaUC7 Ultramicrotome and collected onto 3 mm copper grids. The
sections were then post-stained with lead citrate and imaged using a
JEOL Flash 120 kV TEM equipped with a Gatan Rio camera.

Whole-membrane proteomics

Fifteen millilitres of cells at the 6 h time point of the standard depletion
experiment were collected by centrifugationat 8,000gfor 5 minat4 °C.
The cells were resuspended in 1 ml of buffer W and lysed on ice using
a probe sonicator (Sonics Vibra Cell, probe 630-0422) at 40% power
by 12 repeats of a10 s on/10 s off pulse cycle. After lysis, the samples
were centrifuged at 20,000g for 20 min at 4 °C to remove cell debris.
The supernatant was then centrifuged at 135,000g for 45 min at 4 °C
topellet the membranes. The membranes were resuspended in buffer
W and the protein contents of the samples normalized by A, .- The
samples were runtogether on SDS-PAGE gels and stained with Coomas-
sie Blue (Extended DataFig. 7i) to confirm that normalization had been
correctlyimplemented. Statistical methods were not used to determine
sample size. Randomization and blinding were not used.

Membrane fractions were resuspended in lysis buffer containing 1%
SDS, 0.1 Mammonium bicarbonate pH 8.0. Samples were sonicated for
5x15sinawater bath with 15 sincubations onice between each pulse
cycle. The samples were clarified by centrifugationat17,500gfor 30 min
and 50 pg of total protein lysate was taken for analysis. Samples were
reduced for 30 min using 10 mM tris(2-carboxyethyl)phosphine (TCEP)
followed by alkylation for 30 minin the dark using 2-chloroacetamide.
SpeedBeads Magnetic Carboxylate Modified Particles (GE Healthcare)
were mixed with the sample in a 10 volumes beads: 1 volume sample
ratio and the samples shaken for 10 min at 1,000 rpm. The beads were
then washed twice with 70% ethanol followed by 100% acetonitrile.
This procedure was repeated 8 times.100 mM ammoniumbicarbonate
was added to the washed beads and pre-digestion with endoprotease
LysC (Wako;1:100) was carried out at 37 °C for 2 h. This was followed by
16 h digestion with trypsin (Promega, 1:40) at 37 °C. The supernatant
was collected and any remaining bound peptides were eluted from
the beads using 2% dimethyl sulfoxide (DMSO). Digested peptides
were loaded onto C18 stage tips, pre-activated with 100% acetonitrile
and 0.1% formic acid and centrifuged at 4000 rpm. The tips were then
washed with 0.1% formic acid and eluted in 50% acetonitrile/0.1% formic
acid. Eluted peptides were dried in aspeed-vac.

Peptide analysis employed a Thermofisher Scientific Ultimate
RSLC 3000 nano liquid chromatography system coupled in-line to
a Q Exactive mass spectrometer equipped with an Easy-Spray source
(Thermofisher Scientific). Peptides were separated using an Easy-Spray
RSLC C18 column (75 pminternal diameter, 50 cmlength, Thermofisher
Scientific) usinga 60 minlinear 15% to 35% solvent B (0.1% formic acid
in acetonitrile) gradient at a flow rate 200 nl min™.. The raw data were
acquired on the mass spectrometer in a data-dependent acquisition
(DDA) mode. Full-scan mass spectrawere acquired in the Orbitrap (Scan
range 350-1,500 m/z, resolution 70,000, AGC target 3 x 10°, maximum
injection time 50 ms). The 10 most intense peaks were selected for
higher-energy collision dissociation (HCD) fragmentation at 30% of
normalized collision energy. HCD spectra were acquired in the Orbit-
rap at resolution 17,500, AGC target 5 x 10*, maximum injection time
120 ms with fixed mass at 180 m/z.

Mass spectrometry data were analysed using MaxQuant 2.5.1.0 as
previously described™ to obtain label-free quantification values that
were then used for data processing in Perseus 2.1.3.0°2. Label-free quan-
tification values were log,-transformed and categorically grouped by
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replicates. Rows were filtered based on two valid values in each group
and then missing values were replaced using anormal distribution with
awidth of 0.3 and down shift of 1.8 (default values). Then, dataset was
normalized by subtracting the medians of each sample. After visually
verifying anormal distribution and a linear correlation, sample pairs
were subjected to atwo-tailed ¢-test using a false discovery rate (FDR)
of 0.1and a S, of 0.1to define a threshold of statistical significance.
Proteins were represented in a volcano plot, according to the log, of
their enrichment and the -log,, of the t-test P value.

AnANOVA test was carried out for indicated groups of proteins using
the Benjamini-Hochberg method with a FDR of 0.05 for truncation.
Then, apost hoc Tukey’s honest significant difference test for one-way
ANOVA using aFDR of 0.05 was carried out. Proteins were then filtered
by ANOVA significance and by category to representin aheat map their
honest significant difference scores, as indicated.

A batch normalization using empirical Bayes method was carried
outwith the ComBat script® for PerseusR package 0.3.4%* to make the
heat map for all depletions (Extended Data Fig. 8). Then, samples were
subjected to the statistical test previously described.

The proteins obtained from the mass spectrometry experiments
were categorized as follows. Proteins with signal peptides or lipopro-
tein signal peptides were first extracted using SignalP 6.0% to obtain
datasets containing only OM plus periplasmic proteins, or lipoproteins,
respectively. Proteins were then manually sorted to the categories
OMP or SLP. This sorting was carried out using Uniprot entry data that
included AlphaFold®* models. Lipoproteins were only classified as SLPs
if they were either SusD homologues or if they were found at alocus
coding SusCD systems.

Determination of cell surface exposure of Sus

The strain for analysis was transformed with plasmid pXL184 which
expresses His-tagged SusE. The cells were then grown overnight in
CYE supplemented witherythromycin, and for BAM subunit depletion
strains with 0.2 pg mI™aTC. Cells were collected, resuspended in CYE
medium, and then used toinoculate 10 ml of erythromycin-containing
CYE medium to OD,, = 0.02, supplementing with 0.2 pg ml™ aTC as
required. The cells were cultured for 6 h before being collected by
centrifugation and resuspended in phosphate buffered saline (PBS)
containing 10 mM MgCl, to a total volume of 80 pland ODy, =1.Sam-
ples were supplemented as appropriate with 200 pg ml™ proteinase K
(Thermo Fisher) and 1% (v/v) Triton X-100 (Merck) and incubated for
20 minatroomtemperature. Reactions were stopped by the addition
of 5mM PMSF (ITW Reagents) followed by incubation at 100 °C for
5 min, addition of SDS-PAGE sample buffer, and further incubation
at100 °C for 5 min before analysis by immunoblotting.

Isolation of outer membrane vesicle fraction

Theisolation of outer membrane vesicles (OMVs) was performed essen-
tially as in ref. 38. In brief, cells were separated from culture superna-
tant by centrifugation at 8,000g for 5 min and the pellets reserved as
the whole-cell fraction. Culture supernatant from the equivalent of
2 ml of culture at OD,,, =1 was filtered through a 0.2 pum filter (Mil-
liporeSigma, SLGPR33RB) and concentrated using a100 kDa molecu-
lar weight cut-off Amicon Ultra-4 centrifugal filter (MilliporeSigma,
UFC810096) to produce the OMV fraction. Samples were adjusted to
equal volume before analysis by immunoblotting.

Isolation of a spontaneous suppressor of BamH depletion

The BamH depletion strain XLFJ_1140 was grown overnight in CYE
medium supplied with aTC. One millilitre of cells was collected by
centrifugation at 8,000g for 3 min, washed once with CYE and then
diluted to a starting OD¢y, = 0.2 in 10 ml fresh CYE medium without
aTC. After culturing for 6 h, cells were diluted 1:200 into fresh CYE
medium without aTC and cultured for a further 2 days before plating
on CYE agar to obtain single colonies. Individual clones were cultured

in parallel with and without aTC in CYE and the expression of BamH
analysed by whole-cellimmunoblotting. Clones that grew withoutaTC
but still expressed BamH only following aTC induction (showing that
they were not constitutively de-repressed for BamH synthesis) were
subjected to genome sequencing (Plasmidsaurus). Thisidentified the
potential suppressor mutation bamA%° whichwasintroducedintoa
BAMwild-type background, followed by successive deletions of bamH
and bamH2to produce the bamH** strain XLFJ_1198.

Cryo-EM sample preparation and imaging

Four microlitres of either fraction A (for the BAM;; complex, 1.3 mg ml™)
orfraction B (for the BamAP complex, 1.3 mg ml™) of the BAM; prepara-
tion (Fig.1a), or of the BamP-deleted BAM complex (ABamP complex,
1.2 mg ml™) was adsorbed onto glow-discharged holey carbon-coated
grids (Quantifoil 300 mesh, AuR1.2/1.3) for 10 s. Grids were blotted for
2sat10°C,100% humidity and frozeninliquid ethane using a Vitrobot
Mark IV (Thermo Fisher Scientific).

Movies were collected in counted mode, in Electron Event Represen-
tation (EER) format, on a CFEG-equipped Titan Krios G4 (Thermo Fisher
Scientific) operating at 300 kV with a Selectris X imaging filter (Thermo
Fisher Scientific) and slit width of 10 eV, at x165,000 magnification on
aFalcon4idirect detection camera (Thermo Fisher Scientific), corre-
spondingtoa calibrated pixel size of 0.732 A. Movies were collected at
atotal dose ranging between 52.0-60.3 e” A2 (Extended Data Table1),
fractionated to 1.0 e” A per fraction for motion correction.

Cryo-EM data processing

Patched motion correction, contrast transfer function (CTF) parameter
estimation, particle picking, extraction and initial 2D classification
were performed in SIMPLE 3.01%. All downstream processing was car-
ried out in cryoSPARC 4.5.3" or RELION 4.03%, using the csparc2star.
py script within UCSF pyem 0.5* to convert between formats. Global
resolution was estimated from gold-standard Fourier shell correlations
(FSCs) using the 0.143 criterion and local resolution estimation was
calculated within cryoSPARC.

The cryo-EM processing workflow for the BAM; complex s outlined
inExtended DataFig. 1. In brief, particles were subjected to one round
of reference-free 2D classification (k = 200) using a 240 A soft circular
mask within cryoSPARC resulting in the selection 0f 2,153,927 clean par-
ticles. Asubset of these particles (180,179) was subjected to multi-class
ab initio reconstruction using a maximum resolution cut-off of 7 A,
generating 4 volumes. These volumes were lowpass-filtered to 20 A
and used as references in a heterogeneous refinement against the full
2D-cleaned particle set. Particles (903,299) from the most populated
and structured class were selected and non-uniform refined against
their corresponding volume lowpass-filtered to 15 A, generating a
3.0 A map. Bayesian polishing in RELION followed by duplicate par-
ticle removal generated a 2.5 A map after non-uniform refinement,
which could be further improved to 2.3 A after local and global CTF
refinement (fitting beam tilt and trefoil only). These particles were then
subjected to heterogeneous refinement against four compositionally
distinct volumes previously generated by RELION 3D classification
(k=8,3.75° sampling) of a particle subset of pre-polished particles.
Particles (274,708) belonging to the class with strong BamD and POTRA
densities were selected and non-uniform refined against their corre-
sponding volume, generating a 2.4 A map. Additional alignment-free 3D
classificationin RELION was performed (k = 6) using a soft mask cover-
ing BamD and the BamA POTRA domains yielding a class with stronger
density. Particles (55,795) from this class were selected and non-uniform
refined against a previous volume lowpass-filtered to15 A, generatinga
consensus 2.7 A volume. Local refinements were performed against the
consensus volume (lowpass-filtered to 7 A) using soft masks covering
the BamD/POTRA domains or extracellular density, yielding 3.2 Aand
2.7 Avolumes, respectively. ChimeraX®® was used to generate a com-
posite map from the consensus and individual focused maps.



The cryo-EM processing workflow for the BamAP complex is outlined
inExtended DataFig. 6. Two datasets were collected for this sample. In
thefirst dataset particles were subjected to tworounds of reference-free
2D classification (k = 200) using a 200 A soft circular mask resulting
in the selection of 979,474 clean particles. These particles were then
subjected to multi-class ab initio reconstruction (k = 4) using a maxi-
mum resolution cut-offof 8 A, generating 4 volumes. Particles (514,326)
belonging to the 2 most prominent volumes were combined and non-
uniformrefined against one of their corresponding volumes, lowpass-
filtered to15 A, generating a3.7 A volume. The second particle dataset
underwent four rounds of 2D classification (k= 200,200 Asoft circular
mask) followed by multi-class ab initio reconstruction using a maxi-
mumresolution cut-offof 7 A, generating 6 volumes. Particles (438,412)
from the most populated class were selected and refined against their
corresponding volume lowpass-filtered to 15 A, generating a 3.7 A vol-
ume. Particles from both datasets were independently polished within
RELION, combined, and non-uniform refined, fitting per-particle CTF
parameters, yielding a 3.5 Amap. Alignment-free 3D classification was
subsequently performed within cryoSPARC (k = 6), using a soft mask
covering the full protein density of the complex. Particles (96,076) from
the class demonstrating strong density for the N-terminal domain of
BamP were selected and non-uniformrefined against their correspond-
ing volume, lowpass-filtered to 15 A, generating a3.7 A map.

The cryo-EM processing workflow for the ABamP complexis outlined
inExtended DataFig. 5. Inbrief, particles were subjected to two rounds
of reference-free 2D classification (k =200) using a180 A soft circular
mask within cryoSPARC resulting in the selection 0f 1,177,554 clean
particles. These particles were then subjected to multi-class ab initio
reconstruction using amaximum resolution cut-off of 6 A, generating
6 volumes. Particles from volume classes containing BamA barrels were
independently non-uniform refined against their corresponding vol-
ume, lowpass-filtered to 15 A. These particles were subsequently com-
bined and refined against a volume (lowpass-filtered to15 A) from the
most populated class, generating a3.6 A consensus volume. Bayesian
polishingin RELION followed by non-uniform refinement and fitting of
per-particle CTF parameters plus beam tilt and trefoil generated a3.5 A
map. Map quality was furtherimproved by non-uniform refinement of
acleaner particle set (534,368 particles) generated by an additional
round of 2D classification (k =100, 180 A soft circular mask), despite
noincrease innominal resolution. Asecond -barrel could be resolved
in map density at low contour level (0.08). Attempts to improve map
quality for this partner 3-barrel, through extensive 3D classification and
local refinement schemes, did notimprove map quality for this region.

Model building, structure refinement and figure preparation

Iterative model building and real-space refinement using secondary
structure, rotamer, and Ramachandran restraints was performed in
Coot v0.9% and Phenix 1.21%%, respectively. Validation was performed
in Molprobity 4.5.2% within Phenix. Cryo-EM data collection, image
processing and structure refinement statistics are listed in Extended
Data Table 1. Figures were prepared using UCSF ChimeraX v.1.9%.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Cryo-EM density maps and atomic coordinates have been depositedin
the Electron Microscopy Data Bank (EMDB) with the following accession
numbers: EMD-48835 (BAM composite map), EMD-48832 (BAM;; con-
sensus map), EMD-48833 (BAM,; BamHM-focused map), EMD-48834
(BAM,;BamADP-focused map), EMD-48836 (BamAP complex) and EMD-
48837 (BamAD complex). Atomic coordinates have been depositedin
the Protein Data Bank (PDB) with the following accession numbers:

9N2D (BAM;; complex), 9N2E (BamAP complex) and 9N2F (BamAD
complex). The hybrid model of the BAM,;complex s provided in Sup-
plementary Data 1. Raw proteomics data have been deposited in the
PRIDE database with the accession PXD065907. Processed proteomics
source dataand peptide fingerprinting source data are provided with
this paper. Uncropped gels and immunoblots are in Supplementary
Fig. 2. Requests for materials should be addressed to B.C.B. Source
data are provided with this paper.
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Extended DataFig.1|Workflow for the cryoEM analysis of the F.johnsoniae = Image processing workflow for the BamA complexes.b,c, Gold-standard Fourier

BAM, complex and map quality metrics. a, Twin-Strep-tagged BamA Shell Correlation (FSC) curves used for global resolution estimation (b) and local
complexes were purified by Streptactin affinity chromatography and size resolution estimate (c) of consensus (left), extracellular (middle), or periplasmic
exclusion chromatography and the major (highest molecular size) peak was (right) volumes from the BAMg complex.

analyzed. See Fig.1afor corresponding SDS-PAGE analysis of this material.
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Extended DataFig. 2| Further structural analysis of the BAM; complex.
a,Chainordering. Theindicated subunitin each panelis rainbow-coloured from
the N- (blue) to C-terminus (red). b, BamH (green) in cartoon representation with
ligands (glycosylation and lipidation) as space fill representation. The proteinis
viewed fromthedirectionindicatedin (a) and overlaid with the closest structural
homologue as judged by PDBeFold 2.58%, the chondroitin sulfate-binding
carbohydrate binding module of achondroitinase (dark grey, PDB 8wab, RMSD
2.5Aacross 64 equivalent residues), whichis defined asa DNRLRE domain-
containing protein by UniProtKB. ¢, BamM (tan) in cartoon representation with
bound metals shown as purple spheres and coordinating residues in ball-and-
stickrepresentation. The proteinis viewed from the directionindicated in

(a) and overlaid with the closest structural homologue as judged by PDBeFold
2.58%, the peptidyl-prolylisomerases (PPI) subunit (dark grey) from the Type 9

Secretion System translocon complex (PDB: 6h3i chain B, RMSD 0.75 A across
74 equivalentresidues). d, Glycosylation and lipidation of BamH shownin
ball-and-stick representation within the cryoEM volume in the context of the
full chain (left) and in closeup (right). The modelled glycosylation was assigned
onthebasis ofthe EM density informed by prior studies of O-glycosylationin
Bacteroidota® but without biochemicalidentification. e, Bound metals within
BamM modelled as calciumions (purple spheres) with coordinating residues
showninball-and-stick representation. The modelis displayed within the EM
density (insets) or showing just the EM density for the metalions (full structure).
The metals were assigned as Caions based on their co-ordination chemistry
(O-only ligation, variable co-ordination number and geometry, and appropriate
bond lengths) and refining to thermal mobility (B) factors that matched those of
theligating proteinatoms.
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Extended DataFig.3 | Genomic organisation of F. johnsoniaebam genes
andbiochemical evidence that BamP4 interacts with the BAM complex.

a, Genomic organisation of F. johnsoniae bam genes. porG®® and skpA® at the
bamAlocus code for components of the Type 9 Secretion system. BamH2 would
be unlikely tointeract with BamM asitlacks the protruding B-hairpin that BamH
uses for this purpose. BamP homologues have related folded domains but
markedly divergeintheinterdomainloop.b-d, BamPinteracts with the BAM,,
complex. Strainsin which the native BamA protein was fused to a HA tag
(HA-bamA allele) were transformed with plasmids overproducing N-terminally

Twin-Strep-tagged BamP (p"SBamP) or BamP4 (p"*BamP4). wt, wild type. Similar
datawere obtained for three biological repeats. b, Immunoblots of whole cells
showing overproduction of BamP or BamP4 relative to native BamP levels.

The cytoplasmic protein GroEL was used as aloading control. ¢,d, Affinity
purification of Twin-Strep-tagged BamP and BamP4 complexes. ¢, Coomassie-
stained SDS-PAGE gel of the wash and elution fractions. BAM subunits were
assigned by comparisonwith (d) and Fig. 1a. d, Immunoblotting analysis of

the elution fractions with anti-HA (to identify BamA), anti-BamH, and anti-
Twin-Strep (to identify BamP and BamP4) antibodies.
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inBAMgsubunits or BAMsubunithomologues. a, Results of attempts to Scalebar,5 mm. Similar datawere obtained for three biological repeats. f,g, OM
delete Bamsubunits and their homologues in different genetic backgrounds. integrity assays. Cells were grown on CYE agar with the indicated additions.
Mutations and their combinations that were viable areindicated by green dots, wt, wild type; AbamP-P3, strain deleted for BamP, BamP2, and BamP3;

while those that could not be constructed are indicated by red dots and are AbamP-P4, straindeleted for all BamP homologues (AbamP-P3 AbamP4).

assumed to disrupt essential cell functions. b, Immunoblots of whole cells and The AporV Aplugbackground permeabilizes the OM through opening the T9SS
isolated membranes of strains containing in-frame deletions of bamMor bamP.  translocon channel. Similar data were obtained for three biological repeats.
The cytoplasmic protein GroEL and OM protein OmpA were used as loading h, BamP overproduction restores vancomycinresistance toastrain lackingall
controls.* non-specific band. Similar results were obtained from 3 biological BamP homologues (strain AbamP-P4). Where indicated strains were transformed
repeats. ¢, Growth curves onrich CYE medium.Shown are themeans+1SDfrom  with plasmids overproducing N-terminally Twin-Strep-tagged BamP (p">BamP)
threebiological repeats. d, Growth curves on minimal medium containingeither ~ or BamP4 (p"*BamP4). wt, wild type. Similar data were obtained for three
galactomannan or xyloglucanas carbonsource. Shownarethemeans+1SDfrom  biological repeats.
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Extended DataFig. 5| Workflow for the cryoEM analysis of the BamA complex
isolated froma AbamPbackground. a, Size exclusion chromatography profile
of BamA complexes purified fromaBamP-deleted background together witha
Coomassie-stained SDS-PAGE gel of the indicated peak fraction that was used for
structure determination. BamA*indicates a proteolysis product of BamA. Similar
results were obtained from 2 biological repeats. b, Image processing workflow
for the ABamP complex. ¢, Gold-standard Fourier Shell Correlation (FSC) curves

used for global resolution estimation. d, Local resolution estimate of the
volume, displayed at two contour levels. e, Density for the unassigned second
barrel taken from the focused 3.7 A volume is shown with either asecond copy
of BamA or BamG docked. Two views are shown from the side (left) or the cell
exterior (right). The shape and size of the volume is clearly more consistent
withthisbeingasecond copy of BamAthanBamG.
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ofthe volume.



Article

a aTC b
L

| Pompa ]' Pinduc Pompainduc

-33
TGTTTTTTTGTAGGTTTTTTCTCTATCACTGATAGGGATTTGATTTTGTATTTAAAAAATTTGGTG
fioh 4538  tetR target fioh_4541 16102
-7
c TTACTTTTGETTGTATCCCTATCAGTGATAGAGAATTAACTAAATTGTAATTAAAAAAATTAAGATG
. -aTc tetO2 start codon
o  +aTc p=0.0023
Pion_os24induc 33
TATTAAAATTTAGTCTCTATCACTGATAGGGAATAATATATTAGITTATAAACTGCATAAAATTTT

tetO2

RLU (x10°)

-7
q‘? AA'I'I'I'Ték:GACG'I'I'CCCTATCAGTGATAGAGAA'I'rTI‘A'I'rACCAAAAA'I‘rAAGTAAAATACTA'ITE
tetO2 start codon

Pompainduc  Pfion_os24induc

e
d P‘?Q ‘(6@ “«?"“ aTC
S e e
aTC - + - + - + w
¥ bamA®P
BamA | e s - |-
BamG -- P
BamH o |
- bamGe®
BamP| |
sion R
GroEL” bamHP
f h
kDa kDa kDa
250 9 250 aTC
- wt  bamA™ bamGe bamH?
150- alC - + - + - + - + 150+ SusC
100 SusC  _ ‘ ‘s c 100 SusC 100 Fioh_0736
. - -— i 7
75 % = —_— - us 75— 75-]
°
so-fetsusp 5 | [N B G 5o JR-SusD 50
37— N 37 37
20- 20| 20| 2|
15- 15 15— 1
Coomassie blue Coomassie blue o-His Coomassie blue Coomassie blue

Extended DataFig.7|See next page for caption.



Extended DataFig.7 | Depletionanalysis of the essential F.johnsoniaeBAM
complex subunits. a, Design of an anhydrotetracycline (aTC)-inducible system
forthedepletion of essential target genesin F. johnsoniae. The TetR repressor
is constitutively expressed under the control of the F.johnsoniae ompA
promoter (P,,,,) and the target geneis regulated by adesigned TetR-repressed
promoter (P,,.,). Inthe presence of theinduceraTCrepression of thetarget gene
by TetRwillbereleased. The genetic systemisintegrated into the F. johnsoniae
chromosomeataneutrallocus. b, Sequences of the designed inducible P,,,,4.in4uc
and Py, 0524.1nauc PrOMoters. tetO2arrays are placed upstream and downstream of
the conserved-33 and -7 RNA polymerase binding sites (boxed) of the selected
promoters.c, Tightregulation of protein expression by the designed inducible
systems. Strains expressing NanoLuc under the control of either the P, 4indc
promoter (XLFJ_1095) or the Py, gs24inauc Promoter (XLFJ_1100) were grown to
mid-exponential phase (OD,, = 0.6) inthe presence or absence of aTC and the
luminescence signal measured. Error barsrepresent the mean +1SD from three
biological repeats. Pvalues were determined with atwo-sided paired Student’s
t-test. RLU, relative luminescence units.d, Comparison of the expression levels
of Bamsubunits in the wild type strain (wt, XLFJ_1078) and corresponding
depletionstrainsgrowninthe presence of the inducer aTc (hamA?, XLFJ_1129;
bamG*?, XLF)_1115; bamH*", XLFJ_1140). Whole cellimmunoblotting of cells
grown to mid-exponential phase (OD;, = 0.6). The blots for the depleted
subunitareboxedinred. The BamH blot for the BamH depletion comparisonis
overexposed (OE) relative to the other BamH blotsin order to detect the low
levelsof BamH inthe depletion strain.BamA and BamG are detected viaepitope

tags.* non-specificband. Similar results were obtained for 3 biological repeats.
e, Phase contrastimages of cells sampled at the indicated time pointsin the
BAM subunitdepletion experiments shownin Fig. 4a. Scale bar, 10 pm. Similar
results were obtained for 3 biological repeats. f, The major F.johnsoniae SUS
complexiscomposed of SusC (Fjoh_0403), SusD (Fjoh_0404), and SusE
(Fjoh_0405). The native SUS complex was purified viaa Twin-Strep tag on the
N-terminus of SusC followed by size exclusion chromatography and analysed
onaCoomassie-stained SDS-PAGE gel. Proteins were identified by peptide
mass fingerprinting. Similar data were obtained for two biological repeats.

g, Outer membrane vesicle (OMV) production does notincrease upon BAM
depletion. Immunoblotting of the OM protein SusCinwhole cells or the OMV
fractionatthe 6 htime pointin Fig.4a. GroEL serves as loading control. Similar
results were obtained for 3 biological repeats. h, Anexogenously-expressed
His-tagged variant of SusE (SusE") isincorporated into the native SusCDE
complex. SusC-containing complexes were purified as described in ffrom

cells expressing SusE"* from a plasmid. The purified material was separated by
SDS-PAGE and characterized by Coomassie-staining (Left) and anti-His tag
immunoblotting (Right). Similar data were obtained for two biological repeats.
i, Exemplar Coomassie-stained SDS-PAGE gel of the whole membrane samples
used for the comparative proteome analysis (Fig. 4e,g) ofinduced/non-induced
(i.e.undepleted/depleted) BAM subunit depletion strains harvested atthe 6 h
time pointin Fig.4a. Proteins presentin the two obviously depleting bands
were assigned by peptide mass fingerprinting. The dataare representative of
thethreerepeatsused for the proteomics analysis.
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and g.b, Comparison of the bamH*”» mutant dataset with theinduced and non-
induced bamH®" datasets. The non-recovered proteins are numbered as
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Extended DataFig. 9 |Isolation of BamA complexes from subunitdepleted
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a,b, Isolation of BamA complexes either (a) in the absence of BamM or (b)
after 6 hof depletion of the essential BamG or BamH subunits. Size exclusion
chromatography profile of Twin-Strep-tagged BamA complexes purified by
Streptactin affinity chromatography (Left) and aCoomassie-stained SDS-PAGE
geloftheindicated peak fractions (Right). BamA*indicates a proteolysis product
of BamA. Theidentities of the BamA* and BamD + BamP bands were assigned by
peptide fingerprinting. Similar results were obtained from 2 biological repeats.
c-f, Characterization of the recreated bamH*» mutant (bamA%°* AbamH
AbamH2).wt, wild type. Similar results were obtained for three biological repeats.

¢, OMintegrity assays. Cellswere grownon CYE agar with theindicated additions.
d, Surface exposure of the SLP SusE. Strains expressing a protease-sensitive
His-tagged variant of SusE (SusE™) were treated as indicated with Proteinase
Kandthe detergent Triton X-100 (to permeabilise the OM). Reactions were
stopped immediately (t,) or after 20 min (t,,) and analysed by immunoblotting
with His tag antibodies. The periplasmic protein SkpA serves asan OM integrity
control. e, Spreading (gliding) morphology of colonies on agar. Scale bar, 5 mm.
f, Purification of the native SusCDE complex via a Twin-Strep tag on the
N-terminus of SusC followed by size exclusion chromatography. Analysedona
Coomassie-stained SDS-PAGE gel.
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Extended Data Table 1| Cryo-EM data collection, refinement and validation statistics

BAMEg, complex
(PDB 9N2D)
(EMD-48835)

BamAP
complex
(PDB 9N2E)
(EMD-48836)

BamAD
complex
(PDB 9N2F)
(EMD-48837)

Data collection and
processing

Magnification 105,000 105,000 105,000
Voltage (kV) 300 300 300
Electron exposure (e—/A?) 60.3 53.7,57.6 52.0
Defocus range (um) -251t0-0.5 -25t0-0.5 -25t0-0.5
Pixel size (A) 0.732 0.732 0.732
Symmetry imposed C1 C1 C1
Initial particle images (no.) 8,534,333 26,309,573 4,959,982
Final particle images (no.) 55,796 96,076 534,368
Map resolution (A) 2.7,2.7,3.2 3.7 3.5
FSC threshold 0.143 0.143 0.143
Map resolution range (A) 2.3-43 2.9-52 2.9-36
2.4-45
2.8-42
Refinement
Initial model used (PDB code)
Model resolution (A) 29 3.9 3.8
FSC threshold 0.5 0.5 0.5
Map sharpening B factor (A?) -- deepEMhancer  deepEMhancer
Model composition
Non-hydrogen atoms 18488 4928 7600
Protein residues 2284 613 948
Ligands 18 -- --
B factors (A?)
Protein 81.9 51.9 87.3
Ligand 157.5 -- --
R.m.s. deviations
Bond lengths (A) 0.003 0.004 0.004
Bond angles (°) 0.700 0.650 0.703
Validation
MolProbity score 2.38 2.1 2.5
Clashscore 9.6 8.5 10.6
Poor rotamers (%) 5.9 3.8 5.2
Ramachandran plot
Favored (%) 95.8 97.1 93.5
Allowed (%) 4.0 29 6.3
Disallowed (%) 0.2 0.0 0.2
CC (mask) 0.88 0.72 0.74




Extended Data Table 2 | Phylogenetic distribution of BAM,, subunits

Phylum (FCB) Class Species BamA BamD BamG BamH BamM BamP SusC SusD SprA
F. johnsoniae ° ° oo oo ° eeoe + + e
Flavobacteriia C. canimorsus e ° ° ° + + e
R. anatipestifer e o ° ° + + o
Cytophagia C. hutchinsonii e ° ° ° + + e
T. ruber o ° ° ° + + e
Bacteroidota Chitinophagia C. pinensis o o o o + + o
B. theta. ° ° oo oo + +
Bacteroidia P. gingivalis ° ° ° ° F + e
P. intermedia o o ° ° + + e
Sphingobacteriia  S. spiritivorum o ° ° ° + +
Saprospiria Aureispira sp. o ° ° ° + + e
Balneolota G. mengyensis e ° ° oo + + o
Ignavibacteriota 1. album o ° ° ° + °
Rhodothermota S. ruber ° ° ° ° + + e
Chlorobiota C. tepidum ° °
Fibrobacterota F. succinogenes e ° ° ° °
Gemmatimonadota G. aurantiaca ° ° ° ° + + o
Calditrichota C. abyssi ° ° oo ° + + e

Distribution of BAM,, subunit homologues within representative members of the Bacteroidota and wider FCB superphylum. Each copy of a coding gene is indicated by a green dot. The pres-
ence of members of the SusC and SusD protein families (red +) and the 36-stranded T9SS translocon barrel SprA'™ are also shown. See also Supplementary Table 1.
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