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Repeated head trauma causes neuron loss 
and inflammation in young athletes

Morgane L. M. D. Butler1,2, Nida Pervaiz3, Kerry Breen2,4, Samantha Calderazzo2,5, 
Petra Ypsilantis6, Yichen Wang3, Julia Cammasola Breda3, Sarah Mazzilli3, Raymond Nicks7, 
Elizabeth Spurlock7, Marco M. Hefti8, Kimberly L. Fiock9, Bertrand R. Huber6,10,11, 
Victor E. Alvarez6,7,11, Thor D. Stein2,5,6,7, Joshua D. Campbell3, Ann C. McKee2,5,6,11 & 
Jonathan D. Cherry1,2,5,6,11 ✉

Repetitive head impacts (RHIs) sustained from contact sports are the largest risk 
factor for chronic traumatic encephalopathy (CTE)1–4. Currently, CTE can only be 
diagnosed after death and the events that trigger initial hyperphosphorylated tau 
(p-tau) deposition remain unclear2. Furthermore, the symptoms endorsed by  
young individuals are not fully explained by the extent of p-tau deposition2, severely 
hampering therapeutic interventions. Here we observed a multicellular response 
prior to the onset of CTE p-tau pathology that correlates with number of years of RHI 
exposure in young people (less than 51 years of age) with RHI exposure, the majority  
of whom played American football. Leveraging single-nucleus RNA sequencing of 
tissue from 8 control individuals, 9 RHI-exposed individuals and 11 individuals with 
low-stage CTE, we identify SPP1-expressing inflammatory microglia, angiogenic and 
inflamed endothelial cells, astrocytosis and altered synaptic gene expression in those 
exposed to RHI. We also observe a significant loss of cortical sulcus layer 2/3 neurons 
independent of p-tau pathology. Finally, we identify TGFβ1 as a potential signal that 
mediates microglia–endothelial cell cross talk. These results provide robust evidence 
that multiple years of RHI is sufficient to induce lasting cellular alterations that may 
underlie p-tau deposition and help explain the early pathogenesis in young former 
contact sport athletes. Furthermore, these data identify specific cellular responses  
to RHI that may direct future identification of diagnostic and therapeutic strategies 
for CTE.

Each year, millions of individuals are exposed to RHIs through contact 
sports, military service and domestic violence. These RHIs are often 
non-symptomatic and non-concussive, and can occur thousands of 
times per year, over the course of decades in some cases. CTE, a progres-
sive tauopathy caused by exposure to RHI1,2, is observed in individuals 
as young as 17. Risk for CTE in exposed individuals is associated with the 
number of years of exposure to RHI and the cumulative force of the hits 
endured3,4. Although much of the current research is focused on severe 
CTE in older individuals, a recent case series of 152 brains from donors 
under the age of 30 identified 63 brains with CTE, highlighting that 
RHI-driven disease is a pressing concern in the young population2. Cur-
rently, CTE can only be diagnosed post-mortem through identification 
of p-tau aggregates in neurons around blood vessels at the depth of the 
cortical sulcus. Our previous research suggests that microglia-mediated 
neuroinflammation occurs prior to the deposition of p-tau5. Other 
work has demonstrated that RHI exposure is associated with astrocytic 

activation, white matter inflammation and damage, blood–brain bar-
rier (BBB) breakdown, serum protein leakage and increases in vascular 
density in the CTE brain5–9. These cellular changes occur prior to overt 
neurodegeneration and are likely to drive many of the early clinical 
impairments that are not explained by the occurrence and extent of 
p-tau pathology. However, studies examining the full extent of these 
cellular phenotypes have been limited. A detailed characterization of 
the early cellular changes in young RHI-exposed athletes is necessary 
to understand the pathogenic mechanisms in CTE and to identify novel 
biomarkers or therapeutic targets relevant to early disease stages.

Cell-type analysis across groups
To identify the earliest RHI-driven changes, we performed single-nucleus 
RNA sequencing (snRNA-seq) using autopsy-confirmed frozen human 
brain tissue from 28 young individuals. Eight non-RHI-exposed controls, 
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9 RHI-exposed individuals without CTE pathology (RHI-only) and 11 
RHI-exposed individuals with diagnosed CTE stage 1 or 2 (CTE) were 
included (Fig. 1a and Supplementary Tables 1 and 2). Of the individu-
als with RHI exposure, all but one individual played American football 
(hereafter referred to as football). The remaining individual played 
soccer (Supplementary Table 2). CTE diagnosis was performed by a 
neuropathologist and based on the presence of CTE pathognomonic 
p-tau lesions10 (Fig. 1b). Grey matter sulcus from the dorsolateral frontal 
cortex, one of the first brain regions affected in CTE, was processed 
for snRNA-seq (Fig. 1a). After quality control and filtering, 170,717 
nuclei of sufficient quality were clustered into 31 initial clusters and 
labelled on the basis of their expression of known cell-type mark-
ers11,12 (Fig. 1c and Extended Data Fig. 1a–n). All major cell types were 
identified. Compositional analysis with scCODA demonstrated no 
significant differences in cell-type abundance across pathological 
groups13 (Fig. 1d–f and Extended Data Fig. 2a). Out of all major cell types, 
minimal RHI-associated changes were observed in oligodendrocytes 
and oligodendrocytes precursor cells (Extended Data Fig. 2b–i), prob-
ably resulting from the grey matter focus of the current study. We thus 
elected to focus further analyses on microglia, astrocytes, endothelial 
cells and neurons, consistent with previous studies5,7,8,14.

 
RHI induces distinct microglia subtypes
On the basis of previously demonstrated involvement of microglial 
inflammation in CTE and its important role in neurodegeneration, we 
examined changes in microglial gene expression5. Analysis of 6,863 
microglial cells revealed 11 unique clusters (Fig. 2a). The microglia 
cluster size is consistent with other published studies and believed to be 
appropriately powered11. Cluster 10 contained 263 cells and expressed 
the perivascular macrophage genes CD163, F13A1 and LYVE1, and cluster 
6 was composed of 108 cells that expressed the peripheral monocyte 
genes PTPRC, LYZ and CR1 as previously observed11,15,16 (Fig. 2b).

Clusters 0, 2, 3 and 9 expressed the classical microglial homeostatic 
genes CX3CR1, P2RY12 and NAV2, and were labelled as homeostatic 
microglia. Homeostatic clusters were significantly enriched for nuclei 
from control individuals compared with RHI-only or CTE individu-
als, but there was no significant difference between RHI-only and CTE 
individuals (control versus RHI-only: P = 0.048; control versus CTE: 
P = 0.047; RHI-only versus CTE: P > 0.99; Extended Data Fig. 3a). Homeo-
static microglial proportion decreased with increasing years of football 
play (P = 0.004, β = −12.79). Cluster 7 highly expressed CD83, CCL3 and 
HSP90AA1, reminiscent of a possible pro-resolving phenotype that was 
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Fig. 1 | Cell-type identification and cell proportion analysis across 
pathological groups. a, Experimental workflow. Images created in BioRender. 
Cherry, J. (2025) https://BioRender.com/5kj3gsd. The workflow was run once 
for each sample. FACS, fluorescence-activated cell sorting; GEM, gel bead in 
emulsion. b, AT8 immunohistochemistry of dorsolateral frontal cortex depth 
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analysis of nuclei from all donors labelled for cell type based on cell-type 
marker expression. OPCs, oligocendrocyte precursor cells. d, Expression  
of cell-type markers across cell-type clusters in c. Astro, astrocytes; Endo, 
endothelial cells; Exc, excitatory neurons; Inh, inhibitory neurons; Micro, 
microglia; Oligo, oligodendrocytes. e, Stacked bar plot of pathological group 
fractions within cell-type clusters. f, Stacked bar plot of cell-type counts 
coloured by pathological group.
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recently identified in Alzheimer’s disease17. Cluster 4 had the highest 
differential gene expression of AIF1 (encoding IBA1) across clusters 
and was characterized by expression of the iron-associated genes FTL 
and FTH (also known as FTH1), and ribosome-associated genes such as 
RPS24 and RPS11 (Fig. 2b).

The proportion of microglial subpopulations found in RHI-only 
and CTE individuals were significantly different from controls, with 
the emergence of clusters 1, 5 and 8 in RHI-only and CTE individu-
als (Fig. 2c and Extended Data Fig. 3a–c). For simplicity, these clus-
ters were labelled RHI microglia (RHIM) 1 to 3. We performed gene 
module analysis with hdWGCNA and Celda to identify co-expression 
of possible cellular pathways across subclusters and linear mixed 

modelling statistical analysis to compare Celda gene module expres-
sion (Fig. 2d–l, Extended Data Fig. 4 and Supplementary Figs. 1–3). The 
full list of differentially expressed genes (DEGs) and gene modules 
can be found in Supplementary Tables 9 and 17. The expression of 
homeostasis-associated gene modules was significantly decreased 
in RHIM2 and RHIM3 (Fig. 2g).

Cluster 5, RHIM1, expressed neuronal-associated genes such as 
GRID2, GRIK2 and GRIA4, with top identified Gene Ontology (GO) 
terms including ‘synapse organization’ (Fig. 2b and Extended Data 
Fig. 3g). Previous work has found that satellite microglia (microglia 
that closely contact neurons) increase in number following TBI and 
modulate neuronal firing activity18.
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Cluster 1, RHIM2, was nearly evenly enriched for RHI and CTE sam-
ples (50% versus 46%, respectively), whereas cluster 8, RHIM3, were 
mostly enriched for CTE samples (83%). Transcriptionally, RHIM2 and 
RHIM3 were similar, displaying features of an inflammatory microglial 
phenotype with expression of SPP1, HIF1A, TLR2, IL1B and CTSB (Fig. 2b 
and Extended Data Fig. 3d,e). SPP1 has been described as a general 
marker of inflammatory or activated microglia, and has a potential 
role in synaptic engulfment in Alzheimer’s disease models19. SPP1 has 
also been described as an opsin for extracellular debris20,21. hdWGCNA 
module analyses identified gene sets that were enriched in RHIM2 and 
RHIM3 that were strongly associated with immune signalling (Fig. 2e,f). 
Further GO analysis of RHIM2 and RHIM3 DEGs identified ‘cytokine sig-
nalling in the immune system’, ‘positive regulation of immune response’ 
and ‘vesicle mediated transport’ (Extended Data Fig. 3g). Celda gene 
module analysis demonstrated an increase in inflammation, hypoxia 
and metabolic response in RHIM2 and RHIM3 compared with homeo-
stasis clusters (Fig. 2h–l), providing orthogonal validation of GO and 
DEG analyses.

Some key differences were noted between RHIM2 and RHIM3. RHIM2 
expressed C1QA, C1QB, C1QC and CAMK2D, which encode the compo-
nents and downstream effector of the C1q complement cascade that 
is known to drive aberrant synaptic engulfment in the neurodegenera-
tive brain22 (Fig. 2b and Extended Data Fig. 3f). Gene module analysis 
further highlighted an increase in complement response in RHIM2 
compared with homeostatic microglia (Fig. 2h). RHIM3 was charac-
terized by upregulation of HIF1A and VEGFA, two central mediators of 
hypoxia, suggesting a potential response to or initiation of hypoxic 
conditions following RHI (Extended Data Fig. 3f). HIF1A also acts as a 
transcriptional regulator of many downstream inflammatory genes, 
and analysis of the transcriptional regulatory networks enriched in 
each cluster showed that RHIM3 expressed many genes regulated by 
HIF1A23 (Extended Data Fig. 3h).

To validate the reduction in the homeostatic microglial population, 
IBA1 and P2RY12 were co-immunolabelled and quantified in the sulcus 
of 35 individuals with 0 to 25 years of football play with or without CTE. 
Microglia were divided according to high or low P2RY12 expression. 
Homeostatic microglial densities (P2RY12hiIBA1+) were significantly 
decreased with increasing years of football play (P < 0.001; Fig. 2m,n). 
Concurrently, non-homeostatic microglia (P2YR12lowIBA1+) cells were 
positively correlated with increasing years of football play (P < 0.001; 
Extended Data Fig. 3k,o). Mirroring the snRNA-seq results, CTE status 
was not significantly associated with homeostatic microglial densities 
when years of exposure were accounted for.

To verify the presence of RHIM2 and RHIM3 cells and their relationship 
to pathology, we performed in situ hybridization to label microglia that 
express the RHIM2 and RHIM3 marker genes SPP1 and HIF1A (Fig. 2o). 

P2RY12 was used as a marker for microglia as AIF1 (encoding IBA1) 
exhibits low expression at the mRNA level, as evidenced in a previous 
study23 and the present snRNA-seq data. We quantified SPP1-expressing 
and HIF1A-expressing (SPP1+HIF1A+) microglia across 21 individuals 
with 2–25 years of football play with and without CTE (Fig. 2p,q). The 
number of SPP1+HIF1A+ microglia in the cortical sulcus increased sig-
nificantly with increasing years of football play (P = 0.028; Fig. 2p). 
There was no association between SPP1+HIF1A+ microglia in the nearby 
cortical crest, suggesting a regional specificity of this inflammatory 
phenotype (P = 0.53; Extended Data Fig. 3l). We determined the layer 
specificity of SPP1+HIF1A+ microglia, separating superficial and deep 
layers of the cortical sulcus. The number of SPP1+HIF1A+ microglia 
increased in both superficial layers 2–3 (P = 0.039) and deeper layers 4–6 
(P = 0.026) (Extended Data Fig. 3m,n). This suggests that although the 
microglial inflammation is specific to the sulcus, there was no layer-wise 
specificity of this phenotype. Additionally, microglia increased expres-
sion of SPP1 with increasing years of football play (P = 0.035; Fig. 2q). 
CTE status (P = 0.34) and tau burden (P = 0.12) did not associate with 
the prevalence of SPP1+HIF1A+ microglia.

Next, we sought to compare our microglial populations to those 
described in published datasets; notably, Sun et al.23 published a dataset 
with more than 100,000 microglia from more than 400 individuals. 
First, we performed Jaccard similarity scoring and confirmed signifi-
cant correlation of the RHIM2 and RHIM3 clusters with inflammatory, 
stress, phagocytic and glycolysis-associated gene sets23 (Extended Data 
Fig. 3i,j). Next, we projected our data onto the dataset and performed 
bootstrapping to predict labels and confidence scores to better ana-
lyse the consistency of subtypes (Extended Data Fig. 5). Overall, we 
observed significant similarity between select subpopulations, further 
validating our subtypes.

Overall, these results suggest that RHI exposure induces an increase 
in neuronal surveillance and inflammatory microglial transcriptomic 
states before the onset of CTE. Inflammatory microglia are localized 
specifically at the sulcus in RHI-exposed individuals. These microglia 
may be involved in the initiation and maintenance of neuronal dysfunc-
tion, inflammation and angiogenic processes that are present in CTE.

Astrocytic responses to RHI
Astrocytes have a key role in brain homeostasis in tasks such as neuronal 
and BBB maintenance and become reactive following RHI exposure 
and in neurodegenerative disease14,24. We identified four subtypes of 
astrocytes, Astro1–Astro4, based on stratification of pathological group 
identity, DEG analysis and gene module analysis (Extended Data Fig. 6, 
Supplementary Figs. 5–7 and Supplementary Tables 10 and 19). Each 
subtype was also confirmed to be expressed in the cortical grey matter 

Fig. 2 | RHI exposure induces distinct microglial phenotypes. a, UMAP  
of microglia coloured by 11 Seurat clusters determined by unsupervised 
clustering. Mφ, macrophage; PVM, perivascular macrophage. b, Heat map of 
selected cluster DEGs annotated by function. Mono, monocyters; Ribo. bio., 
ribosome biogenesis; norm., normalized. c, Proportion of microglial subtypes 
per pathological group. Statistical analysis was performed using a chi-squared 
test. n = 28 individuals. Tests were two-tailed. Homeo, homeostasis. d, UMAP of 
each pathologic group. The dotted line depicts RHIM2/3 subtypes. e, hdWGCNA 
module analysis showing the Turquoise module localization to the RHIM2/3 
subtype. f, GO analysis of the hdWGCNA Turquoise module. Statistics generated 
using gene set enrichment analyses (GSEA) and single-tailed hypergeometric 
test with Benjamini–Hochberg multiple hypothesis correction. ER, endoplasmic 
reticulum; miRNA, micro RNA; PID, Pathway Interaction Database. g–l, Violin 
plots of the Celda gene modules homeostasis (g), complement response (h), 
inflammation (i), hypoxia response ( j), hypoxia response (k) and metabolic 
process (l). Colour represents the cellular subtype associated with the module. 
The black line represents the median. Statistical analysis performed by linear 
mixed effects modelling, correcting for patient-specific effects. Tests were 

two-tailed. n = 28 individuals. m, Quantification of grey matter sulcal 
homeostatic microglia (P2RY12hiIBA1+) with years of football play, coloured  
by pathological group. Statistical analysis performed by linear regression with 
age as a covariate. Each dot represents an individual donor. The black line 
represents linear model regression; the grey region shows the 95% confidence 
interval. The test was two-tailed. n = 37 individuals. n, Representative image of 
P2RY12 immunofluorescent labelling. Open arrowheads depict cells exhibiting 
high P2RY12 expression. Solid arrowheads depict cells exhibiting low P2RY12 
expression. Scale bar, 50 μm. o, Representative image of SPP1+HIF1A+P2RY12+ 
microglia. Solid arrowheads indicate triple-positive cells. The white box 
indicates the inset displayed on the right. Scale bars: left, 50 μm; right, 5 μm. 
p,q, Quantification of the SPP1+HIF1A+ microglial fraction (p) and microglial 
SPP1 expression (q) in the grey matter sulcus with years of football play. Each 
dot represents an individual donor. n = 22 individuals. Coloured by pathological 
group status. Statistical analysis performed by linear regression. The test was 
two-tailed. The black line represents linear model regression; the grey region 
shows the 95% confidence interval.
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(Extended Data Fig. 6i). Although past work has suggested the impor-
tance of astrocytes in CTE, we observed a limited astrocytic response, 
with only one subtype being enriched for individuals with RHI (Astro3). 
Genes and gene modules that were upregulated in Astro3 were associ-
ated with astrocyte reactivity (CHI3L1, CD44, CLU and BCL6), inflam-
mation (IL6R and IL1R1) and angiogenesis (HIF1A, NRP1 and ANGPTL4) 
(Extended Data Fig. 6h). These findings suggest that although there 
is pronounced astrogliosis associated with end-stage CTE pathology, 
astrocytes might have a more subtle role in early disease.

Endothelial angiogenic response to RHI
Next, owing to the key involvement of vascular dysfunction in CTE, we 
characterized the vascular response to RHI exposure8,9 (Extended Data 
Fig. 7a). We used known cell-type markers and comparison with pub-
lished dataset markers to identify 1,762 endothelial cells, 913 pericytes, 
487 fibroblasts and 651 vascular smooth muscle cells25 (Extended Data 
Fig. 7b,c,e). Of these cell types, only fibroblasts displayed significant 
changes in total proportion across pathological groups, decreasing 
from controls to RHI (P = 0.048) and CTE (P = 0.027), with loss associ-
ated with years of football play (Extended Data Fig. 7d,f). Endothelial 
cells were further labelled for arterial, venous and capillary cells by 
comparing expressed genes with published datasets25 (Extended Data 
Fig. 7c,e). Capillary cells were then labelled Cap1–Cap4. Cap3 and Cap4 
(Seurat Cluster 5; Extended Data Fig. 7b,c) exhibited a slightly different 
transcriptomic profile with higher expression of collagen-associated 
genes and showed overlap in expression of pericyte genes, thereby 
representing a potential transitional cell state but with greatest fidelity 
to endothelial cell expression (Extended Data Fig. 7c,e).

The proportion of endothelial cell subtypes differed significantly 
between RHI and control individuals and trended towards a difference 
between control and CTE individuals (Fig. 3a,b). No difference was 
observed between RHI and CTE individuals (Fig. 3b). Two populations of 
capillary cells, Cap2 (P = 0.0043) and Cap4 (P = 0.0046) were enriched 
for RHI and CTE samples (Extended Data Fig. 7h). The Cap2 cell fraction 
also increased with increasing years of football play (P = 0.014; Extended 
Data Fig. 7j). No differences were observed in total capillary cells in 
RHI and CTE compared with controls (Extended Data Fig. 7g). Sev-
eral canonical angiogenesis-associated genes such as HIF1A, ANGPT2, 
ANGPTL4, STAT3, CAMK2D and NFKBID were significantly upregulated 
in Cap2 and Cap4, suggesting that capillary cells in RHI-exposed groups 
may be responding to a local hypoxic environment (Fig. 3c,d). Three 
major complement regulatory genes—CD59, CD55 and CD46—which 
inhibit complement-mediated cell lysis, were upregulated indicating a 
potential response to locally increased levels of complement (Fig. 3c). 
Expression of the vascular adhesion and transmigration-associated 
genes ICAM1, ICAM2, PECAM1 and CD99 was increased in Cap2 and Cap4, 
indicating an increased potential for entry of monocytes, T cells, neu-
trophils or other peripheral cell types across the endothelium (Fig. 3c). 
Cap4 also exhibited high expression of collagen genes (Fig. 3c). We 
performed module co-expression analysis using Celda and hdWGCNA 
to identify co-expressed genes and possible cellular pathways across 
endothelial subsets (Supplementary Figs. 8–10). Statistical linear mixed 
modelling demonstrated that modules related to immune signalling, 
angiogenesis, response to growth factors and collagen were signifi-
cantly upregulated in Cap2 and Cap4 subsets (Fig. 3d, Supplementary 
Fig. 8 and Supplementary Tables 11 and 18). hdWGCNA also identi-
fied enrichment of collagen-associated genes in Cap4 as additional 
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b, Stacked bar plots of capillary subtype abundance across pathological 
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Cap1. Tests were two-tailed. n = 28 individuals. e, Violin plot of ITGAV expression 

across pathological groups. Each dot represents a cell. Statistical analysis 
performed by Wilcoxon test from ggsignif. Test was two-tailed. n = 28 
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validation (Supplementary Table 18c and Supplementary Fig. 9, blue 
module). GO analysis identified VEGFA signalling, cytokine signalling 
and vasculature development as significantly upregulated terms in 
RHI-exposed endothelial cells (Extended Data Fig. 7i). We identified 
ITGAV as an endothelial gene that was significantly increased in Cap2 
cells and in RHI compared with control and CTE samples (Fig. 3e). To 
confirm its expression in the tissue, we performed in situ hybridization 
paired with GLUT1 immunohistochemistry to label vessels, and found 
an increase in the fraction of vessels expressing ITGAV with increasing 
years of football play (P = 0.027; Fig. 3f,g). Together, these data show 
that capillary cells undergo significant upregulation of angiogenesis 
and inflammation-associated genes along with an increase in basement 
membrane components, identifying pathways that may underlie the 
known microvascular dysfunction after RHI and in CTE8,9.

Neuronal dysfunction and loss after RHI
Next, owing to the known dysfunction and degeneration of neurons 
and synaptic dysfunction following head trauma and in neurodegen-
erative disease, we examined neurons, labelling subclusters using 
known layer-specific markers12,26–31 (Fig. 4a and Extended Data Fig. 8). 
Forty-seven per cent of excitatory neuron DEGs were shared across 
RHI and CTE when compared with control, and only 6% were different 
between RHI and CTE, suggesting that the greatest changes in excita-
tory neuronal transcriptional profiles occur with initial exposure to RHI 
(Fig. 4b). Comparison of gene expression in RHI and CTE with controls 
and GO analysis of total neuronal population and layer-specific DEGs 
showed enrichment of ‘modulation of chemical synapses’ and ‘cell–
cell adhesion’ processes in both analyses (Fig. 4c and Extended Data 
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Fig. 9b). Genes associated with synaptic transmission such as SYN3, 
SNAP91, NRG1, HSP12A1 (a member of the Hsp70 gene family), and 
genes encoding matrix binding proteins such as CNTN5 and CLSTN2 
were upregulated across several excitatory neuron layers. There were 
40% fewer layer-specific DEGs in inhibitory neurons than in excitatory 
neurons, with only 184 DEGs specific to RHI-exposed groups compared 
with controls. GO analysis of inhibitory neuron layer-specific DEGs 
showed common upregulation of synapse-associated genes such as 
SYN3 and SYN2 across layers and downregulation of GABA receptor 
gene GABRA1 (Extended Data Fig. 9c).

Since neurodegenerative processes and exposure to head trauma 
can be associated with neuronal loss, we investigated layer-specific cell 
composition in individuals with RHI and CTE compared with controls. 
No pathological group enrichment was found in inhibitory neurons 
(Extended Data Fig. 9e,f). However, differential abundance analysis of 
excitatory layer 2/3 CUX2+LAMP5+ neurons demonstrated a significant 
decrease in individuals with a history of RHI, regardless of CTE status 
(Fig. 4d and Extended Data Fig. 9d). These results were confirmed via 
multinomial Dirichlet multinomial regression to account for the com-
positional nature of snRNA-seq data13. RHI exposure individuals had 
an average of 56% fewer CUX2+LAMP5+ neurons than age-matched 
unexposed controls. When measured by proportion of total neurons, 
loss of CUX2+LAMP5+ neurons were also observed when comparing RHI 
(P = 0.0045) and CTE (P = 0.0269) individuals with controls (Extended 
Data Fig. 9d). Neuronal loss was associated with the number of years of 
playing football, or in the few cases with other types of contact sports 
play, total years of RHI exposure, independent of age at death (P < 0.001; 
Fig. 4f and Extended Data Fig. 10a).

To determine the spatial localization of the neuronal loss and vali-
date the snRNA-seq results, we performed quantitative histology with 
RNAScope in situ hybridization using the excitatory layer 2/3 neuron 
markers CUX2 and LAMP5. CUX2+LAMP5+ neuronal density at the sul-
cus was negatively associated with years of football play (P = 0.007, 
β = −4.92) and highest level of football played (P = 0.033, β = −25.34) 
(Fig. 4e,g and Extended Data Fig. 10b). CUX2+LAMP5+ cell density was 
significantly lower at the depth of the cortical sulcus compared with 
the nearby gyral crest, consistent with RHI-specific damage and CTE 
pathology32 (Fig. 4e and Extended Data Fig. 10d,e). CUX2+LAMP5+ 
cell densities at the crest were not associated with years of play, dem-
onstrating a regional specificity of neuronal cell loss to the sulcus 
(P = 0.686; Extended Data Fig. 10e). CUX2+LAMP5− (putatively CUX2+ 
COL5A2+) neurons were found intermixed with CUX2+LAMP5+ neurons 
throughout layers 2–4 and are putatively exposed to similar levels 
of mechanical forces due to adjacent anatomical location. However, 
neuronal loss was observed to be specific to CUX2+LAMP5+ excita-
tory neurons across in situ and snRNA-seq experiments, suggesting a 
specific susceptibility of this population to RHI exposure (Extended 
Data Fig. 10f).

To further validate the association between years of football play 
and neuronal loss, we determined total neuronal densities using Nissl 
staining of 86 young individuals with 0–28 years of football play. Indi-
viduals were grouped by 0, 1–4, 5–14 and 15 or more years of football 
play based on previously defined thresholds for CTE risk3. Layer 2/3 
sulcal neuronal density significantly decreased with increased binned 
years of football play, independent of age at death (P = 0.028, β = −13.09; 
Fig. 4h,i). No association was found between years of football play and 
neuronal densities in deeper layers 4–6 (P = 0.554) or in layer 2/3 (0.571) 
in the crest (Extended Data Fig. 10g,h,k,l).

As p-tau deposition has been shown to associate with neuronal 
loss in neurodegenerative disease, we compared neuronal densities 
with p-tau pathology in adjacent sections. We found no association 
between neuronal loss and p-tau deposition, suggesting that neuronal 
loss occurs prior to and independent of pathologic protein deposition 
in early stages of disease (in situ hybridization: P = 0.387; Nissl staining: 
P = 0.825; Extended Data Fig. 10i,j).

Microglia contribute and respond to neuronal loss33. To investigate 
potential relationships between the observed neuronal loss and loss of 
microglial homeostasis, layer-wise homeostatic microglial populations 
(P2RY12hiIBA1+) from adjacent histological sections were compared to 
neuronal densities. Neuronal densities were significantly positively 
associated with homeostatic microglial populations in layers 2/3 
(P = 0.047, β = 0.126; Extended Data Fig. 3p). By contrast, in layer 4–6 
neuronal densities were not associated with homeostatic microglia 
populations (P = 0.105; Extended Data Fig. 3p), suggesting that loss 
of microglial homeostasis may be specifically localized to regions of 
neuronal loss.

Overall, these results provide evidence that exposure to RHI alone 
may drive significant neuronal loss and dysfunction, which may help 
explain early symptom onset in young athletes without the presence 
of significant p-tau pathology. Additionally, the relationship between 
neuronal loss and loss of microglial homeostasis point to potential 
mechanisms of or responses to neuronal loss.

Ligand–receptor pair analysis
To identify signalling pathways that may be involved in the cellular 
response to RHI exposure and CTE pathology, we performed ligand–
receptor pair analysis using MultiNicheNet34. Two comparisons were 
run: RHI was compared with control (Fig. 5a, labelled RHI) to examine 
signalling occurring in the context of head trauma; and CTE was com-
pared with RHI (Fig. 5a, labelled CTE) to investigate what signalling 
might be involved in the deposition of p-tau. In RHI-exposed individ-
uals, microglial TGFB1 was identified as an important ligand, which 
signals to endothelial cells, astrocytes, neurons and other microglia 
through the TGFB1 receptors ITGAV, TGFBR2, TGFBR3 and TGFBR1. 
SIGLEC9 and SPP1 were also identified as major signalling hubs in 
RHI compared with control, implicating the RHIM2/3 phenotype in 
RHI-associated signalling. In CTE compared with RHI, the top micro-
glial signalling pathways identified also included TGFB1 signalling and 
WNT2B and HLA-DRA signalling to astrocyte, microglia, endothelial 
cells and excitatory neurons. TGFB1 signalling has previously been 
implicated in the activation of neuroinflammation and induction of 
neuronal cell death in mild TBI35. Additionally, TGFB1 is involved with the 
fibrogenic response to mechanical stretch stimulus through ITGAV acti-
vation on endothelial cells and angiogenic responses through TGFBR2  
signalling36,37.

We performed in situ hybridization analysis to label TGFB1 in micro-
glia, as well as TGFBR2 and ITGAV, which encode two of the receptors 
identified in endothelial cells ligand–receptor pair analysis (Fig. 5b). 
We hypothesized that TGFB1+ microglia would increase in proximity 
to ITGAV+TGFBR2+ vessels to facilitate signalling. The prevalence of 
TGFB1-expressing microglia did not increase with the level of expo-
sure (P = 0.493) or with CTE status (P = 0.493), however, we found an 
increase in ITGAV+TGFBR2+ vessels with increasing years of football 
play and with CTE status (P = 0.047) (Fig. 5c–e). Additionally, there 
was an increase in TGFB1+ microglia within 25 μm of ITGAV+TGFBR2+ 
vessels in CTE individuals compared with RHI-exposed individu-
als without CTE (Fig. 5f). The increase in microglia–endothelial cell 
pairs is likely to be driven by an increase in endothelial ITGAV and 
TGFBR2 expression as opposed to an increase in TGFB1+ microglia, 
concurring with data from the microglia and endothelial sections. 
We then compared the prevalence of ITGAV+TGFBR2+ vessels to 
CUX2+LAMP5+ neuronal populations in adjacent sections to identify 
potential relationships between the identified signalling pathway 
and the observed neuronal loss. We found that with decreasing neu-
ronal populations in the grey matter sulcus, there was an increase in 
ITGAV+TGFBR2+ vessels (P = 0.010) (Fig. 5g). Overall, these findings 
identify a possible signalling pathway in the microglia–endothelial cell 
cross talk that may be implicated in the early pathological cascade of  
CTE pathology.
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Discussion
Here we utilize a combination of snRNA-seq, multiplex in situ hybridi-
zation and immunohistological analyses to describe and validate a 
unique dataset of young individuals with exposure to RHI. We describe 
distinct microglial and endothelial subsets that emerge following RHI 
and persist with CTE, correlate with years of contact sport play and 
associate with neuronal loss. Additionally, we observed a sulcus-specific 
loss of cortical layer 2/3 neurons that correlated with exposure to RHI 
prior to p-tau deposition. Finally, we identify a possible TGFβ signal-
ling cascade between microglia and endothelial that might drive early  
pathogenesis.

Microglial, astrocytic and endothelial cell transcriptomic subtypes 
have been described in several neurodegenerative diseases and in 
severe traumatic brain injury, however to our knowledge, this study 
is the first to demonstrate such changes in a cohort of young indi-
viduals with exposure to repeated non-concussive head impacts. Of 
note, hypoxia-associated changes are present across these three cell 
types, suggesting an important role for vascular dysfunction and 
bolstering previous evidence of vascular remodelling in CTE. Forces 

from head trauma disproportionately affect blood vessels, causing 
a lasting endothelial response that affects BBB integrity and oxygen 
delivery in affected regions32. Activated endothelium, local hypoxia 
and a breached BBB may trigger a feedback loop, activating astrocytes 
and microglia with each head impact. Repeated blows to the head in 
short succession are likely to reactivate an already inflamed system, 
disallowing sufficient time for full repair, and preventing a return to 
homeostasis. This is substantiated by the increased microglial activa-
tion that is observed decades after retirement from contact sports and 
is found to correlate with the number of years of RHI exposure in this 
study and others5. Through this repetitive reactivation, the inflamma-
tory response becomes self-sustaining and chronic, the mechanisms 
of which remain unclear. Another potential mechanism identified in 
this study included increased collagen expression in endothelial cells, 
a potential indicator of an early endothelial fibrotic response. The 
TGFB1–ITGAV/TGFBR2 signalling between microglia and endothelial 
cells that we identified through ligand–receptor analysis may represent 
a potential signalling pathway for the observed endothelial activation.

We observed an approximately 56% decrease in superficial layer 
2/3 excitatory neurons in RHI-exposed individuals at the depths of 
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Fig. 5 | Ligand–receptor pair analysis in RHI exposure and CTE. a, Circos 
plots from MultiNicheNet analysis depicting microglia as sender cells. RHI 
comparison with control is labelled RHI; CTE comparison with RHI is labelled 
CTE. n = 28 individuals. b, RNAScope in situ hybridization depicting a TGFB1+ 
microglia (P2RY12; solid arrowheads) contacting a ITGAV+TGFBR2+ vessel 
(GLUT1; open arrowheads). Scale bars, 10 μm. c,d, Quantification of in situ 
hybridization of TGFB1+ microglia (c) and ITGAV+TGFBR2+ vessels (d) in the 
grey matter sulcus with years of football play, colour-coded by pathological 
group. Each dot represents an individual donor. Statistical analysis performed 
by simple linear regression. The black line represents general linear model 
regression; the grey region shows the 95% confidence interval. The test was 

two-tailed. n = 19 individuals. e, Bar plot representing ITGAV+TGFBR2+ vessels 
with CTE status. Statistical analysis performed using a two-tailed t-test. Data 
are mean ± s.e.m. The test was two-tailed. n = 19 individuals. f, The proportion 
of TGFB1+ microglia within 25 μm of a ITGAV+TGFBR2+ vessel with CTE status. 
Statistical analysis performed using a two-tailed t-test. n = 19 individuals. Data 
are mean ± s.e.m. g, Scatter plots depicting ITGAV+TGFBR2+ vessels in the  
grey matter sulcus with the fraction of CUX2+LAMP5+ neurons colour-coded  
by pathological group. Each dot represents an individual donor. Statistical 
analysis performed by simple linear regression. n = 17 individuals. The black 
line represents general linear model regression; the grey region shows the  
95% confidence interval. The test was two-tailed.
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the cortical sulci, the region known to sustain the most mechanical 
force upon head trauma, and the region of initial p-tau accumulation 
in CTE32. To our knowledge, this study is the first to demonstrate such 
a substantial loss of a specific neuronal subtype in young individuals 
driven solely by RHI exposure. This is especially concerning consider-
ing that several of the observed individuals had no neuropathologic 
protein deposition, suggesting that neurodegeneration might begin 
sooner than CTE onset. Recent studies have demonstrated cortical 
thinning in frontal regions of high school football players, and cortical 
thinning and neuronal loss in post-mortem individuals with CTE38,39. 
Neuronal loss might explain symptoms of traumatic encephalopa-
thy syndrome, the clinical criteria for antemortem CTE diagnosis, 
in young athletes2,40,41. Layer 2/3 neurons make cortico-cortical con-
nections and, in the frontal cortex, are associated with depressive 
behaviours and moderation of stress42. Notably, layer 2/3 neurons 
have been shown to be vulnerable in other neurodegenerative and 
psychiatric disorders and are susceptible to p-tau accumulation in 
Alzheimer’s disease12,27. Therefore, one may speculate that superfi-
cial layer 2/3 excitatory neurons are highly susceptible to damage 
regardless of source and our data captured the loss across a range of 
RHI doses. Vulnerability has been hypothesized to be caused by the 
longer projections being more susceptible to trauma-related diffuse 
axonal injury or the overall higher metabolic demand of these cells, 
however the exact mechanisms driving this susceptibility have yet 
to be explained. Although RHI damage is driving the early neuronal 
loss, it is likely that as p-tau deposition becomes more severe, neu-
ronal death and dysfunction will become more related to pathogenic 
protein accumulation.

One limitation of our study is the small amount of tissue in each sam-
ple. CTE is an inherently patchy disease, which is diagnosed on the basis 
of the presence of a pathognomonic CTE lesion consisting of a focus of 
perivascular p-tau accumulation at the depth of the cortical sulcus. It is 
therefore possible that sampling may have missed regions of important 
cellular responses. Future studies of RHI-exposed individuals should 
aim to sample from multiple areas of the brain to improve detection of 
cellular responses. Similarly, owing to the limited availability of donated 
samples from individuals under the age of 50, the current sample size 
is not as large as those in other recent snRNA-seq studies that might 
have 100 or more cases. However, as long as expression differences are 
robust and consistent, as observed in this study, disease-specific effects 
can be identified with smaller sample sizes43. However, follow-up stud-
ies to increase the sample size could help identify additional cellular 
heterogeneity and enhance the resolution of more subtle changes. 
Finally, owing to the inherent difficulties in acquiring non-disease, 
non-RHI-exposed post-mortem samples from young humans, some 
control cases included in the Nissl quantification were from female 
donors, which may complicate direct comparisons with samples from 
male athletes. However, we found no statistical correlation between 
sex and neuronal density.

These results highlight the growing concerns linked to long-term 
RHI exposure from contact sports. The data presented here provide 
direct evidence demonstrating that RHI-driven cellular perturbations 
occur prior to the development of CTE and can be observed in young 
individuals, many of whom exhibit no obvious brain pathology. Novel 
biomarkers and therapeutic interventions will be vital in identifying the 
early changes observed in contact sport athletes prior to developing 
neurodegeneration.
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Methods

Neuropathological Diagnosis
Brain tissue was obtained from the CTE and the National Center for 
PTSD Brain Banks. Identical intake and tissue processing procedures 
occur with both brain banks. Four controls included in Nissl quantifica-
tion were provided by the Iowa Neuropathology Resource Laboratory. 
Neuropathological examination was performed by board certified 
neuropathologists as described previously10,44. Diagnosis of CTE was 
determined using published consensus criteria10,44. Demographics such 
as athletic history, military history, traumatic brain injury history, and 
RHI history were queried during telephone interview with next of kin 
as detailed previously10,44. Institutional review board approval for brain 
donation and informed consent for research was obtained through 
the Boston University Alzheimer’s Disease and CTE Center, Human 
Subjects Institutional Review Board of the Boston University School 
of Medicine, and VA Boston Healthcare System (Boston, MA). Individu-
als were included in the snRNA-seq and single-molecule fluorescence 
in situ hybridization (smFISH) experiments based on frozen tissue 
availability, quality (RNA integrity number (RIN) > 4) and diagnosis. 
Those used for immunohistochemistry were included based on the 
same criteria except frozen tissue availability and RIN. Exclusion cri-
teria included neuropathological diagnosis other than CTE, moderate 
to severe traumatic brain injury directly prior to death, age of death 
greater than 51 or less than 25. Control cases did not have exposure to 
any RHI, were negative for any neurodegenerative disease, and did not 
carry any diagnosis of a neuropsychological disorder.

snRNA-seq
Fresh frozen brain tissue was collected from the dorsolateral frontal 
cortex of each donor at the depth of the cortical sulcus. Visual deline-
ation of grey and white matter was used to collect 50 mg of grey mat-
ter tissue. Tissue was processed and cleaned of white matter prior to 
homogenization at two levels. First, when removing samples from 
frozen coronal slabs, the unbiased technician visually inspected and 
avoided white matter that could be adjacent to target grey matter. 
Second, immediately before tissue homogenization, a second tech-
nician inspects the tissue and removes any remaining white matter. 
This preparation allows for a highly specific grey matter enrichment. 
Nuclei isolation and sorting were performed on two donor samples 
per day, randomizing for diagnosis and age. Tissue was kept on ice 
throughout nuclei isolation. Tissue was homogenized and lysed in 
NST Buffer with DAPI (146 mM NaCl, 10 mM Tris, 1 mM CaCl2, 21 mM 
MgCl2, 0.1% BSA, 0.1% NP-40, 40 U ml−1 Protector RNase Inhibitor and 
DAPI) and snipped with scissors on ice for 10 min. Debris was removed 
using a 70-μm filter. Cells were spun down and resuspended in nuclei 
storage buffer (2% BSA, 400 U ml−1 Protector RNase Inhibitor) to reach 
a concentration of 500–1,000 nuclei per μl. Nuclei were purified for 
DAPI-positive cells with a FACS Aria flow cytometer to remove debris 
and processed using the Chromium Next GEM Single Cell 3′ Reagents 
Kit V2 (10x Genomics) to create cDNA libraries. Samples were pooled 
in two batches sequenced with Azenta to a read depth of 30,000 reads 
per cell on an Illumina NovaSeq.

Processing, quality control and clustering of snRNA-seq data
CellRanger v.6.0.1 was used to align reads to the GRCH38 reference 
and generate filtered count matrices containing 233,555 cells across 
all samples. The runCellQC function in the singleCellTK R package 
was used to generate quality control metrics and doublet calls45,46. 
Contamination from ambient RNA was identified using decontx using 
the full raw matrix as the ‘background’ for each sample47. Nuclei were 
removed if they had ambient RNA contamination fraction greater than 
0.3, mitochondrial or ribosomal percentage greater than 5%, total 
counts less than 750, or genes detected less than 500. The data were 
not down sampled to maximize capture of rare populations. The Seurat 

workflow within the singleCellTK package was used for clustering start-
ing with the decontaminated counts from decontx48. In brief, the data 
were normalized and scaled using runSeuratNormalizeData and run-
SeuratScaleData. Highly variable genes were identified using runSeurat-
FindHVG with the method vst. Principal components were determined 
using runSeuratPCA. UMAP dimensionality reduction was calculated 
using runSeuratUMAP. Clusters across all cell types were identified 
using the runSeuratFindClusters function at a resolution of 0.3. After 
initial clustering all the cells, clusters that were predominantly doublets 
(>50%) were removed and produced the final dataset of 170,717 nuclei 
(Extended Data Fig. 1h–k). Associations with post-mortem interval 
(PMI), age at death and sequencing batch were performed using Pear-
son’s correlation analysis in R (Supplementary Fig. 4). Age at death 
was associated with only excitatory neuron L5_FEZF2_PCP4_RPRM 
and inhibitory neuron PVALB_SCUBE_PTPRK proportions. Therefore, 
age was not included in regressions performed with sequencing data. 
PMI correlated with only one microglial subtype (RHIM1), perivascular 
macrophages, an excitatory neuron subtype (L2_4CUX2_COL5A2) and 
several oligodendrocyte subtypes. Sequencing batch was associated 
with one cluster of OPCs and was therefore not included in analyses.

All GO analysis was performed using MetaScape default settings49. 
DEG lists for all comparisons available in Supplementary Tables 6–16.

Cell-type identification
Cell-type markers verified by previous human snRNA-seq studies were 
used to identify clusters that belonged to individual cell types (Extended 
Data Fig. 1m,n). Cell types were subsetted out using subsetSCEColData 
and reclustered by the same Seurat method described above with the 
addition of running Harmony to account for sample-to-sample vari-
ability50. Clusters expressing high levels of >1 cell-type marker were 
removed. Excitatory and inhibitory neurons identified from the full 
dataset were clustered together to determine neuronal subtypes. Four 
clusters (1, 2, 19 and 21) were found to express low levels of neuronal 
genes and astrocytic genes (SLC1A2 and SLC1A3), and were single-batch 
enriched (80–90%) therefore these clusters were not included in down-
stream analysis (Extended Data Fig. 8a–d).

Module analysis
Celda. Gene co-expression modules were identified using Celda51. 
Celda utilized Bayesian hierarchical linear mixed effects models to 
identify modules of genes that are expressed together. A workflow 
overview can be found in Extended Data Fig. 4. Celda was run on cellular 
subtypes to determine module scores on a cell-wise basis and plotted 
across cellular subtypes. Statistical analysis of module enrichment 
was performed using a linear mixed effects model using sample ID as a 
covariate. For microglia, cell subtypes were compared to homeostatic 
microglia as a baseline, for endothelial cells Cap1 was used, for astro-
cytes Astro1 (homeostatic astrocytes) were used as a baseline. Celda 
module analysis was plotted as Violin plots as these types of plots dem-
onstrate statistical differences and also allow for visualization of the 
variance within the data (Supplementary Figs. 1, 7, 8). Additionally, to 
help further validate findings, radar plots for each Celda module were 
also provided to help visualize module distribution among all groups 
(Supplementary Figs. 3, 5 and 10).

hdWGCNA. hdWGCNA (v.0.4.5) was also run to validate gene co- 
expression modules in astrocytes, microglia, and endothelial cells. The 
hdWGCNA workflow was run with default parameters except min_cells 
was set to 25 and k was set to 10 for the metacells analysis performed 
by the MetacellsByGroups function. Additionally, minModuleSize was 
set to 25 in the ConstructNetwork function for astrocytes and micro-
glia. Radar plots were provided to demonstrate cell-type distribution. 
Metascape49 was used to generate GO analyses for Fig. 2f. Statistics for 
GO were generated with GSEA and single-tailed hypergeometric test 
with Benjamini–Hochberg multiple hypothesis correction.



hdWGCNA and Celda Modules were compared against each other for 
further validation. All major modules of interest could be observed in 
both module analyses (Supplementary Figs. 2c, 6d and 9d). The discrep-
ancy between module numbers with hdWGCNA and Celda was the result 
of how each technique process data. Celda clusters every gene into a 
module, in contrast to hdWGCNA that does not. Celda also captures 
modules that are broadly expressed across many clusters rather than 
modules only expressed in small numbers of clusters. Biological func-
tion of each module was assessed with the EnrichR package to validate 
functional significance. Finally, in order to efficiently run hdWCGNA on 
single cell data, a prior step must be performed that reduces the cells 
to ‘metacells’. According the hdWGCNA tutorial, “metacell aggregation 
approach does not yield good results for extremely underrepresented 
cell types”, which probably also contributes to the reduced module 
number. Although module numbers may differ, important modules 
of interest were preserved through both datasets.

All module genes and statistical analysis can be viewed in Supple-
mentary Tables 17–19, analysis code is available on GitHub at www.
github.com/morganebutler/singleCellScripts.

External dataset comparison
The Sun et al. dataset23 was downloaded from https://compbio.mit.edu/
microglia_states/. Another Sun et al.25 dataset was downloaded at http://
compbio.mit.edu/scADbbb/. For the microglia, bootstrapping was 
performed by randomly sampling 80% of the Sun dataset with replace-
ment for 50 iterations. For each iteration, FindTransferAnchors from 
the Seurat package was used to project the current microglia dataset 
onto the Sun UMAP space, and MapQuery to predict microglia labels. 
Label calls were recorded for each iteration and the label consistency 
was reported as the percentage of iterations the same label was called 
in Extended Data Fig. 5d,e.

For Visium projection of astrocyte subtype genes, publicly available 
Visium data from human cortex (Adult Human Brain 1) were down-
loaded from the 10x Genomics website. The Seurat function AddMod-
uleScore was used to create a per-spot score for astrocyte subtype 
gene expression (significantly upregulated genes in each subtype). 
Plots were created with SpatialFeaturePlot and displayed in Extended 
Data Fig. 6i.

MultiNicheNet
Ligand–receptor pair analysis was performed using MultiNicheNet, an 
adaptation of nichenet that allows for comparison across more than 
two condition groups. In brief, this method uses known datasets of 
ligand–receptor pairs and their downstream targets to identify poten-
tially upregulated cell signalling pathways across cell types accounting 
for differential expression of genes across groups. MultiNicheNet also 
uses prioritization of top ligand–receptor pairs to help identify signal-
ling pathways of interest. Contrasts for differential gene expression 
were set as RHI versus control, and CTE versus RHI to determine RHI 
and CTE-specific signalling pathways. Finalized cell-type objects were 
combined and run through the MultiNicheNet pipeline with the exclu-
sion of T cells due to low cell numbers. Analysis was performed without 
alteration to publicly available code, save for the contrasts used.

Histological tissue processing
Formalin-fixed, paraffin-embedded tissue was sectioned and labelled 
as described52. In brief, 10-μm sections were allowed to dry, baked, 
dewaxed and rehydrated prior to antibody labelling. For immunofluo-
rescent staining, epitope retrieval was performed using a pH 6 or pH 9 
buffer and boiling for 15 min in the microwave. Sections were blocked 
for 30 min at room temperature with 3% donkey serum and primary 
antibodies (Supplementary Table 4) were conjugated for 1 h at room 
temperature. Secondary antibodies were conjugated for 30 min, and 
Opal TSA dyes were incubated for 10 min. Slides were coverslipped with 
ProLong Gold Antifade mounting medium (Invitrogen) and imaged at 

20× or 40× on a Vectra Polaris whole-slide scanner with the appropriate 
filters. Images were spectrally unmixed using inForm software prior to 
image analysis. For Nissl staining, sections were hydrated and stained 
in 0.01% thionin for 20–40 s and dehydrated back to xylene before 
coverslipping in Permount mounting media and imaging on an Aperio 
GT450 scanner at 40×. As formalin-fixed histologic tissue was more 
readily available than frozen samples, more samples could be utilized 
for immunohistochemistry and in situ hybridization experiments. A 
full list of samples that were included in each immunohistochemistry 
experiment is shown in Supplementary Tables 2 and 3.

smFISH and immunohistochemistry codetection
Tissue was embedded in Optimal Cutting Temperature medium (Sakura 
Tissue-Tek) and was brought to cryostat temperature (−20 °C) before 
cutting. Chuck temperature was raised to −12°/−10 °C for optimal cut-
ting conditions. Tissue was sectioned at 16 µm thickness onto Fisher 
SuperFrost slides. Direction of tissue orientation relative to the depth of 
the cortical sulcus was randomized across samples. Sections were fixed 
in cold 4 °C 10% neutral buffered formalin for 60 min and dehydrated in 
50%, 70%, 100% and 100% ethanol for 5 min each at room temperature. 
Fluorescent in situ hybridization was performed using RNAScope kits 
(Advanced Cell Diagnostics) (Supplementary Table 5) optimized on the 
Leica BOND Rx automated slide staining system. Slides were pretreated 
with protease for 15 min. Opal TSA dyes were used for visualization 
at a concentration of 1:300–1:500. A positive and negative control 
probe was run for each block before staining with targeted probes. For 
immunohistochemical codetection of p-tau and GLUT1, sections were 
run through the RNAScope protocol as described and then manually 
stained with the AT8 or GLUT1 antibody (Supplementary Table 4) with 
the immunohistochemical protocol described in ‘Histological analysis’ 
without the antigen retrieval. Samples included in each smFISH experi-
ment are listed in Supplementary Table 2. Not all samples were used 
across every smFISH experiment due to exhaustion of sample blocks.

Image analysis
Analysis of fluorescent RNAScope fluorescence in situ hybridiza-
tion (FISH) was performed in Indica Labs HALO using the FISH v.3.2.3 
algorithm or the FISH-IF v.2.2.5 algorithm. Thresholds for FISH probe 
positivity for was set manually for each probe (HIF1A, SPP1, P2RY12, 
ITGAV, TGFB1, TGFBR2, LAMP5 and CUX2) and kept consistent across 
samples. It should be noted that SPP1 is not exclusively expressed by 
microglia, and DEG analysis demonstrated that only oligodendrocytes 
showed elevated expression of SPP1 in our dataset (Supplementary 
Table 6b). However, colocalization with microglia markers allows for 
a microglia-specific count of SPP1 activity. Gene expression was deter-
mined by the ‘probe cell intensity’ in HALO because this measure is 
agnostic to manual single copy intensity settings. The background on 
GLUT1 staining in FISH sections was variable due to protease treatment 
from RNAScope and thresholds were manually adjusted to remove 
background staining. Vessel proximity analysis was performed by evalu-
ating TGFB1+P2RY12+ cells and GLUT1+ITGAV+TGFBR2+ cells and using 
the ‘proximity analysis’ algorithm in the HALO spatial analysis settings. 
The number of unique marker-positive microglia/vessel pairs within 
25 µm were evaluated. Density heat maps for CUX2+LAMP5+ staining 
were created using the ‘density heatmap’ function within HALO spatial 
analysis. Depiction of how the sulcus and crest were annotated can be 
found in Extended Data Fig. 10d. To validate consistency between image 
analyses methods and snRNA-seq results, seven samples that were 
included in both RNAScope and snRNA-seq methods were compared 
and cellular proportions of CUX2+LAMP5+ neurons significantly cor-
related (P = 0.02; Extended Data Fig. 10c).

Analysis of immunohistochemistry protein staining was performed 
using the HALO Object Colocalization v.2.1.4 and HighPlex v.4.3.2 
algorithm. Microglial P2RY12 was assessed by DAPI+IBA1+ nuclei and 
P2RY12hi/low thresholds were set manually. High P2RY12 was defined as 

https://www.github.com/morganebutler/singleCellScripts
https://www.github.com/morganebutler/singleCellScripts
https://compbio.mit.edu/microglia_states/
https://compbio.mit.edu/microglia_states/
http://compbio.mit.edu/scADbbb/
http://compbio.mit.edu/scADbbb/


Article
having at least 70% of the nucleus stained, low P2RY12 was defined as 
less than 70% of the nucleus stained as demonstrated visually in Fig. 2n. 
Only 5.4% of all IBA1+ or P2RY12+ cells were P2RY12+IBA1−, suggesting 
that 94.6% of labelled microglia were assessed. IBA1+P2RY12− cells may 
have been captured in our P2RY12low categorization, however previous 
studies have shown that these cells are low in abundance and likely rep-
resent infiltrating macrophages which have been shown to be present 
mainly at lesioned vessels in CTE which are also sparse in our cohort53,54.

Analysis of Nissl staining was performed using the HALO Nuclei Seg-
mentation AI algorithm. Neurons were selected for training based on 
previously published criteria55. In brief, the classifier was given exam-
ples of brain parenchyma annotated for neurons which were considered 
cells with a Nissl-positive cytoplasm and a visible nucleus (Extended 
Data Fig. 9h). Nissl+ densities across batches were not significantly dif-
ferent and statistical tests of Nissl densities were corrected for staining 
batch. For FISH and Nissl sections, the depth of the cortical sulcus was 
defined and annotated as the bottom third of a gyral crest and sulcus 
pair. Layer 2/3 and layers 4–6 were annotated using layer-specific FISH 
markers or for Nissl by an expert observer.

Software and code
The following code and software was used for the analyses: CellRanger 
v.6.0.1 was used to align reads to the GRCH38 reference and generate 
filtered count matrices. All other analyses were performed in R v.4.2.1 
and Python v.3.10.12 using standard functions unless otherwise stated. 
Specific versions of packages used are listed in available GitHub code. 
The following packages were used: CellRanger v.6.0.1, singleCellTK 
v.2.8.0, Seurat v.4.3.0, scater v.1.24.0, harmony v.0.1.1, RColorBrewer 
v.1.1.3, ComplexHeatmap v.2.14.0, ArchR v.1.0.2, muscat v.1.12.1, readr 
v.2.1.4, ggplot2 v.3.4.2, ggsignif v.0.6.4, ggpubr v.0.6.0, magrittr v.2.0.3, 
scCoda v.0.1.9 Python package, celda v.1.19.1 and hdWGCNA v.0.4.5.

HALO v.3.6.4134.193, HALO AI v.3.6.4134, HALO Object Colocaliza-
tion v.2.1.4 algorithm and FISH v.3.2.3 algorithm were used to analyse 
the histological and Nissl images. InForm v.2.5.1 was used to spectrally 
unmix fluorescent in situ hybridization images.

Inclusion and ethics statement
The research has included local researchers through the research pro-
cess and is locally relevant with collaborators. All roles and respon-
sibilities were agreed amongst collaborators ahead of the research. 
The research was not severely restricted in the setting of researchers. 
The study was approved by the Institutional review board through 
the Boston University Alzheimer’s Disease and CTE Center, Human 
Subjects Institutional Review Board of the Boston University School 
of Medicine, VA Bedford Healthcare System, VA Boston Healthcare 
System, and Iowa Neuropathology Resource Laboratory. The research 
did not result in stigmatization, incrimination, discrimination, or risk 
to donors or research staff. No materials have been transferred out of 
the country. Local and regional research relevant to the study has been 
included in the citations.

Statistics and reproducibility
Analyses were performed using GraphPad Prism 10, SPSS v.29 and R 
(v.4.2.1) packages ggsignif, muscat, scater, and the Python (v.3.10.12) 
package scCoda. Dirichlet multinomial regression was used to test for 
cell type and excitatory neuron cell-type enrichment using the scCoda 
v.0.1.9 Python package13. Celda module expression was evaluated using 
linear mixed effects modelling, accounting for individual sample 
differences. Comparisons of cell-type proportions across the three 
pathological groups were performed using ANOVA with Bonferroni 
correction, Brown Forsyth with Dunnett post-hoc test, or chi-squared 
test as indicated in figure legends. Comparison across control and 
RHI-exposed groups was performed with a t-test with Welch correction 
or Mann–Whitney U-test, as indicated in the figure legends. Bar plots 
denote error with s.e.m. Scatter plots denote error with a grey outline of 

the 95% confidence interval. Evaluation of in situ hybridization analysis 
was performed using linear regression. P-tau burden was normalized 
using log10 transformation of positive area density. Nissl+ neuron count 
comparisons to years of exposure were assessed using linear regression 
and correcting for age at death and staining batch. Jaccard similarity 
scoring was performed using the GeneOverlap package by comparing 
lists of DEGs. All DEGs were filtered by a log2-transformed fold change 
of 0.15 and false discovery rate (FDR) of <0.05. Chi-squared tests for 
cellular abundance were performed using the base R chisq.tst function. 
GO analysis P values were acquired through MetaScape analysis. GO 
statistics were calculated with GSEA and single-tailed hypergeometric 
test with Benjamini–Hochberg multiple hypothesis correction. Years 
of football play was used as a variable for exposure throughout the text 
instead of total years of play (which includes exposure from all sports) 
played because it was a more consistent predictor of cellular changes.

snRNA-seq tissue isolation was performed once per each individual. 
Reproducibility was assessed through comparison to other published 
datasets23,25. As detailed in Extended Data Figs. 3, 5 and 7, there was 
significant overlap between our subtypes and other previously pub-
lished subtypes, highlighting that our results are highly reproducible. 
For all histological antibody, Nissl and in situ hybridization staining, 
individual cases were stained and analysed once per each experiment. 
Histologic methods were validated and optimized prior to the start of 
the experiment to ensure proper labelling and accurate downstream 
analyses as discussed in the previous sections.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Code availability
Code can be found at www.github.com/morganebutler/singleCell
Scripts.

Data availability
Data are available at GEO accession number GSE261807. All other 
data supporting the findings of this study and unprocessed images 
are available upon request. Request for tissue or digital images can 
be made by emailing the corresponding author or through the Bos-
ton University ADRC request portal at https://wwwru.bumc.bu.edu/
BUADC/RequestBrainTissue.aspx. The following public databases 
were used for the study: GRCH38 reference GCF_000001405.26, 
Sun et al. microglia dataset (https://compbio.mit.edu/microglia_
states/), Visium spatial expression (https://www.10xgenomics.com/ 
datasets/adult-human-brain-1-cerebral-cortex-unknown-orientation- 
stains-anti-gfap-anti-nfh-1-standard-1-1-0) and Sun et al. vascular data-
set (http://compbio.mit.edu/scADbbb/).
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Dataset quality control and cell type marker validation. 
a. Fluorescence activated cell sorting gating strategy of DAPI-positive nuclei. 
b. Stacked bar plot representing the proportion of cell type per donor. c. Stacked 
bar plot representing the cell type counts per donor. d-e. Violin plots for each 
donor of (d) total gene counts per cell, (e) unique genes detected per cell,  
(f) percent of mitochondrial genes detected per cell, and (g) percent ribosomal 
genes detected per cell. Line represents median. h, i UMAP of full dataset 

before cleaning colored by (h) doublet or singlets or (i) mitochondrial 
contamination. j, k. UMAP of full dataset after cleaning colored by ( j) doublets 
or singlets or (k) mitochondrial contamination. l. UMAP of full dataset colored 
by Seurat clusters. m. Dot plot of cell type marker expression across Seurat 
clusters depicted in (l). n. Dot plot of cell type marker expression in annotated 
cell type clusters.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Cell type proportions, OPCs, Oligodendrocytes, and 
T-Cells. a. Bar plots of overall cell type proportions across pathological groups 
with each dot representing a sample, bars represent the mean, error bars 
represent standard error of the mean. Statistical analysis performed by ANOVA 
with Bonferroni correction. Test was two-tailed. n = 28 individuals. b. UMAP 
depicting OPCs colored by Seurat clustering, solid arrow indicating RHI/CTE 
depleted cluster. c. Stacked bar plot showing OPC Seurat cluster distribution 
across pathological groups. d. Bar plots showing OPC cluster distribution 
across control and pathological group or control and RHI-exposed samples, bar 
represents mean, error bars show standard error of the mean. Statistical analysis 
performed by ANOVA with Bonferroni correction (left) and two-tailed Mann-
Whitney U test. n = 28 individuals. e. Heatmap showing GO analysis of OPC 
cluster DEGs. Statistics generated with GSEA and single-tailed hypergeometric 
test with Benjamini-Hochberg multiple hypothesis correction. f. UMAP showing 

oligodendrocytes colored by Seurat cluster, solid arrow indicates RHI  
and CTE depleted cluster. g. Stacked bar plot showing oligodendrocyte 
pathological group distribution per Seurat cluster. h. Bar plots representing 
cluster distribution across pathological groups or control and RHI-exposed 
samples. Bar represents mean, error bar represents standard error of the mean. 
Statistical analysis performed by ANOVA with Bonferroni correction (left) or 
two-tailed t-test (right). n = 28 individuals. i. Heatmap showing GO analysis of 
oligodendrocyte cluster DEGs. Statistics generated with GSEA and single- 
tailed hypergeometric test with Benjamini-Hochberg multiple hypothesis 
correction. j. UMAP showing T cells colored by Seurat cluster. k. Heatmap of 
GO analysis of T cell cluster DEGs. Statistics generated with GSEA and single-
tailed hypergeometric test with Benjamini-Hochberg multiple hypothesis 
correction.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Microglial cluster GO analysis, histology, and 
validation. a,b. snRNAseq fraction of (a) homeostatic and (b) RHI microglia. 
Statistics performed by ANOVA with Bonferroni correction. Bar represents 
mean, error bars show SEM. Tests were two-tailed. n = 28 individuals.  
c. Microglial subtypes across control compared to RHI-exposed individuals. 
Statistical analysis performed by two-tailed t-test or Mann Whitney U test with 
Welch correction. Bar represents mean, error bars show SEM. n = 28 individuals. 
d. UMAPs of SPP1 and HIF1A microglial expression. Dashed lines indicate 
RHIM2/3. e,f. Volcano plots showing DEGs between RHIM2/3 and homeostatic 
microglia (e) and RHIM2 and RHIM3 (f). n = 28 individuals g,h. Heatmap of  
(g) GO analysis of RHI microglia and (h) transcriptional regulatory network 
analysis of microglial subtype DEGs. Statistics generated with GSEA and single-
tailed hypergeometric test with Benjamini-Hochberg multiple hypothesis 
correction. i. UMAPs depicting microglia module scores of microglial subtypes 
from Sun et al. j. Heatmap depicting Jaccard score similarity analysis between 

Sun et al. and current study microglial DEGs. Significance denoted by **p < 0.01, 
***p < 0.001. Statistical analysis performed using GeneOverlap package and 
Jaccard analysis settings. k. Representative images of P2RY12, Iba1. Scale bar, 
50 μm. l, m, n. SPP1 + /HIF1A+ microglial fraction in the grey matter (l) crest, 
(m) L2/3 Sulcus (n) layers 4–6 sulcus colored by pathological group compared 
to years of football play. Statistical analysis performed by linear regression. 
Black line represents linear regression, grey shows 95% confidence interval. 
Test was two-tailed. n = 22 individuals. o. P2RY12 low/Iba1+ microglial densities 
in the grey matter sulcus compared to years of football play. Statistics with 
linear regression with age included as a covariate. Test was two-tailed. n = 37 
individuals. p. Homeostatic microglial densities compared to Nissl+ neuronal 
densities in layers 2/3 (left) and layers 4–6 (right). Each dot represents a single 
individual. Statistical analysis performed by linear regression with age as a 
covariate. Tests were two-tailed. n = 37. Black line represents linear regression, 
grey shows 95% confidence interval.
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Extended Data Fig. 4 | Celda module workflow and cell type expression.  
a. Celda module workflow diagram. b. Examples of Celda module expression in 
microglia. UMAPs show module expression, heatmaps show per-cell expression 
with genes listed on the right. c. Examples of Celda module expression in 

endothelial cells. UMAPs show module expression, heatmaps show per-cell 
expression with genes listed on the right. Genes can be viewed in Supplementary 
Tables 17–19.



Extended Data Fig. 5 | Microglia comparison with Sun et al. dataset.  
a. UMAP depicting microglia from Sun et al. dataset with original labels.  
b. Microglia from Butler et al. dataset projected onto Sun dataset UMAP space 
with original labels. n = 28 individuals. c. Microglia from Butler et al. dataset 
projected onto Sun dataset UMAP space with predicted Sun labels. n = 28 
individuals. d. Bar plot depicting result of boostrapping, with number of 
predicted microglial labels and error bars depicting bootstrap confidence.  

e. UMAP depicting Butler microglia projected onto Sun dataset UMAP space 
colored by label consistency throughout bootstrapping. f. Stacked barplot 
depicting proportion of Butler microglia with Sun dataset labels across 
pathological groups. g. Stacked barplot depicting proportion of predicted 
labels across original labels within Butler dataset microglia showing fidelity 
across original labels and predicted labels.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Astrocytic responses to head trauma. a. UMAP 
representing 4 astrocytic subtypes. b. UMAP from (a) colored by pathological 
group. c. Stacked bar plots showing astrocyte subtype distribution across 
pathological groups, statistics performed by chi-squared test. Tests were two 
tailed. n = 28 individuals. d. Bar plots showing astrocyte subcluster distribution 
in control and RHI-exposed samples, dots represent individual donors colored 
by pathological group identity. Bars represent mean, error bars represent 
standard error of the mean. Statistical analysis was performed using two- 
tailed Mann Whitney U-test. n = 28 individuals. e. Stacked bar plots showing 
pathological distribution across astrocyte subtypes. f. Violin plots showing 
Celda module expression across astrocyte subtypes. Black bar showing median 
statistic. Colored by astrocyte subtype most associated with specific module 

expression. Statistical analysis performed by linear mixed effects model. Tests 
were two-tailed. n = 28 individuals. g. Gene ontology analysis of astrocytic 
subtypes performed by Metascape. Statistics generated with GSEA and single-
tailed hypergeometric test with Benjamini-Hochberg multiple hypothesis 
correction. n = 28 individuals. h. Dot plot representing expression of selected 
DEGs across astrocytic subtype and annotated by function. i. Projection of 
current astrocytic modules on to Visium spatial transcriptomic data. Top row 
of heatmaps show expression of white matter (PLP1, MBP) and grey matter 
(SLC27A7, SNAP25) genes. Dotted line indicates separation of grey and white 
matter. Heatmaps on the bottom row show expression of astrocyte subtype 
modules based on significantly upregulated genes in each subtype.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Vascular cell subtype identification and proportion 
analysis. a. UMAP showing all vascular cells colored by Seurat clustering. n = 28 
individuals. b. Heatmap depicting vascular cell marker expression. c. Heatmap 
depicting Jaccard scoring of vascular cell Seurat cluster DEGs compared to  
Sun and Akay et al. vascular subtype DEGs. Significance denoted by **p < 0.01, 
***p < 0.001. d. Bar plots depicting pathological group proportions of vascular 
subtypes, bar represents mean, error bar represents SEM, dots represent 
individual samples. Statistical analysis performed by ANOVA with Bonferroni 
correction. Tests were two-tailed. n = 28 individuals. e. Heatmap depicting 
Jaccard scoring of vascular cell subtype DEGs compared to Sun and Akay  
et al. vascular subtype DEGs. Significance denoted by ** p < 0.01, *** p < 0.001.  
f. Scatter plot of fibroblast proportion or Cap2 proportion compared to years 
of football play from snRNAseq dataset, colored by pathological group status. 
n = 28 individuals. Statistical analysis performed by linear regression with age 

as a covariate. Black line represents linear model regression, grey shows 95% 
confidence interval. Tests were two-tailed. g, h. Bar plots of total capillary and 
relative endothelial cell subtype distribution across control and RHI-exposed 
samples, dots represent individual donors and are colored by pathological 
group identity. n = 28 individuals. Bar indicates mean, error bars indicate 
standard error of the mean. Statistical analysis was performed by two-tailed 
Mann-Whitney U test. i. GO enrichment analysis of DEGs from depicted 
comparisons. Statistics generated with GSEA and single-tailed hypergeometric 
test with Benjamini-Hochberg multiple hypothesis correction. n = 28 individuals. 
j. Proportion of cap2 cells in each individual compared to years of football. 
Statistics generated with linear regression correcting for age. Black line 
represents linear model regression, grey shows 95% confidence interval. Each 
dot represents a single individual. Tests were two-tailed. n = 28 individuals.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Neuronal layer subtype identification. a. UMAP 
depicting all neurons clustered together colored by Seurat cluster. n = 28 
individuals. b. Dot plot of gene expression of inhibitory and excitatory neuron 
and astrocyte marker genes Seurat clusters from (a). c. UMAP from (a) colored 
by cell type determination. d. Stacked bar plot of sequencing batch distribution 
of Seurat clusters from (a). e. UMAP showing excitatory neurons colored by 

Seurat cluster. f. UMAP showing excitatory neurons colored by later subtype.  
g. Dot plot showing expression of excitatory neuron layer subtype genes in 
excitatory neuron Seurat clusters from (e). h. UMAP showing inhibitory neurons 
colored by Seurat cluster. i. UMAP showing inhibitory neurons colored by layer 
subtype. j. Dot plot showing expression of inhibitory neuron layer subtype 
genes across inhibitory neuron Seurat clusters from (h).
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Extended Data Fig. 9 | Neuron layer GO analysis, pathological group 
enrichment and RNAScope validation. a. UMAP depicting excitatory 
neurons colored by layer subtype. b,c. Heatmap showing GO analysis of (b) 
excitatory layer and (c) inhibitory layer up and downregulated DEGs. n = 28 
individuals. Statistics generated with GSEA and single-tailed hypergeometric 
test with Benjamini-Hochberg multiple hypothesis correction. d. Bar plots of 
excitatory neuron layer proportions by pathological group. Bar represents 
mean, dots represent individual samples, error bars show standard error of the 
mean. Statistical analysis performed by ANOVA with Bonferroni correction. 
Tests were two tailed. n = 28 individuals. e. UMAP showing inhibitory neurons 

colored by layer subtype. f. Bar plots of inhibitory neuron layer proportions by 
pathological group. Bar represents mean, dots represent individual samples, 
error bars show standard error of the mean. Statistical analysis performed by 
ANOVA with Bonferroni correction. Tests were two tailed. n = 28 individuals.  
g. Representative image showing RNAScope in situ hybridization of CUX2/
LAMP5 image analysis with correct anatomical layer-wise distribution. White 
squares showing HALO identification of double-positive cells. Scale bar = 1 mm. 
h. Representative image of Nissl+ staining and neuronal masking using HALO 
AI. Top box is the raw image and bottom box is AI generated mask over neurons. 
Scale bar = 50 µm.



Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Layer 2/3 neurons are selectively lost in the grey 
matter sulcus and do not associate with tau pathology. a. CUX2/LAMP5 
proportion from snRNAseq against total years of football play colored by 
pathological group. Statistical analysis performed by linear regression, 
depicted as black line. Test was two-tailed. n = 28 individuals. b. CUX2/LAMP5 
density from in situ hybridization compared to highest level of football played. 
Statistical analysis performed by linear regression. Dots represent single 
individuals; line shows linear regression. Test was two-tailed. n = 23 individuals. 
c. CUX2/LAMP5 cells identified by in situ experiment compared to proportion 
of CUX2/LAMP5 neurons from snRNAseq experiment. Statistical analysis 
performed by linear regression, depicted as black line with 95% confidence 
intervals in grey. Test was two-tailed. n = 7 individuals. d. Representative image 
showing the annotation strategy used to identify the sulcus (yellow line) and 
crest (red line) layer 2/3. Scale bar = 1 mm. e. (left) Layer 2/3 CUX2+/LAMP5+ 
neuronal density in the sulcus and crest. Statistical analysis performed by 
paired t-test. Tests were two tailed. n = 18 individuals. (right) Layer 2/3 CUX2+/
LAMP5+ neuronal density in the crest compared to years of football play, 
colored by pathological group. Statistical analysis performed by linear 

regression. Black line represents general linear model regression, grey shows 
95% confidence interval. Tests were two tailed. n = 18 individuals. f. Total  
CUX2 populations and subpopulations in snRNAseq (right panel) and in situ 
hybridization (left panel) experiments compared to years of football play. 
Statistical analysis performed by linear regression and represented by lines. 
Tests were two-tailed. left panel n = 22 individuals, right panel n = 28 individuals. 
g, h, i. Scatter plots depicting (g) Sulcus layers 4–6 Nissl+ density compared  
to binned years of football play, (h) Crest layer 2/3 Nissl+ density compared to 
binned years of football play, (i) L2/3 Nissl+ density compared to log tau+ 
density, Statistical analysis performed by linear regression, (g, h) corrected  
for age and staining batch. n = 86 individuals. j. CUX2+/LAMP5+ density in situ 
compared to log AT8+ tau+ density, Colored by pathological group. Statistical 
analysis performed by linear regression. Test were two-tailed. Black line 
represents general linear model regression, grey shows 95% confidence interval. 
n = 22 individuals. k, l. Representative images of Nissl staining across cortical 
layers depicting neuronal loss in superficial layers in RHI and CTE individuals. 
Scale bars, 100 μm.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection

Data analysis CellRanger v 6.0.1 was used to align reads to the GRCH38 reference and generate filtered count matrices. All other analyses were performed 
in R v4.2.1 and Python v3.10.12 using standard functions unless otherwise stated. Specific versions of packages used are listed in available 
GitHub code. The following packages were used: CellRanger v 6.0.1, singleCellTK v 2.8.0, Seurat v 4.3.0, scater v 1.24.0, harmony v 0.1.1, 
RColorBrewer v 1.1.3, ComplexHeatmap v 2.14.0, ArchR v 1.0.2, muscat v 1.12.1, readr v 2.1.4, ggplot2 v 3.4.2, ggsignif v 0.6.4, ggpubr v 0.6.0, 
magrittr v 2.0.3, scCoda v0.1.9 Python package. celda v1.19.1, hdWGCNA v0.4.5 
 
HALO v3.6.4134.193,HALO AI v 3.6.4134, HALO Object Colocalization v2.1.4 algorithm and FISH v3.2.3 algorithm were used to analyze the 
histological and Nissl images. InForm v2.5.1 was used to spectrally unmix fluorescent in situ hybridization images. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data is available at GEO accession number GSE261807 . Code can be found at www.github.com/morganebutler/singleCellScripts. All other data supporting the 
findings of this study and unprocessed images are available upon reasonable request. Request for tissue or digital images can be made by emailing the 
corresponding author or through the Boston University ADRC request portal at https://wwwru.bumc.bu.edu/BUADC/RequestBrainTissue.aspx. The following public 
databases were used for the study: GRCH38 reference https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.26/, Sun et al. https://compbio.mit.edu/
microglia_states/, Visium spatial expression  https://www.10xgenomics.com/datasets/adult-human-brain-1-cerebral-cortex-unknown-orientation-stains-anti-gfap-
anti-nfh-1-standard-1-1-0. Sun and Akay et al. http://compbio.mit.edu/scADbbb/. 

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender CTE is a disease that is almost entirely reported in males, therefore the single nucleus RNA sequencing and RNA scope 
analysis was performed only on males. Due to the difficulty in obtaining controls, 5 females were included in the Nissl 
neuronal density quantification. No significant effect of sex was found. No information was collected on gender, therefore no 
gender-based analysis could be performed. 

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Race and ethnicity data were not available nor reported for participants in this study. 

Population characteristics Individuals included in this study were either healthy controls with no exposure to contact sports (n=8) or had a history of 
exposure to contact sports such as football (n=20). Within those exposed to repetitive head trauma through contact sports, 9 
had a postmortem diagnosis of no CTE, and 11 had a postmortem diagnosis of Low CTE. Those included in the in situ 
hybridization analysis all had exposure to contact sports. Those included in the neuronal density analysis had a history of 
exposure to contact sports except for the healthy controls. All individuals were between the ages of 20 and 51 at death.

Recruitment Participants were not specifically recruited for this study. Individuals were included from brain banks that collect tissue from 
voluntary donors. 

Ethics oversight Institutional review board approval for brain donation was obtained through the Boston University Alzheimer’s Disease and 
CTE Center, National Center for PTSD, Human Subjects Institutional Review Board of the Boston University School of 
Medicine, VA Bedford Healthcare System, VA Boston Healthcare System, and the Iowa Neuropathology Resource Laboratory. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size All available samples that met the criteria for inclusion and had tissue available at the time of the study were included in the single nucleus 
RNA sequencing, in situ hybridization, and neuronal density quantifications. No sample size calculation was performed. Sample sizes were 
determined based on querying our internal database and selecting all available samples that met our inclusion criteria outlined in the 
manuscript. The sample size was compared to other previous published single nucleus studies that found significant findings and was found to 
be consistent. Therefore, there was confidence in the sample size.

Data exclusions 35 samples were initially sequenced, 7 samples were excluded due to insufficient nuclei recovery during processing, poor quality of 
sequencing, or not meeting quality control standards such as gene count per cell, UMI counts etc. 

Replication Data was compared to other previously published datasets (Sun et al Cell 2023; Sun and Akay et al 2023) to demonstrate we could 
successfully replicate cell populations
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Randomization Samples were randomized within pathological group for processing of tissue into genomic libraries. 

Blinding Samples were not blinded for initial collection as the specific sample group and name was needed to identify and select the proper tissue 
from storage. Samples were blinded for tissue processing. For single nucleus RNA sequencing analysis, samples were blinded during tissue 
preparation and data QC. Samples were not blinded for comparative analyses as the pathologic grouping details were necessary for disease 
relevant comparisons. For immunohistochemistry, staining, and in situ hybridization experiments, observers were blinded when annotating , 
data collection, and analyzing tissue sections. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Antibodies used: (Antibody, CAT#, Vendor, dilution, secondary species, antigen retrieval method).  

SPP1, HPA027541, Sigma Aldrich, 1:500, Rb, AR9.  
Iba1, 019-19741, Wako/Fujifilm, 1:500, Rb, AR6 
AT8, MN1020, invitrogen, 1:500, M, AR6 
Glut1, ab115730, abcam, 1:500, rb, AR9 
P2Ry12, HPA013796, Sigma Aldrich, 1:2000, Rb, AR6

Validation Antibodies were validated using positive control sections. Secondary antibodies were tested for non-specific binding to verify 
accuracy. Validation procedures are described on the manufactures website as listed below.  
SPP1 https://www.sigmaaldrich.com/US/en/product/sigma/hpa027541 
Iba1 https://www.fujifilmcdi.com/anti-iba1-polyclonal-antibody-019-19741 
AT8 https://www.thermofisher.com/antibody/product/Phospho-Tau-Ser202-Thr205-Antibody-clone-AT8-Monoclonal/MN1020 
GLUT 1 https://www.abcam.com/en-us/products/primary-antibodies/glucose-transporter-glut1-antibody-epr3915-ab115730 
P2Ry12 https://www.sigmaaldrich.com/US/en/product/sigma/hpa013796

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.

Plants



4

nature portfolio  |  reporting sum
m

ary
April 2023

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Fresh frozen brain tissue was collected from the dorsolateral frontal cortex of each donor at the depth of the cortical sulcus. 
Visual delineation of grey/white matter was used to collect 50μg of tissue. Nuclei isolation and sorting were performed on 
two donor samples per day, randomizing for diagnosis and age. Tissue was kept on ice throughout nuclei isolation. Tissue was 
homogenized and lysed in NST Buffer with DAPI (146mM NaCl, 10mM Tris, 1mM CaCl2, 21mM MGCl2, 0.1%BSA, 0.1% NP-40, 
40U/ml Protector RNase Inhibitor, DAPI) and snipped with scissors on ice for 10 minutes. Debris was removed using a 70μm 
filter. Cells were spun down and resuspended in nuclei storage buffer (2% BSA, 400U/mL Protector RNase Inhibitor) to reach 
a concentration of 500-1000 nuclei/μL. Nuclei were purified for DAPI positive cells with a FACS-Aria flow cytometer to 
remove debris.

Instrument FACS-Aria

Software No analysis was performed on flow cytometry data. 

Cell population abundance 233,555 total cells were collected

Gating strategy Gating was based on positive DAPI signal. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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