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A tweezer array with 6,100 highly coherent 
atomic qubits

Hannah J. Manetsch1,3, Gyohei Nomura1,3, Elie Bataille1,3, Xudong Lv1,2, Kon H. Leung1 ✉ & 
Manuel Endres1 ✉

Optical tweezer arrays1,2 have transformed atomic and molecular physics, now 
forming the backbone for a range of leading experiments in quantum computing3–8, 
simulation1,9–12 and metrology13–15. Typical experiments trap tens to hundreds  
of atomic qubits and, recently, systems with around 1,000 atoms were realized 
without defining qubits or demonstrating coherent control16–18. However, scaling to 
thousands of atomic qubits with long coherence times and low-loss and high-fidelity 
imaging is an outstanding challenge and critical for progress in quantum science, 
particularly towards quantum error correction (QEC)19,20. Here we experimentally 
realize an array of optical tweezers trapping more than 6,100 neutral atoms in 
around 12,000 sites, simultaneously surpassing state-of-the-art performance for 
several metrics that underpin the success of the platform. Specifically, while scaling 
to such a large number of atoms, we demonstrate a coherence time of 12.6(1) s,  
a record for hyperfine qubits in an optical tweezer array. We show room-temperature 
trapping lifetimes of about 23 min, enabling record-high imaging survival of 
99.98952(1)% with an imaging fidelity of more than 99.99%. We present a plan  
for zone-based quantum computing5,21 and demonstrate necessary coherence-
preserving qubit transport and pick-up/drop-off operations on large spatial scales, 
characterized through interleaved randomized benchmarking. Our results, along 
with recent developments8,22–24, indicate that universal quantum computing and  
QEC with thousands to tens of thousands of physical qubits could be a near-term 
prospect.

Optical tweezer arrays1,2 have transformed atomic and molecular phys-
ics experiments by simplifying detection and enabling individual- 
particle control25–27, resulting in rapid, recent progress in quantum 
computing3–8, simulation1,9–12 and metrology13–15. In this context, each 
atom typically encodes a single qubit that is controlled with electro-
magnetic fields and ideally features long coherence times to enable 
these applications with high fidelity. Such optically trapped atomic 
qubit devices coexist with other platforms that have single-qubit con-
trol and readout, including ion traps28 and superconducting qubits29.

There are important incentives to scale up such fully programmable 
qubit platforms. Optical atomic clocks gain stability with increasing 
atom numbers30, while quantum simulation experiments benefit from 
thousands of qubits to explore emergent collective phenomena31,32 or 
demonstrate verifiable quantum advantage33,34. Most critically, QEC 
demands both large system sizes and exceptional fidelities: even the 
most resource-efficient protocols require several thousand physical 
qubits operating with error rates less than 10−3 to encode more than 
100 logical qubits20,35. This represents a fundamental scalability chal-
lenge that has limited the practical impact of quantum technologies.

Present universal quantum computing architectures, such as those 
based on neutral atoms5–8, ions28 and superconducting qubits29, 

typically operate with tens to hundreds of qubits. Although most 
platforms suffer from increasingly deleterious effects as system size 
grows28,29, neutral atoms in optical tweezer arrays offer a promising 
solution for rapid scalability in the near term thanks to a programmable 
architecture adaptable to larger system sizes.

Universal quantum computing capabilities with neutral atoms have 
recently been realized in optical tweezer array systems, based on dem-
onstrations of individual qubit addressing36–39, high-fidelity entangling 
gates8,22, coherence-preserving dynamical reconfigurability5,8,40 and 
ancilla-based mid-circuit measurement8,21,41. Very recently, tweezer 
systems with about a thousand atoms have been realized in a discon-
tiguous array based on interleaved microlens elements16 and by means 
of repeated reloading from a reservoir17,18; none of these experiments, 
however, report control of qubits, measurement of coherence times 
or coherence-preserving transport.

Here we demonstrate a tweezer array with 11,998 sites that traps more 
than 6,100 atomic qubits, simultaneously matching or surpassing state- 
of-the-art values for metrics underpinning the usefulness of the plat-
form, including hyperfine qubit coherence time, trapping lifetime 
in a room-temperature apparatus, coherent transport distance and 
fidelity, trap transfer fidelity, as well as combined imaging fidelity 
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and survival (Fig. 1). Our results have implications for the aforemen-
tioned applications in quantum science, in particular, concerning 
large-scale quantum computing and error correction, as discussed 
in more detail below.

Summary of approach and results
Our approach makes use of high-power trapping of single caesium-133 
atoms at far-off-resonant wavelengths in a specially designed, 
room-temperature vacuum chamber (Methods and Extended Data 
Fig. 1a), enabling low-loss, high-fidelity imaging in combination with 
long hyperfine coherence times at the scale of 6,100 qubits (Fig. 1e). 
Specifically, we demonstrate single-atom imaging with a survival  
probability of 99.98952(1)% and a fidelity of 99.99374(8)%, surpassing 
the state of the art achieved in much smaller arrays42. This, together 

with a 22.9(1)-min vacuum-limited lifetime in our room-temperature 
apparatus43—much longer than typical state-of-the-art vacuum life-
times for tweezer arrays in room-temperature apparatuses—provides 
realistic timescales for array operations in large-scale arrays with mini-
mal loss, for example, for atomic rearrangement25–27.

Notably, we further demonstrate a coherence time of 12.6(1) s,  
a record for a hyperfine qubit tweezer array, surpassing previous  
values by almost an order of magnitude5,6. We also show a single- 
qubit gate fidelity of 99.9834(2)% measured with global randomized  
benchmarking.

Finally, we demonstrate coherent atomic transport across 610 μm 
with a fidelity of about 99.95% and coherent transfer between static and 
dynamic traps with a fidelity of 99.81(3)%. These together form crucial 
ingredients for scaling atomic quantum processors in a zone-based 
architecture, with a detailed plan laid out further in the Supplementary 
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Fig. 1 | Large-scale tweezer array. a, Representative single-shot image of 
single caesium atoms across an 11,998-site tweezer array. Inset, magnified view 
of a subsection of the stochastically loaded array. b, Averaged image (from 
16,000 experimental iterations) of single atoms across an 11,998-site tweezer 
array. Inset, magnified view of a subsection of the averaged array. Atoms are 
spaced by 7.2 μm and held in 1,061-nm and 1,055-nm optical tweezers. The 
contrast is enhanced for visual clarity. c, Schematic of the optical tweezer array 
generation. Tweezer arrays, generated by two SLMs, at 1,061 nm and 1,055 nm 

are combined on a polarizing beam splitter (PBS) with orthogonal polarization 
and focused through an objective with a NA of 0.65 and a field of view (FOV) 
1.5 mm in diameter. The direction of gravity is along y .̂ We collect scattered 
photons from single atoms through the same objective and image them on a 
qCMOS camera. d, Histogram of filling fraction. We load 6,139 single atoms on 
average per experimental iteration (51.2% of the array on average), with a 
relative standard deviation of 1.13% over 16,000 iterations. e, Summary of the 
key metrics demonstrated in this work. Scale bars, 200 μm.
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Information. Our results indicate that quantum computing with 6,000 
atomic qubits is a near-term prospect, providing a path towards QEC 
with hundreds of logical qubits20.

Large-scale optical tweezer generation
To scale the optical tweezer array platform, while extending hyperfine 
coherence times, we generate traps using near-infrared wavelengths, 
far-detuned from dominant electric-dipole transitions, thus minimiz-
ing photon scattering and dephasing processes44. Caesium atoms 
have the highest polarizability among the stable alkali-metal atoms 
at near-infrared wavelengths at which commercial fibre amplifiers 
provide continuous-wave laser powers that exceed 100 W. Thus, a large 
number of traps can be created with sufficient depth. A representative 
single-shot image of the array is shown in Fig. 1a and an averaged image 
is shown in Fig. 1b.

The atoms are spaced by approximately 7.2 μm and held in traps 
at 1,055 nm and 1,061 nm, generated using spatial light modula
tors (SLMs), whose hologram phases are optimized with a weighted  
Gerchberg–Saxton (WGS) algorithm45 to make the tweezer trap depth 
uniform (Methods). The tweezer light is combined with polarization 
and focused through a high numerical aperture (NA) objective with a 
large field of view 1.5 mm in diameter, usable for atom trapping and 
manipulation (Fig. 1c).

The tweezers are created with 130 W of optical power generated from 
fibre amplifiers. After transmission through the optical path, around 
35–40 W reaches the objective, and from trap parameter measure-
ments (see the ‘Tweezer generation’ section in Methods), we estimate 
about 1.4 mW to be used per tweezer at the atom plane. We measure 
an average trap depth of kB × 0.18(2) mK, with a standard deviation 
of 11.4% across all sites (Extended Data Fig. 2d), enabling consistent 
loading probability per site.

Loading and imaging single atoms
We demonstrate uniform loading and high imaging fidelity across the 
sites in the array. To load single atoms in the tweezers, we cool and then 
parity-project from a roughly 1.6-mm 1/e2 diameter magneto-optical 
trap (MOT). Before imaging the atoms, we use a multipronged approach 
to filter out atoms in spurious off-plane traps, residual from the SLM 
tweezer creation (Methods and Extended Data Fig. 3).

We then zero the magnetic field and apply 2D polarization gradi-
ent cooling (2D PGC) in the atom array plane (x–z plane in Fig. 1c) for 
fluorescence imaging of single atoms, which simultaneously cools the 
atoms. Imaging light is applied for 80 ms and photons are imaged on a 
quantitative CMOS (qCMOS) camera. We find that each site has a load-
ing probability of 51.2% with a relative standard deviation of 3.4% across 
the sites, demonstrating uniform filling of single atoms (Extended 
Data Fig. 2c). This allows us to load more than 6,100 sites on average 
in each iteration (Fig. 1d).

We distinguish atomic presence in the array with high fidelity. 
Each image undergoes a binarization procedure (Methods), in which 
each site is attributed a value of 0 (no atom detected) or 1 (one atom 
detected). We weight the collected photons in a 7 × 7-pixel box centred 
around each site, to add more weight to pixels close to the centre of 
the point-spread function of each site (Extended Data Fig. 4a). The 
resulting signal is compared with a threshold to determine whether 
an atom is present or not (Fig. 2).

We characterize the imaging fidelity, defined as the probability 
of correctly labelling atomic presence in a site, with a model-free 
approach, for which no assumption is made about the photon distri-
bution from Fig. 2. To this end, we identify anomalous series of binary 
outputs46 in three consecutive images. For instance, 0 → 1 → 1 would 
point to a false-negative event in the first image, whereas 1 → 1 → 0 could 
be because of atom loss during the second image or a false-negative 

event in the third one. This approach allows us to precisely decouple 
inherent atom loss from false negatives or positives. From this, we  
find an imaging fidelity of 99.99374(8)% (note that we excise the  
first image, which we find has slightly lower fidelity and survival 
probability; Methods). Crucial to this result is the homogeneous 
photon scattering rate across the array (Extended Data Fig. 4d) and 
the consistency of the point-spread function across the array (waist 
radius of 1.7 pixels with a standard deviation of 0.2 pixels). Consistent 
imaging parameters across the array are further evidenced in that we 
find that treating each site with an individual threshold only margin-
ally improves the imaging fidelity to 99.9939(1)%. Finally, we estimate 
that the imaging fidelity in the absence of atomic loss would be closer 
to 99.999% (Methods).

Imaging survival and vacuum-limited lifetime
The probability of losing no atom in a tweezer array during imaging 
and because of finite vacuum lifetime both decrease exponentially 
in the number of atoms in an array, making these metrics crucial 
to optimize for large-scale array operation. The vacuum-limited 
lifetime, in particular, sets an upper bound on the duration during 
which operations can be executed without loss of an atom in a given 
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Fig. 2 | High-fidelity atom detection in a large-scale tweezer array. Imaging 
histograms showing the number of photons collected per site and per image 
collected from 16,000 experimental iterations. Note that the horizontal axes 
are weighted photon counts (see text); for non-weighted photon counts, see 
Extended Data Fig. 4b. a, Imaging histogram of three randomly selected sites in 
the array (in which x and y respectively denote the horizontal and vertical site 
indices in the array). b, Histogram averaging over all sites in the array. Per-site 
histograms are fitted with a Poissonian model that integrates losses during 
imaging (Methods). The wide separation of peaks for empty and filled tweezers 
enables the high imaging fidelity presented in this work. The binarization 
threshold used to determine tweezer occupation is indicated by the vertical 
dashed line and the average point-spread functions for the two classifications 
(atom absent and atom detected) are shown next to their corresponding peaks. 
Note that we detect no more than one atom in each tweezer. Inset, the same 
histogram presented with a log-scale vertical axis. The weighted average 
relative error bar per bin is 0.08% (0.05% for the log-scale inset owing to the 
smaller number of bins).
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experimental run. This can, for example, be applied as an upper limit on 
the fidelity with which we can achieve a defect-free array through atom  
rearrangement25,26.

We investigate the vacuum-limited lifetime using an empirically 
optimized cooling sequence consisting of a 10-ms 2D PGC cooling block 
every 2 s. By fitting the exponential decay of the atom survival, we find 
a 1/e lifetime of 22.9(1) min (Fig. 3a). This is a much longer timescale 
compared with state-of-the-art room-temperature atomic experiments 
and within a factor of five of the longest reported lifetime in a cryogenic 
apparatus43. The result indicates that the probability of losing a single 
atom across the entire array remains less than 50% during 100 ms,  

a relevant timescale for dynamical array reconfiguration and quantum 
processor operation.

Moreover, we accurately characterize the imaging survival probabil-
ity, without assuming any parameters, by performing 80-ms repeated 
imaging up to 1,000 times, after which approximately 90% of initially 
loaded atoms still survive (Fig. 3b). This corresponds to a steady-state 
imaging survival probability of 99.98952(1)%, mostly limited by vac-
uum lifetime. This, to the best of our knowledge, surpasses previous 
studies reporting record steady-state imaging survival using single 
alkaline-earth-metal42 and alkali-metal47 atoms in optical tweezers. 
These results, and the uniformity of imaging survival across the array 
(Extended Data Fig. 5a), enable low-loss, high-fidelity detection of single 
atoms in large-scale arrays, crucial components for the practical use 
of the system. In Extended Data Fig. 6, we present imaging fidelity and 
survival results with a shorter imaging duration of 20 ms.

Qubit coherence
Key to recent progress in quantum computing and metrology with 
neutral atoms is the ability to encode a qubit in long-lived states of 
an atom, such as hyperfine states5,6, nuclear spin states36–38 or opti-
cal clock states13,14. In caesium atoms, the hyperfine ground states 
(|F = 3, mF = 0⟩ ≡ |0⟩ and |F = 4, mF = 0⟩ ≡ |1⟩) provide such a subspace 
for storing quantum information (see Methods for state preparation 
and readout procedures). Furthermore, entanglement by means of 
Rydberg interactions can be readily transferred to this qubit to real-
ize high-fidelity two-qubit gates22. We demonstrate the storage and 
manipulation of quantum information in a large-scale atom array by 
measuring the coherence time and global single-qubit gate fidelity 
using a microwave horn to drive the hyperfine transition (Fig. 4a). For 
microwave operation, we adiabatically ramp down tweezers to a depth 
of kB × 55 μK.

Preserving the coherence of a quantum system as it is scaled up is a 
known challenge across platforms for quantum computing and simu-
lation29. This difficulty persists even for neutral atoms, albeit at a lower 
level, owing to residual interactions with a noisy and inhomogeneous 
electromagnetic environment, particularly with the tweezers them-
selves. Thus, we choose to trap in far-off-resonant optical tweezers to 
preserve coherence, because at constant trap depth, the differential 
light shift of the hyperfine qubit decreases as 1/Δtweezer and the scatter-
ing rate as 1/Δtweezer

3 , in which Δtweezer is the tweezer laser detuning rela-
tive to the dominant electronic transition44. We indeed observe long 
coherence times, measuring a depolarization time of T1 = 119(1) s 
(Extended Data Fig. 7d) and an array-averaged ensemble dephasing 
time of T * = 14.0(1) ms2  (Fig. 4b), limited by trap depth inhomogeneity. 
Measured site by site, the dephasing time is T * = 25.5 ms2

(site) , consistent 
with being limited by an atomic temperature of about 4.3 μK during 
microwave operation (Methods). In Extended Data Fig. 8 and Methods, 
we present and discuss site-resolved qubit coherence data.

The dephasing can be further mitigated by dynamical decoupling. By 
applying cycles of XY16 sequences48 with a period of 12.5 ms between 
π pulses, the measured dephasing time is T2 = 12.6(1) s, a new bench-
mark for the coherence time of an array of hyperfine qubits in optical 
tweezers5,6 (Fig. 4c). Also, we investigate in Extended Data Fig. 7g the 
coherence time at different trap depths, yielding notably T2 = 3.19(5) s 
at the full trap depth of kB × 0.18 mK. Although lower, this result  
also surpasses previously known results with hyperfine qubits in a 
tweezer array.

Finally, we determine single-qubit gate fidelities through global 
randomized benchmarking49. To compensate for the inhomogeneous 
Rabi frequency across the array, we use the SCROFULOUS composite 
pulse50. We apply gates sampled from the Clifford group C1, followed by 
an inverse operation, and measure the final population in |1⟩ (Fig. 4d). 
Fitting the decay as the number of gates increases yields an average 
Clifford gate fidelity Fc = 0.999834(2), limited by phase noise in our 
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lifetime of τ = 22.9(1) min. When the 2D PGC is applied continuously, we obtain 
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survival probability of p1 = 0.9998952(1). The light purple fill shows the 
estimated 68% confidence interval.
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system likely due to magnetic field noise (Methods). This could be 
readily addressed by upgrading the current sources driving the mag-
netic field coils or by operating at MHz-scale Rabi rates with optical 
Raman transitions (notably used to perform sideband spectroscopy 
in Extended Data Fig. 9).

Coherent long-distance transport and atom transfer
We now focus more specifically on the practical implementation of 
a quantum computer, as it is a flagship application of our work and 
because it demands the most sophisticated toolbox of aforementioned 
use cases. Universal quantum computing requires local single-qubit 
and two-qubit gates, which have been implemented either through 
single-site addressing6 or a zone-based architecture5,21. Zone-based 
architectures make use of the ability to dynamically move atoms in 
a coherence-preserving manner5,40, enabling long-range, non-local 
connectivity, which allows for less stringent QEC bounds51. This archi-
tecture also provides a path for mid-circuit readout21. We depict a pos-
sible zone layout in Extended Data Fig. 10a and the Supplementary 
Information, which includes a storage zone large enough for more 
than 6,100 atoms. We do not foresee challenges in creating the zones 

themselves, for example, Rydberg-based two-qubit gates should be 
feasible in a large interaction zone for more than 500 gates in parallel 
with state-of-the-art fidelities (Supplementary Information Section IV).

However, coherence-preserving transport between storage and 
adjacent interaction or readout zones might require covering large dis-
tances of about 500 μm. Although moving atoms using acousto-optic 
deflectors (AODs) is now a well-established practice to resort them into 
a deterministic configuration25,26 or to transport them coherently5,8,21,39, 
this distance is much farther than previously demonstrated distances 
for single-atom transport with tweezers5,21. Furthermore, transferring 
atoms between dynamic (AOD-generated) and static (SLM-generated) 
tweezers requires precise relative alignment, conceivably challenging 
in our system owing to the high laser power or potential for worsening 
aberrations over the large field of view.

Thus, we investigate the feasibility of coherence-preserving trans-
port and SLM–AOD trap transfer over larger length scales. First, isolat-
ing challenges with the coherent transport operation, we load atoms 
directly into ten AOD-generated tweezers and characterize coherent 
moves up to about 610 μm (Fig. 5 and top section of Extended Data 
Fig. 10). Second, we assess the viability of large-scale parallel AOD–SLM 
trap transfers with 195 AOD-generated tweezers that span a square of 

a b

T2* = 14.0(1) ms

T2 = 12.6(1) s

60 random
Clifford strings

Total time (s) Number of Clifford gates

Time (μs) Time (ms)

U = U–1 Un–1∙∙∙U0

XY16 – n

Fc = 0.999834(2)

|F = 4, mF = 0〉 ≡ |1〉

|F = 3, mF = 0〉 ≡ |0〉H
or

n

T2*
(site) = 25.5 ms

0 250 500 750 1,000

0.80

0.85

0.90

0.95

1.00

0 1 2 3
0.7

0.8

0.9

1.0

0 5 10 1550 100 150 900 950 1,0000
0

0.2

0.4

0.6

0.8

1.0

c d

R
et

ur
n 

p
ro

b
ab

ili
ty

C
oh

er
en

ce
 c

on
tr

as
t

P
|1

〉

0

0.2

0.4

0.6

0.8

1.0

P
|1

〉

2 2x x xy y
π π π π π π π

Fig. 4 | Long coherence times and high-fidelity single-qubit gates in a large 
atom array. a, Array-averaged Rabi oscillations between the hyperfine clock 
states |0⟩ and |1⟩. The fitted Rabi frequency is 24.611(1) kHz. The observed decay 
after several hundred microseconds arises from the spatially varying Rabi 
frequency (Extended Data Fig. 7b). b, Array-averaged Ramsey oscillations. 
During free evolution, the microwave drive field is detuned by 1 kHz, resulting 
in Ramsey oscillations. The characteristic decay time of these oscillations is 
T * = 14.0(1) ms2  from fitting the average signal of all atoms. The light blue dashed 
line shows the decay time T * = 25.5 ms2

(site)  from fitting individual sites first and 
averaging the decay time afterwards. c, Measurement of the dephasing time  
T2 after dynamical decoupling. After an initial π/2 pulse, a variable number  
of XY16 dynamical decoupling cycles with a fixed time τ = 12.5 ms between  

π pulses are used to offset the reversible dephasing. The phase of the final π/2 
pulse is chosen to be either 0 or π and subtracting the population difference in 
these two cases provides the coherence contrast. The contrast decay is fitted 
to obtain T2 = 12.6(1) s. d, Randomized benchmarking of the global single-qubit 
gate fidelity. For each number of Clifford gates, 60 different random gate 
strings of this length are applied, after which the overall inverse of the string is 
applied. For a given gate string length, each translucent marker of a given 
colour represents the return probability for a string of gates, while the solid 
green markers indicate the averaged return probability over the 60 different 
strings. The inset lists all of the colours used to indicate the 60 random gate 
strings for a given length. The decay of the final population to 1/2 is fitted to 
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dimensions 504 μm × 468 μm (Fig. 6). As an outlook, we demonstrate 
a proof-of-principle combination of these techniques in a large-scale 
static array (although in a different trap layout) moving a 2D array of  
47 atoms over 375 μm, a distance comparable with predicted zone 
spacings in our system (Extended Data Fig. 10e,f). For all operations, we 
use the most wide-band commercially available AODs at near-infrared 
wavelengths, which cover up to 500–600 μm along one axis for the 
optical parameters used here (Methods).

In consideration of atom survival as a function of long-distance move-
ment speeds, we find that the speed of transport is strongly constrained 
by cylindrical lensing—an effect that occurs when the AOD frequency 
is rapidly swept52—which becomes increasingly deleterious as the AOD 
field of view is increased (Supplementary Information Section III.A). 
Notably, using a pair of crossed AODs for diagonal transport converts 
cylindrical lensing into spherical lensing, enabling substantially faster 
movement (Fig. 5a). With diagonal moves, we first demonstrate in 
Fig. 5b negligible loss of coherence for atoms transported by 610 μm 
in 1.6 ms. We suppress dephasing with one XY4 dynamical decoupling 
sequence per move.

Realistic applications of coherent transport involve several con-
secutive moves. Therefore, we characterize the fidelity of the quan-
tum channel defined by coherent transport through interleaved 
randomized benchmarking53 (IRB; Fig. 5c and Methods). To the best 
of our knowledge, such a quantitative characterization of transport 
fidelity in neutral atoms has not been previously demonstrated. To 
maximize the dephasing cancellation, we apply dynamical decoupling 
in a transformed Clifford frame (Methods).

We perform this benchmarking technique for a distance of 610 μm 
(Fig. 5d), with diagonal moves. We first measure the survival probability 
of an atom in a tweezer at the end of the sequence for different move 

durations (top panel). For a 1.6-ms move using kB × 0.28-mK-deep traps, 
we then characterize the return probability to the initial quantum state 
after IRB as a function of the number of moves (middle panel). Other dis-
tances, trap depths and move times are shown in Extended Data Fig. 10.

The resulting IRB return probability data are non-exponential in 
the number of moves, because at large numbers of moves, trap losses 
become dominant and the fidelity for the transport channel depends 
on the number of previously executed moves. This motivates defining 
an instantaneous fidelity, that is, the fidelity of the transport channel 
after a certain number of previous moves (Methods), shown in the bot-
tom panel of Fig. 5d. The instantaneous fidelity approaches a constant 
value of 99.953(2)% for small numbers of one-way moves (≲30), for 
which losses are the sub-dominant error. This regime is most relevant 
for QEC, as data qubits and ancilla qubits can, in principle, be swapped 
every few layers of gates54.

We then move on to characterizing the atom transfer between static 
and dynamic tweezers. We demonstrate that these operations proceed 
without the emergence of unexpected technical challenges by perform-
ing high-fidelity parallel AOD–SLM transfer across the full field of view 
of the AOD (Fig. 6).

We use 195 AOD tweezers spread across 504 μm × 468 μm (Fig. 6a) 
to perform and characterize the repeated transfer procedure, 
post-selected on initially filled SLM sites. As with coherent transport 
benchmarking, we evaluate the transfer fidelity as a function of the 
number of one-way transfers through IRB (Fig. 6d). To execute faster 
(or higher-fidelity transfers at a given duration), we propose and 
implement a trajectory on which AOD ramp-and-move operations 
are simultaneously optimized with machine learning techniques to 
maximize survival (Fig. 6c and Methods). Compared with our manually 
optimized trajectory (Fig. 6b), this technique yields much higher atomic 
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Fig. 5 | Long-distance and high-fidelity coherent transport. a, Schematic 
and atom survival for a diagonal (blue) or straight (pink) move for ten tweezers 
(with depth kB × 0.28 mK) spaced by about 10.6 μm. Despite being shorter,  
a straight move needs to be executed more slowly than a diagonal one owing to 
cylindrical lensing. b, Coherence of an atom after being transported diagonally 
610 μm (blue) in 1.6 ms or held stationary (grey). c, IRB sequence used  
to benchmark the move fidelity. Random Clifford gates are interleaved  
between each of the M (<N) moves, with the total number of gates N constant.  
d, Benchmarking results for repeated 610-μm diagonal moves. Top, atom 

survival for varied times, fitted to a clipped Boltzmann distribution (Methods). 
1.6-ms moves are used for the middle and bottom panels. Middle, IRB return 
probability for static and transported atoms. Curves are fits that include 
coherence and atom losses (Methods). Bottom, average instantaneous 
transport fidelity after a given number of moves, fitted from the IRB return 
probability (Methods). The curve width represents the 68% confidence 
interval. The instantaneous fidelity of 99.953(2)% is constant for the first 
approximately 30 moves.
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survival and enables a one-way transfer fidelity of 99.81(3)% for ≲12  
transfers.

In the future, such machine learning techniques could also be used 
to optimize combined pick-up and transport, for which we find a fidel-
ity of 99.87(1)% for the first approximately 12 operations at the chosen 
timescales with manually optimized methods (Methods and Extended 
Data Fig. 10f).

Finally, to cover the full extent of the array, we propose using several 
pairs of crossed AODs, with the demonstrated long-distance trans-
port allowing overlap between adjacent AOD-pair controlled regions 
(Supplementary Fig. 2). With the layout presented in Extended Data 
Fig. 10a and the Supplementary Information, four such regions would 
be necessary. Alternatively, further scanning techniques (for example, 
fast-scanning mirrors) can be used to position the field of view of a 
single pair of crossed AODs across the full array iteratively.

Such techniques are also applicable to initial rearrangement of  
atoms in the storage zone. For example, by implementing a parallel 
assembly algorithm55,56 in four quadrants (Supplementary Information 
Section II), with estimates for relevant timings based on simulation, 
data and previous experiments (Supplementary Table 1), we expect 
that we can sort the array in parallel in about 137 ms or sequentially 
quadrant by quadrant in about 522 ms.

Conclusion and outlook
We have shown scaling of neutral-atom qubit numbers in optical twee-
zers to more than 6,100. We simultaneously achieve high imaging sur-
vival and fidelity as well as a long room-temperature vacuum-limited 
lifetime. We find record coherence times in alkali-metal atom tweezer 

arrays and a high global single-qubit gate fidelity, limited by technical 
noise. Further, we also characterize the fidelity of quantum transport 
channels for moves and trap transfer at relevant length scales, using 
randomized benchmarking.

Our results usher in a new generation of neutral-atom quantum pro-
cessors based on several thousand qubits, particularly relevant for 
QEC20,35. Furthermore, large-scale programmable devices enabling 
advances in quantum metrology8,13–15,30 and simulation31–33 are made 
accessible through this work. For example, our platform—with the 
demonstrated qubit numbers—could be used for verifiable quantum 
advantage with low-depth evolution33,34. Tweezer clocks could be scaled 
using near-infrared, high-power tweezers for loading and imaging57 
before transferring atoms to magic-wavelength traps for clock opera-
tion8,13–15. We also foresee applications in quantum simulation for prob-
lems in which boundary effects play an important role1,9–11,31, which can 
be minimized with the large system sizes demonstrated here.

Finally, our work indicates that further scaling of the optical tweezer 
array platform to tens of thousands of trapped atoms should be achiev-
able with present technology, while essentially preserving high-fidelity 
control. In our present apparatus, several factors limit the number of 
sites. One limitation is the finite number of pixels of each SLM (reduc-
ing the diffraction efficiency as the array size is increased), along with 
reduced SLM diffraction efficiency at higher incident laser powers. By 
using available higher-resolution SLMs, and by exploring techniques 
with higher pixel modulation depth58, we hope to use both power and 
field of view more efficiently.

Furthermore, we observe worsening optical aberrations at tweezer 
powers greater than that in the present study owing to thermal heating 
of the objective. This is the main limitation on atom number for the 
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Fig. 6 | Large-scale high-fidelity coherent transfer between static and 
dynamic traps. a, Layout of the transfer experiment showing 195 dynamic AOD 
traps (bright blue) overlapped with 1,061-nm static SLM traps (pale blue). Atoms 
are repeatedly picked up and moved away by 2.4 μm, then held for 100 μs. 
During this time, the SLM traps are turned off to ensure that atoms left behind 
in SLM traps are removed (this way, atom survival correctly corresponds to a 
successful pick-up and drop-off). SLM traps are subsequently turned back on 
and atoms held in AOD tweezers are moved back and dropped off into the SLM 
traps. For IRB data shown in d, gates are interleaved between each round-trip 
transfer. A pick-up and split-move operation (or equivalently a merge-move and 
drop-off operation) is considered a ‘one-way transfer’. b, Best hand-optimized 
trajectory for trap transfer (Methods), using a quadratic depth profile and a 

constant jerk movement. Here we implement the pick-up and the tweezer 
separation move in sequence, without overlap. c, To speed up atom transfer 
between static and dynamic traps while preserving high survival, we optimize, 
through machine learning, a trajectory in which dynamic AOD traps are 
simultaneously ramped and moved. The dashed lines and black dots represent 
the values that are optimized by the algorithm. d, Top, atom survival as a 
function of the number of repeated one-way transfers for various one-way 
‘pick-up and split' total durations. A 400-μs trajectory is optimized through 
machine learning. Middle, return probability after IRB for the machine-learning- 
optimized trajectory. Bottom, extracted instantaneous fidelity of a coherent 
one-way transfer as a function of the number of previous one-way transfers.



Nature  |  Vol 647  |  6 November 2025  |  67

results in this work, even after aberrations were mitigated using the SLM 
(Methods). This constraint could be circumvented by using an objec-
tive with a housing material that retains less heat or with integrated 
cooling strategies. Such upgrades should allow us to almost double 
the number of tweezers that we create using two fibre amplifiers. We 
further anticipate the potential to switch from polarization combina-
tion to wavelength-based array combination, opening further avenues 
for increasing tweezer number with similar techniques to those used 
in this work. Atom numbers may further be increased in our array with 
the same number of tweezers by using enhanced loading59 or reload-
ing techniques17,60. Already in the near term, we expect to increase the 
number of atomic qubits to more than 10,000 with the present system 
using a subset of these techniques.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-025-09641-4.
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Methods

Vacuum apparatus
A schematic of our vacuum system is shown in Extended Data Fig. 1. 
After the initial chamber assembly and multiround baking process, we 
fire two titanium sublimation pumps (TSPs), mounted such that every 
surface except the rectangular portion of the glass cell and the interior 
of the ion pump are covered by line-of-sight sputtering. This creates 
a vacuum chamber in which essentially every surface is pumping. We 
do not find it necessary to refire the TSPs to maintain the vacuum level 
that we measure. We also maintain ultrahigh-vacuum conditions with 
an ion pump, connected to the primary chamber through a 45° elbow 
joint. The secondary, science, chamber consists of a rectangular glass 
cell ( Japan Cell) optically bonded to a 24-cm-long glass flange (also 
sputtered by the TSP) that connects to the primary chamber. From 
lifetime measurements of tweezer trapped atoms (see the main text) 
and collisional cross-sections available in the literature61, we estimate 
the pressure in the glass cell to be about 7 × 10−12 mbar, consistent with 
vacuum simulations using the MolFlow program62.

Tweezer generation
We use light from two fibre amplifiers, at 1,061 nm (Azurlight Systems) 
and 1,055 nm (Precilasers), to create the optical tweezers through an 
objective (Special Optics) with NA = 0.65 at the trapping wavelengths 
(NA = 0.55 at the imaging wavelength of 852 nm) and a field of view of 
1.5 mm. The tweezers are imprinted onto the light in each pathway by 
a Meadowlark Optics phase-only liquid crystal on silicon SLM that is 
water-cooled to maintain a temperature of 22 °C. On each path, there are 
two 4f telescopes used to map the SLM phase pattern onto the back focal 
plane of the objective, which subsequently focuses the tweezers into the 
vacuum cell as shown in Fig. 1c. In the first focal plane after the SLM, we 
perform spatial filtering on the two paths to remove the zeroth order 
and reflect the first-order diffracted light from the SLM. On the 1,061-nm 
path, we use two D-mirrors spaced by a few hundred microns and on the 
1,055-nm path, we use a mirror with a manufactured 300-μm hole as 
spatial filters to separate zeroth-order light from the tweezer light. The 
1,055-nm tweezers are essentially used to fill the gap between two halves 
of the array created by the 1,061-nm tweezers (Extended Data Fig. 2a), 
although we anticipate increasing the number of tweezers created with 
this path after implementing the objective heat-dissipation strategies 
as described in the ‘Conclusion and outlook’ section. At present, we use 
120 W of power from the 1,061-nm fibre amplifier and around 10 W of 
power from the 1,055-nm fibre amplifier to create the tweezers. On the 
1,061-nm path after all of the optical elements, we estimate that only 
around 35–40 W of the total power reaches the objective and, given 
measurements of trap parameters, that we have roughly 1.4 mW per 
tweezer. At low optical power, we estimate a ratio between the incoming 
power and the light diffracted into the first order of the SLM of around 
65% into the full array and at full optical power, we estimate a diffrac-
tion efficiency of around 45%, even after optimizing the SLM global 
calibration at high power. We leave further improvement to future work.

Although we would like to separate the first-order hologram phase 
pattern and zeroth-order reflection in a more convenient manner, the 
largest angular separation that is possible between the zeroth and 
first orders of the SLM, as determined by the SLM pixel size, would not 
separate the large tweezer array from the zeroth order, owing to the 
large angular distribution of the tweezers. Furthermore, the diffraction 
efficiency of the SLM into the first order decreases with increasing sepa-
ration from the zeroth order. Therefore, it is the most power-efficient 
choice to centre the tweezers around the zeroth order and to filter it at 
the first focal plane after the SLM. This decreasing diffraction efficiency 
with increasing distance from the zeroth order, at the centre of the 
array, informs our choice of a circular tweezer array. We highlight the 
development of these techniques of zeroth-order filtering as uniquely 
necessary for a large-scale array.

The SLM phase patterns are optimized with a WGS algorithm45,63–65 
to create a tweezer array that we make uniform through a multistep 
process, first adjusting weights in the algorithm based on photon count 
on a CCD camera that images the tweezers63 and second adjusting 
weights based on the loading probability of each site in the atomic 
array with a variable gain feedback, as demonstrated on smaller arrays 
in previously developed schemes66. We implement around five itera-
tions of each step to achieve the loading and survival probabilities that 
are shown in Extended Data Figs. 2c and 5a. The WGS goal weight Wi on 
each tweezer for the ith iteration is given by

( )
W

G H

W
=

1 − 1 −

⟨ ⟩
,i

i

i

normalized by the mean weight ⟨Wi⟩, in which the height Hi is deter-
mined by adjusting the value from the previous iteration using the 
loading probability per tweezer Pload, normalized by the average load-
ing probability,
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We choose the gains G and g to reach convergence for the given con-
figuration of tweezers (here we use a value of 0.6 for each) and also add 
a cap to the allowable values of Hi to avoid oscillatory behaviour. We 
show in Extended Data Fig. 2b the weights for tweezers for different 
angular diffraction off of the SLM, obtained after using the loading- 
based uniformization. We also show the theoretical weights that would 
be expected on the basis of the inverse of the naive diffraction efficiency 
calculations for blazed gratings. The diffraction efficiency is given by 

( ) ( )DE = sinc sincax
λf

ay
λf

2 π 2 π , in which a is the SLM pixel size, x and y are 
the horizontal and vertical displacements from the zeroth order at the 
tweezer plane, f is the effective focal length of the objective and λ is the 
trapping wavelength. We expect that some divergence in behaviour 
could be caused by angular-dependent transmission in optics in the 
imaging path.

We furthermore add aberration correction to the SLM phase holo-
gram based on Zernike polynomials67. We perform a gradient-descent- 
type optimization to determine the amplitude of the Zernike polyno-
mial coefficients that maximizes the filling fraction in the array. We 
iterate between this optimization and 2–3 rounds of loading-based 
uniformization.

To align the tweezers created by the two fibre amplifiers in angle, we 
change the goal configuration for the WGS algorithm. The CCD camera 
on which we image the tweezers after the vacuum cell provides a helpful 
reference for this alignment.

Loading single atoms in tweezers
The typical experimental sequence can be seen in Extended Data 
Fig. 1c. From an atomic beam generated with a 2D MOT of caesium-133 
atoms (Infleqtion CASC), we load roughly 107 atoms in the 3D MOT in 
100 ms using three pairs of counter-propagating beams and create a 
roughly 1.6-mm 1/e2 diameter MOT cloud. The magnetic field gradient 
is set to 20 G cm−1 with a quadrupole configuration using a pair of coils 
that is perpendicular to the objective axis. Each beam has a size of 2.5 cm 
in diameter, detuning of Δ = −3.17Γ from the bare atom |6S1/2, F = 4⟩ ↔ 
|6P3/2, F′ = 5⟩ resonant transition (Extended Data Fig. 1b) and a total 
intensity of 10I0 (1.6I0 for repumping beams), in which I0 ≈ 1.1 mW cm−2 
is the saturation intensity of the transition between the stretched states 
and Γ ≈ 2π × 5.2 MHz is the natural linewidth of the 6P3/2 electronically 
excited state68. After loading atoms into the 3D MOT, we switch off the 
quadrupole magnetic field and, at the same time, lower the intensity to 
7I0 and detune the laser further to Δ = −19.5Γ to cool atoms below the 
Doppler temperature limit through 3D PGC, which loads atoms into 
approximately kB × 0.18-mK depth tweezers and parity projects the 



number of atoms in a tweezer69 to either 0 or 1. This 3D PGC is applied 
for 40 ms, after which we wait another 40 ms for the remaining atomic 
vapour from the MOT to drop and dissipate. The optical tweezer array 
is kept on for the whole duration of the experiment.

Generating optical tweezers with a SLM results in weak out-of-plane 
traps that can trap sufficiently cold atoms from the MOT70. This could 
lead to a strong background in the image or to false-positive detections 
of single atoms, both of which affect the imaging fidelity. To avoid this 
issue, we apply a resonant push-out beam for 2 μs, apply 2D PGC for 
30 ms, quasi-adiabatically ramp down the tweezer power to one-fifth 
of the full power, wait for 70 ms and then ramp up the power. After this 
sequence, we apply 2D PGC for 180 ms with an added bias magnetic 
field of 0.19 G. Note that this sequence for removing atoms in spurious 
traps was not fully optimized and we believe that this can be readily 
shortened in future work. In particular, the bias field during the 180-ms 
PGC segment could be more carefully optimized to reduce this time.

Single-atom imaging
For single-atom imaging in the optical tweezers, we use two pairs of 
PGC beams in a crossed-beam configuration (1/e2 diameter of 3.5 mm, 
1.0 mW total). One pair is frequency-detuned relative to the other pair. 
Each PGC beam copropagates with a repumping beam (about 100 μW) 
and is independently steered. Auxiliary vertical PGC beams (not shown) 
aligned at a slight grazing angle along the objective axis are not used 
owing to high background reflections off the uncoated glass cell sur-
face. During imaging, we increase the total intensity of the 2D PGC 
beams by about 3% and set the detuning to Δ = −15.5Γ from the bare 
atom |6S1/2, F = 4⟩ ↔ |6P3/2, F′ = 5⟩ resonant transition. We collect scat-
tered photons for 80 ms on a qCMOS camera (Hamamatsu ORCA-Quest 
C15550-20UP), which we chose for its fast readout time and high reso-
lution. The optical losses in the imaging system result in around 2.7% 
of scattered photons entering the camera, of which 44% are detected 
on the sensor owing to the quantum efficiency at 852 nm. The total 
magnification factor of the imaging system is 5.1.

The averaged point-spread function waist radius is measured to be 
1.7 pixels on the qCMOS camera, corresponding to 7.8 μm on the camera 
plane or 1.5 μm on the atom plane. We estimate that, accounting for a 
finite atomic temperature (up to 50 μK in this simulation) and camera 
sensor discretization, the ideal point-spread function radius should be 
1.25 pixels. We leave an investigation of the discrepancy to future work.

As well as the high fidelity and high survival demonstrated and char-
acterized in Fig. 2 and Extended Data Figs. 4 and 5, we show in Extended 
Data Fig. 6 imaging results acquired with an imaging time of 20 ms. 
Notably, these imaging data were acquired with a PGC detuning of 
Δ = −9.5Γ. We measure an imaging fidelity and survival probability of 
99.9571(4)% and 99.176(1)%, respectively.

Imaging model and characterization
We now describe the binarization procedure applied to each image 
acquired by the qCMOS camera. For each experimental run, typically 
consisting of a few hundred to a few thousand iterations, we apply this 
procedure anew.

We identify all sites by comparing the average image with the known 
optical tweezer array pattern generated by the SLM. The signal for 
each site and each image is obtained by weighting71 the number of 
photons per pixel with a function W(u, v) (Extended Data Fig. 4a). 
These weights are optimized by means of a quasi-Newton numerical 
method to maximize the imaging fidelity obtained with the model-free 
approach described below. This approach is agnostic of the photon 
distribution and relies on the consistency of the imaging outcomes. 
This helps guarantee that the imaging fidelity we quote is accurate 
and not artificially larger owing to overfitting.

We then compare the signal obtained for each site and each image 
with a threshold to determine whether an atom has been loaded. To posi-
tion the threshold and estimate the fidelity, we use two complementary 

methods: an analytical model that predicts the shape of the imaging 
histogram by integrating the loss probability in a Poisson distribution 
and a model-free approach that estimates the fidelity by identifying 
anomalous atom detection results in three consecutive images. The 
first method infers classification errors from the shape of the photon 
histogram, whereas the second method detects errors directly; thus, 
the first method requires fewer samples to reach satisfactory accuracy. 
This first method is also compatible with any type of experimental 
runs, whereas the second method requires to specifically acquire 
three consecutive images. Hence, we use the first method to position 
the binarization threshold in most experimental runs, as well as for 
site-by-site analysis; we use the second method to accurately estimate 
the fidelity with a single array-wide threshold. The fidelities quoted in 
the main text are calculated using this second method.

We first describe the analytical model that predicts of the shape of 
histogram, which we call the ‘lossy Poisson model’. We fit six param-
eters: the initial filling fraction (before the first image) F, the mean 
number of photons collected from the background light λ0 and the 
atoms λ1, the broadening from an ideal Poisson distribution r0 and r1 
and the pseudo-loss probability L. The exact meaning of all of these 
parameters is described below.

We first derive this model in the absence of broadening from an ideal 
Poisson distribution. We are interested in the photon distribution given 
that there is no atom at a given site at the beginning of imaging P(N = n|0) 
and the photon distribution given that there is an atom at this site at 
the beginning of imaging P(N = n|1), in which N is the number of photons 
collected. For the background photon distribution, we simply assume 
a Poisson distribution: P N n λ n( = 0) = e / !λ n−

0
0 . For the atom photon 

distribution, we derive an expression by considering a loss-rate model 
in which each photon collection event (occurring with probability λ1dt) 
imparts a loss probability L/λ1. By integrating over t ∈ [0, 1], the system 
of equations that describes the evolution of the joint distribution of 
atom presence and photon count, we find the distribution given that 
one atom was initially present,
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Here Γ represents the upper incomplete gamma function. The real 
loss probability during imaging is then given by 

∼
L = 1 − e L− . This equa-

tion illustrates the two mechanisms that limit the imaging fidelity in 
experiments with single-atom imaging. The first mechanism, repre-
sented by the first term on the right-hand side of the equation, manifests 
as a Gaussian/Poissonian overlap between the two peaks of the photon 
distribution, reflecting our ability to record a substantial photon count 
above the imaging noise floor. Finite scattering rate, limited photon 
collection efficiency, background light leakage from the imaging beams 
or the ambient light and readout noise from the camera contribute to 
this limitation. The other mechanism that limits imaging fidelity is loss 
of atom during imaging. This manifests as a characteristic ‘bridge-like’ 
feature and is represented by the second term on the right-hand side 
of the above equation. The probability density in the bridge is small 
but finite across a wide range of photon counts between the two peaks 
of the imaging histogram72.

The overall photon probability distribution is then given by  
P(N = n) = FP(N = n|1) + (1 − F)P(N = n|0). For practical purposes, we 
empirically include a broadening of the Poisson distribution by writing  
P(N = n) = FP(N = n/r1|1)/r1 + (1 − F)P(N = n/r0|0)/r0 and by effectively 
considering non-integer photon numbers (by replacing factorials with 
the gamma function). For large n, this amounts to considering a Gauss-
ian distribution for either of the two peaks but with the added benefit 



Article
of including the loss through a physically motivated derivation using 
a Poisson process.

In this model, the true negative probability is given by F =0  
∫ P N n n( = 0)d

T

0
, in which T denotes the threshold, and the true posi

tive probability is given by F ∫ P N n n= ( = 1)d
T1
∞

. Finally, the imaging  
fidelity can be estimated as F F FF F= + (1 − )1 0 and the optimal thresh-
old T can be found by maximizing the fidelity. We find that this model 
performs well when predicting the shape of the histogram site by site 
(Fig. 2a) but fails when the distribution of the background or atom 
photons in the array is non-Gaussian.

The second method we use to characterize imaging fidelity and sur-
vival requires no assumption for the photon distribution but considers 
that the imaging survival and fidelity is identical for three successive 
images46,73. We start by estimating the probability ∼Px x x1 2 3

 of the presence 
of an atom in three images being x1x2x3, in which xi is a Boolean, equal 
to 1 if there is an atom and 0 if there is none,
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Here S is the survival probability during imaging and F is the initial 
filling fraction. From this, we can estimate the probability of detecting 
y1y2y3 as ∣ ∣ ∣ ∼∑P P y x P y x P y x P= ( ) ( ) ( )y y y x x x x x x1 1 2 2 3 31 2 3 1 2 3 1 2 3

. The conditional 
probabilities on the detection categorization given the true atomic 
presence are P(1 1) = 1F , FP(0 1) = 1 − 1, FP(1 0) = 1 − 0 and FP(0 0) = 0.

We use the method of least squares to minimize the difference 
between the experimental frequencies of bitstrings y1y2y3 and the Py y y1 2 3

 
by tuning the four parameters F, S, F0 and F1. The imaging fidelity is 
then defined as F F FF F= + (1 − )1 0. The array-wide binarization thresh-
old is chosen to maximize the imaging fidelity (Extended Data Fig. 4c). 
Using this method, we find an imaging fidelity = 0.9999374(8)F ,  
with a false-positive probability 1 − = 7.01(8) × 100

−5F  and a false- 
negative probability F1 − = 5.5(1) × 101

−5; we find the survival to be 
S = 0.999864(2), slightly lower than the steady-state imaging survival 
probability measured by repeated imaging. Finally, we can inject the 
model-free survival probability into the lossy Poisson model to increase 
its accuracy (trying to extract the loss directly from the lossy Poisson 
model would indeed be inaccurate, because losses appear as a small 
tail feature between the two peaks of the imaging histogram). Using 
this approach, and fitting each site independently, we find an average 
imaging fidelity of 99.992(1)%, in reasonable agreement with the 
model-free imaging fidelity. By setting the atom loss to zero while keep-
ing the other five fit parameters constant for each site, we can estimate 
a hypothetical imaging fidelity in the absence of atomic loss of 
99.999(1)%. This analysis also illustrates that fitting the imaging histo-
gram with a Gaussian or Poissonian model without including losses 
leads to overestimating imaging fidelities67.

Note that, for data shown in this work pertaining to loading and 
imaging, we use images 2–4 of a set of 16,000 iterations containing 
each four successive images, because we a posteriori realize that the 
survival probability and imaging fidelity are higher than for images 1–3. 
In this latter case, we measure an imaging fidelity of 0.999882(1) and 
survival of 0.999817(2). This could be because of remaining background 
vapour from the MOT loading stage or to imperfect background atom 
removal during the off-plane trapped atom push-out stage. To quantify 
the combined survival and fidelity in each of the images, we can use 
the conditional probability of observing one atom given that one atom 
was observed in the previous image, p(1|1). We find p(1|1) = 0.99963 
between the first and second images, 0.99977 between the second 
and third images and 0.99981 between the third and fourth images. 
These numbers can still qualify as ‘high fidelity and high survival’. In 
principle, we could obtain the same fidelity and survival from the first 

image by waiting longer for the background vapour to diffuse in the 
chamber or by extending our push-out scheme.

In the context of atomic rearrangement, we expect that several 
rounds of imaging and rearrangement will be required to maximize 
the defect-free probability, as is already common in experiments  
with dozens or hundreds of atoms17,26. Hence, the lower fidelity and 
survival in the first image should not affect the final efficiency of  
rearrangement.

Qubit state preparation, control and readout
To initialize the tweezer-trapped atoms in the |6S1/2, F = 4, mF = 0⟩ ≡ |1⟩ 
state, we perform 5 ms of optical pumping on the 895-nm, F = 4 ↔ F′= 4 
D1 transition. Simultaneously, we repump atoms in the F = 3 hyperfine 
ground state on the 852-nm, F = 3 ↔ F′ = 4 D2 transition. Both beams 
are coaligned and linearly polarized using a Glan–Thompson prism, 
parallel to the quantization axis defined by a 2.70-G bias magnetic field 
to drive π transitions. The beams are focused to dimensions 
3.3 mm × 73 μm (1/e2 waists) at the tweezer array. Angular momentum 
selection rules forbid the m m= 0 ↔ ′ = 0F F  transition for ΔF = 0 and the 
atomic population accumulates in |1⟩ after several spontaneous emis-
sions. We estimate a state preparation fidelity of 99.2(1)%, inferred 
from the early-time contrast of the Rabi oscillations in Fig. 4a. After 
preparing the atoms in |1⟩, the trap depth is adiabatically lowered to 
kB × 55 μK for microwave operation.

The set-up used to drive microwave transitions is described in 
Extended Data Fig. 7a. Similarly to other experiments74,75, the RF signal 
from an arbitrary waveform generator (AWG; Spectrum Instrumenta-
tion M4i.6622-x8) IQ-modulates a microwave signal generator (Stan-
ford Research Systems SG386) set at a fixed frequency of 4.6 GHz. The 
signal is then frequency-doubled, filtered, passed through an isolator  
before being amplified to 10 W of microwave power (Qubig QDA).  
A 10-dBi-gain pyramidal horn emits the microwave field on the atom 
array at a distance of 15 cm.

For state readout, we apply a resonant |6S1/2, F = 4⟩ ↔ |6P3/2, F′ = 5⟩ 
pulse to push out atoms in |1⟩, before imaging the remaining atoms in 
|0⟩ with the scheme described above. By measuring the off-resonantly 
depumped population during push-out after pumping all atoms in 
|F = 4⟩, we infer a spin-resolved push-out fidelity of 99.88(5)%. The data 
in Figs. 4 and 5 and Extended Data Figs. 7, 8 and 10 are not corrected 
for state preparation and measurement (SPAM) errors. Instead, our 
measurements of the coherence time and gate fidelity rely on protocols 
that are intrinsically insensitive to SPAM errors.

Microwave spectroscopy reveals that the initial atomic population is 
close to an even distribution among the F = 4 sublevels. We measure a 
depumping rate of 0.064(5) μs−1 from F = 4 to F = 3 at our operating D1 
optical pumping beam intensity when the D2 repump is shuttered off. 
The intensity of the D2 repump is increased until there is no measur-
able improvement in state preparation fidelity. Factors that limit the 
state preparation include imperfect linear polarization purity, spatial 
variations in the pump laser intensity owing to interference fringes 
arising from the surface of the science glass cell and heating incurred 
during the optical pumping. Modelling our magnetic field coils, we 
estimate that the local direction of the bias magnetic field deviates 
by <10−5 radians for distances of about 1 mm from the geometric cen-
tre, and this has a negligible impact on the state preparation of our 
large-scale array. Other state preparation schemes with higher fidelity 
have been demonstrated previously on smaller arrays and could be 
implemented in our system in the future22,76.

Characterizing the atomic qubits
To characterize the Rabi frequency across the array, we drive the qubit 
for variable times and measure the population in |1⟩, both at early times 
(0–150 μs) and at late times (900–1,000 μs). We observe a spatially 
varying Rabi frequency across the array (Extended Data Fig. 7b), with 
a gradient that is orthogonal to the propagation axis of the microwave 



field, which points to a reflection off a vertical metallic optical bread-
board next to the vacuum cell.

We also characterize the dephasing in the array using Ramsey inter-
ferometry. During the free-evolution time, we detune the microwave 
drive field by δ = 2π × 1 kHz from the average qubit frequency. The 
envelope of the Rabi oscillation has a Gaussian decay with a charac
teristic time T * = 14.0(1) ms2 . However, when considering each site  
individually, we find an average T⟨ * ⟩ = 25.5 ms2

(site)  with a standard 
deviation of 3.2 ms (in the per-site case, we fit the oscillation decay with 
the dephasing decay function from ref. 77). This shows that dephasing 
across the array primarily occurs because of trap depth inhomogenei-
ties (Extended Data Fig. 2d): assuming a Gaussian distribution of trap 
depth with standard deviation δU, the qubit frequencies in the array 
also follow a Gaussian distribution, which results in an ensemble-wide 
dephasing time T ħ ηδU* = 2 /( )2

(inh) , in which η is the ratio of the scalar 
differential polarizability of the hyperfine ground states to their polar-
izability at the fine-structure level77. On the other hand, finite atomic 
temperature limits the per-site dephasing time T *2

(site). We observe an 
uneven distribution of T *2  across the atom array (Extended Data Fig. 8b), 
with a much lower T *2  measured for atoms trapped in tweezers at 
1,055 nm than for those trapped in the bottom half of tweezers at 
1,061 nm. This discrepancy could be because of worse optical aberra-
tions in these areas that decrease the efficiency of polarization-gradient 
cooling or owing to different intensity noise profiles from the different 
fibre amplifiers or SLMs used on the two pathways. These data reveal 
that further investigation of noise sources specific to lasers or tweezer 
pathways could explain limiting factors on coherence times in 
neutral-atom arrays beyond those owing to photon scattering and 
dephasing processes44,78.

To relate T *2  and trap depth inhomogeneity or atomic temperature, 
the parameter η can be calculated as the ratio of the differential light 
shift of the hyperfine states to the electronic ground state light shift, 
which yields η = 1.50 × 10−4. (At the few-percent accuracy level, it 
becomes important to account for higher-order processes79,80, but 
such accuracy is not required here.) We corroborate this value by 
experimentally measuring the differential light shift by means of Ram-
sey interferometry at different depths (Extended Data Fig. 7c). We find 
η = 1.3(1) × 10−4, in reasonable agreement with the theoretical value. 
This allows us to estimate the atomic temperature during microwave 
operation as77 ∗T ħ ηk T= e − 1 × 2 /( ⟨ ⟩) ≈ 4.3 μK2/3

B 2
(site)  (assuming that 

the temperature is sufficiently homogeneous to invert the fraction 
and the mean). This temperature may differ from the effective atomic 
temperature during other points of the experimental sequence that 
do not include the ramp-down and state preparation steps that may 
decrease and increase the temperature, respectively.

Dynamical decoupling
To extend the operation time of a realistic quantum processor well 
beyond the dephasing time of the array, we can apply dynamical 
decoupling on the atomic qubits. We empirically find that a period of 
12.5 ms yields the longest dephasing time of 12.6(1) s for the reduced 
trap depth of kB × 55 μK. This timescale is a record for hyperfine qubit 
tweezer arrays5,6 and approaches results for a single hyperfine qubit 
in a customized blue-detuned trap81, alkali atoms in an optical lattice76 
and nuclear qubits in a tweezer array82.

We vary the number of symmetric XY16 cycles and obtain the coher-
ence contrast by applying a final π/2 pulse with phase 0 or π. Subtract-
ing the population difference in these two cases yields the coherence 
contrast after the dynamical decoupling sequences.

We investigate in Extended Data Fig. 7g the coherence time T2 as a 
function of the trap depth for two different periods between π pulses 
(only for atoms trapped with the fibre amplifier at 1,061 nm), 12.5 ms and 
6.2 ms. We attribute the different optimal periods at different depths to 
a trade-off between the unfiltered noise at a specific dynamical decou-
pling period83 and the effective depolarization induced by each π pulse. 

At the full trap depth, we measure a coherence time of 3.19(5) s, which 
still constitutes a record for hyperfine qubits in a tweezer array.

Considering the Raman scattering rate at a trap depth of kB × 0.18 mK, 
we expect that a substantially longer coherence time should be achiev-
able. On the basis of this observation and the discrepancy in coher-
ence time between atoms trapped at 1,061 nm and 1,055 nm seen in 
site-resolved data (Extended Data Fig. 8c), we posit that the observed 
coherence time is limited by intensity noise owing to the trapping lasers 
or the SLMs. We leave further investigation to future work.

Single-qubit gate randomized benchmarking
We measure our single-qubit gate fidelity through randomized bench-
marking, similarly to refs. 84,85. For each given length n, we select 
Un−1,…, U0 at random from the 24 unitaries composing the Clifford 
group. We then apply U−1Un−1…U0, in which U−1 is the inverse of Un−1…U0. 
We decompose Clifford gates into elementary rotations around Bloch 
sphere axes using the zyz Euler angles. Rotations around z are imple-
mented by offsetting the phase of all following x and y rotations86.

Owing to the inhomogeneous Rabi frequency, each rotation must 
be applied using length-error-resilient composite pulses. Among com-
mon families of error-resilient pulses50,87,88, we find that SCROFULOUS 
performs the best in our case. The SCROFULOUS implements a rotation 
of angle θ around the axis indexed by the angle ϕ on the Bloch  
sphere equatorial plane (abbreviated as θϕ) with a symmetric compo
site pulse θ θ θ( ) ( ) ( )ϕ ϕ ϕ1 2 31 2 3

, in which θ1 = θ3 = arcsinc(2cos(θ/2)/π), 

( )ϕ ϕ ϕ= = + arccos −
θ

θ θ1 3
πcos

2 sin( /2)
1

1
, θ2 = π and ( )ϕ ϕ= − arccos − θ2 1

π
2 1

. In 

our implementation, the average pulse area for a random Clifford  
unitary is 2.02π.

We fit the decay of the final population with the number of applied 
Clifford gates as d d+ (1 − )(1 − )n1

2
1
2 0 , in which d0 arises from SPAM  

errors, d is the average depolarization probability at each gate and n 
is the number of gates. The average Clifford gate fidelity is then given 
by49: Fc = 1 − d/2.

Even though the measured single-qubit gate fidelity is competitive 
with other state-of-the-art atom arrays experiments6,7,21,89, single-qubit 
gate fidelities >0.9999 have been reported85,90 in smaller arrays. More-
over, the maximal theoretical fidelity achievable for a given dephasing 
time is84F = +

t T

3
4

1

4(1 + 0.95( / *) )2
2 3/2 , in which t is the average time needed 

to apply a Clifford gate, t = ⟨θ⟩/Ω, ⟨θ⟩ being the average pulse area per 
Clifford gate. Hence, gate fidelities higher than 0.99999 should be 
achievable based only on this value.

Beyond infidelities owing to decoherence, other parameters that 
may limit single-qubit gate fidelities are: (1) amplitude errors owing 
to instabilities in the microwave power; (2) phase errors owing to the 
microwave set-up; (3) phase errors owing to optical tweezer intensity 
noise; (4) phase errors owing to magnetic field noise. We are interested 
in which of these factors is limiting the gate fidelity. We rule out  
(1) because we observe that the Rabi frequency is very stable shot- 
to-shot (variations of less than 0.1%) and we estimate that such vari-
ations should be completely suppressed by the SCROFULOUS pulse. 
We also rule out (3), as reducing the trap depth further does not greatly 
improve the randomized benchmarking results (Extended Data 
Fig. 7g) and the fidelity is identical for atoms trapped in tweezers at 
1,055 nm and 1,061 nm (unlike T *2  and T2). Although we cannot formally 
rule out (2), we estimate that it is unlikely because active components 
in the microwave set-up have a very low phase noise and we observe 
a sub-10 Hz linewidth of the microwave signal with a spectrum  
analyser.

We also notice a dominant phase noise at 60 Hz in the qubit array 
owing to the mains AC voltage. We measure the intensity of this noise 
with a spin-echo sequence, for which the time between each pulse is 
τ = 1/(2 × 60 Hz) (Extended Data Fig. 7e). Although this low-frequency 
noise cannot by itself explain the single-qubit gate fidelity loss,  
it points more generally to residual magnetic field noise that could be 
mitigated by shielding the vacuum cell, upgrading the current sources 
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driving the magnetic field coils and/or by operating the MHz scale  
through Raman transitions. This can be achieved, for instance, by 
using the amplitude-modulation set-up used for Raman sideband  
spectroscopy.

Raman sideband spectroscopy with amplitude-modulation 
set-up
To measure the axial and radial trapping frequencies, we use a Raman 
set-up based on amplitude modulation of a laser beam91. The laser 
beam, red-detuned by 345 GHz from the D1 electronic transition in 
133Cs, is phase-modulated using a resonant electro-optic modula-
tor at 9.2 GHz (Qubig) before reflecting twice off a highly dispersive 
chirped Bragg grating (OptiGrate CBG-894-90) that transforms phase 
modulation into amplitude modulation. Two amplitude-modulated 
beams with different wavevectors k1 and k2 drive sideband transitions, 
similar to previous works with mode-locked lasers used to address 
the motion of trapped ions92,93. A schematic of the set-up is shown in 
Extended Data Fig. 9a.

In this configuration, the effective Lamb–Dicke parameter is 
∣ ∣k k αη = ( − ) ⋅α

ħ
mω

LD
1 2 2 α

, in which m represents the mass of caesium-133 

and α denotes the radial or axial motion (with unit vector α). Out of 1 W 
of fibre-coupled amplitude-modulated laser light, each beam has 
1–5 mW of laser power and a Gaussian 1/e2 diameter of about 2 mm. The 
sideband spectroscopy results are shown in Extended Data Fig. 9b,c, 
with radial and axial trapping frequencies measured to be, respectively, 
29.30(4) kHz and 5.64(3) kHz. From this measurement, we infer a 1/e2 
tweezer waist w0 = 1.17(6) μm. From the lineshape fit, we extract stan
dard deviations across the array of 4.7 kHz and 1.9 kHz, respectively. 
Note that this measurement was done with atoms in the 1,061-nm 
tweezer array.

Atom transport
We create ten transport tweezers using 1,055-nm light through two 
AODs (Gooch & Housego AODF 4085), mounted in a crossed configu-
ration and with an active aperture of about 15 mm diameter. We map 
the output after the pair of AODs to the back aperture of the objective 
using a telescope with 3:2 demagnification to match the same beam 
size at the back aperture of the objective as the beam from the SLM 
trapping tweezers.

The 1,055-nm light for transport is split from the same laser source 
that makes tweezers in the centre of the array (see Extended Data 
Fig. 2a). The 1,055-nm static and transport tweezers are then recom-
bined with polarization and combined with 1,061-nm light with 
a polarizing beam splitting cube as well. These two pathways are  
not used concurrently for the long-distance coherent transport  
demonstration in Fig. 5 or in Extended Data Fig. 10b–d. We plan to 
switch in the near term to combining the 1,055-nm and 1,061-nm  
light using a dichroic mirror, such that we can use the power in the 
1,055-nm path for both static and transport tweezers simultaneously 
without loss.

For the atomic movement, we use an adiabatic sine trajectory 
described by x t t t x= sin(π ) + ( , ∈ [−1, 1])1

π . We find that we can exe
cute a single move faster with the constant jerk trajectory5 (which we  
use for Fig. 5b and Supplementary Fig. 4) but that the adiabatic sine 
trajectory incurs less heating: in the harmonic oscillator approxima-
tion, the increase in the average radial motional quanta ΔN for an adi-
abatic sine trajectory scales as NΔ ∝ D

ω T

2

5 6 , in which D is the distance of 
the trajectory, T is the time of the trajectory and ω is the trap frequency. 
In the case of a constant jerk trajectory, NΔ ∝ D

ω T

2

3 4 .
Note that, in the coherent transport data, the tweezer depth change 

along the trajectory is compensated with RF power, which we cali-
brate beforehand with static tweezers at each position. We believe that  
the transport fidelity can be further increased with more careful  
compensation of the trap depth including the AOD lensing effect in 
the future.

Randomized benchmarking of coherent transport
Coherent transport is achieved by suppressing dephasing during trans-
port with dynamical decoupling. By evaluating the coherence contrast 
after 80 moves, we empirically find that the asymmetric XY4 sequence94 
performs best (implemented using bare pulses). To perform interleaved 
randomized benchmarking53, we fix a total number of single-qubit 
gates N drawn from the Clifford group C1. We then interleave M (<N) 
total moves between the first M gates (atoms are held for roughly 54 μs 
between moves), after which we apply the remaining N − M gates to 
keep the total number of gates N constant and then apply the inverse of 
these gates. For the return probability data shown in Fig. 5 and Extended 
Data Fig. 10a–d, we average over 72 sequences of random gates for each 
number of moves and apply N = 80 total random single-qubit Clifford 
gates. For the static and transported return probabilities, we apply 
the same single-qubit control sequence, including the XY4 dynami-
cal decoupling. As in the case of randomized benchmarking, we use 
SCROFULOUS pulses for implementing the Clifford gates.

During each move of the benchmarking sequence, we apply XY4 
in a transformed Clifford frame. Previous works have examined the 
interplay of dynamical decoupling and quantum operations by, for 
example, studying a system Hamiltonian in the ‘toggling frame’ induced 
by dynamical decoupling pulses95. Here we use related ideas but exam-
ine the decoupling operations in the frame rotated by the previously 
applied Clifford gates.

For instance, ignoring the Clifford gates between moves k − 1 and k, 
it is possible to concatenate two XY4 sequences X–Y–X–Y (with a sym-
metry operation) to obtain an XY8 sequence X–Y–X–Y–Y–X–Y–X that 
yields higher-order dephasing (and pulse-length error) suppression. 
However, the random Clifford gate Uk between the two sequences will 
cancel this effect by twirling the second XY4 sequence with respect to 
the first one. Thus, we can ‘counter-twirl’ the second XY4 sequence by 
applying it in a specific Clifford frame: the Pauli operator P becomes 
P U PU′ = k k

† . Up to a global phase, U XUk k
†  and U YUk k

†  are two distinct ele-
ments of {X, Y, Z}, because Uk is a Clifford gate. If one of these two uni-
taries is Z, we further conjugate with a Hadamard gate H (or the 
equivalent basis change unitary between Y and Z) to map these two 
unitaries into X and Y or Y and X. This can easily be generalized to n-qubit 
Clifford gates. An example is the transport between the storage and 
interaction zone to apply a CZ gate: because CZ CZX X Y Y( ⊗ ) = − ⊗ , we 
can appropriately transform the decoupling sequence applied during 
the return move. This could also be extended to yield higher-order 
sequences, such as XY16. Notably, typical architectures for fault-tolerant 
quantum computation use almost exclusively Clifford gates96 (for 
example, past the initial generation of noisy magic-state inputs, all 
gates are Clifford). Therefore, this technique is fully applicable to 
fault-tolerant quantum computation.

At the end of the randomized benchmarking sequence, we measure 
both the atomic survival and the return probability (note that we apply 
a final π pulse to map the return state to the non-pushed-out state |0⟩). 
We fit the atomic survival to a clipped Boltzmann distribution Sn =  
1 − exp(−1/(a + bn)), in which a and b are, respectively, the normalized 
initial temperature and normalized temperature accumulated per 
move. For the selected durations for interleaved randomized bench-
marking, we find that a is negligible. We then fit the return probability 
to ( )bn d d(1 − exp(−1/ )) ⋅ + (1 − ′)(1 − ′)n1

2
1
2 0 , in which d′ is the depolar-

izing probability for coherence, not accounting for atom loss. Owing 
to the randomized benchmarking procedure, coherence loss also 
includes the impact of XY4 dynamical decoupling, as it would not be 
necessary without transport. We then extract the instantaneous fide
lity after n moves as ( )F = 1 −n

d b n
bn

′
2

1 − exp(−1 / ( + 1))
1 − exp(−1 / )

. Note that this is the 

most conservative approach and amounts to considering that the chan-
nel infidelity owing to losses is equal to the loss probability itself. In 
the context of fault-tolerant quantum computation, losses could be 
directly detected, leading to a higher tolerance to such errors than to 



Pauli errors. We could therefore assimilate loss to a depolarizing chan-
nel, which would substantially increase late-time instantaneous fidel-
ities in Figs. 5 and 6 and Extended Data Fig. 10. It is worth noting that 
losses are subdominant for early-time IRB results presented in Fig. 5 
and Extended Data Fig. 10, therefore the quoted early-time fidelity in 
these figures is independent of the specific model we use for losses. 
To compute the 68% confidence interval, we bootstrap b and d′ using 
the fit results and covariance matrix. We corroborate the obtained 
fidelity with a simple exponential fit for the first few data points of the 
return probability, for which losses are negligible, and find similar 
early-time fidelities and error bars. We also notice that the shorter 
move of 270 μm has a slightly lower early-time instantaneous fidelity 
of 99.935(2)% compared with the 610-μm move (99.953(2)%). We believe 
that the discrepancy is probably because of a trap depth calibration 
imperfection and leave further investigation to future work.

For some applications, we might wish to optimize on the speed of 
movement and use a deeper trap to do so. In Extended Data Fig. 10d, 
we show that atoms can be moved by 270 μm in 400 μs with a trap 
depth of kB × 0.92 mK, at the cost of a reduced fidelity of about 99.85%. 
Comparing Extended Data Fig. 10b and Extended Data Fig. 10d illus-
trates a trade-off pertaining to coherent transport: although atoms 
can be moved faster by increasing the trap depth U, the associated 
transport fidelity for a small number of moves is also reduced.  
In the limit at which noise is entirely induced by tweezer intensity 
fluctuations, this can be understood by noticing that the dephasing 
strength scales as U when the required duration for long-distance 
transport only scales as U −1/2. We note that, experimentally in static 
traps, we find an even stronger scaling of coherence time than  
linear in U, probably because of other sources of noise (Extended  
Data Fig. 7g).

Atom transfer between SLM and AOD tweezers
To transfer atoms between static and dynamic traps, we generate an 
evenly spaced grid of 15 × 14 AOD tweezers (with a spacing five times 
that of SLM sites; Fig. 6a), of which 195 sites overlap with SLM tweezers 
generated with the 1,061-nm tweezer laser (out of 11,397 sites in the SLM 
array). The focal planes are matched by imprinting a Zernike defocus 
polynomial using the SLM. The position of each SLM site is adjusted 
in the WGS algorithm to match the corresponding AOD site, first by 
matching the point-spread function on the qCMOS camera and then 
by optimizing the transfer survival. For the data shown in Fig. 6, the 
SLM trap depth is ramped down to about kB × 0.14 mK, which we find 
is optimal for transfer into kB × 0.28-mK-deep AOD tweezers. We note 
that adiabatic ramping between full depth and this depth does not 
incur noticeable losses.

For hand-optimized trajectories shown in Fig. 6b, the AOD trap 
depth is quadratically increased over the course of 48% of the total 
ramp-and-move duration, after which the AOD trap is moved with a 
constant jerk trajectory by 2.4 μm during the remaining 52%. These 
ratios, as well as the ramp and trajectory used, are set to empirically 
maximize atom survival.

As an alternative, we propose and implement a machine-learned 
procedure for faster (or, equivalently, higher-survival) atom trans-
fer, for which the AOD trap depth and position can be simultaneously 
changed (Fig. 6c). For both trap depth and position, 14 points—from 
which ramps are obtained by cubic interpolation—are adjusted by a 
machine learner97 for a fixed one-way duration of 400 μs and 60 con-
secutive one-way transfers. This trajectory is inverted to merge and 
drop off atoms back into static traps.

For data shown in Fig. 6, AOD tweezers are repeatedly ramped up 
and moved away from the corresponding SLM sites by 2.4 μm and 
then held static for 100 μs. The direction of motion is as pictured in 
Fig. 6a and does not match the direction of transport used in Fig. 5 
because cylindrical lensing is not detrimental at the speeds being 
reached. During the 100-μs wait time, SLM tweezers are turned off, 

after which they are turned back on, such that atoms held in SLM twee-
zers and not AOD tweezers are dropped. This enables us to ensure that 
atoms that may have remained in traps rather than being successfully 
picked up are not counted towards survival. At the end of the sequence, 
atoms are imaged again in SLM tweezers. We use the same dynamical 
decoupling sequence as for the AOD-only transport experiment, 
including—notably—the transformed Clifford frame technique.  
Unlike for long-distance transport, we find that the survival as a func-
tion of the number of transfers has an exponential component— 
probably because of experimental imperfections. Hence, we fit it to: 
Sn = p0pn(1 − e−1/bn). To accurately distinguish between depolarizing 
effects and atom loss in the IRB return signal, we fit the return pro
bability as Rn = SnDn, in which D p p= ′ ′ (1 − e )n

n b n
0

−1/ ′ . The fidelity per 
move is then extracted as Fn = Sn+1/Sn ⋅ Dn+1/Dn. The uncertainty is 
obtained by first bootstrapping fitting parameters for Sn and then, 
for each sample, by bootstrapping those for Dn. Unlike for AOD-only 
transport, the choice of convention used to account for losses affects 
the early-time instantaneous fidelity. In a scenario in which losses can 
be directly detected, we could assign an infidelity from loss equal to 
half the loss probability—as in a depolarizing model. In this scenario, 
the instantaneous fidelity quoted in Fig. 6d would increase from 
99.81(3)% to 99.88(3)%.

Combined atom transfer and move
To combine atom transfer and long moves, we change the static tweezer 
configuration to one featuring alternating spacing as shown in Extended 
Data Fig. 10e. This configuration is motivated by the compatibility 
with diagonal motion (as schematized in Supplementary Fig. 5) and 
by the observation of further losses in the absence of wider pathways 
for transport. We did not attempt to optimize SLM parameters in the 
original configuration to mitigate these losses and leave further inves-
tigation to future work. We include a simulation for the out-of-plane 
interference for this spatial distribution of tweezers in Extended Data 
Fig. 3d. Apart from a slightly lower imaging fidelity—which, in the con-
text of fault-tolerant quantum computation, matters much less than, 
for example, for quantum simulation—we do not expect this array to 
exhibit different metrics from the configuration characterized in the 
rest of this paper. We then transport atoms with 8 × 6 AOD tweezers (of 
which 47 are overlapped with one of the 11,416-site 1,061-nm tweezer 
array) spanning 285 μm × 204 μm.

The combined transfer and move sequence is realized as follows 
(Extended Data Fig. 10e): we first apply a single-qubit gate, pick up 
atoms from the highlighted sites on the top side of the array and then 
perform a constant jerk movement for the initial separation move. We 
then implement the 375-μm move using an adiabatic sine trajectory, 
apply a single-qubit gate while atoms are held in AOD tweezers on the 
bottom side of the array (shown in highlighted locations), before apply-
ing the reverse move and transfers. Timescales for each operation are 
shown in Extended Data Fig. 10e. During the pick-up operation, AOD 
tweezers are ramped up from 0 to kB × 0.28 mK, while SLM tweezers are 
ramped down from kB × 0.18 mK to kB × 0.06 mK (the trap depth used 
for the measurement of coherence times in Fig. 4). Possible deleteri-
ous effects from the repeated ramps on static atoms are captured by 
the ‘static’ data in Extended Data Fig. 6f: the equivalent idle fidelity is 
greater than 99.96%.

We notice no substantial exponential component in the survival 
signal. Therefore, when we evaluate the instantaneous fidelity using 
the technique described in the ‘Randomized benchmarking of coherent 
transport’ section, the early-time estimate of instantaneous fidelity is 
not affected by the choice of convention for handling loss. We anticipate 
that the timescales used here can be considerably sped up by making 
use of machine learning to optimize various trajectories and ramps, as 
demonstrated in Fig. 6. Furthermore, we propose integrating the short 
move to split (and merge) AOD and SLM tweezers with the longer move 
in a single, curved trajectory.
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Data availability
The data supporting the main findings of this study are available in 
the CaltechDATA repository98. Further data are available from the cor-
responding authors on request.

Code availability
The codes supporting the findings of this study are available from the 
corresponding authors on request.
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Extended Data Fig. 1 | Experiment apparatus and sequence. a, Simplified 
view of the vacuum chamber. The 2D MOT cell (Infleqtion CASC) containing an 
electrically heated caesium dispenser is shown inside its integrated photonics 
assembly. It is attached to a stainless-steel vacuum chamber on which an ion 
pump is mounted. We further use two titanium sublimation pumps (one mounted 
from the top, as shown, and one mounted from the bottom, not visible), 

sputtering almost the entire surface area of the chamber, except the rectangular 
part of the science glass cell and the ion pump. We use the following conventions 
for the laser beams: thick red for MOT beams, thin red for PGC beams, dark red 
(along ̂x) for state preparation beam and purple for tweezer beam. b, Summary 
of the relevant states and transitions used in this work. c, Summary of a typical 
experimental sequence, as described in Methods.
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Extended Data Fig. 2 | Tweezer uniformity details. a, The tweezers created by 
two fibre amplifiers are labelled on the averaged atomic image shown in Fig. 1b. 
We create 11,513 (488) tweezers with laser light at 1,061 nm (1,055 nm), as described 
in the ‘Tweezer generation’ section in Methods. b, WGS weights given to 
tweezers during the tweezer homogenization procedure, as a function of 
angular distance from the zeroth-order reflection off the SLM, with the 
physical distance shown on the upper axis. In teal are plotted the weights 
obtained after the tweezer depths are made uniform on the basis of loading 
probability. In yellow is shown the weight compensation that would be expected 
on the basis of diffraction efficiency calculations assuming blazed gratings  
are used for displacement. c, Per-site loading probability array map and its 
histogram. We feed back on the WGS weights based on the loading rate per site 
to make the trap depth uniform. We see an average loading probability per site 
of 51.2% with a relative standard deviation of 3.4%. The lowest loading probability 
is 25.1% for one tweezer, which is the only tweezer not shown in the histogram 
but included in the quoted average. This tweezer does not exhibit a substantial 
difference in imaging survival probability, coherence time or single-qubit gate 
fidelity (Extended Data Figs. 5a and 8). Three tweezers in the array are excluded 
for the data shown in this work, as they are affected by leakage from the zeroth 
order of the SLM on the 1,061-nm tweezer pathway, resulting in 11,998 usable 
sites out of 12,001 generated sites. d, Per-site tweezer depth map and its 
histogram, obtained by measuring the differential light shift on F = 4 ↔ F′ = 4 D2 
transition. We see an average trap depth of kB × 0.18(2) mK with a standard 
deviation of 11.4% across the sites.



Extended Data Fig. 3 | Tweezer spacing details. Calculation of an out-of-plane 
intensity profile from a section of a 122 × 122-site tweezer array at 1,061 nm, 
whose phase pattern is generated by a WGS algorithm. The tweezer axis (x-axis 
in the plots) is centred along a selected row in the array and the out-of-plane 
axis ( y-axis in the plots) is perpendicular to the focal plane of the tweezers, 
along the direction of light propagation. The focal plane for the tweezers is at 
0 μm and we simulate for different spacing between the tweezers: 7.2 μm (a), 
5.0 μm (b). c, We also show the case for which 5.0-μm spacing is achieved by 

alternating traps generated with two different lasers such that they do not 
interfere by using, for example, orthogonal polarization or sufficiently different 
wavelengths. We could imagine using such an interleaved configuration to 
achieve tighter tweezer spacing without being limited by out-of-plane 
interference, to increase the number of atoms within the field of view. d, The 
out-of-plane interference for the case of alternating spacing between tweezers 
of 9.6 μm and 4.8 μm, as used in Extended Data Fig. 10e,f. The colour scale for 
each case is normalized by the highest intensity in the simulated slice.
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Extended Data Fig. 4 | Imaging characterization. a, Weight function W(u, v) 
applied to each pixel of the 7 × 7 square-pixel box around each site. Here u  
and v refer to the camera pixel coordinates centred on a given site. b, Imaging 
histogram obtained by summing the number of photons in the 7 × 7 square-pixel 

box around each site, without any weights. c, Imaging fidelity as the binarization 
threshold is displaced from its optimal position. d, Map and histogram of the 
scattering rate per site across the tweezer array.



Extended Data Fig. 5 | Imaging survival details. a, Map and histogram of the 
imaging survival probability per site across the tweezer array, as characterized 
using the three-image analysis of data from 16,000 iterations. Note that the 
vertical axis of the histogram is plotted on a log scale. The mean of the site- 
resolved imaging survival probability is 99.985% and the minimum value is 
99.66%. b, Predicted upper bound on the probability of detecting a defect-free 
array after an ideal rearrangement sequence (estimated as p(1|1)n, in which n is 
the number of atoms in the first image), limited by imaging survival and false 
positives. The threshold in the first image can be displaced to reduce false 
positives, at the cost of excluding some atoms. Note that we may ignore the 
issue of false negatives in the first image, as we can always physically eject 
residual atoms in sites that are determined to be negative.
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Extended Data Fig. 6 | Imaging in 20 ms. Imaging histogram obtained with  
an imaging time of 20 ms. The weight function is the same as that shown in 
Extended Data Fig. 3a. Using the model-free imaging characterization, we find 
an imaging fidelity of 99.9571(4)% and a survival probability of 99.176(1)%. Inset, 
log-scale histogram in which the number of photons for each site is rescaled by 
the threshold for this site.



Extended Data Fig. 7 | Characteristics of microwave-driven qubits. 
a, Schematic of the set-up used to drive the hyperfine qubit. b, Inhomogeneity 
of the Rabi frequency across the atom array. The Rabi frequency standard 
deviation is 0.5%. c, Estimation of η, the ratio of the differential polarizability of 
the hyperfine qubit to the electronic ground state scalar polarizability. The 
average qubit frequency is measured by Ramsey interferometry for different 
trap depths, and the slope is compared with the trap depth inferred from the 
light shift of the F = 4 ↔ F′ = 4 D2 transition from its free-space resonance.  
d, Measurement of the depolarization time T1. Atoms are initially prepared in |1⟩. 
After a given time, the remaining population in |1⟩ is measured, with or without 
a π pulse before the measurement. The population difference, conditioned by 
the application of the pulse, constitutes the T1 contrast. e, A spin-echo sequence 

is used to investigate the 60-Hz phase noise in our system. The free-evolution 
time of each arm, τ, is set to a half-period of 60 Hz, which enhances the noise. By 
varying the time tdelay between the line trigger and the spin-echo sequence, we 
map the periodic noise at 60 Hz to the population in |1⟩. f, The population in |1⟩ 
after 1,000 random Clifford gates is measured for different trap depths, 
exhibiting only limited improvement when the trap depth is reduced. Error 
bars indicate estimated 68% confidence intervals. g, Measurement of the 
coherence time T2 at different trap depths, for two different periods between π 
pulses. Error bars indicating 68% confidence intervals are shown when they are 
larger than the dot itself. Note that this experiment was performed with the 
11,513 tweezers generated by the fibre amplifier at 1,061 nm only (Extended 
Data Fig. 2a).
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Extended Data Fig. 8 | Site-resolved coherence metrics. a, Relative difference 
of the qubit frequency with the caesium clock frequency fclock ≡ 9,192,631,770 Hz, 
measured by Ramsey interferometry. The standard deviation is 1.5 × 10−9, or 
14 Hz in absolute value. b, Map and histogram of T *2  across the atom array. The 
average uncertainty per site is 1.5 ms. The average T *2  for sites generated by the 
fibre amplifier at 1,055 nm is 23.2(1) ms, whereas it is 25.58(3) ms for sites 
generated by the fibre amplifier at 1,061 nm. c, Map and histogram of T2 across 
the atom array. The average uncertainty per site is 2.8 s. The average T2 for sites 
generated by the fibre amplifier at 1,055 nm is 19.2(4) s, whereas it is 12.32(6) s 
for sites generated by the fibre amplifier at 1,061 nm. We use averages weighted 
by the uncertainty on each site, as we observe that the unweighted average 
results in a bias from the value obtained by global fitting. d, Map and histogram 
of single-qubit gate fidelity obtained by global randomized benchmarking. 
The average gate fidelity is 99.9834(2)%.



Extended Data Fig. 9 | Raman sideband spectroscopy. a, Schematic of the 
Raman configuration used to address the atomic motion. The amplitude 
modulation set-up and Raman configuration are detailed in Methods. b, Raman 
spectroscopy results exhibiting sidebands corresponding to the radial motion 
(in green) and the axial motion (in purple). We measure a radial trapping 
frequency of 29.30(4) kHz and an axial trapping frequency of 5.64(3) kHz.  
The sideband signal is broadened owing to inhomogeneities in the array.  
The measurement is averaged over the 11,513 tweezers created with the 1,061-nm 
light, as shown in Extended Data Fig. 2a. c, Fine-grained spectroscopy data 
acquired with a lower Rabi frequency to resolve the axial sideband.
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Extended Data Fig. 10 | Long-distance AOD movement and large-scale 
AOD–SLM trap transfer. [AOD only]. a, Proposed layout of a zone-based 
universal quantum processor with 6,100 atoms. Atoms anywhere in the storage 
zone can be transported with AODs to the interaction or readout zones in less 
than 500 μm. b–d, Results of the randomized benchmarking of transport, for 
different distances and trap depths, as specified above each subfigure. Similarly 
to Fig. 5d, we present the atomic survival for various move durations (top panels), 
the IRB return probability for the specific duration highlighted in blue (middle 
panels) and the extracted instantaneous transport fidelity (bottom panels). 

The curve width in the bottom panels represents the 68% confidence interval. 
[AOD and SLM]. e, Schematic representing the configuration and operations 
used for coherent transfer and transport of atoms using 47 AOD tweezers. The 
SLM layout (totalling 11,416 sites) alternates narrow column spacings of 4.8 μm 
and wide column spacings of 9.6 μm, between which AOD tweezers are moved 
diagonally (see Methods). Timescales for each operation composing one-way 
moves are detailed in the figure. f, Results of the randomized benchmarking of 
coherent transfer and transport, similarly to previous figures.
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