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In human neuroimaging, brain atlases are essential for segmenting regions of interest
(ROIs) and comparing subjects in acommon coordinate frame. State-of-the-art atlases
derived from histology' provide exquisite three-dimensional cytoarchitectural
maps but lack probabilistic labels throughout the whole brain: that is, the likelihood
of eachlocation belonging to a given ROI. Here we present NextBrain, a probabilistic
histological atlas of the whole human brain. We developed artificial intelligence-
enabled methods to align roughly 10,000 histological sections from five whole
brain hemispheresinto three-dimensional volumes and to produce delineations for
333 ROIson these sections. We also created a companion Bayesian tool for automatic
segmentation of these ROIs in magnetic resonance imaging (MRI) scans. We showcase

two applications of the atlas: segmentation of ultra-high-resolution ex vivo MRl and
volumetric analysis of Alzheimer’s disease using in vivo MRI. We publicly release raw
and aligned data, an online visualization tool, the atlas, the segmentation tool, and
ground truth delineations for a high-resolution ex vivo hemisphere used in validation.
By enabling researchers worldwide to automatically analyse brain MRIs at a higher
level of granularity, NextBrain holds promise to increase the specificity of findings
and accelerate our quest to understand the human brainin health and disease.

MRl enables three-dimensional (3D) imaging of the human brainin vivo
with millimetre resolution. Neuroimaging packages like FreeSurfer*,
FSLSand SPMCenable large-scale studies with thousands of MRIscans.
A core component of these packages is digital atlases: reference 3D
brainimages that comprise image intensities, neuroanatomical labels
or both. (We note that the cerebral cortex is often modelled with spe-
cific atlases defined on surface coordinate systems rather than 3D
images.) Atlases enable comparison of different subjectsinacommon
coordinate frame (CCF). When they include neuroanatomical labels,
atlases also provide previous spatial information for analyses such as
automated image segmentation’.

Most volumetric atlases are built by averaging in vivo MRI scans from
many subjects. However, their resolution (roughly 1 mm) isinsufficient
to study brain subregions with different function and connectivity®.
Ex vivo MRlyields roughly 100-pm resolution® 2 but still fails to visual-
ize cytoarchitecture. Histology is amicroscopic modality that addresses

thisissue. Earlier versions of histological atlases were printed and com-
prised asmall number of sections®. Subsequent efforts combined serial
histology with image registration to produce 3D histological atlases™.
These were mapped toin vivoscans of living subjects by means of inter-
mediate 3D MRI templates (for example, the Montreal Neurological
Institute (MNI) atlas®™) or directly with Bayesian methods.

Earlier 3D histological atlases modelled only one brain region (for
example, thalamus, basal ganglia'®'®). More recent efforts targeted
the whole brain. BigBrain' comprises more than 7,000 histological
sections of asingle brain, but without labels. Its follow-up, Julich-Brain?,
aggregates data from 23 individuals, with community-sourced labels
for 248 cytoarchitectonic areas mapped to MNI space—albeit with
limited accuracy and only partial subcortical labelling'. The Allen refer-
ence brain® has comprehensive anatomical annotationsbutonlyona
sparse set of sections of a single specimen. The Allen MNI template is
labelling of the MNI atlas with the Allen anatomical protocol, but with
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Fig.1|NextBrain workflow. a, Photograph of formalin-fixed hemisphere
(lateral view). b, High-resolution (400 pum) ex vivo MRI scan, FreeSurfer
segmentation and extracted pial surface (parcellated with FreeSurfer). Left,
sagittal slice of MRI. Centre, corresponding FreeSurfer segmentation. Right,
3Drenderingof reconstructed and parcellated pial surface. ¢, Tissue slabs and
blocks, before and after paraffinembedding. Left, blocked coronalslice of the
cerebrum. Right, blockface photo of acerebral block. d, Histology: coronal
section of cerebrum stained with LFB (left) and H&E (right). e, Artificial-
intelligence-assisted labelling of 333 ROIs on LFB. Left, cerebrum; centre,
brainstem; right, cerebellum?.f, Initialization of affine alignment of tissue

afractionofthelabels and less accurate delineations owing to limited
resolutionand contrast. The Ahead brains* comprise quantitative MRI
andregistered 3D histology for two separate specimens, but labels are
available foronly afew dozenstructures and are automated rather than
manual. Further details on these atlases can be found in the ‘Extended
Introduction’ in the Supplementary Information.

Although existing histological atlases provide exquisite 3D cytoarchi-
tectural maps and some degree of MRI-histology integration, there
areat present neither (1) datasets with densely labelled 3D histology of
the whole brain nor (2) probabilistic atlases built from such datasets,
which would enable analyses such as Bayesian segmentation or CCF
mapping of the whole brain.

To address these issues, we present NextBrain, a densely labelled
probabilistic atlas of the human brain built from histology images.
We used custom artificial-intelligence-enabled registration and
segmentation methods to assemble 3D reconstructions of multi-
modal serial histology of five human half brains, semi-automatically
segment them into 333 ROIs and average the labels into the proba-
bilistic atlas. NextBrain is open source and includes the atlas, a com-
panion Bayesian segmentation method, the data (with an online
visualization tool) and ground truth delineations for al00-pm isotropic
ex vivoscan®

Densely labelled 3D histology of five human
hemispheres

The NextBrain workflow is summarizedin Fig.1and detailed in Methods.
The first result of the pipeline (Fig. 1a-g) is amultimodal dataset with

blocks usinga custom registration algorithm that minimizes overlap and gaps
betweenblocks. g, Refinement of registration with histology and nonlinear
transform?*?*, Reconstructed coronal slice of LFB (left), H&E (middle) and
labels (right), overlaid on MRI, after nonlinear registration with artificial
intelligence and robust Bayesian refinement. h, Orthogonal slices of our 3D
probabilistic atlas. Left, sagittal; middle, coronal; right, axial. Each voxel is
painted withalinear combination the colours of each label, multiplied by their
probabilities. i, Automated Bayesian segmentation of anin vivoscaninto 333
ROIs using the atlas. The atlas can also be used for segmenting ex vivo MRl and
as CCF for population analyses.

human hemispheres from five donors (three right, two left), includ-
ing half cerebellum and brainstem. Each of the five cases comprises
accurately aligned high-resolution ex vivo MRI, serial histology with
hematoxylinand eosin (H&E) and Luxol fast blue (LFB) stains, and dense
ground truth segmentations of 333 cortical and subcortical brain ROls.

Aligning the histology of a case is analogous to solving a 2,000-piece
jigsaw puzzle in 3D, with the ex vivo MRl as reference (similar to the
image onthe box cover), and with pieces that are deformed by section-
ing and mounting on glass slides—with occasional tissue folding or
tearing. This problem falls out of the scope of existing intermodality
registration techniques?, including slice-to-volume? and 3D histol-
ogy reconstruction methods™, which do not have to address the joint
constraints of thousands of sections acquired in non-parallel planes
as part of different blocks.

Instead, we solve this challenging problem with a custom, state-of-
the-art image registration framework (Fig. 2), which includes three
components specifically developed for this project: (1) a differenti-
able regularizer that minimizes overlap of different blocks and gaps
in between?, (2) an artificial intelligence registration method that
uses contrastive learning to provide highly accurate alignment of cor-
responding brain tissue across MRI and histology?** and (3) a Bayesian
refinement technique based on Lie algebra that guarantees the 3D
smoothness of the reconstruction across modalities, evenin the pres-
ence of outliers due to tissue folding and tearing®. We note that this is
anevolution of our previously presented pipeline?®, which incorporates
the aforementioned contrastive artificial intelligence method and
jointly optimizes the affine and nonlinear transforms to achieve a 32%
reductioninregistration error (details below).
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Fig.2|3D histology reconstruction of Casel.a, Coronalslice of 3D
reconstruction; boundaries between blocks are noticeable from uneven
staining.Joint registration minimizes overlap and and gaps betweenblocks
(thisreconstructed slice comprises four different blocks). b, Accurate
intermodality registration with artificial intelligence techniques. Registered
MRI, LFB and H&E histology of ablock, with tissue boundaries (traced on LFB)
overlaid. ¢, Orthogonal view of reconstruction, which is smooth thanks to the

Qualitatively, itis apparent from Fig. 2 that a very highlevel of accu-
racy is achieved for the spatial alignment, despite the non-parallel
sections and distortions in the raw data. The regularizer effectively
aligns the block boundaries in 3D without gaps or overlap (Fig. 2a-c),
with minor discontinuities across blocks (for example, in the tempo-
ral lobe). When the segmentations of different blocks are combined
(Fig.2a, right), the result is a smooth mosaic of ROl labels.

Theartificial-intelligence-enabled registration across MRl and histo-
logical stainsis exemplified in Fig. 2b. Overlaying the main ROl contours
onthe different modalities shows the highly accurate alignment of the
three modalities (MRI, H&E, LFB) even in convoluted regions of the
cortex and the basal ganglia. The mosaic of modalities also highlights
the accurate alignment at the substructural level: for example, subre-
gions of the hippocampus.

Figure 2c shows the 3D reconstruction in orientations orthogonal
to the main plane of sectioning (coronal). This illustrates not only the
lack of gaps and overlaps between blocks but also the smoothness that
is achieved within blocks. This is thanks to the Bayesian refinement
algorithm, which combines the best features of methods that (1) align
eachsectionindependently (high fidelity to the reference, but jagged
reconstructions) and (2) those that align sections to their neighbours
(smoothreconstructions, but witha‘bananaeffect’: that s, straighten-
ing of curved structures).

To quantitatively evaluate the 3D reconstructionaccuracy, we used
250 manually placed pairs of landmarks to compute registration errors
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Bayesianrefinement and avoids gaps and overlaps thanks to the regularizer.
d, Visualization of 3D landmark registration errors for Case 1. Left, visualization
oflandmarks. Right, histogram, mean ands.d. of error magnitude for this case,
compared with our previous pipeline. Error (mean +s.d.): 1.27 + 0.59 mm.
Error?*:1.42 + 0.72 mm. See Table1and Extended Data Figs.1,2,3 and 4 for
resultsonthe other cases.

(501landmarks per case); landmarks are known to be abetter proxy for
registration error thansimilarity of label overlap metrics?. Table1dis-
plays means and standard deviations of the registration error for each
of the five cases, comparing our method with our previous pipeline®.
Histograms and 3D visualizations of the errors for individual cases can
be found in Fig. 2d and in Extended Data Figs. 1d, 2d, 3d and 4d. Our
method yields an average error of 0.99 mm (s.d., 0.51 mm; standard
error, 0.03 mm), which is a considerable reduction with respect to
ref.26, whichyielded 1.44 mm (s.d., 0.58 mm; standard error, 0.04 mm).
The difference between the two methods is strongly significant: Pval-
ues computed with anon-parametric paired Wilcoxon test were under
0.001for all cases, and the Pvalue for all 250 landmarks was P < 10%; see
detailsin Table1. The spatial distribution of the error is further visual-
ized with kernel regression in Extended Data Fig. 5, which shows that
this distributionis fairly uniform: thatis, there is no obvious consistent
pattern across cases.

Our pipeline is widely applicable as it produces accurate 3D recon-
structions from blocked tissue in standard-sized cassettes, sectioned
with a standard microtome. The computer code and aligned dataset
are freely available in our public repository. For educational and data
inspection purposes, we have built an online visualization tool for the
multimodality data, which is available at https://github-pages.ucl.
ac.uk/BrainAtlas.

Supplementary Video lillustrates the aligned data, which include
(1) MRI at 400-pum isotropic resolution, (2) aligned H&E and LFB


https://github-pages.ucl.ac.uk/BrainAtlas
https://github-pages.ucl.ac.uk/BrainAtlas

Table 1| 3D registration errors (in millimetres) for our method
versus ref. 26

Case Error (uxo), Error (uxo), Pvalue (paired
our method previous method?® Wilcoxon)

Case 1.27+0.59 1.42+0.72 8.8x10™

Case 2 0.98+0.55 1.49+0.65 5.6x107°

Case 3 0.80+0.32 1.41£0.68 2.0x107

Case 4 1.05+0.50 1.49+0.70 1.5x10™

Case 5 0.83+0.57 1.39+0.66 6.2x1077

All combined 0.99+0.51 1.44+0.68 4.0x102

We used N=50 for each case (250 all combined). Statistical significance is computed using a
two-sided Wilcoxon test.

histology digitized at 4-pm resolution (with 250-um or 500-um spac-
ing, depending on the brain location) and (3) ROl segmentations,
obtained with a semi-automated artificial intelligence method®. The
ROIs comprise 34 cortical labels (following the Desikan-Killiany atlas®®)
and 299 subcortical labels (following different atlases for different
brainregions; Methods and Supplementary Information). This public
dataset enables researchers worldwide to conduct their own studies
not only in 3D histology reconstruction but also other fields, such as
high-resolution segmentation of MRI or histology*°, MRI-to-histology
and histological stain-to-stainimage translation®, deriving MRI signal
models from histology**and many others.

A next-generation probabilistic atlas of the human
brain

The labels from the five human hemispheres were coregistered and
merged into a probabilistic atlas. This was achieved witha method that
alternately registers the volumes to the estimate of the template and
updates the template by means of averaging™®. The registration method
is diffeomorphic® to ensure preservation of the neuroanatomic topol-
ogy (for example, ROIs do not split or disappear in the deformation
process). Crucially, we use aninitialization based on the MNI template,
which serves two important purposes: preventing biases towards any
of the cases (which would happen if we initialized with one of them)
and ‘centring’ our atlas onawell-established CCF computed from 305
subjects, which largely mitigates our relatively low number of cases.
Because the MNI template is a greyscale volume, the first iteration of
atlasbuilding uses registrations computed with the ex vivo MRI scans.
Subsequent iterations register labels directly with a metric based on
the probability of the discrete labels according to the atlas®.

Figure 3 shows close-ups of orthogonal slices of the atlas, which
model voxel-wide probabilities for the 333 ROIs ona 0.2-mmi isotropic
grid. The resolution and detail of the atlas represent a substantial
advance with respect to the SAMSEG atlas* now in FreeSurfer (Fig. 3a).
SAMSEG models13 brainROIs at I-mmresolution andis a highly detailed
probabilistic atlas that covers all brain regions. The figure also shows
roughly corresponding slices of the manual labelling of the MNI atlas
with the simplified Allen protocol®>. Compared with NextBrain, this
labelling is not probabilistic and does not include many histological
boundaries that are invisible on the MNI template (for example, hip-
pocampal subregions, inviolet). For this reason, it only has 138 ROIs—
whereas NextBrain has 333.

A comparison between labelled sections of the printed atlas by
ref. 13 and roughly equivalent sections of the Allen reference brain
and NextBrain is included in the Supplementary Information. The
agreement between the three atlases is generally good, especially for
the outer boundaries of the whole structures: for example, the whole
hippocampus, amygdala or thalamus. Mild differences can be found
inthe delineation of substructures, both cortical and subcortical (for
example, subdivision of the accumbens), mainly due to (1) the forced

choice of applying arbitrary anatomical criteriain both atlases because
of lack of contrast in smaller regions, (2) different anatomical defini-
tionsand (3) the probabilistic nature of NextBrain. We emphasize that
these differences are not exclusive to NextBrain, asthey are also present
between Mai-Paxinos and Allen.

Close-ups of NextBrain slices centred on representative brain regions
areshownin Fig.3b, withboundaries between the ROIs (computed from
the maximum likelihood segmentation) overlaid inred. These highlight
theanatomical granularity of the new atlas, with dozens of subregions
forareassuch as the thalamus, hippocampus, amygdala, midbrain and
so on. An overview of the complete atlas is shown in Supplementary
Video 2, which illustrates the atlas construction procedure and flies
through all the slices in axial, coronal and sagittal view.

The probabilistic atlas is freely available as part of our segmenta-
tion module distributed with FreeSurfer. The maximum likelihood
and colour-coded probabilistic maps (as in Fig. 3) can also be down-
loaded separately from our public repository for quick inspection
and educational purposes. Developers of neuroimaging methods can
freely capitalize on this resource, for example, by extending the atlas
through combination with other atlases or manually tracing new labels;
or by designing their own segmentation methods using the atlas. Neu-
roimaging researchers can use the atlas for fine-grained automated
segmentation (asshownbelow) or as a highly detailed CCF for popula-
tion analyses.

Segmentation of ultra-high-resolution ex vivo MRI

One of the new analyses that NextBrain enables is the automated
fine-grained segmentation of ultra-high-resolution ex vivo MRI.
Because motion s not a factor in ex vivo imaging, very long MRI scan-
ning times can be used to acquire dataatresolutions that are infeasible
invivo. One example is the publicly available 100-um isotropic whole
brain presentedinref.12, which wasacquiredina100-hour session on
a7-T MRIscanner. Such datasets have huge potential in mesoscopic
studies connecting microscopy with in vivo imaging?®.

Volumetric segmentation of ultra-high-resolution ex vivo MRI can
be highly advantageous in neuroimaging in two different manners:
first, by supplementing such scans (like the 100-micron brain) with
neuroanatomical information that augments their value as atlases
(for example, as CCFs or for segmentation purposes®); and second,
by enabling analyses of ex vivo MRI datasets at scale (for example,
volumetry or shape analysis).

Dense manual segmentation of these datasets is practically infea-
sible, as it entails manually tracing ROIs on over 1,000 slices. More-
over, one typically seeks to label these images at a higher level of
detail than in vivo (that is, more ROIs of smaller sizes), which exac-
erbates the problem. One may use semi-automated methods like the
artificial-intelligence-assisted technique we used in to build NextBrain
(see the previous section), which limits the manual segmentation to
one every Nslices® (N =4 in this work). However, such a strategy only
ameliorates the problem to a certain degree, as tedious manual seg-
mentation is still required for a significant fraction of slices.

A more appealing alternative is thus automated segmentation.
However, existing approaches have limitations, as they either (1) were
designed for I-mmin vivo scans and do not capitalize on theincreased
resolution of ex vivo MRI®®** or (2) use neural networks trained with
exvivoscansbutwithalimited number of ROIs because of theimmense
labelling effort that is required to generate the training data®.

This limitation is circumvented by NextBrain: as a probabilistic atlas
of neuroanatomy, it can be combined with well-established Bayes-
ian segmentation methods (which are adaptive to MRI contrast) to
segment ultra-high-resolution ex vivo MRI scans into 333 ROIs. We
have released in FreeSurfer an implementation that segments full
brain scansin about 1 h, using a desktop equipped with a graphics
processing unit.
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Fig.3|NextBrain probabilistic atlas. a, Comparison with whole brain atlases.
Portions of the NextBrain probabilistic atlas (which has 333 ROls), the SAMSEG
atlas in FreeSurfer® (13 ROIs) and the manual labels of MNI based on the Allen
atlas® (138 ROIs). b, Close-up of three orthogonal slices of NextBrain. The colour
coding follows the convention of the Allen atlas®, where the hue indicates the
structure (for example, purpleis thalamus, violetis hippocampus, greenis
amygdala) and the saturation is proportional to neuronal density. The colour of

To quantitatively evaluate the segmentation method, we have cre-
ated a gold standard segmentation of the public 100-micron brain',
whichweare publicly releasing as part of NextBrain. To make this bur-
densome task practical and feasible, we simplified it in five manners:
(1) downsampling the data to 200-pum resolution, (2) labelling only
one hemisphere, (3) using the same semi-automated artificial intelli-
gence method asin NextBrain for faster segmentation, (4) using Free-
Surfer to automatically subdivide the cerebral cortex and (5) labelling
only asubset of 98 visible ROIs (Supplementary Videos 3 and 4). Even
with these simplifications, labelling the scan took more than 100 h of
manual tracing effort.

We compared the gold standard labels with the automated segmen-
tations produced by NextBrain using Dice overlap scores. Because
the gold standard has fewer ROIs (particularly in the brainstem), we
(1) clustered the ROIs in the automated segmentation that correspond
with the ROls in the gold standard and (2) used a version of NextBrain
inwhichthebrainstem ROIs are simplified to better match those of the
gold standard (with 264 labelsinstead of 333). Theresults are shownin
Extended Data Table 1. As expected, there is a clear link between size
and Dice. Larger ROlIslike the cerebral white matter or cortex have Dice
around 0.9. The smaller ROIs have lower Dice, but very few are below
0.4—which is enough to localize ROIs. We note that the median Dice
(0.667) iscomparable with that reported by other Bayesian segmenta-
tion methods for brain subregions®,

Sample slices and their corresponding automated and manual seg-
mentations are shownin Fig. 4. The exquisite resolution and contrast of
the dataset enables our atlas to accurately delineate a large number
of ROIs with very different sizes, including small nuclei and subregions
ofthe hippocampus, amygdala, thalamus, hypothalamus, midbrainand
soon. Differencesinlabel granularity aside, the consistency betweenthe
automated and gold standard segmentationis qualitatively very strong.

Thisisahighly comprehensive dense segmentation of ahumanbrain
MRI scan. As ex vivo datasets with tens of scans become available®**’,
https://dandiarchive.org/dandiset/000026, our tool has great potential
inaugmenting mesoscopic studies of the human brain. Moreover, the
labelled MRI that we are releasing has great potential in other neuro-
imaging studies, for example, for training or evaluating segmentation
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each voxelis aweighted sum of the colour corresponding to the ROIs, weighted
by the corresponding probabilities at that voxel. The red lines separate ROIs on
the basis of the most probable label at each voxel, thus highlighting boundaries
between ROIs of similar colour; we note that the jagged boundaries area
common discretization artefact of probabilistic atlasesinregions where

two or more labels mix continuously: for example, the two layers of the
cerebellar cortex.

algorithms; for ROl analysis in the high-resolution ex vivo space; or
for volumetric analysis by means of registration-based segmentation.

Fine-grained analysis of in vivo MRI

NextBrain canalso be used to automatically segmentinvivo MRIscans
atthe resolution of the atlas (200-um isotropic), yielding an extremely
highlevel of detail. Scans used inresearch typically have isotropic reso-
lution with voxel sizes ranging from 0.7 mmto 1.2 mm and therefore do
not show allROIboundaries with as much detail as ultra-high-resolution
ex vivo MRI. However, many boundaries are still visible, including the
external boundaries of brain structures (hippocampus, thalamus
and so on) and some internal boundaries: for example, between the
anteromedial and lateral posterior thalamus*°. Bayesian segmentation
capitalizes on these visible boundaries and combines them with the pre-
vious knowledge encodedin the atlas to produce the full subdivision—
albeit with lower reliability for the indistinct boundaries™. A sample
segmentation is shown in Fig. 1f.

Evaluation of segmentation accuracy
We first evaluated the in vivo segmentation quantitatively in two dif-
ferent experiments. First, we downsampled the ex vivo MRIscan from
the previous section tol-mmisotropicresolution (thatis, the standard
resolution of in vivo scans), segmented it at 200-pum resolution and
computed Dice scores with the high-resolution reference. The results
aredisplayedin Extended Data Table 1. The median Dice is 0.590, which
is 0.077 lower than at 200 pum but still fair for such small ROIs*®. Moreo-
ver, most Dice scores remain over 0.4, as for the ultra-high resolution,
hinting that the priors can successfully provide a rough localization
ofinternal boundaries, given the more visible external boundaries.
In a second experiment, we analysed the Dice scores produced by
NextBrainin OpenBHB*, a public meta-dataset with roughly 1-mm
isotropic T1-weighted scans of more than 3,000 healthy individuals
acquired at more than 60 sites. Using FreeSurfer 7.0 as a silver stand-
ard, we computed Dice scores for our segmentations at the level of
wholeregions: that is, the level of granularity provided by FreeSurfer.
Although these scores cannot assess segmentation accuracy at the
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Fig.4 |NextBrainsegmentation of ultra-high-resolution MRI. Automated
Bayesian segmentation of publicly available ultra-high-resolution ex vivo brain
MRI*2using the simplified version of NextBrain, and comparison with the gold
standard (only available for the right hemisphere). We show two coronal, sagittal
and axial slices. The MRIwas resampled to 200-pm isotropic resolution for
processing. Asin previous figures, the segmentation uses the Allen colour
map’with boundaries overlaid inred. We note that the manual segmentation
usesacoarser labelling protocol.

subregion level, they do enable evaluation on amuch larger multisite
cohort, as well as comparison with the Allen MNI template—the only
competing histological (or rather, histology-inspired) atlas that can
segment the whole brain in vivo. The results (Extended Data Fig. 6)
show that (1) NextBrain consistently outperform the Allen MNI tem-
plate, asexpected from the fact that one atlasis probabilistic whereas
the otheris not; (2) NextBrainyields Dice scores in the range expected
from Bayesian segmentation methods*—despite using only five cases,
thanks to the excellent generalization ability of generative models*;
and (3) despite being built from a set of older subjects, our mitigation
strategy (anchoring NextBrain on MNIand using highly generalizable
Bayesian segmentation) enables NextBrain to produce segmentations
that are consistently accurate throughout the lifespan, as opposed
to the Allen MNI template, which has a strong negative correlation
between age and performance: r=-0.274, P<10™%, compared with
NextBrain (r=0.046, P=0.009). Please see Extended Data Fig. 6b,c
for further details.

Application to Alzheimer’s disease classification

To further compare NextBrain with the Allen MNI template, we used
an Alzheimer’s disease classification task based on linear discriminant
analysis (LDA) of ROI volumes (corrected by age and intracranial vol-
ume). Using asimple linear classifier on atask where strong differences

areexpected allows us to use classificationaccuracy as a proxy for the
quality of theinput features: thatis, the ROl volumes derived from the
automated segmentations. To enable direct comparison, we used a
sample of 383 subjects from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset* (168 Alzheimer’s disease, 215 controls) that
we used in previous publications'©14°,

Using the ROI volumes estimated by FreeSurfer 7.0 (which do not
include subregions) yields an area under the receiver operating char-
acteristic curve (AUROC) equal to 0.911, with classification accuracy
of 85.4% atits elbow. The Allen MNI template exploits subregion infor-
mation to achieve AUROC = 0.929 and 86.9% accuracy. The increased
segmentation accuracy and granularity of NextBrain enables it to
achieve AUROC = 0.953 and 90.3% accuracy—with asignificantincrease
inAUROC withrespect tothe Allen MNItemplate (P=0.01for aDeLong
test). This AUROC is also higher than those of specific ex vivo atlases
we have presentedin the previous work'**#°—which range from 0.830
to 0.931.

Application to fine-grained signature of ageing

We performed Bayesian segmentation with NextBrain on 705 sub-
jects (aged 36-90, mean 59.6 years) from the Ageing HCP dataset*,
which comprises high-quality in vivo scans at 0.8-mm resolution. We
computed the volumes of the ROIs for every subject, corrected them
for total intracranial volume (by division) and sex (by regression) and
computed their Spearman correlation with age. We used the Spear-
manrather than Pearson correlation because, being rank-based, itisa
better model for ageingtrajectories as they are known to be nonlinear
for wide age ranges**®,

Theresultof this analysis is a highly comprehensive map of regional
ageing of the human brain (Fig. 5a and Extended Data Fig. 7a; see also
full trajectories for select ROIs in Extended Data Fig. 8). Cortically, we
foundsignificant negative correlations with age in the prefrontal cortex
(marked with‘a’in Fig. 5a) and insula (b), whereas the temporal (c) and
parahippocampal cortices (d) did notyield significant correlation; this
is consistent with findings from studies of cortical thickness***%, The
white matter (e) is known to decline steadily after about 35 years**¢, and
suchnegative correlationis also detected by NextBrain. Other general
ageing patterns at the whole-structure level**¢ are also successfully
captured, such as asteady volume decrease of the caudate, thalamus
and putamen (f) and the volumetric reduction of the hippocampus,
amygdala and globus pallidus.

Importantly, NextBrain also unveils more granular patterns of the
relationship between volumes and ageing in these regions. For exam-
ple, the anterior caudate (g) showed a stronger negative correlation
between age and volume than the posterior caudate (h). Similarly, the
external segment of the globus pallidus (i) showed a stronger correla-
tion than the internal segment (j)—an effect that was not observed in
previous work studying the whole pallidum*. The ability to investigate
separate subregions highlights a differential effect of ageing across
brain networks, particularly a stronger effect on the regions of the
limbic and prefrontal networks, given the correlations we found in
the caudate head (g), insula (b), orbitofrontal cortex (k), amygdala
and thalamus™. In the thalamus, the correlation is more significant
in the mediodorsal (1), anteroventral (m) and pulvinar subnuclei (n),
key regions in the limbic, lateral orbitofrontal and dorsolateral pre-
frontal circuits. In the hippocampus, subicular regions (o) correlate
more strongly thanthe rest of the structure. The pattern of correlation
strengthismore homogeneous across subregions in the amygdala (key
region in the limbic system), hypothalamus and cerebellum. We then
revisited the OpenBHB dataset and performed the same regression
analysis only for subjects older than 35 years, to match the age range
ofthe Ageing HCP dataset (N = 431, aged 36-86 years, mean 57.9 years).
TheresultsareshowninFig.5b and Extended Data Fig. 7b. Despite the
differencesinacquisition and the huge heterogeneity of the OpenBHB
dataset, the results are highly consistent with those from HCP—but with
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Fig.5|Fine-grained ageing signature using NextBrain. We report the absolute
value of Spearman correlation for ROl volumes versus age derived fromin vivo
MRIscans. a, Ageing HCP dataset. Image resolution, 0.8-mmisotropic; N, 705;
agerange,36-90 years; mean age, 59.6 years; please see main text for meaning
of markers (letters). b, OpenBHB dataset, restricted to subjects with ages over

slightly lower significance, possibly owing to the increased voxel size
(twice as big, because 1/0.8° = 2).

We also performed the same analysis with all 3,220 subjects in Open-
BHB; see the results in Fig. 5¢c and Extended Data Fig. 7c. For many
regions, widening the age range to 6-86 years (mean age 25.2) yields
non-monotonic ageing curves and therefore weaker Spearman corre-
lations. Therefore, these graphs highlight the regions whose volumes
start decreasing with age the earliest, such as the putamen or medial
thalamus. Many other patterns of association between age and ROI
volumes remain very similar to those of the older populations (for
example, basal ganglia or hippocampus).

The segmentation code is publicly available in FreeSurfer (https://
surfer.nmr.mgh.harvard.edu/fswiki/HistoAtlasSegmentation) and can
be run with a single line of code. This enables researchers worldwide
to analyse their scans at a high level of detail without manual effort or
highly specific neuroanatomical knowledge.

Discussion and conclusion

NextBrain is a next-generation probabilistic human brain atlas that is
publicly available and distributed with a companion Bayesian segmen-
tation tool and multimodal dataset. The datasetitselfis already a highly
valuable resource: researchers have free access to both the raw and
registered data, whichthey can use for their ownresearch (forexample,
in MRI signal modelling or registration) or to augment the atlas with
new ROIs (forexample, by labelling them on the histology or MRl data
and rebuilding the atlas). The atlas itself provides a high-resolution
CCF for population analyses. The 3D segmentation of 100-pm ex vivo
brain MRIscan®is avaluable complement to this (already very useful)
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35yearstomatch Ageing HCP. Resolution, I-mmisotropic; N, 431; age range,
36-86 years; mean age, 57.9 years.c, FullOpenBHB dataset. N, 3,220; age range,
6-86 years; meanage, 25.2 years; please note the different scale of the colour
bar. The ROl volumes are corrected by intracranial volume (by division) and sex
(by regression). Further slices are shownin Extended Data Fig. 6.

resource. Finally, the Bayesian tool enables segmentation of ex vivo
andinvivo MRl at an unprecedented level of granularity.

NextBrain is customizable and extensible: because all the data and
codeare publicly available, itis possible to download the data, modify
(or extend) the manual annotations and rebuild a custom atlas. Next-
Brain can be complemented by other segmentation methods and
atlases that describe other aspects of the brain. For example, more
accurate cortical segmentation and parcellation can be achieved with
surface models®. We are at present working on models that combine
neural networks with geometry processing to obtain laminar seg-
mentations from in vivo and ex vivo scans****, Surface placement
will also warrant compatibility with cortical atlases obtained with
multimodal data.

The Bayesian segmentation tool in NextBrain is compatible with
1I-mmisotropicscans, asillustrated by the Alzheimer’s and ageing exper-
iments. Aswith other probabilistic atlases, Bayesian segmentation can
be augmented with models of pathology to automatically segment
pathology, such as tumours® or white matter hyperintensities*. Impor-
tantly, NextBrain’s high level of detail enables us to fully take advantage
of high-resolution data, such as ex vivo MR, ultra-high-field MRI (for
example, 7 T) and exciting new modalities like HiP-CT¥. As high-quality
3D brainimages become increasingly available, NextBrain’s ability to
analyse them with high granularity holds great promise to advance
knowledge on the human brainin health and in disease.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Brain specimens

Hemispheres from five individuals (including half of the cerebrum,
cerebellumand brainstem), were used in this study, following informed
consent to use the tissue for research and the ethical approval for
research by the National Research Ethics Service Committee London -
Central. All hemispheres were fixed in 10% neutral buffered formalin
(Fig.1a). The laterality and demographics are summarized in Supple-
mentary Table1; the donors were neurologically normal, but one case
had anundiagnosed, asymptomatic tumour (diameter roughly 10 mm)
inthe white matter, adjacent to the pars opercularis. This tumour did
not pose issues in any of the processing steps described below.

Dataacquisition

Our data acquisition pipeline largely leverages our previous work?.
We summarize it here for completeness; the reader is referred to the
corresponding publication for further details.

MRI scanning. Before dissection, the hemispheres were scanned ona
3-T Siemens MAGNETOM Prisma scanner. The specimens were placed
in a container filled with Fluorinert (perfluorocarbon), a proton-free
fluid with no MRI signal that yields excellent ex vivo MRI contrast and
does not affect downstream histological analysis*®. The MRI scans
were acquired with a T2-weighted sequence (optimized long echo
train 3D fast spin echo®) with the following parameters: TR = 500 ms,
TEeff =69 ms, BW =558 hertz per pixel, echo spacing =4.96 ms, echo
trainlength = 58,10 averages, with 400-umisotropicresolution, acqui-
sition time for each average = 547 s, total scanning time = 91 min. These
scans were processed with a combination of SAMSEG® and the Free-
Surfer 7.0 cortical stream® to bias-field-correct the images, generate
rough subcortical segmentations and obtain white matter and pial
surfaces with corresponding parcellations according to the Desikan-
Killiany atlas® (Fig. 1b).

Dissection. After MRI scanning, each hemisphere is dissected to fit
into standard 74 mm x 52 mm cassettes. First, each hemisphere was
splitinto cerebrum, cerebellum and brainstem. Using a metal frame
as aguide, these were subsequently cut into 10-mm-thick slices in
coronal, sagittal and axial orientation, respectively. These slices were
photographed inside a rectangular frame of known dimensions for
pixel size and perspective correction; we refer to theseimages as ‘whole
slice photographs’. Although the brainstem and cerebellum slices all
fitinto the cassettes, the cerebrumslices were further cutinto as many
blocks asneeded. ‘Blocked slice photographs’ were also taken for these
blocks (Fig. 1c, left).

Tissue processing and sectioning. After standard tissue process-
ing steps, each tissue block was embedded in paraffin wax and sec-
tioned with a sledge microtome at 25-um thickness. Before each cut, a
photograph was taken with a24 MPx Nikon D5100 camera (ISO =100,
aperture = f/20, shutter speed = automatic) mounted right above the
microtome, pointed perpendicularly to the sectioning plane. These
photographs (henceforth ‘blockface photographs’) were corrected
for pixel size and perspective using fiducial markers. The blockface
photographs have poor contrast betweengrey and white matter (Fig. 1c,
right) but also negligible nonlinear geometric distortion, so they canbe
readily stacked into 3D volumes. A two-dimensional convolutional neu-
ralnetwork (CNN) pretrained on the ImageNet dataset® and fine-tuned
on 50 manually labelled examples was used to automatically produce
binary tissue masks for the blockface images.

Staining and digitization. We mounted on glass slides and stained
two consecutive sections every N (see below), one with H&E and one
with LFB (Fig.1d). The sampling interval was N =10 (that is, 250 pm) for

blocks that included subcortical structures in the cerebrum, medial
structures of the cerebellum or brainstem structures. The interval was
N=20(500 pum) for all other blocks. All stained sections were digitized
with a flatbed scanner at 6,400 DPI resolution (pixel size 3.97 pum).
Tissue masks were generated using a two-dimensional CNN similar to
the one used for blockface photographs (pretrained onImageNet and
fine-tuned on100 manually labelled examples).

In vivo ADNI data. Thein vivo ADNI dataset used in the preparation of
thisarticle were obtained from the ADNIdatabase (https://adni.loni.usc.
edu/). The ADNIwas launched in2003 as a public-private partnership,
led by Principal Investigator M. W. Weiner. The primary goal of ADNI
has been to test whether serial MRI, positron emission tomography,
other biological markers and clinical and neuropsychological assess-
ments can be combined to measure the progression of mild cognitive
impairmentand early Alzheimer’s disease. For up-to-date information,
see www.adni-info.org.

Dense labelling of histology

Segmentations of 333 ROIs (34 cortical, 299 subcortical) were made by
authorsE.R.,J.A.and E.B. (with guidance from D.K.,M.B., Z.J.andJ.C.A.)
forallthe LFB sections, usingacombination of manualand automated
techniques (Fig. 1e). The general procedure to label each block was
(1) produce an accurate segmentation for one of every four sections,
(2) run Smartinterpol®® to automatically segment the sections in
between and (3) manually correct these automatically segmented
sections when needed. SmartInterpol is a dedicated artificial intel-
ligence technique that we have developed specifically to speed up
segmentation of histological stacks in this project.

To obtain accurate segmentations on sparse sections, we used two
different strategies depending on the brain region. For the blocks con-
taining subcortical or brainstemstructures, ROIs were manually traced
fromscratch usingacombination of ITK-SNAP® and FreeSurfer’s viewer
‘Freeview’. For cerebellum blocks, we first trained a two-dimensional
CNN (a U-Net®?) on 20 sections on which we had manually labelled the
white matter and the molecular and granular layers of the cortex. The
CNN was then run on the (sparse) sections and the outputs manually
corrected. This procedure saves asubstantial amount of time, because
manually tracing the convoluted shape of the arbor vitae is extremely
time consuming. For the cortical cerebrum blocks, we used a similar
strategy as for the cerebellum, labelling the tissue as either white or
grey matter. The subdivision of the cortical grey matter into parcels
was achieved by taking the nearest neighbouring cortical label from
the aligned MRI scan (details on the alignment below).

The manuallabelling followed neuroanatomical protocols based on
different brain atlases, depending onthe brain region. Further details
on the specific delineation protocols are provided in the Supplemen-
tary Information. The general ontology of the 333 ROls is based on the
Allen reference brain® and is provide in a spreadsheet as part of the
Supplementary Information.

3D histology reconstruction

3D histology reconstruction is the inverse problem of reversing all
the distortion thatbrain tissue undergoes during acquisition, to reas-
semble a 3D shape that accurately follows the original anatomy. For
this purpose, we used a framework with four modules.

Initial blockface alignment. To roughly initialize the 3D reconstruc-
tion, werelied on the stacks of blockface photographs. Specifically, we
used our previously presented hierarchical joint registration frame-
work? that seeks to (1) align each block to the MRI with a similarity
transform, by maximizing the normalized cross-correlation of their
intensities while (2) discouraging overlap between blocks or gapsin
between, by means of a differentiable regularizer. The similarity trans-
forms allowed for rigid deformation (rotation, translation), as well as
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isotropic scaling to model the shrinking due to tissue processing.
The registration algorithm was initialized with transforms derived
from the whole slice, blocked slice and blockface photographs (see
details inref. 26). The registration was hierarchical in the sense that
groups of transforms were forced to share the same parametersin the
earlier iterations of the optimization, to reflect our knowledge of the
cutting procedure. Inthe first iterations, we clustered the blocks into
three groups: cerebrum, cerebellum and brainstem. In the following
iterations, we clustered the cerebral blocks that were cut from the
sameslice and allowed translationsinall directions, in-plane rotation
and global scaling. In the final iterations, each block alignment was
optimized independently. The numerical optimization used the LBFGS
algorithm®. The approximate average error after this procedure was
about 2 mm (ref. 23). A sample 3D reconstruction is shown in Fig. 1f.

Refined alignment with preliminary nonlinear model. Once agood
initial alignment is available, we can use the LFB sections to refine the
registration. These LFB images have exquisite contrast (Fig. 1d) but
suffer from nonlinear distortion—rendering the good initialization
from the blockface images crucial. The registration procedure was
nearly identical to that of the blockface, with two main differences.
First, the similarity term used the local (rather than global) normal-
ized cross-correlation function® to handle uneven staining across
sections. Second, the deformation model and optimization hierarchy
were slightly different because nonlinear registration benefits from
more robust methods. Specifically, the first two levels of optimiza-
tion were the same, with blocks grouped into cerebrum/cerebellum/
brainstem (first level) or cerebral slices (second level) and optimiza-
tion of similarity transforms. The third level (that is, each block inde-
pendently) was subdivided into four stages in which we optimized
transforms with increasing complexity, such that the solution of every
level of complexity served as initialization to the next. In the first and
simplest stage, we allowed for translations in all directions, in-plane
rotation and global scaling (five parameters per block). In the second
stage, we added a different scaling parameter in the normal direction
of the block (six parameters per block). In the third stage, we allowed
forrotationinall directions (eight parameters per block). Inthe fourth
and final stage, we added to every section in every block a nonlinear
field modelled with agrid of control points (10-mm spacing) and inter-
polating B-splines. This final deformation model has about 100,000
parameters per case (about 100 parameters per section, times about
1,000 LFB sections).

Nonlinear artificial intelligence registration. We seek to produce
final nonlinear registrations that are accurate, consistent with each
other and robust against tears and folds in the sections. We capitalize
on Synth-by-Reg (SbR?), an artificial intelligence tool for multimodal
registration that we have recently developed, to register histological
sections to MRl slices resampled to the plane of the histology (as esti-
mated by the linear alignment). SbR exploits the facts that (1) intramo-
dality registration is more accurate than intermodality registration
with generic metrics like mutual information®**®and (2) thereis a cor-
respondence between histological sections and MRl slices: that s, they
represent the same anatomy. Inshort, SbR trains a CNN to make histo-
logical sections look like MRl slices (a task known as style transfer®’),
using a second CNN that has been previously trained to register MRI
slicestoeach other. Thestyle transfer relies on the fact that only good
MRIsynthesis will yield agood match whenused as input to the second
CNN, which enables SbR to outperform unpaired approaches? such as
CycleGAN®, SbR also includes a contrastive loss® that prevents blur-
ring and content shift due to overfitting. SbR produces highly accurate
deformations parameterized as stationary velocity fields (SVFs™).

Bayesian refinement. Running SbR for each stain and section inde-
pendently (thatis, LFB to resampled MRl and H&E to resampled MRI)

yields a reconstruction that is jagged and sensitive to folds and
tears. One alternative is to register each histological section to each
neighbour directly, which achieves smooth reconstructions but
incurs the so-called ‘banana effect’: that is, a straightening of curved
structures™. We have proposed a Bayesian method that yields smooth
reconstructions without the banana effect™. This method follows an
overconstrained strategy by computing registrations between LFB
and MRI, H&E and MRI, H&E and LFB, each LFB section and the two
nearest neighboursineither direction across the stack, each H&E sec-
tion and its neighbours, and each MRl slice and its neighbours. For
astack with S sections, this procedure yields 15xS-I8 registrations,
whereas the underlying dimensionality of the spanning tree connect-
ing all the images is just 3xS-1. We use a probabilistic model of SVFs
to infer the most likely spanning tree given the computed registra-
tions, which are seen as noisy measurements of combinations of trans-
forms in the spanning tree. The probabilistic model uses a Laplace
distribution, which relies on L1 norms and is thus robust to outliers.
Moreover, the properties of SVFs enable us to write the optimization
problem as a linear program, which we solve with a standard simplex
algorithm’™. The result of this procedure was a 3D reconstruction that
isaccurate (it is informed by many registrations), robust and smooth
(Figs.1gand 2).

Atlas construction

The transforms for the LFB sections produced by the 3D reconstruc-
tions were applied to the segmentations to bring them into 3D space.
Despite theregularizer fromref. 23, minor overlaps and gaps between
blocks stilloccur. The former were resolved by selecting the label that
is furthest inside the corresponding ROI. For the latter, we used our
previously developed smoothing approach*.

Given the low number of available cases, we combined the left
(2) andright (3) hemispheres into a single atlas. This was achieved by
flipping the right hemispheres and computing a probabilistic atlas
of the left hemisphere using an iterative technique®. To initialize the
procedure, we registered the MRI scans to the MNI atlas™ with the
right hemisphere masked out and averaged the deformed segmen-
tations to obtain an initial estimate of the probabilistic atlas. This
first registration was based on intensities, using a local normalized
cross-correlation loss. From that point on, the algorithm operates
exclusively on the segmentations.

Every iteration of the atlas construction process comprises two
steps. First, the current estimate of the atlas and the segmentations
are coregistered one at a time using (1) a diffeomorphic deformation
model based on SVFs parameterized by grids of control points and
B-splines (as implemented in NiftyReg’?), which preserves the topol-
ogy of the segmentations; (2) a data term, which is the log-likelihood
of the label at each voxel according to the probabilities given by the
deformed atlas (with a weak Dirichlet prior to prevent logs of zero);
and (3) aregularizer based on the bending energy of the field, which
encourages regularity in the deformations. The second step of each
iteration updates the atlas by averaging the segmentations. The pro-
cedure converged (negligible change in the atlas) after five iterations.
Slices of the atlas are shown in Figs. 1h and 3.

Bayesian segmentation

Our Bayesian segmentation algorithm builds on well-established meth-
odsinthe neuroimaging literature'”>”. In short, the algorithmjointly
estimates a set of parameters that best explain the observed image in
light of the probabilistic atlas, according to agenerative model based
ona Gaussian mixture model (GMM) conditioned onthe segmentation,
combined with amodel of bias field. The parametersinclude the defor-
mation of the probabilistic atlas; a set of coefficients describing the
bias field; and the means, variances and weights of the GMM. The atlas
deformation is regularized in the same way as the atlas construction
(bending energy, in our case) and is estimated by means of numerical
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optimization with LBFGS. The bias field and GMM parameters are esti-

mated with the Expectation Maximization algorithm?.

Compared with classical Bayesian segmentation methods operat-
ingat1-mmresolution with just a few classes (for example, SAMSEG®,
SPM®™), our proposed method has several distinct features:

(1) Because the atlas only describes the left hemisphere, we use a fast
deep learning registration method (EasyReg) to register the in-
put scan to MNI space and use the resulting deformation to split
thebraininto two hemispheresthat are processed independently.

(2) Because the atlas only models brain tissue, we run SynthSeg”” on
the input scan to mask out the extracerebral tissue.

(3) Clustering ROIs into tissue types (rather than letting each ROl have
itsown Gaussian) is particularly important, given the large number
of ROIs (333). The user can specify the clustering by means of a con-
figuration file; by default, our publicimplementation uses a con-
figurationwith 15 tissue types, tailored toin vivo MRI segmentation.

(4) The frameworkisimplemented using the PyTorch package, which
enablesittorunongraphics processing units and curbs segmenta-
tion run times to about half an hour per hemisphere.

Sample segmentations with this method can be found in Fig. 1h
(invivo) and Fig. 4 (ex vivo).

Labelling of ultra-high-resolution ex vivo brain MRI

To quantitatively assess the accuracy of our segmentation method
on the ultra-high-resolution ex vivo scan, we produced a gold stand-
ard segmentation of the publicly available 100-pm scan™ as follows.
First, we downsampled the data to 200-pum resolution and discarded
the left hemisphere, to alleviate the manual labelling requirements.
Next, we used Freeview to manually label from scratch one coronal
slice of every ten; we labelled as many regions from the histological
protocol as the MRI contrast allowed—without subdividing the cor-
tex. Then, we used Smartinterpol®® to complete the segmentation of
the missing slices. Next, we manually corrected the Smartinterpol
output as needed, until we were satisfied with the 200-pum isotropic
segmentation. The cortex was subdivided using standard FreeSurfer
routines. This labelling scheme led to a ground truth segmentation
with 98 ROIs, which we have made publicly available. Supplementary
Videos 3 and 4 fly over the coronal and axial slices of the labelled scan,
respectively.

We used asimplified version of the NextBrain atlas when segmenting
the100-umscan, to better match the ROIs of the automated segmenta-
tion and the ground truth (especially in the brainstem). This version
was created by replacing the brainstem labels in the histological 3D
reconstruction (Fig. 1g, right) by new segmentations made directly
inthe underlying MRI scan. These segmentations were made with the
same methods as for the 100-um isotropic scan. The new combined
segmentations were used to rebuild the atlas.

Automated segmentation with Allen MNI template

Automated labelling with the Allen MNI template relied on
registration-based segmentation with the NiftyReg package?*’?, which
yields state-of-the-art performance in brain MRI registration’. We
used the same deformation model and parameters as the NiftyReg
authors used in their own registration-based segmentation work”™:
(1) symmetricregistration with a deformation model parameterized by
agrid of control points (spacing 2.5 mm = 5 voxels) and B-spline inter-
polation; (2) local normalized cross-correlation as objective function
(s.d.2.5mm); and (3) bending energy regularization (weight 0.001).

LDA for Alzheimer’s disease classification

We performed linear classification of Alzheimer’s disease versus con-
trols based on ROl volumes as follows. Leaving out one subject at a
time, we used all other subjects to (1) compute linear regression coef-
ficients to correct for sex and age (intracranial volume was corrected

by division); (2) estimate mean vectors for the two classes (po, R as
well as a pooled covariance matrix (2); and (3) use the means and
covariance to compute an unbiased log-likehood criterion L for the
left-out subject:

L) =(r, - 1) T X~ 0.5(1,+ Ry,

where xisthe vector withICV-, sex-and age-corrected volumes for the
left-out subject. Oncethe criterion L hasbeen computed forall subjects,
itcanbeglobally thresholded for accuracy and ROC analysis. We note
that, for NextBrain, the high number of ROIs renders the covariance
matrix singular. We prevent this by using regularized LDA: we normal-
ize all the ROIs to unit variance and then compute the covariance as
2 =S+ M\ ,whereSisthesample covariance, /is theidentity matrix and
A =1.0 isaconstant. We note that normalizing to unit variance enables
us to use a fixed, unit A—rather than having to estimate A for every
left-out subject.

B-splinefitting of ageing trajectories

To compute the B-splinefitsin Extended Data Fig. 8, we first corrected
the ROl volumes by sex (using regression) and intracranial volume (by
division). Next, we modelled the datawith a Laplace distribution, which
isrobust against outliers which may be caused by potential segmenta-
tion mistakes. Specifically, we used an age-dependent Laplacian where
the location p and scale b are both B-splines with four evenly space
control points at 30, 51.6, 73.3 and 95 years. The fit is optimized with
gradient ascent over the log-likelihood function:

N
L(6,,0,) = Y log plv,; p(a,; 6), bla,; 6,)],

n=1

where p(x; i, b)is the Laplace distribution with location g and scale b;
U,is the volume of ROI for subject n; a, is the age of subject n; u(a,; 6,)
isaB-spline describing thelocation, parameterized by 6,;and b(a,; 6,)
isa B-spline describing the scale, parameterized by 6,. The 95% confi-
denceinterval of the Laplace distribution is given by u + 3b.
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Data availability

The raw data used in this Article (MRI, histology, segmentations and
soon) canbe downloaded from https://doi.org/10.5522/04/24243835.
An online tool to interactively explore the 3D reconstructed data can
be found at https://github-pages.ucl.ac.uk/NextBrain. This website
alsoincludes links to videos, publications, code and other resources.
The segmentation of the ex vivo scan can be found at https://open-
neuro.org/datasets/ds005422/versions/1.0.1. The databases used in the
aging study are freely accessible online: OpenBHB (https://baobablab.
github.io/bhb/) and aHCP (https://www.humanconnectome.org/study/
hcp-lifespan-aging). The ADNI dataset used in the Alzheimer’s disease
study is freely accessible with registration at https://adni.loni.usc.
edu/data-samples/adni-data/. The atlases used in the Supplementary
Information for comparison can be found online: Mai-Paixinos (https://
www.thehumanbrain.info/brain/sections.php) and Allen (https://atlas.
brain-map.org/).
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Code availability

The code used in this Article for 3D histology reconstruction can be
downloaded from https://github.com/acasamitjana/ERC_reconstruc-
tionand used and distributed freely. The segmentation toolis provided
as Python code and is integrated in our neuroimaging toolkit ‘Free-
Surfer’: https://surfer.nmr.mgh.harvard.edu/fswiki/HistoAtlasSeg-
mentation. The source code is available on GitHub: https://github.
com/freesurfer/freesurfer/tree/dev/mri_histo_util.
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A | Joint registration that minimizes overlap and and gaps between blocks B | Accurate inter-modality registration with Al techniques
(this reconstructed slice comprises four different blocks)

Labels

C | Bayesian refinement for smooth 3D reconstruction across sections

Axial

D | 3D Registration error for Case 2. Left: visualization of landmarks. Right:
histogram, mean, and standard deviation of error magnitude for this case.
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Extended DataFig.1|3Dreconstructionof Case 2. The visualisation follows and avoids gaps and overlaps. (D) Visualization of 3D landmark registration
the same convention asinFig. 3: (A) Coronalsslice of the 3D reconstruction. errors for this specific case (left); histogram of their magnitude (right); and
(B) Registered MRI, LFB, and H&E histology of ablock, with tissue boundaries their mean + standard deviation (bottom), compared with our previous

(traced on LFB) overlaid. (C) Orthogonal view of reconstruction, whichissmooth  pipeline (Mancinietal.®).



A | Joint registration that minimizes overlap and and gaps between blocks B | Accurate inter-modality registration with Al techniques
(this reconstructed slice comprises three different blocks)

Labels

C | Bayesian refinement for smooth 3D reconstruction across sections

Sagittal Axial
u

D | 3D Registration error for Case 3. Left: visualization of landmarks. Right:
histogram, mean, and standard deviation of error magnitude for this case.
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Extended DataFig.2|3Dreconstructionof Case 3. The visualisation follows and avoids gaps and overlaps. (D) Visualization of 3D landmark registration
the same convention asin Fig.3: (A) Coronalslice of the 3D reconstruction. errors for this specific case (left); histogram of their magnitude (right); and
(B) Registered MRI, LFB, and H&E histology of ablock, with tissue boundaries their mean + standard deviation (bottom), compared with our previous
(traced on LFB) overlaid. (C) Orthogonal view of reconstruction, whichissmooth  pipeline (Mancinietal.®).



Article

A | Joint registration that minimizes overlap and and gaps between blocks B | Accurate inter-modality registration with Al techniques
(this reconstructed slice comprises three different blocks)

Labels

C | Bayesian refinement for smooth 3D reconstruction across sections

Sagittal Axial

D | 3D Registration error for Case 4. Left: visualization of landmarks. Right:
histogram, mean, and standard deviation of error magnitude for this case.
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Extended DataFig.3|3Dreconstructionof Case 4. The visualisation follows and avoids gaps and overlaps. (D) Visualization of 3D landmark registration
the same convention asinFig. 3: (A) Coronalsslice of the 3D reconstruction. errors for this specific case (left); histogram of their magnitude (right); and
(B) Registered MRI, LFB, and H&E histology of ablock, with tissue boundaries their mean + standard deviation (bottom), compared with our previous
(traced on LFB) overlaid. (C) Orthogonal view of reconstruction, whichissmooth  pipeline (Mancinietal.®).



A | Joint registration that minimizes overlap and and gaps between blocks
(this reconstructed slice comprises four different blocks)

H&E Labels

C | Bayesian refinement for smooth 3D reconstruction across sections

Sagittal Axial

Extended DataFig.4|3Dreconstruction of Case 5. The visualisation follows
the same convention asinFig. 3: (A) Coronalsslice of the 3D reconstruction.

(B) Registered MRI, LFB, and H&E histology of ablock, with tissue boundaries
(traced on LFB) overlaid. (C) Orthogonal view of reconstruction, which issmooth

B | Accurate inter-modality registration with Al techniques

D | 3D Registration error for Case 5. Left: visualization of landmarks. Right:
histogram, mean, and standard deviation of error magnitude for this case.

0.2r

o
o

Frequency
)

5 2 25 3
Landmark error (mm)

MRI landmarks
©® Registered histology landmarks
Registration error

Error (mean + std.dev.): 0.83 + 0.57 mm
Error (Mancini etal.):  1.39 + 0.66 mm

and avoids gaps and overlaps. (D) Visualization of 3D landmark registration
errors for this specific case (left); histogram of their magnitude (right); and
their mean + standard deviation (bottom), compared with our previous
pipeline (Mancinietal.®).
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Extended DataFig.5|3Dlandmarkregistration error. Sagittal, coronal, and Extended DataFigs.1-4d) using Gaussian kernel regression with o =10 mm.
axialslices of the continuous maps of the 3D landmark registration error. The Thereisno clear spatial pattern for the anatomical distribution of the error
maps are computed from the discrete landmarks (displayed in Fig.2d and across subjects.
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Extended DataFig. 6 | NextBrainsuperior segmentation performance with
respect the Allen MNItemplate. Dice scores for automated segmentations
computed onthe OpenBHB dataset (3,330 subjects), using the Allen MNI
template and NextBrain, with FreeSurfer segmentations asreference. The
scoresarecomputed atthe wholeregionslevel, i.e., thelevel of granularity at
which FreeSurfer segments. (A) Box plots for 11 representative ROIs. On each
box, the central mark indicates the median, the edges of the box indicate the
25%"and 75" percentiles, the whiskers extend to the most extreme data points
not considered outliers, and the outliers are plotted individually as +.

Age (years)

Age (years)

The abbreviations for the regions are: WM =white matter of the cerebrum,
CT=cortexof the cerebrum, CWM = cerebellar white matter, CCT =

cerebellar cortex, TH =thalamus, CA=caudate, PU=putamen, PA = pallidum,
BS =brainstem, HP = hippocampus, AM =amygdala. (B) Scatter plot of Dice
(averaged across the same 11ROlIs) vs age for the Allen MNItemplate. There
isaclear negative correlation between age and accuracy: (r=-0.274,p=1.67 x
107%, two-sided test). (C) Scatter plot for NextBrain, whose accuracy is much
more consistent across the lifespan, with almost no correlation with age
(r=0.046,p=0.009, two-sided test).
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A | Aging HCP (N = 705) B | OpenBHB, age > 35 (N = 431) C | OpenBHB, all cases (N = 3220)

Extended DataFig.7|Fine-grained ageing signature using NextBrain The visualisation follows the same convention asin Fig. 5: (A) Ageing HCP
(additionalslices). Wereport the absolute value of Spearman correlation dataset. (B) OpenBHB dataset, restricted to ages over 35. (C) Full OpenBHB
for ROl volumes vs age derived fromin vivo MRl scans (additional slices). dataset.
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Extended Data Table 1| NextBrain segmentation performance on ultra-high resolution ex vivo MRl scan

ROI Dice Dice ROI Dice Dice
(200 pum) (1 mm) (200 um) (1 mm)
Cerebral-White-Matter 0.90871 0.81367 Reticular-of-thalamus 0.2386 0.3239
Ctx-whole 0.89455 0.81493 VPL 0.57387 0.62796
Cerebellum-Cortex 0.93205 0.85472 LP 0.73933 0.73133
ctx-superiorfrontal 0.77579 0.67069 molecular_layer_HP 0.50045 0.50313
Cerebellum-White-Matter 0.84393 0.65269 Internal-pallidum 0.78939 0.83776
ctx-inferiorparietal 0.77458 0.68367 subiculum 0.69842 0.61734
ctx-precentral 0.73685 0.65937 Dentate-cerebellum 0.71523 0.54696
ctx-rostralmiddlefrontal 0.72036 0.66448 alveus 0.57837 0.3076
ctx-superiortemporal 0.78506 0.69595 CA4_GC-DG 0.75655 0.7136
ctx-superiorparietal 0.63853 0.56005 Accumbens-area 0.77455 0.67541
ctx-middletemporal 0.71694 0.67675 Thalamus 0.32506 0.32978
ctx-inferiortemporal 0.64805 0.65658 Lateral-nucleus 0.8586 0.75999
ctx-lateraloccipital 0.61442 0.57929 CeM 0.6668 0.70489
ctx-postcentral 0.72245 0.60464 Substancia-Nigra 0.7045 0.63047
ctx-supramarginal 0.78025 0.66091 CA2_CA3 0.54381 0.4454
ctx-precuneus 0.72374 0.61229 AV 0.59365 0.60739
ctx-fusiform 0.64278 0.5845 Basal-nucleus 0.66909 0.61273
ctx-rh-lateralorbitofrontal 0.69867 0.66915 SCP 0.71921 0.67856
Brain-Stem 0.65342 0.64177 hypothalamus_posterior 0.58318 0.53634
ctx-insula 0.80767 0.73846 hypothalamus_tubular_sup 0.51626 0.48914
ctx-caudalmiddlefrontal 0.65308 0.52521 Accessory-Basal-nucleus 0.74887 0.78098
ctx-medialorbitofrontal 0.73295 0.62687 hypothalamus_tubular_inf 0.65529 0.56586
ctx-lingual 0.66735 0.59501 PAG 0.76829 0.7809
ctx-parsopercularis 0.70901 0.63893 Red-Nucleus 0.83407 0.83386
Left-Putamen 0.9199 0.86072 VTA 0.67032 0.4751
ctx-paracentral 0.66197 0.58969 STN 0.71496 0.72738
ctx-parstriangularis 0.68932 0.65785 Optic-Nerve 0.58216 0.44427
Left-Caudate 0.91102 0.86814 LGN 0.64318 0.62109
ctx-cuneus 0.56676 0.52349 acomm 0.44371 0.42966
Pons 0.73371 0.6236 fimbria 0.264 0.157
ctx- 0.6305 0.56515 MGN 0.37669 0.21371
caudalanteriorcingulate Via 0.32691 0.45109
ctx-bankssts 0.67939 0.4762 LD 0.42601 0.46225
ctx-isthmuscingulate 0.70825 0.55557 stria-terminals 0.50263 0.30588
ctx-parsorbitalis 0.43236 0.42366 Central-nucleus-inf-colliculus 0.78275 0.72433
Pons-nuc 0.65229 0.5514 Corticoamygdaloid-transitio 0.58151 0.48352
ctx-rh-posteriorcingulate 0.69731 0.56382 mammillary_body 0.56602 0.57353
ctx- 0.67935 0.41073 DR 0.54393 0.49046
rostralanteriorcingulate Inferior-olive 0.26264 0.046102
ctx-pericalcarine 0.5253 0.38703 hypothalamus_anterior_sup 0.54939 0.45936
ctx-entorhinal 0.72093 0.65273 Medial-nucleus 0.32559 0.33181
ctx-temporalpole 0.54659 0.49421 Central-nucleus 0.52925 0.48942
ctx-parahippocampal 0.73123 0.66232 Anterior-amygdaloid-area- 0.21345 0.18373
Left-Pul 0.76937 0.78917 AAA
Left-external-pallidum 0.78074 0.79407 zona-incerta 0.40755 0.45308
Left-MDI 0.87316 0.86494 hypothalamus_anterior_inf 0.36912 0.32702
ctx-frontalpole 0.11589 0.3493 Paralaminar-nucleus 0.14105 0.13123
ctx-transversetemporal 0.63184 0.56123 Cortical-nucleus 0.30083 0.23504
Left-VA 0.6994 0.73112 Rest of hippocampus N/A N/A
CAl 0.78967 0.60729 Rest of amygdala N/A N/A
Fornix 0.30751 0.29593
Claustrum 0.48364 0.3618

Dice scores between the ground truth labels of the 100 um ex vivo brain MR scan presented in® and the automated segmentations obtained with NextBrain. ROls are listed in decreasing order
of size (volume). The Dice scores are shown for segmentations obtained at two different resolutions: 200 um (the resolution at which we created the ground truth labels) and 1mm (which is
representative of in vivo data). We note that the Dice scores are computed from labels made on the right hemisphere (since we did not label the left side of the brain). We also note that the
labels “rest of hippocampus” and “rest of amygdala” correspond to voxels that did not clearly belong to any of the manually labelled nuclei, and have therefore no direct correspondence with
ROls in NextBrain.
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Research sample
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Data collection

Timing

Data exclusions
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participants dropped out/declined participation.

If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.
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Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Describe the data collection procedure, including who recorded the data and how.
Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.
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Access & import/export

Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).
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Access & import/export [compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
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Disturbance Describe any disturbance caused by the study and how it was minimized.
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Antibodies

Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

D Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.




Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field, report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.
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Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes
[] Public health
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Plants

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

Seed stocks

Novel plant genotypes

Authentication

ChlIP-seq

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Describe-any-authentication procedures for-each seed stock used-or-novel-genotype generated. Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Data deposition

D Confirm that both raw and final processed data have been deposited in a public database such as GEO.

D Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links

For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,

May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session
(e.g. UCSC)

Methodology

Replicates

Sequencing depth
Antibodies
Peak calling parameters

Data quality

Software

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
enable peer review. Write "no longer applicable" for "Final submission" documents.

Describe the experimental replicates, specifying number, type and replicate agreement.

Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.

Describe the antibodies used for the ChlP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and
lot number.

Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
used.

Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community
repository, provide accession details.
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Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.
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Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Instrument Identify the instrument used for data collection, specifying make and model number.
Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a

community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type N/A (structural MRI only)
Design specifications N/A

Behavioral performance measures ~ N/A

Acquisition

Imaging type(s) structural

Field strength 1.5T-3T (OpenBHB); 3T (aHCP); 3T (ex vivo acquisition)

Sequence & imaging parameters - OpenBHB: variable.
- aHCP: 3D MPRAGE, TR=2400, TE=2.14i, TI=1000, flip=8deg, BW=210Hz/Px iPAT=2.
-Ex vivo: T2-weighted sequence (optimised long echo train 3D fast spin echo), TR = 500, TEeff = 69, BW = 558 Hz/Px,
echo spacing = 4.96ms, echo train length = 58

Area of acquisition whole brain

Diffusion MRI [ ] Used X Not used

Preprocessing

Preprocessing software FreeSurfer 7.0 was used for: 1. cortical parcellation with the Desikan-Killiany atlas; and 2. whole brain segmentation of aHCP
and OpenBHB for use as silver standard in the evaluation of segmentation methods.

Normalization N/A
Normalization template N/A
Noise and artifact removal N/A

Volume censoring N/A




Statistical modeling & inference

Model type and settings N/A

Effect(s) tested Effect of aging

Specify type of analysis: [ | whole brain  [X| ROI-based || Both

Statistic type for inference Spearman correlation for volumes of ROIs

(See Eklund et al. 2016)
Correction N/A

Models & analysis
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n/a | Involved in the study
Xl |:| Functional and/or effective connectivity

|X| |:| Graph analysis

|X| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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