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Topological nodal i-wave superconductivity 
in PtBi2

Susmita Changdar1,2,3, Oleksandr Suvorov1,4, Andrii Kuibarov1, Setti Thirupathaiah3, 
Grigory Shipunov1, Saicharan Aswartham1, Sabine Wurmehl1, Iryna Kovalchuk1,4, 
Klaus Koepernik1, Carsten Timm5,6, Bernd Büchner1,6, Ion Cosma Fulga1,6, Sergey Borisenko1,6 
& Jeroen van den Brink1,6 ✉

Most superconducting materials are well understood and conventional—that is, the 
pairs of electrons that cause the superconductivity by their condensation have the 
highest possible symmetry. Famous exceptions are the enigmatic high-temperature 
(high-Tc) cuprate superconductors1. Nodes in their superconducting gap are the 
fingerprint of their unconventional character and imply superconducting pairing of 
d-wave symmetry. Here, by using angle-resolved photoemission spectroscopy, we 
observe that the Weyl semimetal PtBi2 harbours nodes in its superconducting gap, 
implying unconventional i-wave pairing symmetry. At temperatures below 10 K, the 
superconductivity in PtBi2 gaps out its topological surface states, the Fermi arcs, 
whereas its bulk states remain normal2. The nodes in the superconducting gap that we 
observe are located exactly at the centre of the Fermi arcs and imply the presence of 
topologically protected Majorana cones around this locus in momentum space. From 
this, we infer theoretically that robust zero-energy Majorana flat bands emerge at 
surface step edges. This establishes PtBi2 surfaces not only as unconventional, 
topological i-wave superconductors but also as a promising material platform in the 
ongoing effort to generate and manipulate Majorana bound states.

Electrons in conventional, textbook superconductors, such as lead or 
niobium, form Cooper pairs with zero angular momentum (l = 0) and 
their pairing symmetry is referred to as s-wave. Pairing with higher angu-
lar momentum and unconventional superconductivity has been estab-
lished in cuprate high-temperature superconductors such as YBa2Cu3O7 
and Bi2Sr2CaCu2O8+x. Their d-wave pairing (l = 2) implies the existence of 
nodes in the superconducting (SC) gap, locations in momentum space 
on the Fermi surface where the SC gap vanishes. To establish the pres-
ence of these nodes in d-wave cuprates, angle-resolved photoemission 
spectroscopy (ARPES) has played a pivotal part as it can directly map 
out the size of the SC gap in momentum space3–7.

Although there is substantial theoretical work discussing SC states 
with pairing symmetry beyond l = 2, at present, there is no spec-
troscopic evidence for unconventional superconductivity beyond 
d-wave8–11. This makes our ARPES-based observation of nodal super-
conductivity on the Fermi arcs of PtBi2 stand out because a symmetry 
analysis of its nodal structure implies that the gap here exhibits i-wave 
symmetry (l = 6). As Fermi-arc states are chiral and nondegenerate, this 
sign change in the SC order parameter along the arc implies the forma-
tion of a surface Majorana cone, similar to the Majorana cones expected 
to occur on the surface of three-dimensional (3D) strong topological 
superconductors12 or 3He (ref. 13), rendering PtBi2 a topological super-
conductor. This is remarkable because materials with intrinsic topologi-
cal superconductivity are scarce. So far, candidate materials include  

Sr2RuO4 (ref. 14), transition-metal dichalcogenides such as Td-MoTe2 
(ref. 15) and 4Hb-TaS2 (ref. 16), uranium-based heavy-fermion sys-
tems17,18, β-PdBi2 (refs. 19–22), and very recently, the kagome material 
RbV3Sb5 (ref. 23). In these systems, however, different experimental 
methods produce inconclusive and sometimes contradictory results, so 
that to date no material has been convincingly shown to be an intrinsic 
topological superconductor24.

The unconventional i-wave SC order implies the presence of six 
Majorana cones on a given PtBi2 surface, each with its own topological 
invariant—a winding number equal to either +1 or −1. Symmetry dictates 
that all six have the same winding number. This is the signature of a 
quantum anomaly: on the opposite surface of a SC slab, there are six 
Majorana modes of opposite winding number, ensuring that the sum 
over all topological invariants vanishes. We will show theoretically that 
the edge-state structure related to these topological nodes causes the 
existence of zero-energy, dispersionless Majorana modes localized at 
the sample hinges, which in practice may be realized by sufficiently 
high step edges at the surface.

ARPES characterization
Trigonal PtBi2 is a noncentrosymmetric Weyl semimetal belonging 
to space group P31m (ref. 25). Its electronic structure hosts 12 Weyl 
cones, related to each other by time reversal as well as threefold 
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rotation symmetry, which are positioned about 47 meV above the  
Fermi level2,26–28. On cleaving, two different types of surfaces are pro-
duced, a kagome-type surface and a decorated honeycomb surface2,27. 
At both terminations, scanning tunnelling spectroscopy has established 
the presence of superconductivity28, carried by the topological sur-
face states of this Weyl semimetal—the Fermi arcs—which gap out at  
temperatures below 10 K (ref. 2).

We have carried out ARPES experiments with improved resolution to 
specifically study the gap function on the Fermi arcs of PtBi2. We start 
by demonstrating in Fig. 1 the progress in experimental accuracy in 
comparison with our previous study2. It has already been shown that the 
most precise measurements can be carried out with the lowest possible 
photon energy, which leads to the lowest kinetic energy of the photo-
electrons of interest. However, these low kinetic energies correspond to 
relatively small values of the absolute momentum, which do not cover 
a sufficient portion of the Brillouin zone. Therefore, we first perform 
the Fermi surface mapping using the higher photon energies available 
in the laboratory (21.2 eV from a helium lamp) and use for this purpose 
a FeSuMa (Fermi surface mapper) analyser29, which allows us to record 
these maps with isotropic angular resolution. This dataset, together 
with the low-energy electron diffraction picture, is shown in Fig. 1a.

Although the presence of arcs along Γ–M is visible on the map, the 
arcs themselves are not well pronounced at this photon energy, in agree-
ment with our previous observation at a synchrotron2. After check-
ing the quality of the surface and orientation of the sample, we use a 
laser source with hν = 6 eV to enlarge in to the vicinity of the M point 
of the Brillouin zone and collect ARPES data with better momentum 
and energy resolution using a conventional analyser (Fig. 1b). With 
this method, the arc is seen with unprecedented clarity and in close 

agreement with the DFT slab calculations, for example, in ref. 2. Another 
advantage of using this particular photon energy is the strong enhance-
ment of the arc intensity compared with the bulk bands. The same 
holds when considering a momentum–energy cut through the arc,  
as shown in Fig. 1c. There are basically no other features visible except 
for the surface band supporting the Fermi arc. Instead of the para-
bolic dispersion usually underlying closed electron-like pockets of the  
Fermi contours, we directly observe an asymmetric shape, just as 
expected from the open nature of the Fermi arcs in Weyl semimetals.

We further reduce the dimension of the dataset by extracting the 
momentum distribution curve and the energy distribution curve along 
the red and green arrows in Fig. 1c, respectively. The resulting very 
sharp and strong peaks are shown in Fig. 1d. Both full-width at half 
maximum (FWHM) values, namely, 2.2 mÅ−1 and 1.7 meV, are the small-
est in the history of photoemission from solids for these lineshapes, 
to our knowledge. Thus, the Fermi arcs in PtBi2 appear to represent 
extraordinary electronic states, strongly localized in terms of energy, 
momentum and space. The ability to detect these features with the 
precision shown above provides an opportunity to investigate the 
order parameter when the arcs become superconducting.

Evidence for nodes in the SC gap
Next, we focus on determining the leading edge gap at different points 
along the arc in Fig. 2. The first observation is that this gap is not iso-
tropic. The three-dimensional (3D) image in Fig. 2a shows the points 
of the arc at which the leading edge gap is determined and how the gap 
changes along the arc. The momentum ky = 0 Å−1 corresponds to the Γ–M 
direction in the Brillouin zone. The gap is also plotted in Fig. 2b, show-
ing this anisotropy. An immediate and rather surprising observation is 
that the leading edge gap seems to close when the arc crosses the Γ–M 
line, indicating the existence of a node. Owing to the finite resolution, 
it is not possible to determine the exact behaviour of the gap function 
very close to this point, as is the case for the high-Tc cuprates, but our 
temperature-dependent measurements also confirm nodal behaviour. 
In Fig. 2c, we show energy distribution curves taken from the node 
(0°) and ±90° along the arc above and below the critical temperature. 
As suggested by the gap function Fig. 2b (top), the gap increases with 
distance from the node, resulting in a shift of the coherence peak.

The gap reaches its maximum at approximately θ = ±90° and then 
starts to decrease again at higher θ (Fig. 2b). In Fig. 2b (middle), we plot 
the energy distribution curves taken along the yellow lines marked 
as θ = 0° and ±90° in Fig. 2a, which correspond to these maxima. The 
coherence peak shifts by about 3.6 meV towards higher kinetic energy 
for θ = ±90° compared with θ = 0°. This value is in close agreement 
with our earlier study and other experiments (see ref. 2 and references 
therein).

We also note the apparent presence of plateaus at θ = ±45°, which 
could be an indication of the admixture of even higher orders (see, for 
example, ref. 30); however, at the current accuracy, we cannot rule out 
that this feature is a robust observation beyond the error bars.

The gap is also observed from the energy distribution curves taken 
above and below the critical temperature Tc along θ = +90° (Fig. 2b, bot-
tom). To further confirm the existence of the node on the arc, we have 
repeated the measurements for four different PtBi2 samples grown in dif-
ferent batches. All data presented in Fig. 2a,b were taken from sample 1,  
cleave 1. The data presented in Fig. 2c were taken from sample 4. The 
angular dependence of the gap for cleave 2 of sample 1 is presented in 
the leftmost panel of Fig. 2d. As expected, the angular dependence of 
the gap is quite similar to cleave 1 (Fig. 2b) with its maximum of about 
2.5 meV at θ = ±90°. Apart from the node at 0°, the leading edge gap 
gradually decreases and closes again at ±125°. As the arc blends with 
the bulk bands at higher θ, the effect of superconductivity, which is 
intrinsic to the arc, starts to disappear. For further validation of our 
observation of the node at 0°, we have repeated the same measurement 
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Fig. 1 | Progress in experimental accuracy. a, Fermi surface map observed 
with a FeSuMa and He-I lamp with hν = 21.2 eV from kagome-type termination. 
Inset, collected low-energy electron diffraction image on PtBi2 single crystal. 
The yellow box marks the position of the arc on the Fermi surface map. b, The 
arc becomes well resolved in the Fermi surface observed with laser ARPES  
with hν = 6 eV (kagome-type termination). c, Momentum–energy intensity 
distribution corresponding to the momentum cut through the arc (decorated 
honeycomb termination). d, Momentum distribution curve and energy 
distribution curve plotted along the red and green arrows in c.
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on three other PtBi2 samples. Samples 2, 3 and 4 exhibit a node at the 
same position as sample 1, as seen in Fig. 2d. Moreover, we performed 
temperature-dependence measurements on sample 4, which shows the 
gradual closure of the gap with temperature (Fig. 2e). The gap decreases 

as we increase temperature from 6 K to 10 K but remains open. At 15 K, 
the gap seems to be closed as we do not observe any peak shift between 
15 K and 20 K. Hence, the critical temperature is within the range of 
10–15 K, as established in earlier studies2.
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Fig. 2 | Anisotropic superconducting gap. a, Leading edge gap across different 
points of the arc (kagome-type termination). b, Angular dependence of the gap, 
showing a node at θ = 0° and a maximum gap at ±90° for cleave 1 of sample 1 (top). 
The middle panel shows the leading edge gap from energy distribution curves 
taken along θ = 0° and ±90° at 2.5 K. This is equivalent to the gap observed from 
energy distribution curves taken at +90° at 2.5 K and 30 K (bottom). c, Energy 
distribution curves taken at the node, +90° and −90°, respectively, at 2.5 K and 
20 K. For ±90°, the temperature is cycled back to 2.5 K, which overlaps with the 

initial 2.5 K energy distribution curves. d, Angular dependence for cleave 2 of 
sample 1 (left) and for three other PtBi2 single crystals from different batches.  
e, Temperature dependence of the energy distribution curve corresponding  
to the arc exhibiting the gradual closing of the leading edge gap at higher 
temperature. Error bars in a, b and d show standard deviation and represent 
uncertainties in determining Fermi momenta and statistical errors of the leading 
edge gap from the fitting procedure.
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It is important to note that the extracted leading edge position from 
any energy distribution curve is influenced by energy–momentum reso-
lution, position of the Fermi level and Fermi function (that is, tempera-
ture of the sample). These effects can be minimized by tracking the peak 
position or the trailing edge position of the same energy distribution 
curves (see section ‘Leading edge, peak, and trailing edge positions’ and 
Extended Data Fig. 3b) along the arc as they are located away from the 
Fermi level, at higher binding energy. This point is further elaborated in 
the Methods section ‘Leading edge, peak, and trailing edge positions’.

SC pairing symmetry
Based on the C3v point group of trigonal PtBi2, the possible SC states 
can be classified according to their irreducible representations 
(irreps) A1, A2 and E. States belonging to the trivial irrep A1 are invari-
ant (even) under all point-group operations, so symmetry does not 
impose gap nodes. SC states of E symmetry must break either rotation 
symmetry (and then can have nodes on some but not all Fermi arcs) 
or time-reversal symmetry (and are nodeless), see Methods. There 
is no experimental evidence for the SC state breaking time-reversal 
symmetry, nor for the simultaneous presence of fully gapped and 
nodal Fermi arcs, speaking against E symmetry. This leaves SC states 
of A2 symmetry, which have symmetry-imposed gap nodes at the 
arc centres and the same gap profile for all arcs. For the A2 irrep, the 
lowest-order time-reversal-symmetric basis function of the polar angle 
ϕ in two-dimensional (2D) momentum space is sin Iϕ with l = 6, implying 
i-wave pairing symmetry. As the Fermi arc is chiral and nondegenerate, a 
sign change of the SC order parameter along the arc directly produces a 
surface Majorana cone, the hallmark of topological superconductivity. 
This is similar to the Majorana cones that are expected to occur on the 
surface of 3D strong topological SCs (ref. 12) or 3He (ref. 13).

Comparison with electronic structure calculations
To compare the ARPES results with density functional theory (DFT), 
we modified the approach of ref. 2 to include nodal gap functions. In 
particular, we use in our DFT Wannier model i-wave pairing of the form 

V0 sin(6ϕ), expanded for small momenta around the node (Methods). 
We restrict pairing and thus V0 ≠ 0 to the surface block of a semi-infinite 
slab and solve the Bogoliubov–de-Gennes (BdG) equations in the 
semi-infinite slab geometry to obtain the surface Bloch spectral density 

kA E( , )bl .
Figure 3a shows the results for different coupling strengths V0.  

In the normal state (V0 = 0), the gap vanishes along the whole Fermi arc, 
whereas for finite V0, the gap closes at ky = 0, the centre of the Majorana 
cone. Owing to a numerically finite lifetime of 0.05 meV, a remnant 
spectral weight is visible along the arc, especially for small V0. The gap, 
however, is finite, except at the node.

The gap was determined by magnifying the points ki, indicated in the 
normal state panel, to locate points exactly on top of the arc, followed 
by a scan of Abl(ki, E) to determine the quasiparticle edges. Comparing 
the resulting gaps, shown in Fig. 3b, with the experiment allows us to 
deduce a coupling strength of V0 = 15–20 meV. The gap on the arc has 
two maxima that are caused by the gap vanishing at both the Γ–M node 
and the surface-projected Weyl node position, at which the arc states 
merge with the bulk. Even when we include in the calculations only the 
lowest i-wave harmonic, the position of the gap maxima at 0.04 Å−1 is 
close to the experimental value 0.06 ± 0.01 Å−1.

Step-edge Majorana modes
To further explore the implications of the presence of the Majorana 
cones theoretically, we use a simplified effective tight-binding model 
for PtBi2 that captures both the lattice symmetries and the relative 
positions of the Weyl cones in the normal state27 (see also the Meth-
ods). The model disregards topologically trivial bands crossing the 
Fermi level while ensuring a marked separation between Weyl cones 
in momentum space.

Without surface superconductivity, the projections of the 12 Weyl 
cones are connected pairwise by surface Fermi arcs. On including the 
surface pairing terms with A2 symmetry in a slab geometry (infinite 
along the x- and y-directions, finite along the z-direction), the Fermi 
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Fig. 3 | Calculated properties of the i-wave superconductor—Majorana cones 
and hinge states. a, Calculated spectral density at the Fermi level in a DFT-BdG 
Wannier model for the (001) surface (decorated honeycomb termination27, top 
panels) and for the (001) surface (bottom panels) with superconducting i-wave 
pairing V0 sin(6ϕ) on the first three surface layers for coupling strengths 
V0 = 0 meV (no superconductivity) and V0 = 21 meV. The points at which the  
gap was determined are indicated in the normal-state panel using labels 0–6. 
Spectral weights larger than 200 are shown in yellow. b, The SC gap as a  
function of distance from the node for three coupling strengths V0 = 7 meV 
(black), 15 meV (red) and 21 meV (green), in the case of the decorated honeycomb 
termination, as in the top panels of a. Circles are calculated values, the lines are 

guides to the eye. The SC gap for the other termination is shown in the Methods. 
c, Electronic structure of the effective model. The colour scale denotes the 
probability density of the states in real space. Bulk Weyl cones are shown in 
green, top Majorana cones are shown in red and bottom Majorana cones are 
shown in blue. Dispersionless zero-energy Majorana hinge modes are shown  
in black. See the Methods for details of the simulation. d, Sketch of the prism 
geometry used in the effective model. The system is infinite in the y-direction 
and finite in the x- and z-directions. The superconducting top surface is shown 
in blue, and the Majorana hinge modes are shown in red. e, Probability density 
of the four Majorana hinge modes in the prism geometry of d, computed for 
ky = 1.3, corresponding to the green arrow in c.
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arcs on both the top and the bottom surfaces are gapped out by the 
pairing, leading to the formation of gapless Majorana cones along the 
Γ–M direction of the slab Brillouin zone (Extended Data Fig. 2b). As in 
the DFT-BdG description, each Fermi arc produces a surface Majorana 
cone, such that there exist six cones on the top surface and six on the 
bottom surface. In the presence of both time-reversal and particle–hole 
symmetries, corresponding to class DIII in the Altland–Zirnbauer clas-
sification31, each individual Majorana cone is topologically protected, 
being characterized by a nonzero winding number, taking the value 
±1 (ref. 32) (Methods). Note that this scenario is distinct from that of 
gapped strong topological superconductors in class DIII, in which 
the surface hosts an integer number of Majorana cones because of 3D 
bulk topology. Here, instead, the bulk remains metallic and does not 
superconduct, whereas the surface realizes a 2D gapless topological 
phase33. As the surface Majorana cones on a given surface are related to 
each other by threefold rotation and/or time-reversal symmetry, they 
all have the same sign of the winding number33, which in our case is −1 
for the top surface and +1 for the bottom surface. Thus, each surface of 
the system forms a so-called anomalous topological superconductor 
(Methods), one in which the sum of Majorana-cone winding numbers 
does not cancel, and therefore one which is impossible to realize in 
a purely 2D system. By contrast, in the gapless topological phases of 
purely 2D superconductors, the winding numbers of Majorana cones 
must vanish, and the number of cones must be a multiple of four, as 
shown in ref. 33.

Breaking time-reversal symmetry removes the topological protec-
tion of the Majorana cones, which then acquire a gap (for details, see 
the Methods). This implies that this weak magnetic field enhances the 
surface SC gap close to the node, while reducing it for other momenta 
along the arc, a prediction that may be tested experimentally. When 
time-reversal symmetry is preserved, however, the nonzero winding 
number of the surface Majorana cones necessarily implies the exist-
ence of zero-energy Majorana modes34 localized at the boundaries 
of the surface, that is, at the hinges of the 3D system. This symmetry- 
based observation is confirmed in Fig. 3c-e by a calculation on an infi-
nite prism geometry [infinite along the y-direction and finite along 
the x- and z-directions, as shown in Fig. 3d). The prism band structure 
(Fig. 3c) contains the projection of two Majorana cones located on the 
top surface, which overlap in ky in the prism Brillouin zone (shown in 
blue, total winding number + 2), and two Majorana cones located on 
the bottom surface (red, winding number −2). At ky values between 
them (Fig. 3c, green arrow), there appear four degenerate zero modes, 
shown in black, which are localized at the hinges of the infinite prism 
(Fig. 3e). Outside this momentum range, the hinge modes are no longer 
topologically protected, such that they can hybridize and split away 
from zero energy. Similar to the surface Majorana cones themselves, 
the hinge modes will move away from the Fermi level under a Zeeman 
field, providing another signature of topological SC that is experi-
mentally accessible in local measurements at hinges or large step 
edges of PtBi2.

Our observation of nodal superconductivity in the Fermi arcs of 
PtBi2 raises the question as to what drives this unconventional i-wave 
pairing. Although in cuprates the mechanism for high-temperature 
d-wave superconductivity remains under debate, there is consensus 
that the presence of strong electron–electron interactions stabilizes 
the nodal d-wave pairing channel over the nodeless s-wave channel. 
In PtBi2, the electronic states are highly delocalized in nature and 
strong electronic correlations are not expected, and are as yet with-
out experimental indication. By contrast, the topological character of 
the superconducting Fermi arcs sets PtBi2 apart from any other known 
superconductor to date. The mechanism by which an i-wave super-
conductor emerges from pairing of these topological states is yet to  
be established.

Finally, we note that the coexistence of gapless Majorana cones with 
a metallic bulk impedes the applicability of PtBi2 towards quantum 

computation, at least in its current form. This can potentially be miti-
gated by the fabrication of ultrathin samples: when the thickness of the 
material becomes small enough, the contribution of unwanted gapless 
bulk modes will be reduced, or even eliminated. Another potential 
manipulation may involve breaking time-reversal symmetry to gap 
out the surface Majorana cones in such a way as to leave behind either 
chiral Majorana edge modes or zero-dimensional Majorana bound 
states localized at the corners of the material. Both types of gapless 
mode have been proposed as a potential avenue towards topological 
quantum computation35,36. Alternatively, we might also predict con-
trolling the phase difference between the top- and bottom-surface 
superconductors, realizing a planar Josephson junction that provides 
an avenue towards quantum computation37.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-025-09712-6.

1.	 Sigrist, M. & Ueda, K. Phenomenological theory of unconventional superconductivity. 
Rev. Mod. Phys. 63, 239–311 (1991).

2.	 Kuibarov, A. et al. Evidence of superconducting Fermi arcs. Nature 626, 294–299 
(2024).

3.	 Shen, Z.-X. et al. Anomalously large gap anisotropy in the a-b plane of Bi2Sr2CaCu2O8+δ. 
Phys. Rev. Lett. 70, 1553–1556 (1993).

4.	 Ding, H. et al. Momentum dependence of the superconducting gap in Bi2Sr2CaCu2O8. 
Phys. Rev. Lett. 74, 2784–2787 (1995).

5.	 Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the 
cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

6.	 Hashimoto, M., Vishik, I. M., He, R.-H., Devereaux, T. P. & Shen, Z.-X. Energy gaps in  
high-transition-temperature cuprate superconductors. Nat. Phys. 10, 483–495  
(2014).

7.	 Sobota, J. A., He, Y. & Shen, Z.-X. Angle-resolved photoemission studies of quantum 
materials. Rev. Mod. Phys. 93, 025006 (2021).

8.	 Sauls, J. A. The order parameter for the superconducting phases of UPt3. Adv. Phys. 43, 
113–141 (1994).

9.	 Ikeda, H., Nisikawa, Y. & Yamada, K. Possibility of f-wave spin-triplet superconductivity in 
the CoO2 superconductor: a case study on a 2D triangular lattice in the repulsive Hubbard 
model. J. Phys. Soc. Jpn 73, 17–20 (2004).

10.	 Mao, L., Shi, J., Niu, Q. & Zhang, C. Superconducting phase with a chiral f-wave pairing 
symmetry and Majorana fermions induced in a hole-doped semiconductor. Phys. Rev. 
Lett. 106, 157003 (2011).

11.	 Stewart, G. R. Unconventional superconductivity. Adv. Phys. 66, 75–196 (2017).
12.	 Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. W. Classification of topological 

insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 
(2008).

13.	 Salomaa, M. M. & Volovik, G. E. Cosmiclike domain walls in superfluid 3B: instantons and 
diabolical points in (k, r) space. Phys. Rev. B 37, 9298–9311 (1988).

14.	 Mackenzie, A. P., Scaffidi, T., Hicks, C. W. & Maeno, Y. Even odder after twenty-three  
years: the superconducting order parameter puzzle of Sr2RuO4. npj Quant. Mater. 2, 40 
(2017).

15.	 Guguchia, Z. et al. Signatures of the topological s+− superconducting order parameter in 
the type-II Weyl semimetal Td-MoTe2. Nat. Commun. 8, 1082 (2017).

16.	 Ribak, A. et al. Chiral superconductivity in the alternate stacking compound 4Hb-TaS2. 
Sci. Adv. 6, eaax9480 (2020).

17.	 Ran, S. et al. Nearly ferromagnetic spin-triplet superconductivity. Science 365, 684–687 
(2019).

18.	 Metz, T. et al. Point-node gap structure of the spin-triplet superconductor UTe2. Phys. Rev. 
B 100, 220504 (2019).

19.	 Sakano, M. et al. Topologically protected surface states in a centrosymmetric 
superconductor β-PdBi2. Nat. Commun. 6, 8595 (2015).

20.	 Biswas, P. K. et al. Fully gapped superconductivity in the topological superconductor 
β-PdBi2. Phys. Rev. B 93, 220504 (2016).

21.	 Kolapo, A., Li, T., Hosur, P. & Miller, J. H. Jr Possible transport evidence for three-
dimensional topological superconductivity in doped β-PdBi2. Sci. Rep. 9, 12504  
(2019).

22.	 Li, Y., Xu, X., Lee, S.-P. & Chien, C. L. Unconventional periodicities of the Little-Parks effect 
observed in a topological superconductor. Phys. Rev. B 109, L060504 (2024).

23.	 Wang, S. et al. Signatures of spin-polarized p-wave superconductivity in the kagome 
material RbV3Sb5. Preprint at https://arxiv.org/abs/2405.12592 (2024).

24.	 von Rohr, F. O. Chemical principles of intrinsic topological superconductors. Chem. 
Mater. 35, 9455–9472 (2023).

25.	 Shipunov, G. et al. Polymorphic PtBi2: growth, structure, and superconducting properties. 
Phys. Rev. Mater. 4, 124202 (2020).

26.	 Veyrat, A. et al. Berezinskii–Kosterlitz–Thouless transition in the type-I Weyl semimetal 
PtBi2. Nano Lett. 23, 1229–1235 (2023).

https://doi.org/10.1038/s41586-025-09712-6
https://arxiv.org/abs/2405.12592


618  |  Nature  |  Vol 647  |  20 November 2025

Article
27.	 Vocaturo, R. et al. Electronic structure of the surface-superconducting Weyl semimetal 

PtBi2. Phys. Rev. B 110, 054504 (2024).
28.	 Schimmel, S. et al. Surface superconductivity in the topological Weyl semimetal t-PtBi2. 

Nat. Commun. 15, 9895 (2024).
29.	 Borisenko, S. et al. Fermi surface tomography. Nat. Commun. 13, 4132 (2022).
30.	 Parker, D., Haas, S. & Balatsky, A. V. Generalized cuprate gap symmetry and higher d-wave 

harmonics: Effects of correlation length, doping, temperature, and impurity scattering. 
Phys. Rev. B 76, 104503 (2007).

31.	 Altland, A. & Zirnbauer, M. R. Nonstandard symmetry classes in mesoscopic 
normal-superconducting hybrid structures. Phys. Rev. B 55, 1142–1161 (1997).

32.	 Wen, X. G. & Zee, A. Gapless fermions and quantum order. Phys. Rev. B 66, 235110 (2002).
33.	 Béri, B. Topologically stable gapless phases of time-reversal-invariant superconductors. 

Phys. Rev. B 81, 134515 (2010).
34.	 Sato, M., Tanaka, Y., Yada, K. & Yokoyama, T. Topology of Andreev bound states with flat 

dispersion. Phys. Rev. B 83, 224511 (2011).
35.	 Lian, B., Sun, X.-Q., Vaezi, A., Qi, X.-L. & Zhang, S.-C. Topological quantum computation 

based on chiral Majorana fermions. Proc. Natl Acad. Sci. USA 115, 10938–10942 (2018).
36.	 Pan, X.-H., Luo, X.-J., Gao, J.-H. & Liu, X. Detecting and braiding higher-order Majorana 

corner states through their spin degree of freedom. Phys. Rev. B 105, 195106 (2022).

37.	 Huang, R. et al. Towards scalable braiding: topological superconductivity unlocked 
under nearly arbitrary magnetic field directions in planar Josephson junctions. Preprint at 
https://doi.org/10.48550/arxiv.2504.20031 (2025).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons licence, 
and indicate if changes were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article's Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, 
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

https://doi.org/10.48550/arxiv.2504.20031
http://creativecommons.org/licenses/by/4.0/


Methods

DFT calculations and BdG model
We performed DFT calculations using the full-potential local orbital 
code FPLO38 within the generalized gradient approximation39, using 
the tetrahedron method with 123 points for the Brillouin integration. 
Subsequently, a maximally projected symmetry-conserving Wannier 
model40 containing Wannier orbitals for each Bi 6p and Pt 6s, 5d basis 
orbital was constructed. The model is mapped onto a semi-infinite slab 
with a surface block consisting of three Bi6Pt3 layers on which only a 
nonzero gap function is added. In detail, the gap function reads

δ σ D k VΔ = i ( )yorbital-qns 0

with D k k k k k k k( ) = 1, 020 (3 − 10 + 3 )x y x x y y
4 2 2 4  being a scaled Taylor  

expansion of sin(6ϕ). The scaling factor was chosen to fulfil D(k) = 1  
at k = (0.4, 0.0325) Å−1. The Bloch spectral density for a penetration 
depth of three surface blocks is obtained by solving the BdG equations 
using Green function recursion2,41 in this semi-infinite geometry.

In Extended Data Fig. 1, we show results for the SC gap on the (001) 
surface as a function of the distance from the node for different values 
of V0 (compare with Fig. 3b). Also, for this termination, we observe the 
same features: a V-shaped gap that increases with V0.

Symmetry-allowed SC states
As noted in the main text, the symmetry of possible SC order param-
eters can be classified in terms of the irreps A1, A2 and E of the point 
group C3v of PtBi2. For trigonal PtBi2, the mirror planes contain the Γ–K 
lines and not the Γ–M lines, and thus they do not include the centre 
points of the Fermi arcs, at which the apparent nodes are located. 
However, time-reversal symmetry acts like twofold rotation sym-
metry about the z-axis for momenta k = (kx, ky). Consequently, any 
time-reversal-symmetric function of k that is even under all mirror 
reflections of the lattice is also even, and that which is odd is also odd, 
under mirror reflections with respect to vertical planes through the arc  
centres.

Owing to the lack of inversion symmetry, spin-singlet and spin-triplet 
pairing generically mix, and it is necessary to consider 2 × 2 pairing 
matrices Δ(k) appearing in the BdG Hamiltonian

H Δ

Δ H
( ) =

( ) ( )

( ) − (− )
. (1)

N

N
† T









k

k k

k k
H

To construct possible pairing matrices Δ(k), we have to consider  
the symmetry properties of k-dependent form factors and of matrices 
acting on spin space.

The k-dependent factors are relevant only on the Fermi lines. To 
parameterize them, we start from the polar angle ϕ of k. Electronic 
bands are continuous, so that the Fermi arcs are connected by the Fermi 
surfaces of bulk states. As the Fermi arcs are horseshoe-shaped, the 
Fermi surface is not convex, and the points on the arcs are not uniquely 
labelled by ϕ. This can be resolved by deforming the parameteriza-
tion without changing its symmetry and is irrelevant for our analysis. 
The lowest-order basis functions of ϕ together with their irrep and 
their sign under time reversal are listed in Extended Data Table 1. Basis 
functions of higher order modulate only solutions that can already be 
constructed from them.

A basis of the space of 2 × 2 matrices is given by the identity matrix 
σ0 and the Pauli matrices σx, σy and σz. These transform as irreducible 
tensor operators of the irreps, as shown in Extended Data Table 2.

By multiplying the form factors and the basis matrices, we can obtain 
all possible SC states. Using standard rules for products of irreps, we 
can choose them to belong to specific irreps. However, only products 
that are even under time reversal satisfy fermionic antisymmetry 
ΔT(−k) = −Δ(k) (ref. 42).

The SC state of full symmetry, that is, belonging to A1, was considered 
in ref. 27. The irrep A1 is even under all mirror reflections and rotations, 
and thus A1 symmetry does not impose any gap nodes.

The irrep E is 2D, leading to a two-component SC order parameter. 
The first component, by itself as well as any symmetry-related SC 
states, is odd under some mirror reflections. This imposes nodes at 
some arc centres but not at all of them, thereby breaking the three-
fold rotation symmetry. The second component, by itself and sym-
metry-related states, does not impose any nodes. This follows from 
the observation that any order parameter belonging to the second 
component of E can be constructed from an A1 (full symmetry) order 
parameter by multiplication by cos 2ϕ, which does not have zeros on 
the arcs. The gap magnitude is not the same at all arcs, so that such 
a state also breaks rotation symmetry. We do not find experimental 
indications for this symmetry breaking. There are also time-reversal-
symmetry-breaking E states, constructed by superposition of the 
two components with a phase shift of ±π/2. These states do not have 
nodes. Moreover, there is no experimental evidence for broken time-
reversal symmetry.

The remaining irrep A2 is odd under all mirror reflections. This fact 
imposes nodes at all arc centres. In particular, it is odd under ϕ ↦ −ϕ. 
Owing to the preserved rotation and time-reversal symmetries, the 
gap profile is the same for all arcs. Hence, only A2 pairing symmetry is 
consistent with nodes at the arc centres.

Constructing the possible pairing matrices as described above, we 
obtain

Δ ϕ f ϕ σ ϕ σ f ϕ σ

f ϕ σ ϕ σ f ϕ σ U

( ) = [ (cos + sin ) + sin3

+ (cos5 − sin5 ) + sin6 ] ,
(2)

x y z

x y T

1 3

5 6 0

where the coefficients f1, f3, f5 and f6 can be chosen real because of time-
reversal symmetry. UT = iσy is the unitary part of the time-reversal opera-
tor. The four terms describe p-wave (l = 1) in-plane spin-triplet pairing, 
f-wave (l = 3) out-of-plane spin-triplet pairing, h-wave (l = 5) in-plane 
spin-triplet pairing and i-wave (l = 6) spin-singlet pairing, respectively. 
The SC energy gap on the Fermi arcs is a real function of ϕ. As the BdG 
Hamiltonian with the pairing matrix in equation (2) preserves three-
fold rotation and time-reversal symmetries, so does the energy gap. 
Moreover, we have shown above that it must be odd under reflection at 
the arc centres. Hence, the energy gap is a basis function belonging to 
the irrep A2, proportional to sin 6ϕ plus higher harmonics of the same 
symmetry, that is, it has i-wave form.

Anomalous topological superconductivity
Two-dimensional superconducting systems that obey time-reversal 
symmetry (class DIII in the Altland–Zirnbauer table31) may host gap-
less Majorana cones in their 2D Brillouin zone. These gapless points 
are in many respects analogous to the Weyl points of 3D crystals, with 
the important exception that they require chiral symmetry to remain 
protected. They are characterized by an integer topological invariant 
(here, a winding number instead of the Chern number associated with 
Weyl points) and always occur in pairs. Furthermore, time-reversal 
symmetry relates cones with opposite momenta and the same integer 
invariant, just as with Weyl cones. Thus, as the total topological invari-
ant associated with all band crossings must vanish in a periodic Brillouin 
zone, Majorana and Weyl cones must come in multiples of four as long 
as time-reversal symmetry is preserved.

In PtBi2, instead, our results indicate the presence of six Majorana 
cones on a single superconducting surface, violating the above require-
ment. Moreover, all six cones have the winding numbers of the same 
sign, such that their sum does not add up to zero. The resolution of 
this apparent paradox is that other Majorana cones occur on the oppo-
site surface of the crystal. Taking both surfaces into account, the total 
number of Majorana cones is 12 (a multiple of four), and the sum of all 
winding numbers vanishes.
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This is the sense in which we state that the 2D superconductor form-

ing on the surface of PtBi2 is anomalous. Given their multiplicity and 
winding number, their Majorana cones cannot occur in a purely 2D, 
standalone superconducting state, but only as surface modes of a 
higher-dimensional, 3D system. This is analogous to the unidirectional 
edge modes of quantum Hall systems, which cannot be realized as 
standalone 1D systems but only as edge states.

PtBi2 tight-binding model calculations
We explore the consequences of surface Majorana cones using the toy 
model recently introduced in ref. 27, the properties of which we briefly 
summarize below. It is defined on a trigonal lattice, with Bravais vectors 
a1 = (0, 1, 0), = ( 3 /2, − 1/2, 0)2a , a3 = (0, 0, 1), and consists of two  
spinful orbitals per unit cell. Setting ki = ai ⋅ k, the momentum-space 
Hamiltonian reads

H k k k μ t k t k t k k Γ

β k Γ k Γ

λ k k k k Γ

α k k Γ k Γ k k Γ
γτ σ

( , , ) = [ − cos − cos − cos( + )]

+ (cos + sin )

+ [sin + sin − sin( + )]

+ (1 − cos )[sin + sin − sin( + ) ]
+ ,

(3)

x

1 2 3 1 2 1 2 1

3 1 3 3

1 2 1 2 3

3 1 2 2 2,1 1 2 2,2

0

with Γ1 = τzσ0, Γ2 = τxσx, Γ3 = τyσ0, where Pauli matrices τx, τy and τz encode 
the orbital and Pauli matrices σx, σy and σz denote spin, and

C CΓ Γ= , (4)j
j j

2, 3 2 3
−
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C τ σ= exp −i
π
3

(5)z3 0

represents threefold rotations around a3, that is, around the z-axis. 
Besides the threefold rotation,

H k k k H k k k k( , , ) = ( , − − , ), (6)3
−1

1 2 3 3 2 1 2 3C C

the model also reproduces the other lattice symmetries of PtBi2. There 
is a mirror symmetry along the k1 = −2k2 plane of the Brillouin zone, 
with M1 = iτ0σx,

M H k k k M H k k k k( , , ) = ( , − − , ) (7)1
−1

1 2 3 1 1 1 2 3

and the two other mirror planes are obtained by applying the three
fold rotation symmetry. Furthermore, the model obeys time-reversal 
symmetry T τ σ= i y0 K  with the complex conjugation K such that  
TH(k1, k2, k3)T −1 = H*(−k1, −k2, −k3).

We choose the hopping amplitude t = 1 as the energy unit and express 
all other energy scales relative to it. In all numerical simulations, we 
have used the parameters μ = 2, β = −0.75, λ = 3, α = 0.75 and γ = 0.5, 
for which the band structure hosts 12 well-separated Weyl cones, thus 
reproducing the behaviour of PtBi2.

The numerical results shown in Extended Data Fig. 2 are obtained for 
systems that have a finite number of unit cells in the z-direction (either 
in a slab geometry or in a prism geometry), by adding SC pairing to the 
two top-most and the two bottom-most unit cells. The BdG Hamiltonian 
takes the same block form as equation (1), with the upper-diagonal block 
given by equation (3). As all pairing terms with A2 symmetry produce 
nodes along the Γ–M directions, we choose the simplest, p-wave term 
in the toy model, resulting in

k k z f z τ k σ k σ k k σ

k k σ k k σ k k σ σ

Δ( , , ) = ( ) [sin + sin − sin( + )

+ sin( + 2 ) − sin(2 + ) + sin( − ) ](i ),
(8)

y y y

x x x y

1 2 1 0 1 2 ,1 1 2 ,2

1 2 1 2 ,1 1 2 ,2

where

σ σ= . (9)x y j
j

x y
j

/ , 3 / 3
−C C

Linearizing equation (8) produces the same type of pairing matrix 
as the p-wave term of equation (2). As mentioned above, the ampli-
tude f1(z) = 2 for the two top-most and bottom-most unit cells, whereas 
f1 = 0 otherwise. We chose such a large value for the pairing term to 
enhance the gap along the Fermi arc, thus reducing finite-size effects 
and enabling us to visualize Majorana states for numerically accessible 
system sizes.

Finally, to better differentiate between the Fermi arcs on the top and 
bottom surfaces, we shift the value of μ on the bottom-most unit cell 
(z = 0) from μ = 2 to μ = 1.7. This causes the top and bottom Fermi arcs 
to occur at different momenta in the slab Brillouin zone, such that they 
can be more easily visualized.

Extended Data Fig. 2a,b are obtained in a slab geometry consisting 
of 80 unit cells in the z-direction, in which the Cartesian momentum 
directions are defined as ky = k1 and k k k= ( + 2 )/ 3x 1 2 . The gap is always 
computed as the absolute value of the eigenenergy closest to the Fermi 
level, EF = 0.

For each surface Majorana cone, we determine the winding number 
by using the standard approach of rotating the Hamiltonian to a block 
off-diagonal form. We use the full slab Hamiltonian, enabling us to 
determine the winding numbers of Majorana cones on both the top 
and the bottom surfaces.

To minimize finite-size effects, Extended Data Fig. 2c is obtained for 
a slab consisting of 1,000 unit cells in the z-direction and shows the 
gap opening in the Majorana cone on the top surface, indicated by an 
orange arrow in Extended Data Eig. 2b. The Zeeman field is included by 
adding an onsite term Vzτ0σz to the Hamiltonian equation (3).

Extended Data Fig. 4d is reproduced from Fig. 3c and shows the coex-
istence of bulk Weyl cones, surface Majorana cones and Majorana hinge 
modes. To reduce the finite-size gap that would otherwise be present in 
these features, the panel includes results from two separate simulations. 
The green, red and blue points are obtained in a slab geometry (infinite 
along both kx and ky), and consist of 320 unit cells along the z-direction. 
Eigenvalues are computed for different values of kx, in steps of 10−3, and 
plotted as a function of ky ∈ [1.05, 1.45]. The colour represents the state 
probability density summed over the bottom half of the slab, meaning 
for values z < 160. The apparently sharp transition between the differ-
ent colours is a consequence of our plotting choice. Multiple points of 
different colours are plotted on top of each other, and the only visible 
colours correspond to those points that are plotted last. The hinge 
states, shown in black, are then superimposed on the slab band struc-
ture plot. The hinge modes are obtained in a prism geometry, infinite 
along y, 40 unit cells along z and 300 unit cells along x. This is also the 
geometry of the system that is used in Fig. 3e, where the colour scale 
denotes the probability density summed over the four states closest to 
E = 0 at ky = 1.3, as marked by the green arrow in Extended Data Fig. 4d.

Leading edge, peak and trailing edge positions of the energy 
distribution curves along the arc of PtBi2

As mentioned in the main text, compared with the leading edge, the 
energy distribution curve peak, and more significantly, the trailing edge 
positions at higher binding energies are more accurate for determining 
the gap function near the node. In Extended Data Fig. 3a, the trailing 
edge positions are overlaid on the Fermi surface map for visualization. 
For comparison, the leading edge, peak and trailing edge positions of 
the energy distribution curves are plotted as a function of distance from 
the node in Extended Data Fig. 3d. It is to be noted that the SC gap is 
plotted with respect to the distance from the node in the calculations 
(Fig. 3b), whereas the gap function is presented with respect to θ in 
Fig. 2. To draw one-to-one correspondence, we have plotted the trailing 
edge as a function of both θ and distance from the node in Extended 



Data Fig. 3c. The dip in the trailing edge position near the node is much 
sharper compared with the leading edge position and agrees more with 
the gap function obtained from calculations near the node (Fig. 3a).

Leading edge, peak and trailing edge positions for BSCCO. To dem-
onstrate how the LEG curves are affected by the Fermi function, we have 
plotted the leading edge, peak and trailing edge positions for BSCCO 
(bismuth strontium calcium copper oxide), which is a well-established 
nodal superconductor. Extended Data Fig. 4a–c shows the overall good 
quality of the collected ARPES data. Similar to PtBi2, the trailing edge 
position of BSCCO harbours a much sharper feature near the node com-
pared with the leading edge and peak positions (Extended Data Fig. 4d).
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Extended Data Fig. 1 | Superconducting gap variation. The SC gap as a 
function of distance from the node for V0 values of 7 (black), 15 (red), and 21 meV 
(green). This figure is for the (001) termination and shows the same features as 
Fig. 3(b) of the main text.



Extended Data Fig. 2 | Majorana cones and hinge states from effective 
model description. (a) Energy gap as a function of the dimensionless 
momenta k x and ky in a slab geometry, finite in the z direction. The projections 
of the Weyl cones are connected pairwise by two weakly-gapped Fermi arcs, 
one on the top surface and one on the bottom surface. (b) Closeup showing two 
Weyl cone projections (green arrows), a Majorana cone on the bottom surface 
(blue arrow), and a Majorana cone on the top surface (orange arrow). (c) Gap 
along the Fermi arc on the top surface. An out-of-plane Zeeman field gaps out 
the Majorana cone, enhancing the SC gap. Blue, orange, green, and red curves 
correspond to increasing Zeeman fields Vz = 0, 0.05, 0.1, and 0.15, respectively. 
(d) Bandstructure of the system in a prism geometry, infinite along y, and finite 
along x and z, plotted for the values of ky between the two green dashed lines of 
panel (a). This panel appears also in the main text. The color scale denotes the 
probability density of the states in real space. Bulk Weyl cones are shown in green, 
and top and bottom Majorana cones are shown in red and blue, respectively. 
Dispersionless zero-energy Majorana hinge modes are shown in black.
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Extended Data Fig. 3 | Leading edge, peak positions, and trailing  
edge data. (a) Trailing edge positions across different points of the arc.  
(b) Representative energy distribution curve (EDC) taken at the circled data 
point in (a) (kx= –0.30 Å−1, ky= –0.031 Å−1), shows the positions of leading edge, 
EDC peak and trailing edge. (c) Trailing edge position as a function of θ (deg) 

and distance from the node along the arc (Å−1). (d) The leading edge, peak 
positions, and trailing edge positions as a function of distance from the node 
(Å−1). The energy scale is determined relative to the leading edge position of 
the nodal EDC.



Extended Data Fig. 4 | Leading edge, peak position, and trailing edge in 
BSCCO. (a) Energy distribution map (EDM) collected from BSCCO at low 
temperature. (b) The Energy distribution cut (EDC) corresponding to the  
white like in (a). The Fitting the EDC peak show sharp coherence peak with 

FWHM of 10 meV. (c) Fermi surface map of BSCCO. (d) The leading edge,  
peak position and trailing edge position of the coherence peak of BSCCO as a 
function of distance from the node.
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Extended Data Table 1 | Low-order basis functions of the 
polar angle Φ in momentum space

For the irrep E, the first and second component are assigned according to the choice of (kx, ky) 
as basis functions. For each function or pair of functions, the irrep and the sign under time 
reversal are given.



Extended Data Table 2 | Basis matrices acting on spin space

Each basis matrix is an irreducible tensor operator belonging to the irrep given in the second 
column. The sign under time reversal is also given.
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