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Sincelate 2021, a panzootic of highly pathogenic HSN1 has devastated wild birds,
agriculture and mammals. Here an analysis of 1,818 haemagglutinin sequences from
wild birds, domestic birds and mammals reveals that the North American panzootic
was driven by around nine introductions into the Atlantic and Pacific flyways, followed
by rapid dissemination through wild, migratory birds. Transmission was primarily

driven by Anseriformes, while non-canonical species acted as dead-end hosts.

In contrast to the epizootic 0of 2015 (refs. 1,2), outbreaks in domestic birds were driven
by around 46-113 independent introductions from wild birds that persisted for

up to 6 months. Backyard birds were infected around 9 days earlier on average than
commercial poultry, suggesting potential as early-warning signals for transmission
upticks. We pinpoint wild birds as critical drivers of the epizootic, implying that
enhanced surveillance in wild birds and strategies that reduce transmission at the
wild-agriculture interface will be key for future tracking and outbreak prevention.

Highly pathogenic avianinfluenza (HPAI) viruses pose persistent chal-
lenges for human and animal health. Since emerging in 1996, highly
pathogenic H5N1 viruses of the A/goose/Guangdong lineage have
spread globally through enzootic transmission in domestic poultry
inAsiaand Africa, paired with occasional cross-continental movement
by wild birds of the Anseriformes (ducks, geese, swans) and Charadrii-
formes (shorebirds) orders®®.In 2005, introduction of poultry-derived
H5N1virusesintowild birdsin Chinaled to viral dispersal across North-
ern Africa and Asia, establishing new lineages of endemic circulation
in poultry'®™. In 2014, wild migratory birds carried highly pathogenic
H5N8 viruses from Europe to North America, sparking an outbreak in
which over 50.5 million commercial birds were culled in the USA*™,
As these viruses did not establish persistently within wild birds, the
outbreak was extinguished by aggressive culling, and North America
remained free of HPAI for years.

InDecember 2021, clade 2.3.4.4b HPAIH5N1 viruses were introduced
andspread across the Americas™ ™, causing a panzootic of considerable
morbidity and mortality in wild and domestic animals. In contrast to
past North American epizootics, domestic bird culling has not halted
detections, and morbidity and mortality has been widespread across
wild avian and mammal species not usually impacted by HPAI 2, rais-
ing the possibility that new reservoir hosts could be established that
should be actively surveilled. In Europe, clade 2.3.4.4b virus incur-
sions into wild and domestic birds has led to seasonal outbreaks?,
frequent reassortment?and abroader range of affected wild bird spe-
cies since 2020, and recent analyses suggest that wild birds may now
have a greater role in global viral maintenance and dissemination®%.
In North America, the broad affected host range and continued agri-
cultural outbreaks suggest that patterns of transmission since 2022
may be distinct from past epizootics. However, the role of wild versus
domesticbirdsindriving transmissionin North America has notbeen
robustly or comprehensively studied, limiting informed surveillance
and outbreak control.

Viral phylodynamic approaches are emerging as critical tools
for outbreak reconstruction. We used Bayesian phylogeographical
approachestotracetheintroduction and spread of highly pathogenic
H5N1viruses during the first 18 monthsin North America. We identify
multipleincursions into the continent and subsequent spread by wild,
migrating birds that drove repeated introductions into agriculture.
These data pinpoint wild birds asimportant drivers of epizootic spread,
and implicate enhanced wildlife surveillance and interventions at the
wild-domestic interface as key for future viral tracking and spillover
prevention.

Sequencesreflect HPAI cases over time

The first detection of HPAIH5N1 in North America was reported in
migratory gulls in Newfoundland and Labrador Canada in November
2021 (ref.13). FromJanuary to May 2022, atotal of 2,510 total detections
wasreported across 43 US states and 91 species (Extended Data Fig. 1),
followed by a larger epizootic wave from August 2022 to March 2023
(8,001 detections, 48 contiguous US states and Alaska). During the
time period analysed (November 2021 to September 2023), most US
detections were reported in wild birds (Supplementary Fig. 1a). Case
detections peaked in the fall and spring, coinciding roughly with sea-
sonal migration timing for birds migrating between North and South
America®*®. Continued monitoring is necessary to determine whether
these patterns persist in future years.

Although sequencing data from North America are heavily skewed
towards the USA and the first 6 months of the outbreak (Supplemen-
tary Fig.2), case detections were modestly correlated with viral effec-
tive population size (N,) (highest Spearman rank correlation = 0.65,
P=4.4x10") (Extended DataFig.1cand Supplementary Figs.3and 4),
ameasure of genetic diversity mathematically related to disease trans-
mission and prevalence?. Peaks in N, preceded peaks in detections
by around 1 week (Supplementary Fig. 5), probably reflecting the lag
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descendent tips the given branch produces. The major Atlanticintroduction

between viral transmission and case detection. Thus, despite uneven
sampling, sequence diversity roughly reflects the amplitude of sampled
cases over time.

Repeated incursions drove the epizootic

Most North American sequences descend from a single introduc-
tion from Europe in late 2021 (95% highest posterior density (HPD),
9 September to 7 October 2021; Fig. 1a), consistent with previous
reports® ¥ that these viruses may have been introduced as early as
1to 2 months before the first detection. We recapitulate a second,
short-lived introduction from Europe in 2022 (ref. 27), and seven
additional (median =7, 95% HPD = 6-8) introductions between
February and September 2022 from Asia (Fig. 1b,c). These introduc-
tions persisted briefly (0.024-6.9 months) and represent infections
sampledinAlaska, Oregon, California, Wyoming and British Columbia,
suggesting introduction through the Pacific flyway? (Extended Data
Fig. 2). Although none of these Pacific introductions had sampled
descendants in the time period analysed, data at the time of writing
indicate that one re-emerged inlate 2024 as the D1.1lineage® (Fig. 1b).
Although it remains unclear why this HA lineage was not detected from
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posterior set with that number of inferred transitions.

mid-2023 to 2024, the novel introductions documented here and the
eventual outgrowth of one of these lineages highlight theimportance of
surveillance in the Pacific region for capturing viralimportations. These
data suggest that H5N1 viruses were introduced into North America
atleast nine times, and that viral flow into the Pacific coast may be far
more common than previously documented.

H5N1spread across migratory flyways

Recent datafrom Europe and Asia suggest that wild birds may be increas-
inglyimportant sources of clade 2.3.4.4b virus evolution and transmis-
sion®. Inthe Americas, wild birds migrate across four major flyways: the
Atlantic, Mississippi, Central and Pacific®. We assigned avian sequences
tothe migratory flyway matching the US state of sampling and modelled
the diffusion between flyways as a proxy for viral movement. To deter-
mine whether sequences clustered more strongly by flyway than expec-
ted by chance, we calculated the association index (Al)—a measure of
how strongly a trait is associated with a phylogenetic tree. To deter-
mine whether movement between flyways was better supported than
movementacross other adjacent geographical regions, we quantified
transitions between four North American regionsstratified by latitude.
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Fig.2|Wild migratory birds drove rapid dissemination across continental
migratory flyways. a, Phylogenetic reconstruction of n=1,000 sequences
coloured by migratory flyway. Inset: the results of the PACT analysis quantifying
persistenceineach flyway (measured asthelength of time a tip takes to leave its
sampledlocation, going backwards on the tree), excluding the Pacific clade.
b, Themean and 95%HPD for the number of Markov jumps per year between US
Fishand Wildlife Service (USFWS) flyways. The colour of the bar on the right of
eachjump pair corresponds to the source population and the height of the bar
corresponds to the BF support.c, USFWS waterfowl flyways map; arrows are

Introductions from viruses circulating in Asia (Fig. 1b) form a basal
cladeinferredin the Pacific flyway (posterior probability (PP) = 0.98).
The primary introduction from Europe entered through the Atlan-
tic flyway, and subsequently spread rapidly across North America
(Fig. 2a,c). From the inferred time of introduction in the Atlantic
coast (9 September to 7 October 2021), viruses descending from this
introduction had been sampled in every other flyway within approxi-
mately 4.8 months. Sequences clustered strongly by flyway (Al =10.563,
P=0.00199), grouping most closely with those sampled within the same
or geographically adjacent flyway (Fig.2a and Extended Data Table1).
Transitions (inferred as Markov jumps) between adjacent flyways were
about 10 times more frequent (mean =239, 95% HPD = 216-262) than
those between distant flyways (mean = 24, 95% HPD =12-33; Fig. 2d),
and 2.8 times more frequent between adjacent latitudinal regions
(Extended DataFig. 4 and Supplementary Table 2), indicating a strong
signal of dissemination through geographical proximity. Transitions
were predominantly inferred from east to west (Fig. 2c,d and Supple-
mentary Table 1); east to west jumps were inferred around 4.4 times
more frequently (mean =214, 95% HPD = 196-232) than west to east
jumps (mean =49, 95%HPD = 38-57) (Fig.2d), and 2.3-3.8 times more
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annotated torepresentrates with BF supportofatleast100. The size of the arrow
corresponds to the magnitude of the mean transitionrate.d, The posterior
distribution of the number of Markov jumps between flywaysin the eastward or
westward direction and between adjacent and distant flyways. e, Chord diagram
of discrete trait diffusion based on migratory status going from the source
populationontheleftto the sink population on theright. The chord thickness
represents the mean transition rate and the colour represents the BF support.
D, domestic; M, migratory; MA, mammal; PM, partially migratory; S, sedentary.

frequently than jumps along the north-south axis (Extended Data Fig. 4
and Supplementary Table 2).

Transitions were inferred most frequently from the Mississippi
to Central flyway (56.301 Markov jumps per year; 95% HPD = 47.85-
64.33), Atlantic to Mississippi flyway (37.34 Markov jumps per year;
95%HPD =30.84-43.065) and Central to Pacific flyway (13.127 Markov
jumps per year; 95% HPD = 7.975-18.077; Fig. 2b, Extended Data Fig. 3
and Supplementary Table 1). Although the Pacific flyway experienced
the highest number ofintroductions, transitions originating from the
Pacific flyway were inferred with low magnitude and weak support, with
only one statistically supported rate (Pacific to Central, 11.236 Markov
jumps per year; 95% HPD = 7.975-13.292). Viral lineages persisted for
thelongestin the Atlantic and Pacific flyways, although estimates were
variable (Fig. 2a). We speculate that this pattern could reflect higher
habitat and species richness within coastal flyways®, or that coastal
flyways each only border 1 other flyway.

The strong clustering by flywaysis consistent with long-range trans-
mission by wild migratory birds. We next classified sequences into five
categories and modelled diffusion among them: wild migratory birds
(most ducks and geese), wild partially migratory birds (some ducks,



raptors and vultures), wild sedentary birds (owls crows), domestic
birds and non-human mammals. Migratory and partially migratory
wild birds are inferred at the root far more frequently than expected
from sampling alone (Supplementary Fig. 6 and Extended Data Table 2),
indicating arole for these species in sustained transmission across
the epizootic. Transitions from wild migratory birds were inferred
with the highest number and most strongly supported transition rates
(Bayes factor (BF) > 3,000), indicating that migrating wild birds were
critical sources of infections in other species (Fig. 2e and Supplemen-
tary Table 3). By contrast, transitions from non-migratory wild birds
were inferred with low magnitudes and weak support (Fig. 2e and
Supplementary Table 3). These results suggest that wild, migratory
birds played a pivotal part in transmission, and highlight their cap-
acity to rapidly disseminate novel viral incursions across continental
North America.

Transmission driven by canonical hosts

Previous outbreaks of highly pathogenic H5SN1 viruses have been facili-
tated by wild Anseriformes (waterfowl) and Charadriiformes (shore-
birds), and domestic species (Galliformes and Anseriformes)*73¢,
While domestic ducks have been critical for bridging wild and domestic
populations in Asia, domestic ducks account for only 2% of all detec-
tionsinthe USA, with most cases reported in wild birds and Gallinaceous
poultry (turkeys and chickens)®. In the current panzootic, die-offs
have occurred across a range of wild, non-canonical hosts, including
Accipitriformes (raptors, condors, vultures), Strigiformes (owls) and
Passeriformes (including sparrows, crows, robins)***%, raising the
possibility that these new species could establish as reservoirs that
merit surveillance. To determine whether particular host groups had
outsized roles in driving transmission in the epizootic, we classified
sequences into seven host order groups (Anseriformes, shorebirds,
Strigiformes, Passeriformes, Raptors, Galliformes and non-human
mammals), calculated the Al for each group (Extended Data Table 1)
and modelled transmission between them. To control for variation
in case and sequence acquisition across groups, we performed these
analyses under two subsampling regimes (proportional and equal),
eachwiththreereplicates and report results that were concordant. We
also formulated a modified tip-shuffle test to measure the impact of
sampling on the inferred host at the root® (further details are provided
in the Methods).

The first introduction into North America comprised infections
from gulls and harbour seals from New England, consistent with migra-
tory shorebirds facilitating transmission from Europe and seeding
mammal outbreaks'®* (Fig. 3a). Tip-shuffle results indicate mixed
evidence for the role of shorebirds in transmission. However, shore-
bird sequences were highly clustered with each other (Al =8.008,
null =2.324, P=0.00999), supporting some degree of separation
between viruses circulating in shorebirds and other species®. Beyond
this early cluster of infections, multiple deep, internal nodes across
the phylogeny are inferred in Anseriformes with high posterior sup-
port (PP =0.99), indicating that Anseriformes played an important
role in driving sustained transmission and dispersal across North
America. Across all replicates in both sampling regimes, Anseriformes
areinferred at theroot 2-3 times more frequently than in null, shuffled
datasets (Extended Data Table 2), providing strong support for Anseri-
formes as critical drivers of epizootic transmission. We infer Anseri-
formes as the predominant hosts seeding infections into other species
(Fig. 3b,d, Supplementary Fig. 7 and Supplementary Tables 4-11),
with the highest rates to Galliformes (17.81 Markov jumps per year;
95% HPD =9.27-26.02, BF =1,691, PP = 0.99) and Strigiformes (13.51
Markov jumps per year; 95% HPD = 5.35-22.87, BF =232, PP = 0.99).
Each of these patterns was preserved in each independent subsample
in both sampling regimes, indicating high robustness to sampling
(Supplementary Figs.8and 9).

Wealsoinfer support for transmission originating from Galliformes,
suggesting that transmission from domestic birds back to wild birds and
mammals may have occurred. However, lineages in Galliformes tended
tobeshort-lived, persisting for 0.26 years onaverage (95%HPD = 0.07-
0.33 years). Galliformes were inferred at the root less frequently than
expected for their sampling frequency (Extended Data Table 2), and
were highly clustered (P=0.0099; Extended Data Table 1), consist-
ent with transmission confined to localized agricultural outbreaks.
By contrast, viral lineages persisted for the longest in Anseriformes and
shorebirds (Fig.3c). These data suggest that, while Anseriformes, shore-
birds and Galliformes may all have contributed to infections in other
species, Anseriformes were the predominant drivers of longer-term
persistence and spread to other hosts.

Inthe ongoing panzootic, raptors represent the third most prevalent
group in wild bird detections in Europe (12% of detections) and the
second most detected group in North America (20.3%)'®4°. Notably,
raptors were inferred as alow-frequency but statistically well supported
source population to Anseriformes (5.18 Markov jumps per year; 95%
HPD = 0.36-9.27, BF = 39,PP = 0.87). Tip-shuffle results indicate that
raptors are less probable at the root than expected based on their fre-
quency, supporting a limited role for epizootic transmission. Future
work tobetter establish the reasons for high case numbers among rap-
torswill be necessary for formulating wildlife management strategies.

We found limited support for non-canonical host groups (songbirds,
owls and non-human mammals) in seeding infectionsin other species.
Passeriformes (songbirds), Strigiformes (owls) and mammals each
primarily served as sinks for viral diversity (Fig. 3b,d), with transitions
inferred with low-magnitude and weak support (Fig. 3b). Summing
the number of jumps originating from wild canonical (Anseriformes,
shorebirds), wild non-canonical (Passeriformes, Strigiformes, raptors,
mammals) and Galliforme (domestic) hosts confirm that non-canonical
hosts primarily acted sinks that were far likelier to receive virus than
propagate it onward (Extended Data Fig. 5), supporting short, terminal
transmission chains that did notlead to long-term persistence (Fig. 3¢
and Supplementary Fig. 10). Mammal sequences cluster across the
entire diversity of the phylogeny (Fig. 3a) and are not associated with
one particular cluster of viruses, indicating that mammal infections
were not confined to a particular viral lineage, supporting very short
persistence times of 0.22 years (95% HPD = 0.088-0.328), and only one
strongly supported transition rate to Anseriformes (BF = 53, PP = 0.89).
Instead, these findings are most compatible with amodelin which wild
mammals and other non-canonical species are infected by directinter-
action with wild birds, possibly related to scavenging and predation
behaviour*. Taken together, these data suggest that despite high case
numbersin several unusual wild hosts, non-canonical species generally
had minor roles in transmission. Instead, epizootic transmission was
most strongly supported in Anseriformes, supporting surveillancein
these species for capturing trends in viral diversity and spread.

Repeated introductions into agriculture

From 2022 to mid-2025, the USA culled over 160 million domestic
birds, with agricultural losses estimated between US$2.5 to US$3 bil-
lion*2. Understanding the extent of agricultural transmission driven
by repeated introductions from wild birds versus between-premise
spread is critical for formulating biosecurity practices, but chal-
lenged by differences in sampling between wild and domestic birds.
Domestic birds represent 23.2% of sequences, but only 11% of detec-
tions, while wild birds are probably undersampled owing to technical
challenges®**. While each detection in wild birds represents a single
infection, domestic detections usually represent asingle infected farm,
with anunknown number of infected animals. To measure the impact of
varied sampling on transmissioninference between wild and domestic
birds, we designed a titration analysis. We first generated a dataset
with equal domestic and wild bird sequences, therefore forcing the
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Fig.3|Epizootic transmission was sustained by canonical host species.

a, Bayesian phylogenetic reconstruction of 655 sequences, sampled evenly
across hostgroups. The phylogeny with the highest posterior supportis shown;
allotherreplicates are provided in Supplementary Fig. 8 and Supplementary
Tables 4-11. Colour represents the taxonomic order of the source host. b, The
mean number of Markov jumps per year and the 95% HPD from the host group on
theleft (labelled ‘from’) to the host on the right (labelled ‘to’) as inferred from
the combined results of three equal sampling replicates. The dot represents the
mean, and thelines (whiskers) represent the 95% HPD. The corresponding bar

inference to be driven by the sequencing data rather than sampling.
Next, we added in progressively more wild bird sequences until we
reached afinal ratio of domestic to wild sequences that approximates
theratio of detections (1:3), generating five datasets in total (ratios of
domestictowildbirdsequences of 1:1,1:1.5,1:2,1:2.5and 1:3). For each
dataset, we inferred transmission between wild and domestic birds
using a discrete trait diffusion model. This analysis was designed to
determine whether domestic or wild birds would be inferred as the
primary source population, and whether that inference would vary
across sampling regimes. Moreover, we hoped to assess whether the
inferred number of transitions between hosts stabilized at a certain
ratio asameasure of whether currently available data are sufficient for
inferring transmission dynamics within this time period.

When domestic/wild sequences were included inequal proportions,
wild birds are inferred as the primary source in the outbreak (Supple-
mentary Fig. 11a). Wild birds were inferred at the root of the tree at a
far higher probability than expected from their sampling (PP = 0.895
in empirical data versus 0.482 in tip-shuffled data), while domestic
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plotshows the BF support for each jump pair, with colour representing the ‘from’
host. Thebar height represents BF support. Values at 100 indicate support of
greater thanorequal to100. ¢, Inference of phylogenetic persistenceineach
hostorder for the phylogeny shownina.d, For each host, we computed the
proportion of Markov jumpsinvolving that host order in which that host was
inferred asasource (jump coming from that order) or asasink (jump going to
thatorder). Thebarsrepresent the variability across the three replicates of
equal orderssubsamples.

birdswere under-represented (Extended Data Table 2). This patternis
consistent with higher genetic diversity among wild bird sequences,
supportingalarge, source population. Within the background of wild
bird sequences, domestic bird sequences form highly clustered groups
(A1=23.096, P=0.0019; Extended Data Table 1), consistent withsome
transmission between them. However, as wild sequences were progres-
sivelyadded into the tree, most domestic-only clusters became smaller,
brokenup by wild sequences that interspersed within these clades (Sup-
plementary Fig. 11a-e). The ‘breaking up’ of these domestic clusters
results in more inferred transitions from wild to domestic birds, and
fewer transitions from domestic to wild birds (Fig. 4b,c and Extended
DataFig. 6a). The largest changesin theinferred transitions occurred
betweenthel:1and1:2.5titrations, with minimaltono changes observed
between transitions inferred in the 1:2.5 and 1:3 datasets, suggesting
stability intheinferred transitions at the end of the experiment (Supple-
mentary Table12). The phylogeny of the final dataset (1:3 ratio of domes-
tic to wild sequences) shows 106 introductions into domestic birds,
and 4 from domestic to wild (Fig. 4a,b, Supplementary Figs.12 and 13
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and Supplementary Table 12). While domestic bird lineages persisted
foraround 4.5 months on average (95% HPD = 2.7-5.63), viral lineages
in wild birds persisted for over twice as long (around 10 months, 95%
HPD =5.7-14.07; Fig. 4c).

Commercial turkey operations have been heavily impacted dur-
ing the epizootic, comprising 53.7% of all detections on commercial
farms**. To determine whether excluding turkey sequences (Methods)
may have biased our results, we assigned any turkey sequence not
labelled as ‘wild turkey’ as ‘domestic’ and reran the titration analysis.
Turkey sequences did not substantially change the inferred transition
rates between wild and domestic birds (Extended Data Fig. 6aand Sup-
plementary Table12). In both titration experiments, the final number
ofinferred transmission events from domestic to wild birds was 4 (Sup-
plementary Table 12), indicating minimal transmission back to wild
species, regardless of whether turkeys were included (Supplementary
Fig. 14 and Supplementary Table 12). Inclusion of turkey sequences
did resultin aslightly longer inferred domestic bird persistence (1.29
and 1.54 months; Extended Data Fig. 7e) as well as some turkey-only
clustersonthetree (Extended Data Fig. 6c—e). Reconstruction using a
dataset with equal turkey and domestic (non-turkey) sequences showed
that, while mostintroductionsinto turkey populations stemmed from

Persistence (months)

of domestic towild bird sequences.n=1,080.b, The number of transitions
fromagiventraitto another traitinferred through ancestral state reconstruction
foreachtitration. c, Theresults of the PACT analysis for persistence in domestic
and wild birds for each titration.

wild birds (42 transitions), transmission events between turkeys and
other domesticbirds were frequent. We infer around 38 introductions
fromturkeysto other domesticbirds,and 18 in the opposite direction
(Extended Data Fig. 7a-d and Supplementary Table 13), suggesting a
putativerole for turkeys in mediating transmission between wild birds
and other poultry production types.

These data suggest a few important conclusions. First, wild birds
are inferred as the major source of transmission even when heavily
downsampled, and independent of whether turkeys were included
in the analysis. Second, regardless of sampling regime, we find that
outbreaks in agricultural birds were driven by repeated, independ-
ent introductions from wild birds, with some onward transmission
between domestic operations. While the exact number of inferred
introductions vary across analyses (Supplementary Tables12and 13),
we infer no fewer than 46, and as many as 113 independent introduc-
tions into domestic birds. When allowing sampling frequencies to
approximate detections (the1:3 dataset), we resolve a higher number
ofintroductionsinto domestic birds with shorter transmission chains,
although lineages still persisted for 4-6 months. Together, these results
indicate that—while the epizootic 0f2014/2015 was started by a small
number of introductions that rapidly propagated between commercial
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operations>?—intensive and persistent transmission among wild birds

since 2022 resulted in continuousincursions into domestic birds. Thus,
wild birds had acritical roleinagricultural outbreaksin North America
from 2021-2023, marking an important departure from past epizo-
otics that may necessitate updates to biosecurity, surveillance and
outbreak control.

Spillovers to backyard/commercial birds

The 2014/2015H5Nx epizooticinthe USA was driven by extensive trans-
mission in commercial poultry?, prompting a series of biosecurity
updates for commercial poultry farms'>*, However, not all domestic
birds are raised in commercial settings. Rearing domesticated poul-
try in the home setting has become increasingly popular in the USA,
with an estimated 12 million Americans owning ‘backyard birds’in
2022 (ref.46). These birds have been heavily impacted during the ongo-
ing epizootic, with some evidence for distinct transmission chains
circulating in backyard birds versus commercial poultry®”. As backyard
birds generally experience less biosecurity than commercial birds and
aremorelikely to be reared outdoors*, we hypothesized that spillovers
into backyard birds may be more frequent thanspillovers directly into
commercial poultry.

To test this hypothesis, we used a subset of sequences sampled
between January and May of 2022, with additional metadata specify-
ing whether they were collected from commercial poultry or from
backyard birds. We built a tree with equal sequences from domestic
and wild birds, with domestic sequences split between commercial
and backyard birds (commercial birds = 85, backyard bird = 85, wild
birds =193). As previously, we infer wild birds as the primary source
population, with multiple introductions into commercial and back-
yard birds (Extended Data Fig. 8a). However, backyard bird sequences
clustered more basally than commercial poultry sequences, sometimes
falling directly ancestral to clusters of commercial poultry sequences
(Extended Data Fig. 8a). While all backyard bird clusters descended
from wild birds, 10 out of 26 commercial poultry introductions were
inferred from backyard birds (Supplementary Fig. 15a). This pattern
was reproducible across multiple independent subsamples, indicat-
ing robustness to the exact subset of sequences in the tree. Given the
debated link between backyard birds and commercial poultry*®, we
further explored two hypotheses that could explain this pattern. The
firstis that backyard birds mediated transmission between wild birds
and commercial birds. Under this model, spilloversinto backyard birds
(possibly through outdoor rearing) could be spread to commercial
populations through shared personnel, clothing or equipment, result-
inginbackyard bird sequences clustering between wild and commercial
bird sequences. Alternatively, backyard birds could have beeninfected
earlier than commercial birds. If backyard birds have a higher risk of
exposure (possibly dueto lessened biosecurity and increased interac-
tions with wildlife), then a successful spillover event may take less time
tooccurandbe detected in backyard birds, resultingin clustering that
ismore basalin the tree.

Todifferentiate between these hypotheses, we performed asecond
titration analysis. We started with the phylogeny including equal num-
bers of sequences from commercial and backyard birds, enabling us
to directly compare introduction patterns in these two groups. We
thenadded progressively more wild bird sequences into the tree until
all available wild bird sequences were added and, for each dataset,
inferred the number and timings of transmission events between wild
birds, commercial birds and backyard birds. If backyard birds medi-
ated outbreaks in commercial birds (hypothesis 1), then the relation-
ship between backyard birds and commercial birds should remain
unchanged. If backyard birds and commercial birds were infected
independently (hypothesis 2), then wild bird sequences should inter-
sperse between commercial and backyard bird sequences, resulting in
moreindependentintroductions that occur earlierin backyard birds.

438 | Nature | Vol 649 | 8 January 2026

Throughout the experiment, wild bird sequences attached through-
out the phylogeny, disrupting nearly every backyard bird-commercial
bird cluster originally observed (Extended Data Fig. 8). The final tree
with all available wild bird sequences resulted in inference of around
82independentintroductions from wild birds to domestic birds, with
most clusters containing only commercial (39 clusters) or backyard bird
(43 clusters) sequences (Fig. 5a,b, Extended DataFig. 8 and Supplemen-
tary Fig. 15), suggesting that outbreaks in these groups were mostly
seeded independently. Of the initial ten transmission events inferred
from backyard birds to commercial birds, only two remained undis-
turbed inthefinal tree (Fig. 5b and Supplementary Fig.15), representing
outbreaksinthe same state and week, which could be plausibly linked.
However, all of the other clusters were disrupted. As wild bird sequences
were added into the tree, the number of inferred introductions into
backyard birds and commercial birds diverged across the posterior
trees for each titration (Extended Data Fig. 8), with backyard birds
experiencing slightly more introductions (mean =42 introductions,
95% HPD = 35-49) than commercial poultry (mean = 39 introductions,
95% HPD = 32-44) (Fig. 5¢).

To determine whether spillovers into backyard birds occurred ear-
lier than those into commercial poultry, we estimated the number
of transitions between hosts across the phylogeny (Markov jumps)
and the amount of time that is spent in each host between transitions
(Markov rewards)***°, Early in the epizootic, transmissionin backyard
birds slightly preceded transmission in commercial poultry (Fig. 5d
and Supplementary Fig.15). Enumeration of the cumulative number of
transitions between hosts (Markov jumps), showed that backyard birds
experienced slightly more jumps than commercial poultry (backyard
birds =43 introductions, 95%HPD = 36-50; commercial birds = 39 intro-
ductions, 95% HPD = 32-44), and that these introductions occurred
around 9.6 days earlier on average (Fig. 5e). Comparison of detections
and sequence availability show no apparent skewing in samples for
commercial and backyard birds in that time period, suggesting that
this patternis not simply due to excess earlier cases in backyard birds
atthattime (Supplementary Fig.16). Data on testing turnarounds and
enrolmentin the USindemnity payment register show that commercial
and backyard bird farms have nearly identical lag times between case
reporting and confirmation (2.15 days for commercial birds, 2.4 days for
backyard birds)*, with testing and depopulation in commercial poultry
thatis efficient®?and slightly earlier than inbackyard birds. While 511 out
0f 168,048 commercial operations (0.3%) reported cases and received
indemnity payments (a proxy for enrolmentin testing programs), only
656 out of around 12 million backyard bird owners (0.0055%) were
enrolled*****, Thus, the earlier spillovers that we observe cannot be
readily explained by systematically earlier case detection, testing or
reporting. Future studies using expanded datasets across future epi-
zootic waves are necessary to confirm this pattern more broadly.

Discussion

Our study collectively supports wild birds as critical sources of the
North American H5N1 epizootic. By directly modelling transitions
between host groups based on domestic/wild classification, taxonomic
order and migratory behaviour, paired with strong dispersal across fly-
ways, we show that wild birds were key drivers of epizootic transmission
andintroductionsinto agriculture. These resultsimply that continuous
surveillance in wild birds, particularly Anseriformes®*, may now be
critical for viral tracking and outbreak reconstruction. As the primary
source of transmission shifts from poultry to wild migratory birds, the
ecology of clade 2.3.4.4b viruses in North America may now follow pat-
terns unfolding globally, whereby evolution is increasingly governed
by wild bird movement, ecology and reassortment. Recent modelling
of HPAIriskin Europe identified Anatinae and Anserinae Anseriformes
prevalence as consistent predictors of HPAI detection®, supporting
wildlife surveillance for outbreak forecasting and risk assessment.
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Future work investigating the use of real-time tracking of wild bird
abundance and movement for forecasting outbreaks may be useful
for formulating new approaches to prevention.

Our study highlights the capacity of migratory birds to rapidly dis-
seminate highly pathogenic H5N1 viruses across North America. We
speculate that rapid geographical spread from east to west could be
explained by the high inherent transmissibility of clade 2.3.4.4b viruses
inwild birds, rapid avian migration or exponential spread among immu-
nologically naive wild birds during early epizootic expansion®*¢. We
infer fiveincursions” into the Pacific that mostly persisted transiently,
suggesting frequent viral flow between Asia and the Pacific coast of
North America. Limited transmission from the Pacific flyway could
be explained by differential fitness of the lineages introduced into
the Pacific versus Atlantic flyways, ecological isolation of the Pacific
flyway>® ¢, differencesin host distributions at the locations and times
oftheseincursions or simply due to chance. While future workis neces-
sary to differentiate among these hypotheses, these data support the
Pacific coast as an important region for capturing viral transmission
between Asia and North America.

Wefind that outbreaksinagriculture were seeded by repeated intro-
ductions fromwild birds, a pattern that held true regardless of sampling
regime, and that aligns with global observations that clade 2.3.4.4b
virusesare increasingly spread by wild birds®®'. These findings contrast
with the epizooticin 2014/2015, in which a small number of introduc-
tions spread efficiently between commercial poultry operations*'.
As the viruses circulating in 2014/2015 did not establish in local wild
bird populations, that epizootic subsided following aggressive culling.
Since 2014/2015, biosecurity plans have improved™?* and depopula-
tion occurs more rapidly’?*?, potentially contributing to the shorter
domestic persistence and limited transmission back to wild birds we
observe. Despite these improvements, efficient transmission in wild
birds probably allowed for rapid dispersal and continuous outbreak
reseeding, making this epizootic far more challenging to control. US
and Canadian policy currently classifies H5N1 as a foreign animal dis-
ease, meaning that biosecurity to reduce spread between farms and
rapid culling®® are prioritized for outbreak control. Although these
control measures will probably remainimportant, our results suggest
that reducing future spillovers into agriculture may now necessitate
changes in management priorities. The repeated spillovers that we
identify suggest that gaps in farm biosecurity remain that could be
enhancedto reduce outbreak risk. Finally, layered approaches, includ-
ing enhanced wild bird monitoring, new methods to separate wild and
domestic birds, and potentially domestic animal vaccination, may
necessitate exploration.

Using a small dataset from the first 6 months of the epizootic, we
find phylogenetic evidence that spillovers into backyard birds may
have occurred slightly earlier and more frequently than those into
commercial farms. A large survey of backyard bird populations from
2004 showed that backyard bird flocks often contain multiple species,
usually have outdoor access, and that 60-75% regularly interact with
wild birds*. Biosecurity precautions tend to be much more limited in
backyard populations, with 88% of backyard flocks using no precautions
(shoe covers, footbaths, clothing changes) at all*. Given the enhanced
exposure of backyard birds to wild birds, expanded studies to deter-
mine whether the patterns of earlier spillovers in these populations
hold true morebroadly are necessary to investigate backyard birds as
potential sentinel species for transmission in wild birds.

Sampling bias is pervasive across viral outbreak datasets, and no
modelling approach can completely overcome biases in data acquisi-
tion. In the USA, only wild Anseriformes are sampled live or hunter
harvested, while all other host groups are sampled sick or dead. Detec-
tions in domestic birds depend on producer reporting and testing,
whichprobably varies across production types, locations and premises.
To account for this variability, we used multiple subsampling appro-
aches, reported results that were consistent and carried out statistical
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tests to measure the impact of sampling on our results. The titration
tests that we used show that the precise number of transitions between
wild and domestic birds depends on sampling numbers, providing a
clear argument for continuous surveillance in wildlife, and a warning
for overconfidencein estimating the transitions between groups. Still,
allphylodynamicinferences are limited by the availability of sequenc-
ing data, and the results could change if future databecome available.
Our analyses use only HA sequences, meaning that differences between
reassortants could not be compared®. Finally, although we retain data
from across North America for all analyses, our results are probably
most informative of transmission within the USA during the first
6 months of the epizootic.

Taken together, we show that wild birds played the central role
in dispersal of the 2021-2023 H5N1 epizootic. Transmission in wild
birds provides an explanation for the rapid cross-continental spread
and continued agricultural outbreaks despite aggressive culling. Our
results highlight the utility of wild-bird surveillance for accurately
distinguishing hypotheses of epizootic spread, and suggest that con-
tinuous surveillance is critical for preventing and dissecting future
outbreaks. Our dataunderscore that continued establishment of HSN1
inNorth American wildlife may necessitate ashiftin risk management
and mitigation, withinterventions focused on reducing risk within the
context of enzootic circulation in wild birds. At the time of writing,
outbreaks in dairy cattle highlight the critical importance of model-
ling ecological interactions that drive spillovers between wildlife and
domestic production to inform biosecurity, outbreak response and
vaccine strain selection.
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Methods

Dataset collection and processing

Information on case detections in North America. In this study, a
detectionis defined as a positive PCR test from a collected sample. In
Canada, year-round surveillance in wild and domestic populations is
coordinated by the Canadian Food Inspection Agency, Environment
Canada, the Public Health Agency of Canada and the Canadian Wildlife
Health Centre®*.Inthe USA, the United State Department of Agriculture
Animal and Plant Health Inspection Service (APHIS) manages HPAI
surveillance and testing in wild birds throughinvestigation of reported
morbidity and mortality events, hunter-collected game birds/water-
fowl, sentinel species/live bird collection, and environmental sampling
of water bodies and surfaces***>, USDA APHIS also surveilles domestic
birds using several reporting methods: mandatory testing through the
National Poultry Improvement Plan, coordination with state agricul-
tural agencies, routine testing in high-risk areas and backyard flock
surveillance®.

Dataondetections of HPAlin the USA used in analyses for this study
were collected from USDA APHIS. Reports for mammals, wild birds and
domestic poultry were all downloaded in November 2023 (download
date: 25 November 2023)*. During the time period analysed in this
study (November 2021-September 2023), most HPAI detections in
the USA were reported in wild birds (Supplementary Fig. 1a). Data on
domesticbird detections are reported withinformation on poultry type
(suchasduck, chicken) and by whether the farmis classified asacom-
mercial operation or backyard flock. Backyard flocks are categorized by
the USDA as operations with fewer than 1,000 birds** and by the World
Organization for Animal Health (WOAH) as any birds kept in captivity
for reasons other than for commercial production®. Among domestic
birds, detections (1,177 total) came predominantly from commercial
chickens (9.3%), commercial turkeys (28.5%), commercial breeding
operations (species unspecified) (15.3%) and birds designated WOAH
non-poultry, which refers to backyard birds (42.3%) (Supplementary
Fig.1b). Other domestic bird detections occurred ingame bird raising
operations (2.5%) and commercial ducks (2.0%). The North American
epizootic hasimpacted abroad range of mammalian hosts, with detec-
tions (399) reported in red foxes (24.3%), mice (24.1%), skunks (12.2%)
and domestic cats (13.2%). Other mammalian hosts (26.2%) represent
awide range of species including harbour seals, bobcats, fishers and
bears (Supplementary Fig. 1c).

Genomic data processing and initial phylogenetics. We downloaded
all available nucleotide sequencing data and associated metadata for
the haemagglutinin protein of allHPAl clade 2.3.4.4b H5Nx viruses from
the GISAID database on 25 November 2023 (ref. 69). For each subset
of the data described for further phylodynamic modelling, the fol-
lowing process was followed. We first aligned sequences using MAFFT
v.7.5.20, sequence alignments were visually inspected using Geneious
and sequences causing significant gaps were removed and nucleotides
before the start codon and after the stop codon were removed’®”’, We
deduplicated identical sequences collected on the same day (retaining
identical sequences that occurred ondifferent days). We identified and
removed temporal outliers for all genomic datasets by performing ini-
tial phylogenetic reconstructioninamaximum-likelihood framework
using IQtree v.1.6.12 and the program TimeTree v.0.11.2 was used to
remove temporal outliers and to assess the clockliness of the dataset
before Bayesian phylogenetic reconstruction’>’, This resulted in a
dataset of 1,824 sequences that were used in further analyses (Sup-
plementary Fig.17).

Biases in genomic data and N, inference. Sequencing datasampled
in North America are heavily skewed toward sequences from the USA
(USA, 1,590; Canada, 224; Central America, 8), and from the first 6
months of the outbreak, with 74% of all available sequences sampled

fromJanuary toJuly 2022 (Supplementary Fig. 2). To evaluate whether
sequencing datareflect case detections, we inferred the viral N.—a
measure of viral genetic diversity shown to be mathematically related
to disease prevalence and the disease transmission rate?®, We inferred
N.usinganonparametric population model (Skygrid), which captures
relative changesin genetic diversity and the variability of growthrate in
the virus population over time, providing a proxy for epidemic dynam-
icsas previously described. N, is modestly correlated with detections
(highest Spearman rank correlation: 0.65, P=4.4 x10™) (Fig. 1c and
Supplementary Figs.3and 4), with peaksin N, preceding peaksin detec-
tions by about 1week (Supplementary Fig. 5), probably reflecting the
lag betweenviral transmission and case detection. We interpret these
results to suggest that, despite uneven sequence acquisition across
time, the diversity of sampled sequences roughly reflect the amplitude
of H5N1 cases. Given these results, we opted to use sequencing data for
the entire sampling period for broad inferences onintroductions and
geographical spread, but supplement these analyses with controls for
sampling differences between groups. For more-intensive reconstruc-
tions of transmission patterns between wild birds, commercial poultry
and backyard birds, we focus on the initial 6-month period with the
most densely sampled data, coupled with experiments to assess the
impacts of sampling onresults. Finally, although we retained data from
Canada and Central America for all subsequent analyses, our results
are probably most informative about transmission within the USA due
to the heavy skewing of data towards the USA.

AVONET database. We downloaded the AVONET database for avian
ecology data and merged it to available host metadata from GISAID
foreach sequence™. We used the speciesif provided to match the spe-
ciesindicated in the AVONET database. If host metadata in GISAID
was defined using common name for a bird, we determined the taxo-
nomic species name and used that for further merging with the AVONET
data (for example, ‘mallard’ was replaced with Anas platyrhynchos)
for the given region to match the species to its respective ecological
data. Domesticity status (whether asequence was isolated froma wild
host or adomestic host) was determined using available metadata
downloaded from GISAID using the ‘Note’ and ‘Domestic_Status’fieldsin
sequence associated metadata. Moreover, if a given sequence strain
name (inthefield ‘Isolate_Name’)indicated domesticstatus (forexample,
A/domestic_duck/2022) these sequences were labelled as belonging
to domestic hosts.

Phylodynamic analysis
The following Bayesian phylogenetic reconstructions and analyses
were performed using BEAST (v.1.10.4)".

Empirical tree set estimation and coalescent analysis. We performed
Bayesian phylogenetic reconstruction for each dataset before dis-
crete trait diffusion modelling to estimate a posterior set of empirical
trees. The following priors and settings were used for each subset of the
sequencing data. We used the HKY nucleotide substitution model with
gamma-distributed rate variation among sites and log-normal relaxed
molecular clock model”””. The Bayesian SkyGrid coalescent was used
with the number of grid points corresponding to the number of weeks
between the earliest and latest collected sample (for example, for a
dataset collected between 4 November 2021 and 11 August 2023, we
would set 92 grid points)”®. We initially ran four independent MCMC
chains with a chain-length of 100 million states logging every 10,000
states. We diagnosed the combined results of the independent runs
diagnosed Tracer v1.7.2. to ensure an adequate effective sample size
(ESS > 200) and reasonable estimates for parameters™. If ESS was
inadequate additional independent MCMC runs were run increasing
chain length to 150 million states, sampling every 15,000 states were
performed. We combined the tree files from eachindependent MCMC
run removing 10-30% burn-in and resampling to get a tree file with



between 9,000 and 10,000 posterior trees using Logcombiner v.1.10.4.
A posterior sample of 500 trees was extracted and used as empirical
tree sets in discrete trait diffusion modelling.

Discrete trait modelling framework. For each discrete trait dataset,
we used an asymmetric continuous time Markov chain discrete trait
diffusion model and implemented the Bayesian stochastic search
variable selection (BSSVS) to determine the most parsimonious diffu-
sion network”. We inferred the history of changes from a given trait to
another across branches of the phylogeny, providing a rate of transi-
tions from A to B per year for each pair of trait states. When reporting
theseresults, we refer to state A as the source population/state and B
asthesink population/state. We implemented the BSSVS, which ena-
bles us to determine which rates have the highest posterior support
by using a stochastic binary operator which turns on and off rates to
determine their contribution to the diffusion network. In addition
to the discrete trait diffusion rate, we used a Markov Jump analysis
to observe the number of jumps between discrete states across the
posterior set of trees and estimated the Markov rewards to determine
the waiting time for a given discrete trait state in the phylogeny*>°.
The Markov reward proportion s calculated as the proportion of the
phylogeny at a given time being a given discrete state. By looking at
the proportion of agiven state over time across the phylogeny, we can
provide a proxy for how long transmission has occurredin each group
between transition events. We calculate the transition rate as a realiza-
tion of the CTMC process by dividing the number of Markov jumps by
the tree height (branch length from the earliest tip to the root of the
tree), and separately, by tree length (sum of all branch lengths). For
each pairwise transition rate, we calculate the level of BF support that
the given rate has. The BF represents the support of a given rate, and
is calculated as the ratio of the posterior odds of the given rate being
non-zero divided by the equivalent prior odds, which is set as a Pois-
son prior with a 50% prior probability on the minimal number of
rates possible”. We use the support definitions by Kass and Rafferty
tointerpret the BF support where BF > 3 indicates little support, a BF
between 3 and 10 indicates substantial support, a BF between 10 and
100 indicates strong support, and a BF of greater than 100 indicates
very strong support®°,

Empirical tree sets were used with the discrete traits defined for each
sequence to perform discrete trait diffusion modelling. Each discrete
trait model wasimplemented using three independent MCMC chains
witha chainlength of 10 million states, logging every1,000 states. Runs
were combined using LogCombiner v.1.10.4, subsampling a posterior
sample 0f10,000 trees/states. The BF supportfor transition rates were
calculated using the program SPREAD?3 (ref. 81). Maximum clade cred-
ibility trees were constructed using TreeAnnotator v.1.10.4.

Extraction of phylogenetic metrics. We calculated the transitions
between states across branches of phylogenies estimated from
ancestral state reconstructions using the Baltic python package®.
To calculate the persistence of a given discrete trait, we used the pro-
gram PACT v.0.9.5, which calculates the persistence of atrait by travers-
ing the phylogenetic tree backwards and measuring theamount of time
that atip takes to leave its sampled state®,

Dataset subsampling and definition of discrete traits
Geographical introductions analysis. We characterized the geograph-
ical introduction of HPAIl into North America by randomly sampling
100 sequences from Europe and Asia for each year between 2021 and
2023 (total, 300 non-North American) and all available North American
sequences across the study period. After removal of temporal outliers,
thisresultedinadataset of n=1,927 sequences annotated by continent
of origin. The sequencing data available from North America broken
downby countryare as follows: USA (1,590), Canada (224), Honduras (2),
CostaRica (5) and Panama (1).

Migratory flyways analysis. To characterize geographical transmis-
sionwithin North America after introduction, we constructed a data-
set of sequences subsampled based on migratory flyway. We used
place-of-isolation data to match the US state or Canadian province
that the sequence was collected from with the respective US Fish and
wildlife Service Migratory Bird Program Administrative Flyway®°.
We subsampled 250 sequences for each flyway (Atlantic, Mississippi,
Central and Pacific) to create a dataset of 1,000 sequences collected
between November 2021 and August 2023. In addition to USFWS fly-
ways, we defined four geographical regions going north to south based
on latitude lines, with the following delineations for each group. We
divided North Americainto four regions segregated by latitude, with
the northernmost group above the 49° N parallel and the southern-
mostgroup below the 36° N parallel. We then sampled 916 sequences
uniformly across these categories and inferred transitions between
theseregions.

Host order analysis. We classified sequences by host taxonomic order,
inferring the host species using designationsin the strainname and/or
metadata to match species records in AVONET™, To ensure that each
discrete trait had an adequate number of samples for the discrete trait
analysis of host orders, we combined ordersintwoinstances based on
taxonomicand behavioural similarity. The order Falconiformes (n=14),
representing falcons, was added to Accipitriformes (n =363), which
includes other raptors such as eagles, hawks and vultures. Pelecani-
formes (n =34), including pelicans, were grouped with Charadriiformes
(n =74, shorebirds and waders) due to their similar aquatic lifestyles
and behaviours. Mammals were kept as a broad non-human classifi-
cation as most samples were of the order carnivora (foxes, skunks,
bobcats), apart from samples of dolphins (Artiodactyla) and Virginia
opossum (Didelphimorphia). The following orders were omitted due
to alow number of sequences: Rheaforimes (n =2), Casuariiformes
(n=1), Apodiformes (n=2), Suliformes (n =7), Gaviiformes (n=1),
Gruiformes (n=1) and Podicipediformes (n=1).

Discrete trait approaches assume that the number of sequences in
a dataset are representative of the underlying distribution of cases
in an outbreak, resulting in faulty inference when this assumption is
violated®**** and bias when groups are unevenly sampled®?5*%, To
account for differential sampling among these host order groups,
we considered two distinct subsampling approaches. The first is a
proportional sampling regime in which sequences are sampled propor-
tionalto the detectionsin each host group each month. Thiscommon
sampling regime assumes that case detections in each group are the
closest proxy for the case distribution in the outbreak, and attempts
to align sampling with underlying model assumptions. However, this
approach may not be appropriate if case detection is heavily biased
between groups. For HPAIH5N1in North America, detections in wild
birds are primarily identified when humans report sick or dead birds to
wildlife health authorities or wildlife rescues (Supplementary Fig. 1a),
which may skew detections towards birds with dedicated rescue ser-
vices or birds that reside in closer proximity to humans. For example,
Anseriformes and raptors comprised 50.2% and 20.3% of all sequences,
respectively, which could arise from high case intensity or a higher rate
of caseacquisition. Asecond, complementary subsampling approach
is to sample sequences equally, meaning that sequences are sampled
from each group in perfectly equal numbers. By forcing the number
of sequences from each group to be equal, the transmissioninference
must be driven by the underlying sequence diversity in each group
rather than by sampling differences. Given the high variation among
detections within each host group, we opted to pursue both sampling
regimes and focus on results that were concordant in both. We first
performed an Al test to confirm that clustering was sufficient for dis-
crete trait inference (Extended Data Table 1). Next, for each regime,
we performed three independent subsamples, where the dataset was
sampled either proportional to cases or equally. For the equal sampling
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regime, each dataset included 100 randomly sampled sequences per
host group, except for Passeriformes, for which only 57 sequences were
available. Toaccount for variation across subsampled datasets, we com-
bined theresults for the threeindependent subsamples to summarize
statistical support (Supplementary Fig.12 and Supplementary Tables 4
and 5). Owing to similar tree topologies across replicates, we visualized
the phylogeny of the dataset with the highest posterior support (equal
order subsample1) in the main text and make the results of all analyses
available in supplement (Supplementary Fig. 8 and Supplementary
Tables4-11). Finally, to measure the effects of potential sampling bias
on the inferred transition rates, we performed a modified tip-shuffle
analysis. We generated 100 datasets in which the host tip assignments
were randomly shuffled, re-inferred the host group at internal nodes
and infer a mean root state probability for each host across the 100
shuffled datasets. We then compared the root state probability in the
empirical data to thatinferred in the shuffled data as ameasure of the
impact of sampling on the results as previously described (see the
‘Tip-shuffle analysis’ section for further details)*,.

For the equal sampling regime, we randomly subsampled 100
sequences for each host order between 4 November2021and 11 August
2023, resulting in a dataset of n = 655 sequences whereby all isolates
for host orders with less than100 samples, Passeriformes (n =57) and
Strigiformes (n = 99) (removing one temporal outlier), were used (Sup-
plementary Fig.18). We repeated this random subsampling three times,
resulting in three separate datasets. For the proportional sampling
regime, we performed three subsamples of sequences based on the
proportion of detections in each host order group, which were col-
lected between 4 November 2021 and 11 August 2023. Three random
proportional samples were taken each with the following number
of sequences for each group: Accipitriformes (133), Anseriformes
(342), Passeriformes (12), non-human-mammal (16), Galliformes (83),
Charadriiformes (40), Strigiformes (29) (total n = 655 sequences).

Migratory behaviour analysis. We defined discrete traits for use in
discrete trait diffusion modelling based on the available sequence
metadata and merged AVONET data. In addition to taxonomic order,
we defined migratory behaviour. Birds were classified as sedentary
(stayingin eachlocation and not showing any major migration behav-
iour), partially migratory (for example, small proportion of popula-
tion migrates long distances, or population undergoes short-distance
migration, nomadic movements, distinct altitudinal migration) or
migratory (the majority of population undertakes long-distance
migration). We subsampled sequences based on migratory behav-
iour including non-human-mammals and domestic birds to create a
subsample of 500 sequences with equal sampling across behaviour
groups.

Rationale for inclusion of turkeys as domestic birds. While com-
mercial turkey operations represent 53.7% of all detections on com-
mercial farms*, the presence of wild turkeys throughout North America
makes categorizing turkey sequences as domestic or wild status am-
biguous. 98% of all turkey sequences are not associated with metadata
on domestic/wild status, and were therefore excluded from the first
analysis of domestic/wild bird diffusion. However, epidemiological
data suggest that most deposited turkey sequences probably stem
from domestic outbreaks. Among case detections during the study
period, only 139 were reported in wild turkeys, representing 1.5% of
all wild bird detections. By contrast, commercial turkey outbreaks
comprised 28.5% of all domestic detections in the study period, sug-
gesting that unlabelled turkey sequences are most likely to have come
from domestic birds. While these data are not conclusive, we opted to
perform an additional analysis to determine whether our exclusion
of turkey sequences (that are most likely domestic) may have biased
our results. In the analyses detailed below, turkeys are assumed to be
domestic.

Domestic/wild titration analysis. To study theimpact of sampling of
wild birds on the estimation of rates between domestic and wild birds,
we created five separate datasets with varying numbers of wild birds
forsequences collected between 2021 and 2023. We randomly sampled
270 domestic sequences and 270 wild sequences as the initial 1:1ratio
dataset. We then made four more datasets increasing the number of
wild sequences by a factor of 0.5 (adding 135 wild sequences), result-
inginafinaltitration of1:3 domestic to wild sequences (n =1,080). We
applied a two-state asymmetric CTMC discrete trait diffusion model
in which sequences were labelled as domestic or wild. All priors and
model parameters selected are the same as those described in the
empirical tree set description above. To study the impact of the inclu-
sion of turkeys inthe transmission between domestic and wild popula-
tions, we annotated all unannotated sequences collected from turkeys
asdomestic (see therationalein section above). We then created three
datasets starting with 525 domestic and 525 wild bird sequences, add-
ing 263 sequences to successive titrations resulting in1:1, 1:1.5and 1:2
(domestic:wild) sequencing datasets with afinal titration size of 1,575
sequences. We again applied a two-state asymmetric CTMC discrete
trait diffusion model in which sequences were labelled as domestic
or wild, and all priors and model parameters selected are the same as
those described in the empirical tree set description above. To deter-
mine whether the proportion of turkeys to other domestic birds would
impact the results of the previously described titration analysis we
builtadatasetin which the domestic bird group had equal numbers of
turkey and domestic (non-turkey) sequences. This dataset included 173
turkey, 173 domestic bird and 692 wild bird sequences, totalling 1,038
sequences. Given that turkeys comprised 53.7% of commercial poultry
outbreaksinthe study period, this sampling regime conforms toboth
equaland proportional sampling regimes. We applied anasymmetric
CTMC discrete trait diffusion model using a BSSVS for a three-trait
model with the following states: wild birds, domestic birds (not turkey)
and turkey. We performed three independent runs of this analysis
using the models and parameters described in the empirical tree
analysis section above. All titration replicates were performed using
an MCMC chain length of 100 million states sampling every 10,000
states.

Commercial, backyard, wild-bird titration analysis. Metadata and
annotated sequences were made available describing sequences as
being frombackyard birds for sequences collected inearly 2022 which
distinguished them from commercial poultry (previously all sequences
being determined domestic)®™. We used these metadata to create a data-
set withequally sampled backyard birds and commercial birds (n =85
for each bird type) and then added all available wild birds (n=722) in
25% increments creating four separate datasets for sequences col-
lected between]Jan 2022 and June 2022. This resulted in afinal dataset
of n=942sequences. We performed discrete trait diffusion modelling
using an asymmetric CTMC diffusion model described in the previous
section for sequences labelled as backyard bird, commercial bird and
wild bird. Calculation of the lag time between the cumulative Markov
Jumps for backyard birds and commercial birds was calculated as the
average length of time between points where cumulative Markov jumps
are equal between backyard birds and commercial birds. This was cal-
culated for each treein the posterior.

Assessment of sampling bias

BaTs analysis. To determine whether the discrete traits analysed cor-
related with shared ancestry in the phylogeny, we employed tip trait
associationtestsimplemented in the Bayesian Tip-Association Signifi-
cance (BaTs) program (v.1.0)*. This program assesses the phylogenetic
structure of discrete traits across viral lineages using three metrics: the
Al, parsimony score (PS) and maximum monophyletic clade size (MC).
The Al measures the imbalance of internal nodes of a phylogeny for a
givenset of traits. The PS calculates the number of state changesin the



phylogeny. The MC measures the maximum number of tips belonging
toamonophyletic clade for each discrete trait of interest. These metrics
are calculated for the phylogeny as tips are randomly swapped to create
anull distribution to compare against. Taken together, these metrics
quantify the degree of clustering within the phylogeny, with lower Al
and PSvaluesindicating stronger phylogenetic structure, suggesting
that closely related taxatend to share the same trait, whereas higher val-
uesindicate weaker structure and more-frequent transitions between
trait states. Statistical significance was assessed by comparing observed
values against a null distribution generated through randomization,
with Pvaluesreported for each test. All discrete trait groupings showed
evidence for clustering by trait, supporting the use of trait modelling
across the tree. The results of BaTS analyses for each discrete trait in
this study are provided in Extended Data Table 1.

Tip-shuffle analysis. To assess the sensitivity of each of our discrete
trait reconstructions to differences in sampling between groups, we
implemented amodified version of atip-swap analysis®®. As originally
developed, a tip swap analysis attempts to assess the impact of trait
sampling on discrete trait measurements. Anoperator isimplemented
within the MCMC chain that randomly picks pairs of tips and swaps
their trait values, thus generating a posterior set of trees among which
pairs of trait assignments have been randomly swapped. The prob-
ability of each state at the root is then computed, and compared to
the inferred root state probabilities in the empirical data. As the root
state probabilities in randomized datasets should primarily reflect
the frequency of each traitin the analysis, empirical results that differ
substantially from this null distribution are interpreted as evidence
that the sequencing data are informing the analysis beyond what is
expected based on trait frequencies alone. Thus, traits for which the
root state probability differs considerably from the root state prob-
ability in the null data are frequently interpreted as being informed
by the data, rather than sampling bias. While this approach has been
shown to perform well on small phylogenies"®, the strategy of swap-
ping single pairs of tips poses challenges for larger trees. In our fly-
ways dataset, which includes around 1,000 tips, we found that, even
with extremely high operator values (4,000), the traditional tip-swap
analysis resulted in a posterior set of trees in which the majority of
tips (93.3%) remained assigned to their true state at least 50% of the
time, resulting in a null dataset that was only partially randomized.
We believe that this is due to the high number of tips in our analysis,
resultingin only an extremely small fraction of tips randomized at any
given step inthe MCMC chain. To overcome this limitation, we instead
performed arandomized tip-shuffle analysis. Using the empirical set
oftreesinferred for each discrete trait analysis, we generated 100 null
datasets in which we shuffled the trait assignments randomly across
thetips. Inthisapproach, we preserve the phylogenetic tree topology
andtheratio of samples from each group, but shuffle their assignments
at the tips. For each discrete trait analysis, we generated 100 distinct
shuffled versions of the empirical trees, reran the analysis and sum-
marized the resulting posterior distribution by inferring a maximum
clade credibility tree. We then computed the root state probabilities
for each trait for each MCC tree, and computed the mean root state
probability across all 100 replicates. This computed meanis reported
inExtended Data Table 2, inthe columnlabelled ‘mean root state prob-
ability across 100 datasets with randomly shuffled tip states’. We then
compared theroot state probabilities in the empirical data (reported
as ‘root state probability in empirical data’ in Extended Data Table 2)
to the shuffled data as a measure of the impact of sampling on the
results. As expected, the root state probabilities inferred in the shuffled
datasets are proportional to the number of sequences included for
each group. For the analyses using an equal sampling regime (migra-
tion, flyway, host orders equal and initial titration tests), this leads to
approximately equal expected root state probabilities across groups.
By contrast, the root state probabilities in the empirical data generally

differ significantly from expectation, suggesting that the phylogenetic
results are informed by the genetic data rather than from sampling
alone. Theresults of tip shuffling analyses for each discrete trait in this
study are provided in Supplementary Figs. 19-26 and Extended Data
Table 2.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data that were used in this analysis were sourced from public data-
bases. Theacknowledgement table for GISAID isolates used in this analy-
sis is provided in Supplementary Table 18, which can also be found at
GitHub (https://github.com/moncla-lab/North-American-HPAI). Several
ofthe analyses presented have also been publicly made available using a
maximum-likelihood framework through the Nextstrain pipelineanda
narrative of thiswork canbefound online (https://nextstrain.org/commu-
nity/narratives/moncla-lab/nextstrain-narrative-hpai-north-america@
main/HPAI-in-North-America).

Code availability

All analytical scripts, metadata annotations and BEAST XMLs used in
this analysis are available at GitHub (https://github.com/moncla-lab/
North-American-HPAI). This code is also tracked and freely available
at Zenodo® (https://doi.org/10.5281/zen0do.17259872).
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Extended DataFig. 8| Three state rarefaction analysis between wild, status (wild, backyard bird, commercial bird). E-H) Proportion of transitions
domestic, andbackyardbirds. A-D) MCCtrees foreachtreeinthe three-state fromwild to backyard birds and commercial birds across the posterior set of
titration analysis. Percentage refers to the percentage of all available wild trees for each titration. Ratio representsthe ratio (backyard:commercial:wild
sequences used in the givenanalysis. Colours correspond to the host domesticity  bird) of sequencesin the given analysis.
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Extended Data Table 1| Results of BaTs analysis for each discrete trait set used

Obs Mean L95 Obs U95 Obs Null Mean L95 Null U95 Null ¢]
Geographic introduction
Al 2.221 1.585 2.946 105.122 101.926 108.689 0.001
PS 19.596 19.000 21.000 550.334 544.913 556.562 0.001
Europe 162.900 160.000 180.000 2.921 2.486 3.426 0.001
Asia 82.552 80.000 80.000 2.778 2.379 3.181 0.001
North America 437.691 268.000 550.000 11.443 10.113 13.497 0.001
Flyway
Al 10.563 9.345 11.880 78.911 76.250 82.111 0.002
PS 95.375 92.000 100.000 540.419 528.531 551.669 0.002
Atlantic flyway 41.305 41.000 43.000 3.288 2.808 4.048 0.002
Mississippi flyway 26.024 18.000 38.000 3.332 2.796 4.202 0.002
central flyway 18.707 11.000 23.000 3.316 2.792 4.056 0.002
pacific flyway 27.798 22.000 42.000 3.164 2.597 4.000 0.002
Migration
Al 59.277 55.857 62.574 80.351 78.342 82.289 0.004
PS 407.488 397.000 417.000 510.881 502.818 519.850 0.004
domestic 8.310 8.000 10.000 3.784 3.278 4916 0.004
migratory 6.544 6.000 8.000 4.487 3.924 5.414 0.004
nonhuman-mammal 3.232 3.000 5.000 1.667 1.324 2.030 0.004
partially migratory 5.656 5.000 8.000 2.816 2.378 3.348 0.004
sedentary 3.036 3.000 3.000 1.785 1.458 2.082 0.004
Host Order
Al 42.505 39.799 45.411 61.018 59.291 62.755 0.010
PS 334.122 325.000 342.000 437.302 429.890 445.370 0.010
Galliformes 6.000 6.000 6.000 2.321 2.052 3.020 0.010
Anseriformes 2.592 2.000 4.000 2.318 2.058 3.006 0.010
nonhuman-mammal 4.922 4.000 6.000 2.306 2.050 3.012 0.010
raptors 4.106 3.000 6.000 2.321 2.056 3.018 0.010
shorebirds 8.008 8.000 8.000 2.324 2.054 3.030 0.010
Strigiformes 3.664 3.000 5.000 2.316 2.048 3.020 0.010
Passeriformes 10.000 10.000 10.000 1.847 1.414 2.156 0.010
domestic, wild, turkey
Al 20.709 18.436 23.018 57.149 54.852 59.336 0.002
PS 144.599 135.000 155.000 318.740 313.372 323.543 0.002
turkey 9.784 7.000 15.000 2.631 2.294 3.097 0.002
domestic 11.565 11.000 14.000 2.613 2.283 3.123 0.002
wild 27.688 19.000 37.000 9.602 8.294 12.082 0.002
domestic, wild
Al 15.148 13.665 16.980 43.950 41.232 46.378 0.002
PS 108.882 104.000 115.000 241.071 234.363 246.802 0.002
Wild 38.178 37.000 44.000 12.628 10.511 16.301 0.002
domestic 23.096 19.000 28.000 3.390 2.924 4.156 0.002
domestic, wild, backyard bird
Al 10.854 9.014 12.775 30.252 28.751 31.921 0.010
PS 84.263 78.000 93.000 164.462 161.920 166.440 0.010
backyard bird 7.297 6.000 9.000 2.007 1.693 2.267 0.010
domestic 11.243 10.000 13.000 2.012 1.693 2.320 0.010
wild 64.840 63.000 68.000 16.674 14.143 20.300 0.010

Association Index (Al), Parsimony score (PS) and the maximum monophyletic clade size for each trait in the analysis are listed with their mean and 95% CI. The mean and confidence intervals for
the null model are provided for each trait.



Extended Data Table 2 | Root state probabilities for discrete traits of each analysis in the study using the discrete trait
shuffling test

Trait Original Tip shuffle Number of taxa
Migration

Domestic 0.1194 0.1891 100
Nonhuman Mammal 0.0141 0.2071 100
Migratory 0.4569 0.2171 100
Part Migratory 0.4065 0.1917 100
Sedentary 0.0031 0.1948 100
Global

Asia 0.2117 0.0010 294
North America 0.6759 0.9980 1333
Europe 0.1124 0.0010 300
Flyway

Atlantic 0.9503 0.3010 250
Central 0.0232 0.2530 250
Mississippi 0.0252 0.2470 250
Pacific 0.0011 0.1970 250
Domestic, Wild, Turkey (1:1:1)

Domestic 0.0263 0.0630 173
Turkey 0.0113 0.0630 173
Wild 0.9623 0.8720 346
Domestic, Wild (1:1)

Domestic 0.1140 0.5170 270
Wild 0.8950 0.4830 270
Domestic, Wild, Backyard bird

Wild 0.9992 0.9190 193
Domestic 0.0040 0.0037 85
Backyard bird 0.0003 0.0043 85
Host orders — Equal 1

Galliformes 0.1189 0.1309 100
Strigiformes 0.0290 0.1568 99
Raptors 0.1019 0.1838 100
Nonhuman mammal 0.1409 0.1568 100
Shorebird 0.1499 0.1548 100
Passeriformes 0.0130 0.0200 57
Anseriformes 0.4466 0.1968 100
Host orders - Equal 2

Galliformes 0.0789 0.1580 100
Strigiformes 0.0260 0.1540 99
Raptors 0.1069 0.1580 100
Nonhuman mammal 0.1099 0.1780 100
Shorebird 0.1269 0.1690 100
Passeriformes 0.0180 0.0240 57
Anseriformes 0.5335 0.1540 100
Host orders - Equal 3

Galliformes 0.0920 0.1620 100
Strigiformes 0.0421 0.1570 99
Raptors 0.1494 0.1550 100
Nonhuman mammal 0.1696 0.1790 100
Shorebird 0.0613 0.1560 100
Passeriformes 0.0192 0.0240 57
Anseriformes 0.4674 0.1640 100
Host orders - Proportional 1

Galliformes 0.0030 0.0460 65
Strigiformes 0.0010 0.0290 44
Raptors 0.0759 0.4690 167
Nonhuman mammal 0.0010 0.0330 33
Shorebird 0.0529 0.0090 83
Passeriformes 0.0010 0.0120 31
Anseriformes 0.9691 0.3990 232
Host orders - Proportional 2

Galliformes 0.0080 0.0870 65
Strigiformes 0.0010 0.0550 44
Raptors 0.0709 0.3840 167
Nonhuman mammal 0.0010 0.0940 33
Shorebird 0.0519 0.0210 83
Passeriformes 0.0010 0.0340 31
Anseriformes 0.9681 0.3210 232
Host orders — Proportional 3

Galliformes 0.0010 0.0800 65
Strigiformes 0.0020 0.0430 44
Raptors 0.3387 0.3680 167
Nonhuman mammal 0.0709 0.1280 33
Shorebird 0.0010 0.0340 83
Passeriformes 0.0060 0.0250 31
Anseriformes 0.5904 0.3180 232

The root state probability before and after the shuffling test are displayed.
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Data collection  We downloaded all available nucleotide sequence data and associated meta-data for the Hemagglutinin protein of all HPAI clade 2.3.4.4b
HS5Nx viruses from the GISAID database on 2023-11-25. We downloaded the AVONET database for avian ecology data and merged it to
available host metadata from GISAID for each sequence. We used the species if provided to match the species indicated in the AVONET
database. If host metadata in GISAID was defined using common name for a bird, we determined the taxonomic species name and used that
for further merging with the AVONET data. Data for detections of HPAI in North America were collected from USDA APHIS. Reports for
mammals, wild birds, and domestic poultry were all downloaded (download date: 2023-11-25).

Data analysis For each subset of the data described for further phylodynamic modeling the following process was followed. We first aligned sequences
using MAFFT v7.5, sequence alignments were visually inspected using Geneious and sequences causing significant gaps were removed and
nucleotides before the start codon and after the stop codon were removed. We de-duplicated identical sequences collected on the same day
(retaining identical sequences that occurred on different days). We identified and removed temporal outliers for all genomic datasets by
performing initial phylogenetic reconstruction in a maximum likelihood framework using IQtree v.1.6.12 and used the program TimeTree v
0.11.2 was used to remove temporal outliers. Bayesian phylogenetic reconstructions and analyses were performed using BEAST v.1.10.4. We
performed Bayesian phylogenetic reconstruction for each dataset prior to discrete trait diffusion modeling to estimate a posterior set of
empirical trees. The following priors and settings were used for each subset of the sequence data. We used the HKY nucleotide substitution
model with gamma-distributed rate variation among sites and lognormal relaxed molecular clock model. The Bayesian SkyGrid coalescent was
used with the number of grid points corresponding to the number of weeks between the earliest and latest collected sample (e.g for a dataset
collected between 2021-11-04 and 2023-08-11 we would set 92 grid points). We initially ran four independent MCMC chains with a chain-
length of 100 million states logging every 10000 states. We diagnosed the combined results of the independent runs diagnosed Tracer v1.7.2.
to ensure adequate ESS (ESS > 200) and reasonable estimates for parameters. If ESS was inadequate additional independent MCMC runs were
run increasing chain length to 150 million states, sampling every 15000 states were performed. We combined the tree files from each




independent MCMC run removing 10-30% burn-in and resampling to get a tree file with between 9000 and 10000 posterior trees using
Logcombiner v1.10.4. A posterior sample of 500 trees was extracted and used as empirical tree sets in discrete trait diffusion modeling. We
defined discrete traits for use in discrete trait diffusion modeling based on the available sequence metadata and merged AVONET data. For
each discrete trait dataset, we used an asymmetric continuous time Markov chain discrete trait diffusion model and implemented the
Bayesian stochastic search variable selection (BSSVS) to determine the most parsimonious diffusion network. We calculate the transition rate
as a realization of the CTMC process by dividing the number of markov jumps by the tree height (branch length from the earliest tip to the
root of the tree), and separately, by tree length (sum of all branch lengths). For each pairwise transition rate, we calculate the level of Bayes
Factor (BF) support that the given rate has.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
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- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All analytical scripts, metadata annotations, and BEAST XMLs used in this analysis can be found at the following GitHub repository: https://github.com/moncla-lab/
North-American-HPAI

All data that was used in this analysis were sourced from public databases. Acknowledgement table for GISAID isolates used in this analysis can be found in Table
S20.

Several of the analyses presented have also been publicly made available using a maximum likelihood framework through the Nextstrain pipeline and a narrative of
this work can be found in the following link: https://nextstrain.org/community/narratives/moncla-lab/nextstrain-narrative-hpai-north-america@main/HPAl-in-
North-America
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We downloaded all available nucleotide sequence data and associated meta-data for the Hemagglutinin protein of all HPAI clade 2.3.4.4b
HS5Nx viruses from the GISAID database on 2023-11-2589. For each subset of the data described for further phylodynamic modeling the
following process was followed. We first aligned sequences using MAFFT v7.5.20, sequence alignments were visually inspected using
Geneious and sequences causing significant gaps were removed and nucleotides before the start codon and after the stop codon were
removed. We de-duplicated identical sequences collected on the same day (retaining identical sequences that occurred on different days).
We identified and removed temporal outliers for all genomic datasets by performing initial phylogenetic reconstruction in a maximum
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likelihood framework using IQtree v.1.6.12 and used the program TimeTree v 0.11.2 was used to remove temporal outliers and to assess the
clockliness of the dataset prior to Bayesian phylogenetic reconstruction. This resulted in a dataset of 1824 sequences that were used in
further analyses (Figure S24).

Data exclusions Temporal outliers determined by initial phylogenetic analysis were removed. We de-duplicated identical sequences collected on the same day
(retaining identical sequences that occurred on different days). We identified and removed temporal outliers for all genomic datasets by
performing initial phylogenetic reconstruction in a maximum likelihood framework using IQtree v.1.6.12 and used the program TimeTree v
0.11.2 was used to remove temporal outliers and to assess the clockliness of the dataset prior to Bayesian phylogenetic reconstruction Data
for discrete trait diffusion models were subsampled based on availability of data for given discrete traits.

Replication We performed at least three independent runs of analyses using the models and parameters described in the empirical tree analysis section
above. All titration replicates were performed using an MCMC chain length of 100 million states sampling every 10,000 states.

Randomization  Random sub-sampling of data was performed for discrete trait datasets as well as random case proportional subsamplig for analyses of host
order transmission.

Blinding N/A

Reporting for specific materials, systems and methods
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